JP2005281797A - Magnetic film plating equipment - Google Patents

Magnetic film plating equipment Download PDF

Info

Publication number
JP2005281797A
JP2005281797A JP2004099112A JP2004099112A JP2005281797A JP 2005281797 A JP2005281797 A JP 2005281797A JP 2004099112 A JP2004099112 A JP 2004099112A JP 2004099112 A JP2004099112 A JP 2004099112A JP 2005281797 A JP2005281797 A JP 2005281797A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic film
substrate
plating
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004099112A
Other languages
Japanese (ja)
Inventor
Yasuo Moriya
康雄 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004099112A priority Critical patent/JP2005281797A/en
Publication of JP2005281797A publication Critical patent/JP2005281797A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnetic film plating equipment with which the problems relating to the arrangement of the elements constituting the plating equipment can be reduced. <P>SOLUTION: The plating equipment has a position regulation mechanism capable of optionally changing at least either of a direction of an impressed magnetic field 3 or a direction of a substrate 1 to be deposited with a magnetic film according to the shape of at least either of a magnetic film forming pattern shape 2 or a magnetic domain shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁性膜メッキ装置に関するものであり、特に、磁気ヘッドや磁気記録媒体等の製造プロセスに使用するメッキ装置を構成する要素の配置に関する問題点を軽減するための構成に特徴のある磁性膜メッキ装置に関するものである。   The present invention relates to a magnetic film plating apparatus, and more particularly, to a magnetic film characterized by a structure for reducing problems related to the arrangement of elements constituting a plating apparatus used in a manufacturing process of a magnetic head, a magnetic recording medium, and the like. The present invention relates to a film plating apparatus.

近年の磁気記録装置の高密度記録化、高速化等の進展に伴って、薄膜磁気ヘッド或いは磁気記録媒体等に用いられる磁性膜への各種の要求は高まっているが、そのなかでも、最終的な要求として、高周波領域での透磁率の向上が挙げられる。   With the recent progress of high-density recording and high-speed magnetic recording apparatuses, various demands for magnetic films used for thin-film magnetic heads or magnetic recording media are increasing. An important requirement is an increase in permeability in the high frequency region.

従来、このような磁性膜は、蒸着法やスパッタ法、電解メッキ法或いはこれらを組み合わせた積層膜により形成されているが、誘導型ライトヘッドの下部磁極或いは上部磁極は比較的安価に良質の厚膜を形成できる電解メッキ法によって成膜されているので、ここで、図11を参照して、従来の磁性膜メッキ装置を説明する。   Conventionally, such a magnetic film has been formed by a vapor deposition method, a sputtering method, an electrolytic plating method, or a laminated film that combines these. Since the film is formed by an electrolytic plating method capable of forming a film, a conventional magnetic film plating apparatus will be described with reference to FIG.

図11参照
図11は、従来の磁性膜メッキ装置の概略的構成図であり、上図は投影的平面図であり、下図は断面図である。
磁性膜メッキ装置は、メッキ液51を収容してメッキ処理を行うメッキ槽41、メッキ槽41から溢れ出したメッキ液51を受け入れるオーバーフロー槽42、所定の方向に印加磁界を発生させるための一対の永久磁石43,44、アノード45、基板、即ち、カソード46、カソード46を固定保持する基板固定治具47、カソード46に均一に電流を流すための補助極48、及び、攪拌子49を一端において支持固定するとともに並進運動させるための攪拌アーム50から構成されている。
なお、オーバーフロー槽42に溢れ出したメッキ液51は、図示しない還流手段を介して異物等を除去したのちメッキ槽41の下部から注入される。
See FIG.
FIG. 11 is a schematic configuration diagram of a conventional magnetic film plating apparatus, in which an upper diagram is a projection plan view and a lower diagram is a cross-sectional view.
The magnetic film plating apparatus includes a plating tank 41 for receiving a plating solution 51 and performing a plating process, an overflow tank 42 for receiving the plating solution 51 overflowing from the plating tank 41, and a pair of magnetic fields for generating an applied magnetic field in a predetermined direction. Permanent magnets 43 and 44, an anode 45, a substrate, that is, a cathode 46, a substrate fixing jig 47 for fixing and holding the cathode 46, an auxiliary electrode 48 for allowing a current to flow uniformly through the cathode 46, and a stirrer 49 at one end. It comprises a stirring arm 50 for supporting and fixing and for translational movement.
The plating solution 51 overflowing into the overflow tank 42 is poured from the lower part of the plating tank 41 after removing foreign substances and the like through a reflux means (not shown).

メッキ工程においては、一つの永久磁石43,44との間で発生させた磁界をメッキ液51に印加した状態で、アノード45とカソード46との間に電圧を印加して電流を流し、攪拌子49を並進運動させてメッキ液51を攪拌させてカソード46の表面に常に新しいメッキ液51を供給した状態でカソード46上にパーマロイ等の磁性膜を堆積させている。   In the plating process, with a magnetic field generated between the permanent magnets 43 and 44 applied to the plating solution 51, a voltage is applied between the anode 45 and the cathode 46 to pass a current, and the stirrer A magnetic film such as permalloy is deposited on the cathode 46 in a state in which the plating solution 51 is agitated by translating 49 to constantly supply new plating solution 51 to the surface of the cathode 46.

この様にして成膜した磁性膜の機能評価指標となるパラメータから製造工程におけるパラメータまでブレイクダウンしていくと、磁性膜の保磁力、磁気異方性、磁束密度、或いは、磁歪等から、磁性膜自体の組成、膜厚等へ行き着き、これらの条件は複雑に絡み合ってはいるが、つきつめると、メッキの析出速度を被メッキ品の表面で一定にできれば組成、膜厚のバラツキを最少に抑制できるということになる。   When breakdown is performed from the parameters used as the function evaluation index of the magnetic film thus formed to the parameters in the manufacturing process, the magnetic force is reduced from the coercive force, magnetic anisotropy, magnetic flux density, or magnetostriction of the magnetic film. Although the composition and film thickness of the film itself are reached, and these conditions are intricately intertwined, if the plating deposition rate can be made constant on the surface of the product to be plated, variation in composition and film thickness can be minimized. It will be possible.

しかしながら、近年の高記録密度化に伴って被メッキパターンは微細になるとともに被処理基板は大きくなる傾向にあり、一枚の被処理基板内での磁性膜の組成や膜厚のバラツキ、ロット間でのバラツキ、さらには、多品種製品間でのバラツキは大きくなる一方である。   However, with the recent increase in recording density, the pattern to be plated is becoming finer and the substrate to be processed tends to be larger. The composition of the magnetic film in one substrate to be processed, film thickness variation, and lot-to-lot In addition, the variation among various products is increasing.

そのため、印加磁場方向に被メッキ処理品を一定角度回転させ、停止した状態で通電する方法(例えば、特許文献1参照)や、カソードと磁場発生機能を一体化させ、磁場印加方向を固定した状態で被メッキ処理品を回転させながら、メッキ処理を行う工夫(例えば、特許文献2参照)がなされている。
特開平05−017898号公報 特開平05−283263号公報
For this reason, a method of rotating the plating object in the applied magnetic field direction by a certain angle and energizing it in a stopped state (for example, see Patent Document 1), or a state in which the cathode and the magnetic field generating function are integrated and the magnetic field application direction is fixed. Thus, a device for performing the plating process while rotating the product to be plated (see, for example, Patent Document 2) has been made.
Japanese Unexamined Patent Publication No. 05-017898 JP 05-283263 A

電解メッキ法によって成膜した磁性膜の組成や膜厚のバラツキ原因は様々であるが、上述のように、電流密度の変化、基板表面の凹凸部のイオン濃度差や劣化等によるメッキ効率の変化によって生じるメッキ析出速度が不均一になるという問題があり、これらの直接的な影響により、磁性膜の組成や膜厚のバラツキが起こることになる。   There are various causes for variations in the composition and thickness of the magnetic film formed by the electrolytic plating method, but as described above, changes in plating efficiency due to changes in current density, differences in ion concentration and deterioration of uneven portions on the substrate surface, etc. There is a problem that the plating deposition rate caused by this becomes non-uniform, and the direct influence of these causes variations in the composition and thickness of the magnetic film.

即ち、一般に電解メッキ槽内部には、アノード、カソード、攪拌子、メッキ液供給口等が配置され、電解メッキ槽の外周には永久磁石又は電磁石等が配置固定されているが、これらの要素の配置次第では、メッキ液の流れや攪拌、アノードとカソード間の通電時における液の淀みや電流分布の不均一化に影響し、メッキ膜の析出速度が不均一になり、析出する磁性膜の組成や膜厚のバラツキの原因となる。   That is, in general, an anode, a cathode, a stirrer, a plating solution supply port, and the like are disposed inside the electrolytic plating tank, and a permanent magnet or an electromagnet is disposed and fixed on the outer periphery of the electrolytic plating tank. Depending on the arrangement, it affects the flow and stirring of the plating solution, the stagnation of the solution when the anode and the cathode are energized, and the non-uniform current distribution. And cause variations in film thickness.

また、従来の磁性膜メッキ装置においては、磁界方向が固定されているため、被処理基板の形状、例えば、オリエンテーションフラット(オリフラ)の位置やパターンデザイン、例えば、ライトポールの方向と、攪拌方向との調整ができず、磁性膜の膜厚や組成の分布が磁場方向(磁区形状)に制限を受けている。   Further, in the conventional magnetic film plating apparatus, since the magnetic field direction is fixed, the shape of the substrate to be processed, for example, the orientation flat (orientation flat) position and pattern design, for example, the direction of the light pole, the stirring direction, Therefore, the film thickness and composition distribution of the magnetic film are limited in the magnetic field direction (magnetic domain shape).

また、上述のように、被処理基板となるカソード板を回転させると被処理基板中心部と外周部で攪拌速度が異なるため、パーマロイの場合、Fe含有量に被処理基板中心と外周部とで差を増加させることになる。   Further, as described above, when the cathode plate serving as the substrate to be processed is rotated, the stirring speed is different between the central portion of the substrate to be processed and the outer peripheral portion. Therefore, in the case of permalloy, the Fe content is Will increase the difference.

したがって、本発明は、メッキ装置を構成する要素の配置に関する問題点を軽減することを目的とする。   Accordingly, an object of the present invention is to alleviate problems relating to the arrangement of elements constituting the plating apparatus.

図1は本発明の原理的構成図であり、ここで図1を参照して、本発明における課題を解決するための手段を説明する。
図1参照
上記課題を解決するために、本発明は、磁性膜メッキ装置において、磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状に応じて、 印加磁界3の方向或いは磁性膜を成膜する基板1の方向の少なくとも一方を任意に変更可能な位置調整機構を備えたことを特徴とする。
FIG. 1 is a diagram illustrating the basic configuration of the present invention. Means for solving the problems in the present invention will be described with reference to FIG.
Refer to FIG. 1 In order to solve the above-mentioned problem, the present invention forms a magnetic film in the direction of the applied magnetic field 3 in accordance with at least one of the magnetic film formation pattern shape 2 or the magnetic domain shape in the magnetic film plating apparatus. And a position adjusting mechanism capable of arbitrarily changing at least one of the directions of the substrate 1 to be performed.

また、本発明は、磁性膜メッキ装置において、磁性膜を成膜する基板1の方向と印加磁界3の方向を保持した状態で、 攪拌手段6による攪拌方向を任意に変更可能な位置調整機構を備えたことを特徴とする。
なお、この場合の攪拌手段6の攪拌動作は、磁性膜を成膜する基板1の主面に平行な面上における並進動作である。
The present invention also provides a position adjusting mechanism capable of arbitrarily changing the agitating direction by the agitating means 6 while maintaining the direction of the substrate 1 on which the magnetic film is formed and the direction of the applied magnetic field 3 in the magnetic film plating apparatus. It is characterized by having.
In this case, the stirring operation of the stirring means 6 is a translation operation on a plane parallel to the main surface of the substrate 1 on which the magnetic film is formed.

このように、印加磁界3の方向と磁性膜を成膜する基板1、基板1と攪拌方向との位置調整機構を付加することで、印加磁界3の方向と基板1の向きを微調整後に、位置関係を保持した状態で、メッキ槽10内での磁性膜形成パターン形状2或いは磁区形状の向き、即ち、位置関係の調整が可能になり、それによって、成膜した磁性膜の膜厚、組成バラツキを低減できる。   In this way, by adding the position adjusting mechanism between the direction of the applied magnetic field 3 and the substrate 1 for forming the magnetic film, the substrate 1 and the stirring direction, the direction of the applied magnetic field 3 and the direction of the substrate 1 are finely adjusted. While maintaining the positional relationship, it is possible to adjust the orientation of the magnetic film formation pattern shape 2 or the magnetic domain shape in the plating tank 10, that is, the positional relationship, and thereby the film thickness and composition of the formed magnetic film. Variations can be reduced.

即ち、磁気ヘッドの磁性膜を形成する上で、対象となる基板1はウェハが主流であり、一枚のウェハ内であっても、オリフラ側の膜厚、組成の傾向が異なる場合が多々発生するが、これらをメッキ成膜途中でウェハ方向を変えることで液流によるウェハ内での膜厚、組成バラツキを低減できる。   That is, when forming the magnetic film of the magnetic head, the target substrate 1 is mainly a wafer, and even in a single wafer, the orientation flat film thickness and composition tend to be different in many cases. However, by changing the wafer direction during the plating film formation, the film thickness and composition variation in the wafer due to the liquid flow can be reduced.

また、磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状と、少なくとも磁界印加方向及び攪拌方向による磁性膜の膜厚と組成分布との相関を予めシミュレーションしたデータベースを備え、磁性膜の磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状に応じて磁界印加方向及び攪拌方向を自動的に設定する位置調整機構を備えるようにしても良い。   In addition, there is provided a database in which a correlation between at least one of the magnetic film formation pattern shape 2 or the magnetic domain shape and the film thickness and composition distribution of the magnetic film in at least the magnetic field application direction and the stirring direction is simulated in advance. A position adjustment mechanism that automatically sets the magnetic field application direction and the stirring direction according to at least one of the formation pattern shape 2 or the magnetic domain shape may be provided.

即ち、電解メッキ工程における磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状と、磁界印加方向及び攪拌方向による磁性膜の膜厚と組成分布との相関を予めシミュレーションにより取得しておき、データベースとして格納しておくことによって、成膜するべき磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状を入力することによって、膜厚及び組成比のバラツキの少ない磁界印加方向及び攪拌方向等の条件を自動的に設定することができる。   That is, a correlation between at least one of the magnetic film formation pattern shape 2 or the magnetic domain shape in the electroplating process and the magnetic film thickness and composition distribution in the magnetic field application direction and the stirring direction is obtained in advance by simulation, By storing at least one of the magnetic film formation pattern shape 2 or the magnetic domain shape to be deposited, conditions such as a magnetic field application direction and a stirring direction with little variation in film thickness and composition ratio are stored. Can be set automatically.

また、磁界を印加する機構は、カソードを回転可能に保持する回転軸7、回転軸7を回転自在に保持するとともにロック機構が備えられた軸受け8、軸受け8に回転軸7の直交方向に接続された回転アーム9、及び、回転アーム9の先端に固定された磁石4,5からなり、軸受け8がロックした時のみに回転運動が回転アーム9に伝達されるように構成すれば良い。   The mechanism for applying the magnetic field is connected to the rotating shaft 7 that rotatably holds the cathode, the bearing 8 that rotatably holds the rotating shaft 7, and the locking mechanism. The rotary arm 9 and the magnets 4 and 5 fixed to the tip of the rotary arm 9 may be configured so that the rotary motion is transmitted to the rotary arm 9 only when the bearing 8 is locked.

このような構成により、基板1を中心に線対称に配置しやすい一般的な円筒形状や立方体をベースとした槽に、アノード、カソード、基板固定治具をメッキ槽10と同心円上に配置し、基板1と印加磁界3の方向、基板1と攪拌方向、基板1と印加磁界3の方向を保持した状態で攪拌方向を任意に位置調整可能にすることができる。   With such a configuration, an anode, a cathode, and a substrate fixing jig are arranged concentrically with the plating tank 10 in a tank based on a general cylindrical shape or a cube that is easily arranged symmetrically about the substrate 1. It is possible to arbitrarily adjust the position of the stirring direction while maintaining the directions of the substrate 1 and the applied magnetic field 3, the substrate 1 and the stirring direction, and the substrate 1 and the applied magnetic field 3.

例えば、メッキ槽10内のアノード、カソード、基板固定治具、補助極板は、円筒形メッキ槽10の同心円上に配置され、槽壁からそれぞれまでの距離を一定に保つことが可能であることを前提に、槽内配置が槽中心を通る直線の線対称で表現できる。
これは、液流や基板パターンデザインの影響を無視した場合の電流分布/等電位線が最も良好な状態になり得る。
For example, the anode, the cathode, the substrate fixing jig, and the auxiliary electrode plate in the plating tank 10 are arranged on the concentric circles of the cylindrical plating tank 10, and it is possible to keep the distance from the tank wall constant. As a premise, the arrangement in the tank can be expressed by a straight line symmetry passing through the center of the tank.
In this case, the current distribution / equipotential line when the influence of the liquid flow and the substrate pattern design is ignored can be in the best state.

以上説明した様に、円筒形状のメッキ装置をベースにメッキ槽内のアノード、カソード、基板固定治具、補助極板は、メッキ槽の同心円上にあり、磁界を発生する永久磁石又は電磁石が円弧形状であるため、槽内配置が槽中心を通る直線の線対称となり、電流分布/等電位線が最も良好な状態になる。   As explained above, the anode, cathode, substrate fixing jig, and auxiliary electrode plate in the plating tank are on the concentric circles of the plating tank based on the cylindrical plating apparatus, and the permanent magnet or electromagnet that generates a magnetic field is an arc. Because of the shape, the arrangement in the tank is line-symmetric with a straight line passing through the center of the tank, and the current distribution / equipotential line is in the best state.

また、位置調整可能な磁界発生源により、ウェハの向きやメッキ膜を形成するパターン形状の向きに対して最適な磁界方向、攪拌方向を設定することが可能となり、処理品種による専用のメッキ装置や、基板固定治具を必要としない。   In addition, the magnetic field generation source with adjustable position makes it possible to set the optimum magnetic field direction and agitation direction for the orientation of the wafer and the pattern shape forming the plating film. Does not require a substrate fixing jig.

本発明の磁性膜メッキ装置は、処理基板を中心に線対称に配置しやすい一般的な円筒形状や立方体をベースとした槽に、アノード、カソード、即ち、基板、基板固定治具をメッキ槽と同心円上に配置し、基板と印加磁界の方向、基板と攪拌方向、基板と印加磁界の方向を保持した状態で攪拌方向を任意に位置調整可能な機構を付加したものである。   The magnetic film plating apparatus of the present invention is a tank based on a general cylindrical shape or cube that is easy to arrange symmetrically around a processing substrate, and an anode, a cathode, that is, a substrate, a substrate fixing jig, and a plating tank. A mechanism that is arranged on concentric circles and that can adjust the position of the agitation direction arbitrarily while maintaining the direction of the substrate and the applied magnetic field, the direction of the substrate and the agitation, and the direction of the substrate and the applied magnetic field is added.

ここで、図2を参照して、本発明の実施例1の磁性膜メッキ装置を説明する。
図2参照
図2は、従来の磁性膜メッキ装置の概略的構成図であり、上図は投影的平面図であり、下図は断面図である。
磁性膜メッキ装置は、メッキ液26を収容する円筒状のメッキ槽11、メッキ槽11から溢れ出したメッキ液26を受け入れる円環状のオーバーフロー槽12、所定の方向に印加磁界を発生させるための一対の永久磁石13,14、アノード15、カソード、即ち、基板16、基板16を固定保持する基板固定治具17、基板16に均一に電流を流すための補助極18、及び、攪拌子19を一端において支持固定するとともに並進運動させるための攪拌アーム20から構成されている。
なお、オーバーフロー槽12に溢れ出したメッキ液26は、図示しない還流手段を介してメッキ槽11の下部から注入され、また、基板固定治具17とメッキ槽11との間にはメッキ液26の漏れ出しを防止するシール部材が設けられている。
Here, with reference to FIG. 2, the magnetic film plating apparatus of Example 1 of this invention is demonstrated.
See Figure 2
FIG. 2 is a schematic configuration diagram of a conventional magnetic film plating apparatus, in which an upper diagram is a projection plan view and a lower diagram is a cross-sectional view.
The magnetic film plating apparatus includes a cylindrical plating tank 11 that contains a plating liquid 26, an annular overflow tank 12 that receives the plating liquid 26 overflowing from the plating tank 11, and a pair for generating an applied magnetic field in a predetermined direction. Permanent magnets 13, 14, anode 15, cathode, that is, substrate 16, substrate fixing jig 17 for fixing and holding substrate 16, auxiliary pole 18 for allowing a current to flow uniformly through substrate 16, and stirrer 19 at one end. And a stirring arm 20 for supporting and fixing and for translational movement.
The plating liquid 26 overflowing into the overflow tank 12 is injected from the lower part of the plating tank 11 through a reflux means (not shown), and the plating liquid 26 is interposed between the substrate fixing jig 17 and the plating tank 11. A seal member for preventing leakage is provided.

また、一対の永久磁石13,14は、基板16を回転可能に保持する回転軸21を回転自在に保持するとともにロック機構が備えた軸受け22から突出した回転アーム23の先端に固定されている。
なお、図の一対の永久磁石13,14においては、互いに対向する磁極のみを示している。
The pair of permanent magnets 13 and 14 is fixed to the tip of a rotating arm 23 that protrudes from a bearing 22 provided with a lock mechanism while rotatably holding a rotating shaft 21 that holds the substrate 16 rotatably.
In the pair of permanent magnets 13 and 14 in the figure, only the magnetic poles facing each other are shown.

また、回転軸21はプーリー及びゴムベルトからなる回転伝達機構24を介してモータ25と結合されており、軸受け22がロックした時のみに回転運動が回転アーム23に伝達されるように構成されている。   The rotary shaft 21 is coupled to a motor 25 via a rotation transmission mechanism 24 including a pulley and a rubber belt, and is configured such that the rotational motion is transmitted to the rotary arm 23 only when the bearing 22 is locked. .

即ち、基板16を磁界の方向、即ち、回転アーク23の延在方向に対して所定の位置関係になるように基板固定治具17にセットしたのち、ロック機構をロックさせた状態でモータ25を駆動することによって、印加磁界と基板16の方向を所定の角度に関係に保持した状態で攪拌子19の並進運動の方向に対して所定の角度になるように設定する。   That is, after the substrate 16 is set on the substrate fixing jig 17 so as to have a predetermined positional relationship with the direction of the magnetic field, that is, the extending direction of the rotating arc 23, the motor 25 is operated with the lock mechanism locked. By driving, the applied magnetic field and the direction of the substrate 16 are set so as to be at a predetermined angle with respect to the direction of translational movement of the stirrer 19 in a state in which the direction of the substrate 16 is maintained at a predetermined angle.

なお、軸受け22のロック機構を解除した状態でモータ25を駆動することによって、基板固定治具17のみを回転させることができ、基板16の方向を永久磁石13,14から発生する磁界の方向に対して微調整することができる。   By driving the motor 25 with the lock mechanism of the bearing 22 released, only the substrate fixing jig 17 can be rotated, and the direction of the substrate 16 is set to the direction of the magnetic field generated from the permanent magnets 13 and 14. On the other hand, it can be finely adjusted.

メッキ工程においては、一つの永久磁石13,14との間で発生させた磁界をメッキ液26に印加した状態で、アノード15と基板16との間に電圧を印加して電流を流し、攪拌子19を並進運動させてメッキ液26を攪拌させて基板16の表面に常に新しいメッキ液26を供給した状態で基板16上に磁性膜を堆積させている。   In the plating process, a voltage is applied between the anode 15 and the substrate 16 in a state where a magnetic field generated between the single permanent magnets 13 and 14 is applied to the plating solution 26, and a current is applied to the stirrer. The magnetic film 19 is deposited on the substrate 16 in a state where the plating solution 26 is stirred by translating 19 and the surface of the substrate 16 is always supplied with a new plating solution 26.

このような位置関係をメッキ成膜途中において、モータ25を駆動して基板方向を攪拌方向に対して変えることで液流によるウェハ内での膜厚、組成バラツキを低減するものである。
この場合、ロック機構を解除して回転運動を与えれば、基板のみの位置方向の調整ができ、また、ロック機構をオンにした状態で回転運動を与えれば、印加磁界と基板の方向を所定の角度に関係に保持した状態で基板の位置方向の調整ができる。
In the middle of the plating film formation, the motor 25 is driven to change the substrate direction with respect to the stirring direction during the plating film formation, thereby reducing the film thickness and composition variation in the wafer due to the liquid flow.
In this case, if the lock mechanism is released and a rotational motion is applied, the position and direction of the substrate alone can be adjusted, and if the rotational motion is applied with the lock mechanism turned on, the applied magnetic field and the direction of the substrate are set to a predetermined value. The position direction of the substrate can be adjusted in a state where the angle is maintained.

次に、図3乃至図8を参照して、本発明の実施例1の磁性膜メッキ装置を用いたメッキ工程を説明する。
図3参照
図3は、オリフラの方向と上部磁極の長軸方向を一致させた基板16のオリフラの方向が印加磁界の方向と一致するように基板固定治具に保持するとともに、基板16のオリフラの方向が攪拌子19の並進方向と一致するように位置関係を設定した状態でメッキを行う場合を示したものであり、従来のメッキ工程に相当する。
Next, a plating process using the magnetic film plating apparatus according to the first embodiment of the present invention will be described with reference to FIGS.
See Figure 3
FIG. 3 shows that the orientation flat of the substrate 16 in which the orientation of the orientation flat and the major axis of the upper magnetic pole coincide with the direction of the applied magnetic field is held by the substrate fixing jig. The case where plating is performed in a state where the positional relationship is set so as to coincide with the translation direction of the stirring bar 19 is shown, and corresponds to a conventional plating process.

図4参照
図4は、オリフラの方向と上部磁極の長軸方向を一致させた基板16のオリフラの方向が印加磁界の方向と一致するように基板固定治具に保持するとともに、基板16のオリフラの方向と攪拌子19の並進方向との角度が15°になるように位置関係を設定した状態でメッキを行う場合を示したものである。
See Figure 4
FIG. 4 shows the orientation of the orientation flat and the orientation of the top pole of the upper magnetic pole held by the substrate fixing jig so that the orientation of the orientation flat of the substrate 16 coincides with the direction of the applied magnetic field. The case where plating is performed in a state where the positional relationship is set so that the angle of the stirring bar 19 with respect to the translation direction is 15 ° is shown.

図5参照
図5は、まず、オリフラの方向と上部磁極の長軸方向を一致させた基板16のオリフラの方向が印加磁界の方向と一致するように基板固定治具に保持するとともに、基板16のオリフラの方向と攪拌子19の並進方向との角度が10°になるように位置関係を設定したのち、軸受け22のロック機構を解除して基板16のみを更に5°回転させて基板16のオリフラの方向と攪拌子19の並進方向との角度が15°になるように位置関係を設定した状態でメッキを行う場合を示したものである。
See Figure 5
In FIG. 5, first, the orientation flat of the substrate 16 in which the orientation flat and the major axis direction of the upper magnetic pole coincide with each other is held on the substrate fixing jig so that it coincides with the direction of the applied magnetic field. After setting the positional relationship so that the angle between the direction and the translation direction of the stirrer 19 becomes 10 °, the lock mechanism of the bearing 22 is released, and only the substrate 16 is further rotated 5 °, and the orientation flat direction of the substrate 16 This shows a case where plating is performed in a state in which the positional relationship is set so that the angle between the axis and the translation direction of the stirrer 19 is 15 °.

図6参照
図6は、まず、オリフラの方向と上部磁極の長軸方向を直交させた基板27のオリフラの方向が印加磁界の方向と一致するように基板固定治具に保持するとともに、基板27のオリフラの方向が攪拌子19の並進方向と直交する位置関係に設定した状態でメッキを行う場合を示したものである。
See FIG.
In FIG. 6, first, the orientation flat of the substrate 27 in which the orientation of the orientation flat and the major axis direction of the upper magnetic pole are orthogonal to each other is held on the substrate fixing jig so as to coincide with the direction of the applied magnetic field. The case where plating is performed in a state where the direction is set to a positional relationship orthogonal to the translation direction of the stirring bar 19 is shown.

図7参照
図7は、本発明の実施例1の磁性膜メッキ装置を用いて上記の図4の状態に近い最適条件で電解メッキを行った場合の効果の説明図であり、この場合のメッキ条件としては
基板電流 0.47A
攪拌子並進速度 1800cm/分
攪拌子−基板間間隔 25mm
メッキ液注入量 2.5リットル/分
補助電極電流 1.29A
メッキ時間 16分
メッキ液温度 37.5℃
の条件で行った。
なお、図7におけるヨーク部とは上部磁極におけるライトコイルを覆う大面積部を意味し、磁極部とは、上部磁極の先端部の小面積のライトポールを意味する。
See FIG.
FIG. 7 is an explanatory view of the effect when electrolytic plating is performed under the optimum conditions close to the state of FIG. 4 using the magnetic film plating apparatus of Example 1 of the present invention. In this case, the plating conditions are as follows. Substrate current 0.47A
Stirrer translation speed 1800 cm / min Stirrer-substrate spacing 25 mm
Plating solution injection rate 2.5 l / min Auxiliary electrode current 1.29A
Plating time 16 minutes Plating solution temperature 37.5 ° C
It went on condition of.
In FIG. 7, the yoke portion means a large area portion that covers the write coil in the upper magnetic pole, and the magnetic pole portion means a small area light pole at the tip of the upper magnetic pole.

また、図7には、図3に示した従来の状態における結果の合わせて示しているが、この場合のメッキ条件としては、
基板電流 0.47A
攪拌子並進速度 1680cm/分
攪拌子−基板間間隔 25mm
メッキ液注入量 2.5リットル/分
補助電極電流 2.04A
メッキ時間 16分
メッキ液温度 37.0℃
の条件で行った。
FIG. 7 also shows the result of the conventional state shown in FIG. 3, and the plating conditions in this case are as follows:
Substrate current 0.47A
Stirrer translation speed 1680 cm / min Stirrer-substrate spacing 25 mm
Plating solution injection rate 2.5 l / min Auxiliary electrode current 2.04A
Plating time 16 minutes Plating solution temperature 37.0 ° C
It went on condition of.

図7に示したように、磁極部の膜厚のR値(=最大値−最小値)は、従来の1.49μmに対して0.68μmとなり、R値/平均膜厚で従来の43%程度に抑えることができた。
また、磁極部の膜厚のバラツキσは、従来の0.44μmに対して0.22μmとなり、σ/平均膜厚で従来の50%程度に抑えることができる。
As shown in FIG. 7, the R value (= maximum value−minimum value) of the film thickness of the magnetic pole portion is 0.68 μm compared to the conventional 1.49 μm, and the R value / average film thickness is 43% of the conventional value. It was able to be suppressed to the extent.
Further, the variation σ of the film thickness of the magnetic pole portion is 0.22 μm with respect to the conventional 0.44 μm, and σ / average film thickness can be suppressed to about 50% of the conventional.

このように、本発明により基板の表面に凹凸がある場合にも、本発明の磁性膜メッキ装置を用いて最適条件を選択することによって、磁性膜の膜厚のバラツキを大幅に抑制することが可能になる。   As described above, even when the surface of the substrate is uneven according to the present invention, by selecting the optimum conditions using the magnetic film plating apparatus of the present invention, variation in the film thickness of the magnetic film can be greatly suppressed. It becomes possible.

図8参照
図8の上図は従来法における電解メッキにおける同一ウェハ上の7つの位置のチップにおける磁極部の膜厚とNi組成比の関係を示す図であり、下図は、本発明の磁性膜メッキ装置を用いて最適条件を選択した場合の従来例と同じ位置の7つのチップにおける磁極部の膜厚とNi組成比の関係を示す図である。
See FIG.
The upper diagram of FIG. 8 is a diagram showing the relationship between the film thickness of the magnetic pole part and the Ni composition ratio in the chip at seven positions on the same wafer in the electrolytic plating in the conventional method, and the lower diagram shows the magnetic film plating apparatus of the present invention. It is a figure which shows the relationship between the film thickness of the magnetic pole part in 7 chips | tips of the same position as the prior art example when the optimal condition is selected using, and Ni composition ratio.

上図と下図の比較から明らかになるように、本発明においては、膜厚のバラツキが小さくなるとともに、Ni組成比のバラツキも大幅に小さくなっており、得られる磁気ヘッドの特性のバラツキを小さくすることができる。   As is clear from the comparison between the upper and lower figures, in the present invention, the variation in the film thickness is reduced and the variation in the Ni composition ratio is also greatly reduced, so that the variation in the characteristics of the obtained magnetic head is reduced. can do.

次に、図10及び図11を参照して、本発明の実施例2の磁性膜メッキ装置を説明するが、この磁性膜メッキ装置は成膜する磁性膜の形状に応じて基板方向と磁界印加方向を攪拌方向に対して自動設定する機能を備えたものである。
なお、メッキ装置自体のハードの構成は上記の実施例1の磁性膜メッキ装置と全く同じであるので装置構成の図示は省略する。
Next, the magnetic film plating apparatus according to the second embodiment of the present invention will be described with reference to FIGS. 10 and 11. This magnetic film plating apparatus applies the substrate direction and magnetic field application according to the shape of the magnetic film to be formed. It has a function of automatically setting the direction with respect to the stirring direction.
Since the hardware configuration of the plating apparatus itself is exactly the same as that of the magnetic film plating apparatus of the first embodiment, the illustration of the apparatus configuration is omitted.

即ち、本発明の実施例2においては、成膜する磁性膜の形状に対する基板方向と磁界印加方向の攪拌方向に対する最適条件を予めシミュレーションにより求め、そのデータを制御用端末内に格納しておくものであり、それにより、成膜する品種に応じて最適条件を自動的に設定できるので、スループットが向上するとともに、高品質の製品を再現性良く製造することができる。   That is, in the second embodiment of the present invention, the optimum conditions for the substrate direction and the magnetic field application direction for the magnetic film shape to be deposited are determined in advance by simulation, and the data is stored in the control terminal. As a result, the optimum conditions can be automatically set according to the type of film to be formed, so that the throughput is improved and a high-quality product can be manufactured with good reproducibility.

図10及び図11参照
図10及び図11は、所定の磁性膜形成パターンに対してシミュレーションを行った結果のデータベースの一例を示す図であり、図10は上述の図5に示した基板方向と磁界印加方向と攪拌方向の位置関係において各種条件をふった場合のデータベースであり、図11は図6に示した基板方向と磁界印加方向と攪拌方向の位置関係において各種条件をふった場合のデータベースである。
See FIGS. 10 and 11
10 and 11 are diagrams showing an example of a database obtained as a result of performing simulation on a predetermined magnetic film formation pattern. FIG. 10 shows the substrate direction, magnetic field application direction, and stirring direction shown in FIG. 11 is a database when various conditions are satisfied in the positional relationship among the substrate direction, the magnetic field application direction, and the stirring direction shown in FIG.

この様なデータベースを、種々の基板方向と磁界印加方向と攪拌方向の位置関係に対して求めるとともに、このようなデータベースを各種の磁性膜形成パターンに対して求めて制御用端末内に格納しておけば良い。
なお、成膜すべき磁性膜の形状と同じ形状の磁性膜形成パターンがデータベース内にない場合には、最も類似したパターンを検索して、そのパターン形状の差から最適メッキ位置関係を補間法等により求めれば良い。
Such a database is obtained for the positional relationship among various substrate directions, magnetic field application directions, and stirring directions, and such a database is obtained for various magnetic film formation patterns and stored in the control terminal. It ’s fine.
If there is no magnetic film formation pattern in the database that matches the shape of the magnetic film to be deposited, the most similar pattern is searched and the optimum plating position relationship is interpolated from the difference in the pattern shape, etc. It may be obtained by.

以上、本発明の各実施例を説明したが、本発明は各実施例に記載された構成・条件に限られるものではなく、各種の変更が可能である。
例えば、上記の実施例においては誘導型ライトヘッドの上部磁極層のメッキ工程として説明しているが、上部磁極層に限られるものではなく、下部磁極層のメッキ工程にも適用されるものである。
As mentioned above, although each Example of this invention was described, this invention is not restricted to the structure and conditions described in each Example, A various change is possible.
For example, in the above embodiment, the upper magnetic pole layer plating process of the induction type write head has been described. However, the present invention is not limited to the upper magnetic pole layer, but can be applied to the lower magnetic pole layer plating process. .

また、図2に示した永久磁石の形状は円弧状であるが、円弧状に限られるものではなく、矩形状の永久磁石を用いても良いものである。
また、磁石は永久磁石に限られるものではなく、電磁石を用いても良いものである。
The shape of the permanent magnet shown in FIG. 2 is an arc shape, but is not limited to an arc shape, and a rectangular permanent magnet may be used.
Moreover, a magnet is not restricted to a permanent magnet, An electromagnet may be used.

また、上記の実施例においては、回転軸をプーリ及びゴムベルトからなる回転伝達機構を用いて駆動しているが、回転軸をモータによって直接回転駆動させるように構成しても良いものである。   In the above embodiment, the rotation shaft is driven using a rotation transmission mechanism including a pulley and a rubber belt. However, the rotation shaft may be directly rotated by a motor.

また、本発明は、誘導型ライトヘッドの磁極層のメッキ工程に限られるものではなく、磁気記録媒体等の他の磁気素子或いは磁気装置における磁性膜のメッキ工程に適用されるものである。   The present invention is not limited to the plating process of the magnetic pole layer of the induction type write head, but is applied to the plating process of the magnetic film in another magnetic element such as a magnetic recording medium or a magnetic apparatus.

また、本発明は、必ずしも磁性膜用のメッキ装置に限られるものではなく、Cu−Zn等の非磁性合金層の電解メッキ工程に適用しても良いものであり、特に、基板の表面に凹凸がある場合に、組成変動の少なく且つ膜厚のバラツキの少ない合金層を再現性良く形成することができる。   In addition, the present invention is not necessarily limited to a plating apparatus for a magnetic film, and may be applied to an electroplating process for a nonmagnetic alloy layer such as Cu-Zn. When there is, an alloy layer with little composition variation and little film thickness variation can be formed with good reproducibility.

ここで再び図1を参照して、本発明の詳細な特徴を改めて説明する。
再び、図1参照
(付記1) 磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状に応じて、 印加磁界3の方向を任意に変更可能な位置調整機構を備えたことを特徴とする磁性膜メッキ装置。
(付記2) 磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状に応じて、 磁性膜を成膜する基板1の方向を任意に変更可能な位置調整機構を備えたことを特徴とする磁性膜メッキ装置。
(付記3) 磁性膜を成膜する基板1の方向と印加磁界3の方向を保持した状態で、 攪拌手段6による攪拌方向を任意に変更可能な位置調整機構を備えたことを特徴とする磁性膜メッキ装置。
(付記4) 上記攪拌手段6の攪拌動作が、上記磁性膜を成膜する基板1の主面に平行な面上における並進動作であることを特徴とする付記3記載の磁性膜メッキ装置。
(付記5) 上記磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状と、少なくとも上記磁界印加方向及び攪拌方向による磁性膜の膜厚と組成分布との相関を予めシミュレーションしたデータベースを備え、前記磁性膜の磁性膜形成パターン形状2或いは磁区形状の少なくとも一方の形状に応じて前記磁界印加方向及び攪拌方向を自動的に設定する位置調整機構を備えたことを特徴とする付記1乃至4のいずれか1に記載の磁性膜メッキ装置。
(付記6) 上記磁界を印加する機構が、カソードを回転可能に保持する回転軸7、前記回転軸7を回転自在に保持するとともにロック機構が備えられた軸受け8、前記軸受け8に前記回転軸7の直交方向に接続された回転アーム9、及び、前記回転アーム9の先端に固定された磁石4,5からなり、前記軸受け8がロックした時のみに回転運動が前記回転アーム9に伝達されることを特徴とする付記1乃至5記載の磁性膜メッキ装置。
The detailed features of the present invention will be described again with reference to FIG. 1 again.
Again see Figure 1
(Additional remark 1) The magnetic film plating apparatus provided with the position adjustment mechanism which can change arbitrarily the direction of the applied magnetic field 3 according to at least one shape of the magnetic film formation pattern shape 2 or a magnetic domain shape.
(Supplementary Note 2) A magnetic having a position adjusting mechanism capable of arbitrarily changing the direction of the substrate 1 on which the magnetic film is formed according to at least one of the magnetic film formation pattern shape 2 or the magnetic domain shape. Film plating equipment.
(Supplementary Note 3) A magnet having a position adjusting mechanism capable of arbitrarily changing the stirring direction by the stirring means 6 while maintaining the direction of the substrate 1 on which the magnetic film is formed and the direction of the applied magnetic field 3. Film plating equipment.
(Supplementary note 4) The magnetic film plating apparatus according to supplementary note 3, wherein the stirring operation of the stirring means 6 is a translational operation on a plane parallel to the main surface of the substrate 1 on which the magnetic film is formed.
(Supplementary Note 5) A database that simulates in advance a correlation between at least one of the magnetic film formation pattern shape 2 or the magnetic domain shape, and at least the magnetic film thickness and composition distribution in the magnetic field application direction and the stirring direction, Any one of Supplementary notes 1 to 4, further comprising a position adjusting mechanism that automatically sets the magnetic field application direction and the stirring direction according to at least one of the magnetic film formation pattern shape 2 or the magnetic domain shape of the magnetic film. 2. The magnetic film plating apparatus according to claim 1.
(Supplementary Note 6) The mechanism for applying the magnetic field includes a rotating shaft 7 that rotatably holds the cathode, a bearing 8 that rotatably holds the rotating shaft 7, and a lock mechanism, and the rotating shaft on the bearing 8. 7 and a rotating arm 9 connected in the orthogonal direction, and magnets 4 and 5 fixed to the tip of the rotating arm 9, and the rotational motion is transmitted to the rotating arm 9 only when the bearing 8 is locked. The magnetic film plating apparatus according to any one of appendices 1 to 5, wherein:

本発明の活用例としては、誘導型ライトヘッドの上部磁極層のメッキ工程が典型的なものであるが、下部磁極層の成膜工程或いは他の磁性膜のメッキ工程にも適用されるものである。   As a practical example of the present invention, the plating process of the upper magnetic pole layer of the induction type write head is typical, but it can be applied to the film forming process of the lower magnetic pole layer or the plating process of other magnetic films. is there.

本発明の原理的構成の説明図である。It is explanatory drawing of the fundamental structure of this invention. 本発明の実施例1の磁性膜メッキ装置の概略的構成図である。It is a schematic block diagram of the magnetic film plating apparatus of Example 1 of this invention. 本発明の実施例1の磁性膜メッキ装置を用いたメッキ工程における位置関係の一例を示す配置図である。It is a layout view showing an example of a positional relationship in a plating process using the magnetic film plating apparatus of Example 1 of the present invention. 本発明の実施例1の磁性膜メッキ装置を用いたメッキ工程における位置関係の他の例を示す配置図である。It is a layout view showing another example of the positional relationship in the plating process using the magnetic film plating apparatus of Example 1 of the present invention. 本発明の実施例1の磁性膜メッキ装置を用いたメッキ工程における位置関係のさらに他の例を示す配置図である。It is a layout view showing still another example of the positional relationship in the plating process using the magnetic film plating apparatus of Example 1 of the present invention. 本発明の実施例1の磁性膜メッキ装置を用いたメッキ工程における位置関係のさらに別の例を示す配置図である。It is an arrangement | positioning figure which shows another example of the positional relationship in the plating process using the magnetic film plating apparatus of Example 1 of this invention. 本発明の実施例1の磁性膜メッキ装置を用いた場合の効果の説明図である。It is explanatory drawing of the effect at the time of using the magnetic film plating apparatus of Example 1 of this invention. 本発明の実施例1の磁性膜メッキ装置を用いた場合のNi組成比バラツキ改善効果の説明図である。It is explanatory drawing of the Ni composition ratio variation improvement effect at the time of using the magnetic film plating apparatus of Example 1 of this invention. 本発明の実施例2の磁性膜メッキ装置に格納するデータベースの一例の説明図である。It is explanatory drawing of an example of the database stored in the magnetic film plating apparatus of Example 2 of this invention. 本発明の実施例2の磁性膜メッキ装置に格納するデータベースの他の例の説明図である。It is explanatory drawing of the other example of the database stored in the magnetic film plating apparatus of Example 2 of this invention. 従来の磁性膜メッキ装置の概略的構成図である。It is a schematic block diagram of the conventional magnetic film plating apparatus.

符号の説明Explanation of symbols

1 基板
2 磁性膜形成パターン形状
3 印加磁界
4 磁石
5 磁石
6 攪拌手段
7 回転軸
8 軸受け
9 回転アーム
10 メッキ槽
11 メッキ槽
12 オーバーフロー槽
13 永久磁石
14 永久磁石
15 アノード
16 基板
17 基板固定治具
18 補助極
19 攪拌子
20 攪拌アーム
21 回転軸
22 軸受け
23 回転アーム
24 回転伝達機構
25 モータ
26 メッキ液
27 基板
41 メッキ槽
42 オーバーフロー槽
43 永久磁石
44 永久磁石
45 アノード
46 カソード
47 基板固定治具
48 補助極
49 攪拌子
50 攪拌アーム
51 メッキ液
DESCRIPTION OF SYMBOLS 1 Substrate 2 Magnetic film formation pattern shape 3 Applied magnetic field 4 Magnet 5 Magnet 6 Stirring means 7 Rotating shaft 8 Bearing 9 Rotating arm 10 Plating tank 11 Plating tank 12 Overflow tank 13 Permanent magnet 14 Permanent magnet 15 Anode 16 Substrate 17 Substrate fixing jig 18 Auxiliary electrode 19 Stirrer 20 Stirring arm 21 Rotating shaft 22 Bearing 23 Rotating arm 24 Rotation transmission mechanism 25 Motor 26 Plating solution 27 Substrate 41 Plating bath 42 Overflow bath 43 Permanent magnet 44 Permanent magnet 45 Anode 46 Cathode 47 Substrate fixing jig 48 Auxiliary electrode 49 Stirrer 50 Stirring arm 51 Plating solution

Claims (5)

磁性膜形成パターン形状或いは磁区形状の少なくとも一方の形状に応じて、 印加磁界の方向を任意に変更可能な位置調整機構を備えたことを特徴とする磁性膜メッキ装置。 A magnetic film plating apparatus comprising a position adjusting mechanism capable of arbitrarily changing the direction of an applied magnetic field according to at least one of a magnetic film formation pattern shape and a magnetic domain shape. 磁性膜形成パターン形状或いは磁区形状の少なくとも一方の形状に応じて、 磁性膜を成膜する基板の方向を任意に変更可能な位置調整機構を備えたことを特徴とする磁性膜メッキ装置。 A magnetic film plating apparatus comprising a position adjusting mechanism capable of arbitrarily changing a direction of a substrate on which a magnetic film is formed according to at least one of a magnetic film formation pattern shape and a magnetic domain shape. 磁性膜を成膜する基板の方向と印加磁界の方向を保持した状態で、 攪拌手段による攪拌方向を任意に変更可能な位置調整機構を備えたことを特徴とする磁性膜メッキ装置。 A magnetic film plating apparatus comprising a position adjusting mechanism capable of arbitrarily changing a stirring direction by a stirring means while maintaining a direction of a substrate on which a magnetic film is formed and a direction of an applied magnetic field. 上記攪拌手段の攪拌動作が、上記磁性膜を成膜する基板の主面に平行な面上における並進動作であることを特徴とする請求項3記載の磁性膜メッキ装置。 4. The magnetic film plating apparatus according to claim 3, wherein the stirring operation of the stirring means is a translational operation on a plane parallel to the main surface of the substrate on which the magnetic film is formed. 上記磁性膜形成パターン形状或いは磁区形状の少なくとも一方の形状と、少なくとも上記磁界印加方向及び攪拌方向による磁性膜の膜厚と組成分布との相関を予めシミュレーションしたデータベースを備え、前記磁性膜の磁性膜形成パターン形状或いは磁区形状の少なくとも一方の形状に応じて前記磁界印加方向及び攪拌方向を自動的に設定する位置調整機構を備えたことを特徴とする請求項1乃至4のいずれか1項に記載の磁性膜メッキ装置。 A database simulating in advance a correlation between at least one of the magnetic film formation pattern shape or the magnetic domain shape and at least the magnetic film thickness and composition distribution in the magnetic field application direction and the stirring direction; 5. The position adjusting mechanism according to claim 1, further comprising a position adjusting mechanism that automatically sets the magnetic field application direction and the stirring direction according to at least one of a formation pattern shape and a magnetic domain shape. Magnetic film plating equipment.
JP2004099112A 2004-03-30 2004-03-30 Magnetic film plating equipment Withdrawn JP2005281797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099112A JP2005281797A (en) 2004-03-30 2004-03-30 Magnetic film plating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099112A JP2005281797A (en) 2004-03-30 2004-03-30 Magnetic film plating equipment

Publications (1)

Publication Number Publication Date
JP2005281797A true JP2005281797A (en) 2005-10-13

Family

ID=35180514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099112A Withdrawn JP2005281797A (en) 2004-03-30 2004-03-30 Magnetic film plating equipment

Country Status (1)

Country Link
JP (1) JP2005281797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802357B2 (en) 2006-08-08 2010-09-28 Tdk Corporation Method of forming plating film, method of manufacturing magnetic device and method of manufacturing perpendicular magnetic recording head
CN102482791A (en) * 2009-08-24 2012-05-30 英派尔科技开发有限公司 Magnetic electro-plating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802357B2 (en) 2006-08-08 2010-09-28 Tdk Corporation Method of forming plating film, method of manufacturing magnetic device and method of manufacturing perpendicular magnetic recording head
CN102482791A (en) * 2009-08-24 2012-05-30 英派尔科技开发有限公司 Magnetic electro-plating
US9797057B2 (en) 2009-08-24 2017-10-24 Empire Technology Development Llc Magnetic electro-plating

Similar Documents

Publication Publication Date Title
Cooper et al. Recent developments in high-moment electroplated materials for recording heads
US6599411B2 (en) Method of electroplating a nickel-iron alloy film with a graduated composition
US6150818A (en) Low eddy current and low hysteresis magnet pole faces in MR imaging
Andricacos et al. Magnetically soft materials in data storage: Their properties and electrochemistry
US6678125B2 (en) Enhancement of magnetization switching speed in soft ferromagnetic films through control of edge stress anisotropy
JP2005281797A (en) Magnetic film plating equipment
JPH06151171A (en) Soft magnetic thin film body and manufacture thereof and magnetic head using same
JPH1126230A (en) Magnetic field generating device for sputtering device
JPH09310200A (en) Electrodeposition plating device
JPH03257159A (en) Sputtering device formed by using dipole ring type magnetic circuit
JP2007220777A (en) Soft magnetic thin film, its manufacturing method, and magnetic head
US3463708A (en) Electrolytic bath for magnetic deposition
JP3814813B2 (en) Plasma generator
JPS60158611A (en) Plating device
JP2006291262A (en) Thin film deposition apparatus
JP3868620B2 (en) Plasma generator
Romankiw et al. The path from invention to product for the magnetic thin film head
JP2004502314A (en) Apparatus for aligning the magnetization direction of a magnetic coating layer
JP6983030B2 (en) Film forming equipment and film forming method
JPH0517898A (en) Magnetic film plating device and method for using this device
JP4041948B2 (en) Soft magnetic thin film, manufacturing method thereof, and thin film magnetic head using the thin film
JP4743514B2 (en) Driving method of magneto-optical spatial light modulator
US5830587A (en) Magnetic devices with enhanced poles
US7477464B2 (en) Manufacturing method of recording medium, electric/magnetic field copy master and electric/magnetic field copying device
KR20230142173A (en) Plasma processing apparatus and plasma control method using magnetic field

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605