JP2005281606A - Epoxy resin composition for radiation curing - Google Patents

Epoxy resin composition for radiation curing Download PDF

Info

Publication number
JP2005281606A
JP2005281606A JP2004100805A JP2004100805A JP2005281606A JP 2005281606 A JP2005281606 A JP 2005281606A JP 2004100805 A JP2004100805 A JP 2004100805A JP 2004100805 A JP2004100805 A JP 2004100805A JP 2005281606 A JP2005281606 A JP 2005281606A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
resin composition
type
radiation curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004100805A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yokoe
泰幸 横江
Shusuke Sanai
秀輔 佐内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2004100805A priority Critical patent/JP2005281606A/en
Publication of JP2005281606A publication Critical patent/JP2005281606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition that is excellent in reactivity and is cured by radiation such as an electronic beam, a gamma ray, an X-ray or the like. <P>SOLUTION: The epoxy resin composition for radiation curing comprising a resin component composed mainly of an epoxy resin and a boron-based diaryl iodonium salt represented by a specific formula as a polymerization initiator in an amount of 0.005-0.5 mol per kg of the resin component is provided. The epoxy resin composition can be used in producing a prepreg by impregnating a reinforcing fibrous material such as a carbon fiber, an aramid fiber or the like with the epoxy resin composition. A composite material or member molded from the prepreg by irradiating the prepreg with radiation has a sufficient degree of cure and is excellent in mechanical or thermal properties, and therefore is widely used not only in the aerospace field but also in other industrial fields in general. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子線、ガンマー線、X線等の放射線で硬化するエポキシ樹脂組成物に関する。 The present invention relates to an epoxy resin composition that is cured by radiation such as electron beams, gamma rays, and X-rays.

近年、炭素繊維、ガラス繊維、アラミド繊維等の繊維材料は、各種のマトリックス樹脂と複合化され、得られる強化繊維複合材料は種々の分野・用途に広く利用されるようになってきた。特に最近では、高度の機械的特性や耐熱性等を要求される航空・宇宙分野で、優れた構造部材・部品として用いられるようになってきた。かかる用途のための複合材料・部材の製造法としては、熱硬化性樹脂と強化繊維材料とからなるプリプレグを、多数積層し、オートクレーブ成形により加熱・加圧硬化させるという方法が一般的に行われている。しかしながら、この方法は、一般的に成形コストが高く、成形に要する消費エネルギーも多いという問題点がある。   In recent years, fiber materials such as carbon fibers, glass fibers, and aramid fibers have been combined with various matrix resins, and the resulting reinforcing fiber composite materials have been widely used in various fields and applications. Recently, in particular, it has come to be used as an excellent structural member / part in the aerospace field where high mechanical properties and heat resistance are required. As a method for producing a composite material / member for such an application, a method of laminating a large number of prepregs composed of a thermosetting resin and a reinforcing fiber material, and heating and pressure-curing by autoclave molding is generally performed. ing. However, this method has a problem that the molding cost is generally high and a large amount of energy is required for molding.

そこで、オートクレーブ法に替わる製造技術の開発が進められているが、その一つとして、光重合開始剤(触媒)を添加した樹脂に電子線を照射して架橋反応を起こさせ硬化させる方法がある。かかる方法は、省エネルギー化や処理時間の短縮など多くの利点が期待できる方法である。
特開平11−193322 「先端航空機部品・素材技術に関する調査研究」成果報告書No.1605 社団法人日本航空宇宙工業会発行(2002年3月)
Therefore, development of a manufacturing technique that replaces the autoclave method is underway, and one of them is a method in which a resin added with a photopolymerization initiator (catalyst) is irradiated with an electron beam to cause a crosslinking reaction to be cured. . This method can be expected to have many advantages such as energy saving and shortening of processing time.
JP-A-11-193322 "Survey Research on Advanced Aircraft Parts and Material Technology" No.1605 Published by Japan Aerospace Industry Association (March 2002)

しかしながら、従来知られている樹脂と触媒の組合わせ、例えば、エポキシ樹脂とカチオン系の光反応開始剤の組合わせでは、両者の反応性が必ずしも十分ではなく、省エネルギー化や処理時間の短縮化などのメリットを生かしながら、架橋樹脂が十分な硬化度を達成するようにすることは困難であった。 However, conventionally known combinations of resins and catalysts, for example, combinations of epoxy resins and cationic photoinitiators, are not necessarily sufficiently reactive, saving energy and shortening processing time, etc. It was difficult to make the crosslinked resin achieve a sufficient degree of curing while taking advantage of this.

本発明は、特に航空・宇宙分野で利用可能な複合材料・部材を成形するための、反応性に優れた放射線硬化用エポキシ樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a radiation-curable epoxy resin composition having excellent reactivity for molding composite materials and members that can be used particularly in the aerospace field.

本発明の目的は、エポキシ樹脂を主体とする樹脂成分と、該樹脂成分1kg当たり0.005〜0.5モルの下記式(1)で表される重合開始剤とからなる、放射線硬化用エポキシ樹脂組成物によって達成される。

Figure 2005281606
An object of the present invention is a radiation-curing epoxy comprising a resin component mainly composed of an epoxy resin and 0.005-0.5 mol of a polymerization initiator represented by the following formula (1) per kg of the resin component. This is achieved by the resin composition.
Figure 2005281606

本発明の放射線硬化用エポキシ樹脂組成物は、反応性が高いので、照射線量が少なくて済み、従って消費電力量が少なくコスト的に有利である。更に使用する触媒の量も少なくて済むのでコスト的に有利である。そしてこの樹脂と炭素繊維やアラミド繊維等の繊維強化材とからなるプリプレグを用いて、放射線照射により成形された複合材料・部材は、十分な硬化度を有し、機械的あるいは熱的性質に非常に優れたものである。 Since the radiation curing epoxy resin composition of the present invention has high reactivity, it requires only a small amount of irradiation, and therefore has low power consumption and is advantageous in terms of cost. Further, since the amount of the catalyst used is small, it is advantageous in terms of cost. Composite materials and members molded by radiation irradiation using prepregs made of this resin and fiber reinforcements such as carbon fibers and aramid fibers have a sufficient degree of curing and are extremely mechanical or thermal. It is an excellent one.

本発明は、エポキシ樹脂を主体とする樹脂成分と、該樹脂成分1kg当たり0.005〜0.5モルの前記式(1)で表される重合開始剤とからなる、放射線硬化用エポキシ樹脂組成物である。エポキシ樹脂としては、具体的には、グリシジルアミン型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンダジエン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ウレタン変性ビスフェノールA型エポキシ樹脂、脂環式エポキシ樹脂などがある。これらは単独又は2種以上混合して用いることが出来る。エポキシ樹脂の中でも、特にビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂又はこれらの混合物が好ましい。 The present invention is a radiation curable epoxy resin composition comprising a resin component mainly composed of an epoxy resin and 0.005 to 0.5 mol of a polymerization initiator represented by the formula (1) per 1 kg of the resin component. It is a thing. Specific examples of the epoxy resin include glycidylamine type epoxy resin, novolac type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, urethane modified bisphenol A. Type epoxy resin and alicyclic epoxy resin. These can be used alone or in admixture of two or more. Among epoxy resins, bisphenol type epoxy resin, alicyclic epoxy resin, novolac type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin or a mixture thereof is particularly preferable.

本発明においては、前記エポキシ樹脂が主成分として少なくとも50%存在していれば良く、目的・用途に応じてその他の樹脂、例えば、フェノール樹脂、ビニルエステル樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂等の熱硬化性樹脂や、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルイミド(PEI)樹脂、ポリアクリレート樹脂、ポリスルフォン樹脂、ナイロン樹脂、ポリエステル樹脂、ABS樹脂、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニール樹脂、ポリカーボネート樹脂、ボリエーテルスルホン樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、熱可塑ポリイミド樹脂等の熱可塑性樹脂の1種又は2種以上を、最大50%まで混合して用いることが出来る。 In the present invention, it is sufficient that the epoxy resin is present as at least 50% as a main component, and other resins such as phenol resin, vinyl ester resin, epoxy acrylate resin, urethane acrylate resin, phenoxy are used depending on the purpose and application. Thermosetting resin such as resin, alkyd resin, urethane resin, polyether ether ketone (PEEK) resin, polyether imide (PEI) resin, polyacrylate resin, polysulfone resin, nylon resin, polyester resin, ABS resin, acrylic One type of thermoplastic resin such as resin, polyethylene resin, polystyrene resin, polypropylene resin, polyvinyl chloride resin, polycarbonate resin, polysulfone resin, polyamideimide resin, polyetherimide resin, thermoplastic polyimide resin The two or more kinds can be mixed up to 50%.

本発明において特に好ましい樹脂成分の組み合わせは、ビスフェノールA型エポキシ樹脂60〜99重量部と熱可塑性樹脂40〜1重量部とからなるものである。また、ビスフェノールA型エポキシ樹脂60〜99重量部と、熱硬化性樹脂の一つであるフェノキシ樹脂40〜1重量部とからなる組合せも好ましい。かかる樹脂組成物の場合には、特に、放射線の照射量が少なくても、非常に硬化度の高い架橋樹脂が得られる。 In the present invention, a particularly preferred combination of resin components consists of 60 to 99 parts by weight of a bisphenol A type epoxy resin and 40 to 1 parts by weight of a thermoplastic resin. Moreover, the combination which consists of 60-99 weight part of bisphenol A type epoxy resins and 40-1 weight part of phenoxy resin which is one of the thermosetting resins is also preferable. In the case of such a resin composition, a crosslinked resin having a very high curing degree can be obtained even when the radiation dose is small.

本発明においては、上記エポキシ樹脂を主体とする樹脂成分に、前記式(1)で表される重合開始剤が添加混合して用いられる。用いる量は、樹脂成分1kg当たり0.005〜0.5モル、好ましくは0.01〜0.1モルである。本発明においては、この重合開始剤を用いる限りその他、硬化剤や硬化促進剤等を特に用いる必要はないが、必要があれば適量用いてもかまわない。また、通常の難燃剤や難燃助剤、粉末状の補強材、着色剤等は必要に応じて用いることが出来るのは言うまでもない。 In the present invention, the polymerization initiator represented by the formula (1) is added to and mixed with the resin component mainly composed of the epoxy resin. The amount to be used is 0.005 to 0.5 mol, preferably 0.01 to 0.1 mol, per 1 kg of the resin component. In the present invention, as long as this polymerization initiator is used, it is not necessary to use a curing agent, a curing accelerator or the like, but an appropriate amount may be used if necessary. It goes without saying that ordinary flame retardants and flame retardant aids, powdery reinforcing materials, colorants and the like can be used as necessary.

前記式(1)において、R、Rはそれぞれ独立に水素又はアルキル基である。アルキル基としては、炭素数に特に制限はないが、メチル基、エチル基又はイソプロピル基等の低級アルキル基が好ましい。また、Xはペンタフルオロフェニル基、パラトリフルオロメトキシフェニル基又はジメタ(トリフルオロメチル)フェニル基を表す。本発明においては、式(1)においてRがイソプロピル基、Rがメチル基、XがC基である(トリルクミル)イオドニウム テトラキス(ペンタフルオロフェニル)ボレエートが特に好ましい。 In the formula (1), R 1 and R 2 are each independently hydrogen or an alkyl group. The alkyl group is not particularly limited in the number of carbon atoms, but a lower alkyl group such as a methyl group, an ethyl group or an isopropyl group is preferable. X represents a pentafluorophenyl group, a paratrifluoromethoxyphenyl group, or a dimeta (trifluoromethyl) phenyl group. In the present invention, (triylcumyl) iodonium tetrakis (pentafluorophenyl) borate wherein R 1 is an isopropyl group, R 2 is a methyl group, and X is a C 6 F 5 group in the formula (1) is particularly preferable.

前記した様なエポキシ樹脂を主体とする樹脂成分と、この樹脂成分1kg当たり0.005〜0.5モルの前記式(1)で表される重合開始剤とからなる樹脂組成物を、繊維強化材に含浸せしめるとプリプレグが得られる。これに放射線を照射して樹脂を架橋・硬化させると、複合材料・部品とすることができるが、プリプレグ中の樹脂成分の含有量は、通常10〜70重量%、好ましくは20〜50重量%である。 A resin composition comprising a resin component mainly composed of an epoxy resin as described above and 0.005 to 0.5 mol of a polymerization initiator represented by the formula (1) per 1 kg of the resin component, When the material is impregnated, a prepreg is obtained. When this is irradiated with radiation to crosslink and cure the resin, it can be made into a composite material / part, but the content of the resin component in the prepreg is usually 10 to 70% by weight, preferably 20 to 50% by weight. It is.

本発明において、放射線とは、電子線、ガンマー線、X線等の電離放射線を意味する。本発明においては、電子線が特に好ましく用いられる。本発明のエポキシ樹脂組成物は反応性が高いので、かかる放射線を照射する場合、低照射線量でも高い硬化度の架橋樹脂となる。特に、エポキシ樹脂がビスフェノール型、脂環型、ノボラック型、ナフタレン型、ジシクロペンタジエン型の中から選ばれるいずれか一つ、または二つ以上の混合物の場合には、少なくとも5kGy(ジュール/kg)の照射線量で90%以上の硬化度を得ることができる。 In the present invention, radiation means ionizing radiation such as electron beam, gamma ray, X-ray. In the present invention, an electron beam is particularly preferably used. Since the epoxy resin composition of the present invention has high reactivity, when it is irradiated with such radiation, it becomes a crosslinked resin having a high degree of curing even at a low irradiation dose. In particular, when the epoxy resin is any one selected from bisphenol type, alicyclic type, novolak type, naphthalene type, dicyclopentadiene type, or a mixture of two or more, at least 5 kGy (joule / kg) A curing degree of 90% or more can be obtained with an irradiation dose of.

以下、具体的な実施例により本発明を説明する。各実施例及び比較例において、硬化度は、(硬化後の発熱量)/(硬化前の発熱量)と定義し、示差走査熱量分析に基づき評価される残存発熱量から算出した。示差走査熱量分析は、窒素雰囲気中(窒素流量100ml/min)で昇温速度10℃/minの条件で行った。 Hereinafter, the present invention will be described with reference to specific examples. In each of the examples and comparative examples, the degree of cure was defined as (calorific value after curing) / (calorific value before curing) and calculated from the residual calorific value evaluated based on differential scanning calorimetry. The differential scanning calorimetry was performed in a nitrogen atmosphere (nitrogen flow rate 100 ml / min) at a temperature increase rate of 10 ° C./min.

[実施例1〜4]
ビスフェノールA型エポキシ樹脂(低分子量タイプ、ジャパンエポキシレンジン社製エピコート834)(樹脂−1)の300gに対して、重合開始剤としての(トリルクミル)イオドニウム テトラキス(ペンタフルオロフェニル)ボレエート(Rhodia社製RHODORSIL
PHOTOINITIATOR 2074)(重合開始剤−1)を所定量添加混合し、樹脂組成物を作成した。これをポリプロピレン製容器 (φ27 mm×高さ50 mm)に厚さ1cmとなるように注入し供試体を作成した。得られた供試体に、原子燃料工業株式会社製の電子線照射装置(加速電圧10MeV、制動X線変換装置搭載)を用いて、表1に示した所定量の電子線(2〜30kGy)を照射した。なお、樹脂の吸収線量が同じであれば、電子の加速方法(連続波、パルス波)や加速電圧が異なっても硬化度は同じになる。得られた架橋樹脂の硬化度(%)を測定し、その結果を表1に示した。
[Examples 1 to 4]
For 300 g of bisphenol A type epoxy resin (low molecular weight type, Epicoat 834 manufactured by Japan Epoxy Rangen) (resin-1), (trircumyl) iodonium tetrakis (pentafluorophenyl) borate (RHODORSIL manufactured by Rhodia) as a polymerization initiator
A predetermined amount of PHOTOINITIATOR 2074) (polymerization initiator-1) was added and mixed to prepare a resin composition. This was poured into a polypropylene container (φ27 mm × height 50 mm) to a thickness of 1 cm to prepare a specimen. A predetermined amount of electron beam (2 to 30 kGy) shown in Table 1 was applied to the obtained specimen using an electron beam irradiation device (acceleration voltage 10 MeV, braking X-ray conversion device installed) manufactured by Nuclear Fuel Industries Co., Ltd. Irradiated. If the absorbed dose of the resin is the same, the degree of cure will be the same even if the electron acceleration method (continuous wave, pulse wave) and the acceleration voltage are different. The degree of cure (%) of the obtained crosslinked resin was measured, and the results are shown in Table 1.

[比較例1〜4]
重合開始剤の種類を、本発明のものではないものに変更する以外は、実施例1〜4の場合と同様な実験を行った。そして、得られた架橋樹脂の硬化度を測定し、その結果を表1に示した。表1において、重合開始剤−2は、ヨードニウム塩型光重合開始剤(式2)(チバスペシャルケミカルズ社製IRAGACURE 250)、重合開始剤−3は、ヨードニウム塩型光重合開始剤(式3)(日本曹達社製CI5102)である。本発明の重合開始剤−1の場合は、その他の重合開始剤の場合に比較して、低照射線量でも硬化が起こっていることがわかる。
[Comparative Examples 1-4]
Experiments similar to those in Examples 1 to 4 were performed except that the type of the polymerization initiator was changed to that not of the present invention. Then, the degree of cure of the obtained crosslinked resin was measured, and the results are shown in Table 1. In Table 1, polymerization initiator-2 is an iodonium salt photopolymerization initiator (formula 2) (IRAGACURE 250 manufactured by Ciba Special Chemicals), and polymerization initiator-3 is an iodonium salt photopolymerization initiator (formula 3). (CI5102 manufactured by Nippon Soda Co., Ltd.). In the case of the polymerization initiator-1 of the present invention, it can be seen that curing occurs even at a low irradiation dose as compared with the case of other polymerization initiators.

Figure 2005281606
Figure 2005281606

[実施例5〜13]
樹脂成分を変更し、重合開始剤−1を0.01mol/kgに固定して、それ以外は実施例1〜4との場合と同様な実験を行った。そして、得られた架橋樹脂の硬化度を測定し、その結果を表2に示した。本発明の樹脂組成物は、低照射線量でも硬化が起こっていることがわかる。
[Examples 5 to 13]
The resin component was changed, the polymerization initiator-1 was fixed at 0.01 mol / kg, and the other experiments were performed in the same manner as in Examples 1 to 4. Then, the degree of cure of the obtained crosslinked resin was measured, and the results are shown in Table 2. It can be seen that the resin composition of the present invention is cured even at a low irradiation dose.

表2において、樹脂の種類は以下のものを示している。
樹脂−2:ビスフェノールA型エポキシ樹脂(低分子量タイプ、ジャパンエポキシレンジン社製エピコート828)、樹脂−3:ビスフェノールA型エポキシ樹脂(低分子量、低塩素濃度タイプ、大日本インキ社製850S)、樹脂−4:ナフタレン型エポキシ樹脂(大日本インキ社製HP−4032)、樹脂−5:ビスフェノールF型エポキシ樹脂(ジャパンエポキシレンジン社製エピコート807)、樹脂−6:ノボラック型エポキシ樹脂(ジャパンエポキシレンジン社製エピコート152)、樹脂−7:ノボラック型エポキシ樹脂(ジシクロペンタジエン骨格含有)(大日本インキ社製HP-7200L)、樹脂−8:ノボラック型エポキシ樹脂(日本化薬社製EPPN-501HY)、樹脂−9:ノボラック型エポキシ樹脂(ビフェニル骨格含有)(日本化薬社製NC3000)、樹脂−10:脂環式エポキシ樹脂(ダイセル・ユーシーシー社製セロキサイド2021)。
In Table 2, the types of resin are as follows.
Resin-2: Bisphenol A type epoxy resin (low molecular weight type, Epicoat 828 manufactured by Japan Epoxy Rangen), Resin-3: Bisphenol A type epoxy resin (low molecular weight, low chlorine concentration type, 850S manufactured by Dainippon Ink Co., Ltd.), resin -4: Naphthalene type epoxy resin (HP-4032 manufactured by Dainippon Ink Co., Ltd.), Resin-5: Bisphenol F type epoxy resin (Epicoat 807 manufactured by Japan Epoxy Rangen), Resin-6: Novolak type epoxy resin (Japan Epoxy Rangen Co., Ltd.) Epicoat 152), Resin-7: Novolac type epoxy resin (containing dicyclopentadiene skeleton) (HP-7200L manufactured by Dainippon Ink Co., Ltd.), Resin-8: Novolac type epoxy resin (EPPN-501HY manufactured by Nippon Kayaku Co., Ltd.), Resin-9: Novolac-type epoxy resin (containing biphenyl skeleton) (NC3000 manufactured by Nippon Kayaku Co., Ltd.) Resin -10: alicyclic epoxy resin (manufactured by Daicel Yu CC Co. Celloxide 2021).

[実施例14〜15]
樹脂成分としてビスフェノールA型エポキシ樹脂(樹脂−1)100部(重量単位)と熱可塑性樹脂(日本ジーイープライチック社製ウルテム1000-1000)(樹脂−11)30部との混合物、及び樹脂−1の100部とフェノキシ樹脂(InChem社製PKHP-200)(樹脂−12)の30部との混合物を用い、重合開始剤−1を0.01mol/kgに固定して、それ以外は実施例1〜4との場合と同様な実験を行った。そして、得られた架橋樹脂の硬化度を測定し、その結果を表3に示した。照射線量が15kGyでも、硬化度が90%以上に達していることがわかる。
[Examples 14 to 15]
As a resin component, a mixture of 100 parts (by weight) of a bisphenol A type epoxy resin (resin-1) and 30 parts of a thermoplastic resin (Ultem 1000-1000 manufactured by Nippon Gee-Plic Corporation) (resin-11), and resin-1 Example 1 was used except that a mixture of 100 parts of phenoxy resin (PKHP-200 manufactured by InChem) (30 parts of resin-12) was used, and polymerization initiator-1 was fixed at 0.01 mol / kg. Experiments similar to those for ˜4 were performed. The degree of cure of the obtained crosslinked resin was measured, and the results are shown in Table 3. It can be seen that even when the irradiation dose is 15 kGy, the curing degree reaches 90% or more.

本発明の放射線硬化用エポキシ樹脂組成物は、炭素繊維やアラミド繊維等の強化繊維材料に含浸させてプリプレグを製造するのに用いることができる。そして、これに放射線を照射して成形された複合材料・部材は、十分な硬化度を有し機械的あるいは熱的性質に優れている。従って、得られた複合材料・部材は、航空・宇宙分野はもちろん、その他の一般産業分野に広く使用される。








Figure 2005281606
Figure 2005281606
The radiation curing epoxy resin composition of the present invention can be used to produce a prepreg by impregnating a reinforcing fiber material such as carbon fiber or aramid fiber. The composite material / member formed by irradiating it with radiation has a sufficient degree of curing and excellent mechanical or thermal properties. Therefore, the obtained composite material / member is widely used not only in the aerospace field but also in other general industrial fields.








Figure 2005281606
Figure 2005281606

Claims (8)

エポキシ樹脂を主体とする樹脂成分と、該樹脂成分1kg当たり0.005〜0.5モルの下記式(1)で表される重合開始剤とからなる、放射線硬化用エポキシ樹脂組成物。
Figure 2005281606
A radiation curing epoxy resin composition comprising a resin component mainly composed of an epoxy resin and 0.005 to 0.5 mol of a polymerization initiator represented by the following formula (1) per kg of the resin component.
Figure 2005281606
重合開始剤の量が、樹脂成分1kg当たり0.01〜0.1モルである、請求項1記載の放射線硬化用エポキシ樹脂組成物。 The radiation curing epoxy resin composition according to claim 1, wherein the amount of the polymerization initiator is 0.01 to 0.1 mol per kg of the resin component. 重合開始剤が、式1においてR、R共に低級アルキル基である、請求項1又は2記載の放射線硬化用エポキシ樹脂組成物。 The radiation curing epoxy resin composition according to claim 1 or 2, wherein the polymerization initiator is a lower alkyl group in R 1 and R 2 in Formula 1. 重合開始剤が、式1においてRがイソプロピル基、Rがメチル基、XがC基である(トリルクミル)イオドニウム テトラキス(ペンタフルオロフェニル)ボレエートである、請求項1又は2記載の放射線硬化用エポキシ樹脂組成物。 The polymerization initiator according to claim 1 or 2, wherein the polymerization initiator is (tolylcumyl) iodonium tetrakis (pentafluorophenyl) borate in which R 1 is an isopropyl group, R 2 is a methyl group, and X is a C 6 F 5 group in Formula 1. Radiation curing epoxy resin composition. エポキシ樹脂がビスフェノール型、脂環型、ノボラック型、ナフタレン型、ジシクロペンタジエン型の中から選ばれるいずれか一つ、または二つ以上の混合物である、請求項1〜4記載の放射線硬化用エポキシ樹脂組成物。 The epoxy for radiation curing according to claim 1, wherein the epoxy resin is any one selected from bisphenol type, alicyclic type, novolac type, naphthalene type, and dicyclopentadiene type, or a mixture of two or more. Resin composition. 樹脂成分が、ビスフェノールA型エポキシ樹脂60〜99重量部と熱可塑性樹脂40〜1重量部とからなる、請求項1〜4記載の放射線硬化用エポキシ樹脂組成物。 The radiation-curable epoxy resin composition according to claim 1, wherein the resin component comprises 60 to 99 parts by weight of a bisphenol A type epoxy resin and 40 to 1 part by weight of a thermoplastic resin. 樹脂成分が、ビスフェノールA型エポキシ樹脂60〜99重量部とフェノキシ樹脂40〜1重量部とからなる、請求項1〜4記載の放射線硬化用エポキシ樹脂組成物。 The radiation curing epoxy resin composition according to claim 1, wherein the resin component comprises 60 to 99 parts by weight of a bisphenol A type epoxy resin and 40 to 1 part by weight of a phenoxy resin. エポキシ樹脂がビスフェノール型、脂環型、ノボラック型、ナフタレン型、ジシクロペンタジエン型の中から選ばれるいずれか一つ、または二つ以上の混合物であり、少なくとも5kGyの照射線量で90%以上の硬化度を得ることができる、請求項1〜4記載の放射線硬化用エポキシ樹脂組成物。


The epoxy resin is any one selected from bisphenol type, alicyclic type, novolak type, naphthalene type, dicyclopentadiene type, or a mixture of two or more, and cured at 90% or more with an irradiation dose of at least 5 kGy. The epoxy resin composition for radiation curing according to claim 1, wherein the degree can be obtained.


JP2004100805A 2004-03-30 2004-03-30 Epoxy resin composition for radiation curing Pending JP2005281606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004100805A JP2005281606A (en) 2004-03-30 2004-03-30 Epoxy resin composition for radiation curing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100805A JP2005281606A (en) 2004-03-30 2004-03-30 Epoxy resin composition for radiation curing

Publications (1)

Publication Number Publication Date
JP2005281606A true JP2005281606A (en) 2005-10-13

Family

ID=35180346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100805A Pending JP2005281606A (en) 2004-03-30 2004-03-30 Epoxy resin composition for radiation curing

Country Status (1)

Country Link
JP (1) JP2005281606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034679A1 (en) * 2005-09-22 2007-03-29 Toho Tenax Co., Ltd. Resin composition for radiation curing and prepreg
JP2008088277A (en) * 2006-09-30 2008-04-17 Toho Tenax Co Ltd Resin composition for heat or radiation curing and prepreg

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186106A (en) * 1998-12-22 2000-07-04 Sekisui Chem Co Ltd Polymerization of photo cation polymerizable composition
JP2002062649A (en) * 2000-08-21 2002-02-28 Ngk Spark Plug Co Ltd Photosensitive resin composition for printed wiring board and printed wiring board
JP2002062650A (en) * 2000-08-21 2002-02-28 Ngk Spark Plug Co Ltd Photosensitive resin varnish, photosensitive adhesive film and printed wiring board
WO2004000965A1 (en) * 2002-06-24 2003-12-31 Loctite (R & D) Limited Photocurable adhesive compositions, reaction products of which have low halide ion content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186106A (en) * 1998-12-22 2000-07-04 Sekisui Chem Co Ltd Polymerization of photo cation polymerizable composition
JP2002062649A (en) * 2000-08-21 2002-02-28 Ngk Spark Plug Co Ltd Photosensitive resin composition for printed wiring board and printed wiring board
JP2002062650A (en) * 2000-08-21 2002-02-28 Ngk Spark Plug Co Ltd Photosensitive resin varnish, photosensitive adhesive film and printed wiring board
WO2004000965A1 (en) * 2002-06-24 2003-12-31 Loctite (R & D) Limited Photocurable adhesive compositions, reaction products of which have low halide ion content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034679A1 (en) * 2005-09-22 2007-03-29 Toho Tenax Co., Ltd. Resin composition for radiation curing and prepreg
JP2008088277A (en) * 2006-09-30 2008-04-17 Toho Tenax Co Ltd Resin composition for heat or radiation curing and prepreg

Similar Documents

Publication Publication Date Title
EP2011825B1 (en) Use of epoxy resin composition for fibre-reinforced material and its production
CN103992464B (en) Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg and fiber-reinforced composite material board
JP4775520B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED RESIN MOLDED ARTICLE, AND METHOD FOR PRODUCING SAME
KR102332174B1 (en) Fiber-reinforced composite material
EP2669309B1 (en) Epoxy resin composition for resin transfer molding of fiber-reinforced composite material, fiber-reinforced composite material, and method for producing same
KR20110120314A (en) Benzoxazine resin composition
EP0843685A1 (en) Ionizing radiation curing of epoxy resin systems incorporating cationic photoinitiators
JP2003167091A (en) Neutron shielding material and used fuel storage container
JP2008088277A (en) Resin composition for heat or radiation curing and prepreg
JP5022265B2 (en) Transparent laminate
Sands et al. Environmental issues for polymer matrix composites and structural adhesives
AU675310B2 (en) Fiber/resin composites and method of preparation
CA2623337C (en) Radiation-curing resin composition and prepreg
JP2001002760A (en) Hardened composition of resin containing energy ray- shielding material by irradiation with energy ray, and hardening method
JP2005281606A (en) Epoxy resin composition for radiation curing
JP2005281611A (en) Prepreg produced by using epoxy resin composition
JP2013100562A (en) Resin composition for fiber-reinforced composite material, cured material of the same, fiber-reinforced composite material, fiber-reinforced resin molded article, and method for producing the same
JP6743415B2 (en) Resin composition for carbon fiber reinforced composite material, carbon fiber member and carbon fiber reinforced composite material
EP3109036A1 (en) Method for producing fiber-reinforced resin composite material
Kishi et al. Effect of γ‐ray irradiation on epoxy network polymers with different curing agents
JP2006096872A (en) Radiation-curable resin composition and prepreg given by using the same
JP2020176268A (en) Resin composition for carbon fiber-reinforced composite material, carbon fiber member and carbon fiber-reinforced composite material
JP5609040B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED RESIN MOLDED ARTICLE, AND METHOD FOR PRODUCING THE SAME
JP2011046825A (en) Radiation curable resin composition and prepreg
Tyberg Void-free flame retardant phenolic networks: Properties and processability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A131 Notification of reasons for refusal

Effective date: 20090714

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090905

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413