JP2005279601A - Sublimation refining apparatus and sublimation refining method - Google Patents

Sublimation refining apparatus and sublimation refining method Download PDF

Info

Publication number
JP2005279601A
JP2005279601A JP2004101855A JP2004101855A JP2005279601A JP 2005279601 A JP2005279601 A JP 2005279601A JP 2004101855 A JP2004101855 A JP 2004101855A JP 2004101855 A JP2004101855 A JP 2004101855A JP 2005279601 A JP2005279601 A JP 2005279601A
Authority
JP
Japan
Prior art keywords
sublimation
chemical substance
purification
charged
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004101855A
Other languages
Japanese (ja)
Inventor
Daisuke Kitazawa
大輔 北澤
Tetsuo Oka
哲雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004101855A priority Critical patent/JP2005279601A/en
Publication of JP2005279601A publication Critical patent/JP2005279601A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for preventing decomposition, denaturation or contamination of a material during sublimation refining and for refining a chemical substance to high purity. <P>SOLUTION: This sublimation refining apparatus comprises a refining part having a subliming part for subliming the chemical substance and a capturing part for capturing the chemical substance and an exhaust system, and the material of the part with which the charged chemical substance comes in contact is either one type at least of tantalum, molybdenum, titanium, alumina, zirconia, boron nitride or silicon nitride. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化学物質を高純度に精製するための昇華精製装置及び昇華精製方法に関するものである。   The present invention relates to a sublimation purification apparatus and a sublimation purification method for purifying a chemical substance with high purity.

微量の不純物が性能に悪影響を及ぼす用途に用いられる化学物質は、極めて高度に精製される必要がある。そのような化学物質として、例えば近年実用化に向けた開発が活発に行われている有機エレクトロルミネッセンス材料が挙げられる。   Chemical substances used in applications where trace amounts of impurities adversely affect performance need to be highly purified. Examples of such chemical substances include organic electroluminescent materials that have been actively developed for practical use in recent years.

化学物質の一般的な精製法としては、従来よりカラムクロマトグラフィー、再結晶、蒸留、昇華などが知られている。これらの中で、カラムクロマトグラフィーと再結晶は、精製する化学物質を溶媒に溶解させるプロセスを含むため、溶解性に乏しい材料の精製に用いることができず、また使用する溶媒中の不純物で化学物質が汚染される可能性があるという欠点がある。このためカラムクロマトグラフィーと再結晶は、高純度材料を得るための最終精製を行う前段階の処理として実施されることが多い。   Conventionally, column chromatography, recrystallization, distillation, sublimation and the like are known as general purification methods for chemical substances. Among these, column chromatography and recrystallization include a process in which a chemical substance to be purified is dissolved in a solvent. Therefore, column chromatography and recrystallization cannot be used for purification of a material having poor solubility, and chemicals can be generated by impurities in the solvent used. The disadvantage is that the material can be contaminated. For this reason, column chromatography and recrystallization are often performed as a process before the final purification for obtaining a high-purity material.

蒸留と昇華は、溶媒を使用するプロセスが無いために、上記のような高純度に精製される必要がある化学物質の精製方法として一般的に用いられている。   Distillation and sublimation are generally used as methods for purifying chemical substances that need to be purified to high purity as described above because there is no process using a solvent.

蒸留と昇華は、材料を加熱して気化させ、高純度の材料が凝縮(凝固)する温度に設定した捕集部で捕集し、目的とする高純度材料を得るという精製法である。昇華とは固体から直接気体になることを表すが、上記有機エレクトロルミネッセンス材料は常温では固体であるが加熱時に溶融してから気化するものが多く、このような材料の精製についても蒸留ではなく昇華と表現することが多い。昇華精製の実験室的な装置は「実験化学講座」などの一般的な文献に記載されているが、工業的な装置についてもいくつか開示されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照。)。
特開平07−24205号公報(特許請求の範囲) 特開平07−204402号公報(特許請求の範囲) 特開平11−171801号公報(特許請求の範囲) 特開2000−93701号公報(特許請求の範囲)
Distillation and sublimation are purification methods in which a material is vaporized by heating and collected at a collection section set to a temperature at which the high-purity material is condensed (solidified) to obtain the desired high-purity material. Sublimation means that the solid becomes a gas directly, but the above organic electroluminescent materials are solid at room temperature, but many of them are vaporized after being melted when heated, and the purification of such materials is not by distillation but by sublimation. It is often expressed as Laboratory equipment for sublimation purification is described in general literature such as “Experimental Chemistry Course”, but some industrial equipment is also disclosed (for example, Patent Document 1, Patent Document 2, (See Patent Document 3 and Patent Document 4.)
Japanese Patent Application Laid-Open No. 07-24205 (Claims) Japanese Patent Laid-Open No. 07-204402 (Claims) JP-A-11-171801 (Claims) JP 2000-93701 A (Claims)

しかしながら、従来の昇華精製技術は収率や分離能の向上を主眼にしており、昇華精製中の材料の分解や変性、昇華精製終了後の汚染の抑制を考慮していないものが多い。本発明は、かかる従来技術の課題を解決し、昇華精製時の材料の分解や変性、汚染を防ぎ、化学物質を高純度に精製する技術を提供することを目的とする。   However, conventional sublimation purification techniques focus on improving yield and resolution, and many do not consider the decomposition and modification of materials during sublimation purification and suppression of contamination after completion of sublimation purification. An object of the present invention is to solve the problems of the conventional technology, and to provide a technology for purifying a chemical substance with high purity by preventing decomposition, denaturation and contamination of materials during sublimation purification.

本発明は、化学物質を昇華させる昇華部と昇華した該化学物質を捕集する捕集部とを有する精製部と、排気装置とを有する昇華精製装置であって、仕込み化学物質が接触する部分の材質がタンタル、モリブデン、チタン、アルミナ、ジルコニア、窒化ボロン、窒化ケイ素のいずれか少なくとも1種であることを特徴とする昇華精製装置である。   The present invention is a sublimation purification apparatus having a purification section having a sublimation section for sublimating a chemical substance and a collection section for collecting the sublimated chemical substance, and an exhaust device, wherein the charged chemical substance is in contact with the sublimation purification apparatus. The sublimation purification apparatus is characterized in that the material is at least one of tantalum, molybdenum, titanium, alumina, zirconia, boron nitride, and silicon nitride.

また本発明は、化学物質を昇華させる昇華部と昇華した該化学物質を捕集する捕集部とを有する精製部と、排気装置とを有する昇華精製装置を用いて化学物質を昇華させ、昇華した該化学物質を捕集することにより該化学物質を精製する昇華精製方法であって、昇華後に精製部を不活性ガスで大気圧に置換することを特徴とする昇華精製方法である。   The present invention also provides a sublimation purification apparatus having a sublimation purification section having a sublimation section for sublimating a chemical substance and a collection section for collecting the sublimated chemical substance, and an exhaust device. A sublimation purification method for purifying the chemical substance by collecting the chemical substance, wherein the purification part is replaced with an inert gas at atmospheric pressure after sublimation.

また本発明は、捕集部の温度を該化学物質の捕集温度に昇温した後に、昇華部の温度を該化学物質の昇華温度に昇温することを特徴とする上記記載の昇華精製方法である。   Further, the present invention provides the above-described sublimation purification method, wherein the temperature of the sublimation part is raised to the sublimation temperature of the chemical substance after the temperature of the collection part is raised to the collection temperature of the chemical substance. It is.

また本発明は、W>20及びρ×h<3を満たす条件で行うことを特徴とする上記記載の昇華精製方法である。
(ここで、Wは昇華部に仕込む化学物質の総重量(単位:g)である。また、ρは昇華部に仕込む化学物質の見かけの密度(単位:g/cm3)、hは昇華部に仕込んだ時の化学物質の厚さ(単位:cm)である。)
Further, the present invention is the above-described sublimation purification method, which is performed under conditions satisfying W> 20 and ρ × h <3.
(W is the total weight (unit: g) of the chemical substance charged in the sublimation part, ρ is the apparent density (unit: g / cm 3 ) of the chemical substance charged in the sublimation part, and h is the sublimation part. (The thickness of the chemical substance when charged in (unit: cm).)

本発明は、昇華精製時の材料の分解や変性、汚染を防ぎ、高純度の化学物質を得られる技術を提供できるものである。   INDUSTRIAL APPLICABILITY The present invention can provide a technology that can prevent decomposition, denaturation, and contamination of materials during sublimation purification and obtain a high-purity chemical substance.

図1に本発明の昇華精製装置の例を示す。本発明の昇華精製装置は、化学物質を昇華させる昇華部A−1と昇華した該化学物質を捕集する捕集部A−2とを有する精製部Aと、排気装置Bとを有する。   FIG. 1 shows an example of the sublimation purification apparatus of the present invention. The sublimation purification apparatus of the present invention includes a purification section A having a sublimation section A-1 for sublimating a chemical substance and a collection section A-2 for collecting the sublimated chemical substance, and an exhaust apparatus B.

本発明の昇華精製装置を用いた精製方法の概略について説明する。なお、通常、昇華精製とは化学物質が固体状態から直接気化して、気化した物質が固体状態として凝固するが、本発明においては化学物質が一度溶融してから気化する場合や、化学物質が液体として凝縮し常温に冷却する過程で固体状態となる場合も、昇華精製の範疇として定義する。   An outline of a purification method using the sublimation purification apparatus of the present invention will be described. In general, sublimation purification means that a chemical substance is directly vaporized from a solid state, and the vaporized substance is solidified as a solid state, but in the present invention, when the chemical substance is once melted and vaporized, Even when it is condensed as a liquid and becomes a solid state during cooling to room temperature, it is defined as a category of sublimation purification.

まず精製する化学物質を真空チャンバー1の昇華部A−1に装入し、真空ポンプ9で精製部内を真空状態とする。次に捕集部A−2を熱源3で、昇華部A−1を熱源4で所望の温度に加熱し、化学物質を昇華部A−1から昇華させ、捕集部A−2で凝固(凝縮)させて捕集する。ここで、捕集部A−2の温度よりも凝固(凝縮)温度の低い不純物は捕集部A−2では捕集されずに、冷却部A−3またはトラップ7で捕集される。また、不揮発性の不純物や昇華温度の高い不純物は昇華部A−1に残サとして残る。昇華が終了したら、精製部内を大気圧に戻し、捕集部A−2から精製された化学物質を回収する。   First, a chemical substance to be purified is charged into the sublimation part A-1 of the vacuum chamber 1, and the inside of the purification part is evacuated by the vacuum pump 9. Next, the collection part A-2 is heated to a desired temperature with the heat source 3 and the sublimation part A-1 with the heat source 4, and the chemical substance is sublimated from the sublimation part A-1, and solidified in the collection part A-2 ( (Condensed) and collected. Here, impurities having a solidification (condensation) temperature lower than the temperature of the collection unit A-2 are not collected by the collection unit A-2 but collected by the cooling unit A-3 or the trap 7. Nonvolatile impurities and impurities with a high sublimation temperature remain as residual residues in the sublimation part A-1. When the sublimation is completed, the inside of the purification unit is returned to atmospheric pressure, and the purified chemical substance is collected from the collection unit A-2.

本発明における昇華精製装置の仕込み化学物質が接触する部分は化学的に不活性な材質で構成される。これは、精製時に化学物質を高温に加熱するために、化学物質が一部分解したり、重合などの変性を起こしてしまうことや、仕込み化学物質が接触する部分の材質に含まれる不純物による汚染を防止するためである。ここで、仕込み物質とは気化部に装入される化学物質のことをいう。この仕込み化学物質が接触する部分に用いられる材質としてはタンタル、モリブデン、チタン、アルミナ、ジルコニア、窒化ボロン、窒化ケイ素が好適である。これらの中でも特にタンタルと窒化ボロンは化学的活性が低いため、より好適である。通常、操作性の観点から、精製する化学物質はボート2に入れて装置内に装入するが、この場合、仕込み化学物質が接触する部分はボート2である。   In the present invention, the portion of the sublimation purification apparatus in contact with the charged chemical substance is made of a chemically inert material. This is because the chemical substances are partially decomposed or denatured due to polymerization, etc., because the chemical substances are heated to a high temperature during purification, and contamination caused by impurities contained in the materials in contact with the charged chemical substances. This is to prevent it. Here, the charged substance refers to a chemical substance charged into the vaporizing section. Tantalum, molybdenum, titanium, alumina, zirconia, boron nitride, and silicon nitride are suitable as the material used for the portion in contact with the charged chemical substance. Of these, tantalum and boron nitride are particularly preferred because of their low chemical activity. Usually, from the viewpoint of operability, the chemical substance to be purified is put into the boat 2 and charged into the apparatus. In this case, the portion where the charged chemical substance comes into contact is the boat 2.

仕込み化学物質が接触する部分以外の精製部内面は上記材料で構成しても良いが、コストの観点から汎用材料を使用することが好ましい。このような汎用材料としては、昇華精製温度に耐える材料であれば特に限定されないが、例えば酸化珪素ガラス、ステンレス、アルミニウム、鉄、銅、炭素鋼などが挙げられる。   The inner surface of the refining unit other than the part that comes into contact with the charged chemical substance may be composed of the above materials, but it is preferable to use a general-purpose material from the viewpoint of cost. Such a general-purpose material is not particularly limited as long as it can withstand the sublimation purification temperature, and examples thereof include silicon oxide glass, stainless steel, aluminum, iron, copper, and carbon steel.

本発明における精製部は、図1のように昇華部A−1、捕集部A−2、冷却部A−3で構成されるのが好適であるが、精製される化学物質よりも凝固(凝縮)温度の低い不純物の量が少ない場合は、冷却部A−3は無くても良い。また、昇華部A−1、捕集部A−2、冷却部A−3は一体型であっても、それぞれが取り外し出来るように連結されていてもよい。また、精製部Aは図1のような水平型が一般的であるが、縦型であっても良い。精製部Aの形状は円筒型が一般的であるが、箱状やかまぼこ状などとしても良く、特に限定されるものではない。   The purification unit in the present invention is preferably composed of a sublimation unit A-1, a collection unit A-2, and a cooling unit A-3 as shown in FIG. Condensation) When the amount of low-temperature impurities is small, the cooling part A-3 may be omitted. Moreover, even if sublimation part A-1, collection part A-2, and cooling part A-3 are integral types, they may be connected so that each can be removed. Further, the purification unit A is generally a horizontal type as shown in FIG. 1, but may be a vertical type. The shape of the refinement part A is generally a cylindrical shape, but may be a box shape or a kamaboko shape, and is not particularly limited.

熱源は昇華部A−1と捕集部A−2を独立に温度制御できれば良く、一体型でも連結型でもどちらでも良い。熱源の加熱方式の例としては、昇華部A−1、捕集部A−2をそれぞれほぼ均一に加熱できれば良く、特に限定されないが、抵抗加熱式、電磁誘導加熱式、IR加熱式などが挙げられる。この熱源は真空チャンバー1の外側に配置するのが一般的であるが、内側に設置しても良い。   The heat source only needs to be able to independently control the temperature of the sublimation part A-1 and the collection part A-2, and may be either an integral type or a connected type. Examples of the heating method of the heat source are not particularly limited as long as the sublimation part A-1 and the collection part A-2 can be heated almost uniformly, and include a resistance heating type, an electromagnetic induction heating type, an IR heating type, and the like. It is done. This heat source is generally disposed outside the vacuum chamber 1, but may be disposed inside.

本発明における排気装置は、真空ポンプ9と、該真空ポンプと精製部Aを連結する配管部で構成される。   The exhaust device according to the present invention includes a vacuum pump 9 and a piping unit that connects the vacuum pump and the purification unit A.

真空ポンプ9としては、特に限定されるものではないが、粗引きポンプと、高真空ポンプの組み合わせが一般的に用いられる。粗引きポンプの例としては、特に限定されるものではないが、油回転ポンプ、メカニカルブースターポンプ、ソープションポンプなどが挙げられる。高真空ポンプの例としては、特に限定されるものではないが、拡散ポンプ、ターボ分子ポンプ、クライオポンプ、スパッタイオンポンプ、ゲッタポンプなどが挙げられる。   The vacuum pump 9 is not particularly limited, but a combination of a roughing pump and a high vacuum pump is generally used. Examples of the roughing pump include, but are not limited to, an oil rotary pump, a mechanical booster pump, and a sorption pump. Examples of the high vacuum pump include, but are not limited to, a diffusion pump, a turbo molecular pump, a cryopump, a sputter ion pump, and a getter pump.

上記配管部の構造は、昇華精製中の精製部内の真空度を一定に保つために外部からのリークが極力少ない構造であれば特に限定されないが、図1のようにバルブ5、6、トラップ7、真空計8を有していることが好ましい。バルブ5、6は昇華後に装置外から不活性ガスを精製部Aに導入するために配置されるものである。トラップ7は昇華精製中に揮発する水分や溶媒などの不純物を捕集するために配置されるものである。真空計8は装置内の真空度をモニターするために配置されるものである。   The structure of the piping part is not particularly limited as long as the degree of vacuum in the purification part during sublimation purification is kept constant so long as leakage from the outside is as small as possible, but as shown in FIG. The vacuum gauge 8 is preferably provided. The valves 5 and 6 are arranged to introduce an inert gas from outside the apparatus into the purification unit A after sublimation. The trap 7 is arranged to collect impurities such as water and solvent that volatilize during sublimation purification. The vacuum gauge 8 is arranged for monitoring the degree of vacuum in the apparatus.

上記バルブ5、6の例としては、特に限定されるものではないが、手動弁、電磁弁、シリンダ弁、遠隔操作弁などが挙げられる。これらは一種類でも良いが、目的に応じて複数種類を組み合わせて用いても良い。また上記トラップ7の例としては、特に限定されるものではないが、寒剤貯蔵式冷却トラップ、コンデンサ、バッフル、冷却トラップなどが挙げられる。また上記真空計8は一種類でも良いが、通常、粗引き時に真空度を測定する真空計と、高真空時に真空度を測定する真空計を組み合わせて使用する。粗引き時に真空度を測定する真空計の例としては、特に限定されるものではないが、ガイスラ管、熱伝導真空計(例えばピラニ真空計)が挙げられ、高真空時に真空度を測定する真空計の例としては、特に限定されるものではないが、熱陰極電離真空計、冷陰極電離真空計などが挙げられる。   Examples of the valves 5 and 6 include, but are not limited to, a manual valve, a solenoid valve, a cylinder valve, and a remote control valve. These may be one type, but may be used in combination of a plurality of types according to the purpose. Examples of the trap 7 include, but are not limited to, a cryogen storage type cooling trap, a condenser, a baffle, and a cooling trap. The vacuum gauge 8 may be of a single type, but usually a vacuum gauge that measures the degree of vacuum during roughing and a vacuum gauge that measures the degree of vacuum during high vacuum are used in combination. Examples of vacuum gauges that measure the degree of vacuum during roughing include, but are not limited to, Gaisler tubes and heat conduction vacuum gauges (for example, Pirani gauges), and vacuum that measures the degree of vacuum at high vacuum. Examples of the meter include, but are not limited to, a hot cathode ionization vacuum gauge and a cold cathode ionization vacuum gauge.

化学物質の昇華温度は、分解や変性を抑制する観点からより低くすることが好ましいため、昇華精製時は可能な限り真空度を高くすることが好ましい。ただし超高真空を得るには装置の肥大化やコストアップが伴うため、10-1〜10-5Pa程度の高真空で昇華精製を行うことが好ましい。 Since it is preferable to lower the sublimation temperature of the chemical substance from the viewpoint of suppressing decomposition and modification, it is preferable to increase the degree of vacuum as much as possible during sublimation purification. However, since obtaining an ultra-high vacuum involves enlargement of the apparatus and cost increase, it is preferable to perform sublimation purification at a high vacuum of about 10 −1 to 10 −5 Pa.

本発明の昇華精製方法は、昇華後に精製部を不活性ガスで大気圧に置換することを特徴とする。これは、昇華精製した化学物質を大気中の不純物(例えば、水分、ダストなど)で汚染しないようにするためである。尚、本発明の昇華精製方法は、化学物質を装置内に仕込んで真空引きを開始する時点から、昇華後に精製部を大気圧置換する時点までを範疇とする。   The sublimation purification method of the present invention is characterized in that after the sublimation, the purified part is replaced with an inert gas to atmospheric pressure. This is to prevent contamination of sublimated and purified chemicals with atmospheric impurities (for example, moisture, dust, etc.). The sublimation purification method of the present invention is classified from the time when a chemical substance is charged into the apparatus to start evacuation to the time when the purification unit is replaced with atmospheric pressure after sublimation.

不活性ガスの導入方法は特に限定されるものではないが、上記配管部にトラップを設けた場合には、昇華精製した化学物質がトラップに付着した不純物で汚染されないように、トラップと精製部の間から不活性ガスを導入することが好ましい。例えば図1の昇華精製装置の場合には、昇華後にバルブ6を閉じて、バルブ5から不活性ガスを導入する。この時、微細なダストの混入を防ぐために、バルブ5にはフィルターを内在させることがより好ましい。不活性ガスとしては、ヘリウム、窒素、ネオン、アルゴン、クリプトン、キセノンのいずれかを用いる。これらの中で、特に窒素、アルゴンが好ましい。   The method of introducing the inert gas is not particularly limited. However, when a trap is provided in the pipe section, the trap and the purification section are arranged so that the sublimated and purified chemical substances are not contaminated by impurities attached to the trap. It is preferable to introduce an inert gas in between. For example, in the case of the sublimation purification apparatus of FIG. 1, the valve 6 is closed after sublimation, and an inert gas is introduced from the valve 5. At this time, in order to prevent fine dust from being mixed, it is more preferable that the valve 5 includes a filter. As the inert gas, helium, nitrogen, neon, argon, krypton, or xenon is used. Of these, nitrogen and argon are particularly preferable.

精製される化学物質より凝固(凝縮)温度がわずかに低い不純物がある場合、該不純物による汚染を防ぐために、捕集部A−2の温度を該化学物質の捕集温度に昇温した後に、昇華部A−1の温度を該化学物質の昇華温度に昇温することが好ましい。こうすることで、該不純物は捕集部A−2に凝縮(または凝固)されずに冷却部A−3またはトラップ7で捕集され、捕集部A−2には高純度の化学物質が凝固(凝縮)する。   When there is an impurity whose coagulation (condensation) temperature is slightly lower than the chemical substance to be purified, in order to prevent contamination by the impurity, after raising the temperature of the collection part A-2 to the collection temperature of the chemical substance, It is preferable to raise the temperature of the sublimation part A-1 to the sublimation temperature of the chemical substance. By doing so, the impurities are not condensed (or solidified) in the collection part A-2 but collected in the cooling part A-3 or the trap 7, and a high-purity chemical substance is collected in the collection part A-2. Solidify (condensate).

また、昇華部に仕込む化学物質の総重量が20gを越える場合は昇華時間が長くなることで、作業性が低下し、また化学物質の分解や重合などの変性が起こりやすいため、昇華時間を出来る限り短くする方が好ましい。ここで、昇華時間とは、加熱を開始してから化学物質が昇華し終わるまでの時間である。回収率を下げることなく昇華時間を短縮するには、一般的に温度を高くするか、真空度を上げる方法が採用される。しかし、温度を上げると化学物質の分解や変性を促進することが多く、また、真空度を上げるには上述の通り装置の肥大化やコストアップが伴うというデメリットがある。そこで、昇華部に仕込む化学物質を薄く広げて表面積を大きくすることで昇華時間を短縮することが好ましい。具体的には、W>20の場合はρ×h<3を満たす条件で昇華精製を行うことが好ましい。(ここで、Wは昇華部に仕込む化学物質の総重量(単位:g)である。また、ρは昇華部に仕込む見かけの化学物質の密度(単位:g/cm3)、hは昇華部に仕込んだ時の化学物質の厚さ(単位:cm)である。)ここで、ρは化学物質の見かけの密度である。すなわち化学物質が粉末状であり、粉末粒子間に空隙がある場合には、この空隙も化学物質の体積として計算する。 In addition, when the total weight of chemical substances charged in the sublimation part exceeds 20 g, the sublimation time becomes long, so that workability is deteriorated and the chemical substance is easily decomposed or polymerized, so that the sublimation time can be made. It is preferable to make it as short as possible. Here, the sublimation time is the time from the start of heating to the end of sublimation of the chemical substance. In order to shorten the sublimation time without reducing the recovery rate, a method of increasing the temperature or increasing the degree of vacuum is generally employed. However, raising the temperature often promotes the decomposition and modification of chemical substances, and raising the degree of vacuum has the demerit of enlarging the apparatus and increasing the cost as described above. Therefore, it is preferable to shorten the sublimation time by thinly spreading the chemical substance charged in the sublimation part to increase the surface area. Specifically, when W> 20, it is preferable to perform sublimation purification under conditions that satisfy ρ × h <3. (W is the total weight (unit: g) of the chemical substance charged in the sublimation part, ρ is the density of the apparent chemical substance charged in the sublimation part (unit: g / cm 3 ), and h is the sublimation part. The thickness of the chemical substance when charged in (unit: cm).) Here, ρ is the apparent density of the chemical substance. That is, when the chemical substance is powdery and there are voids between the powder particles, the voids are also calculated as the volume of the chemical substance.

精製される化学物質は、常温で固体状態であり、かつ真空下で加熱することにより昇華する物質であれば特に限定されないが、本発明は、昇華温度が高く高温で分解や変性を起こしやすい有機化合物の精製に特に有用である。代表的な例として、有機エレクトロルミネッセンス材料が挙げられる。   The chemical substance to be purified is not particularly limited as long as it is in a solid state at room temperature and sublimates when heated under vacuum, but the present invention is an organic substance that has a high sublimation temperature and is susceptible to decomposition and modification at high temperatures. It is particularly useful for the purification of compounds. A typical example is an organic electroluminescent material.

上記有機エレクトロルミネッセンス材料の例として、特に限定されるものではないが、以下のような材料が挙げられる。正孔輸送材料として用いられる、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミンや、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどのトリフェニルアミン類、ビス(N−アリルカルバゾール)や、ビス(N−アルキルカルバゾール)類などのカルバゾール類、インドール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、オキサジアゾール誘導体やフタロシアニン誘導体、ポルフィリン誘導体に代表される複素環化合物など。また、発光材料として用いられる、アントラセン、フェナンスレン、ピレン、ペリレン、クリセン、テトラセン、ペンタセン、ナフトピレン、ジベンゾピレン、ルブレンなどの縮合環誘導体、トリス(8−キノリノラト)アルミニウムを始めとするキノリノール誘導体の金属錯体、ベンズオキサゾール誘導体、スチルベン誘導体、ベンズチアゾール誘導体、チアジアゾール誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、キノリノール誘導体と異なる配位子を組み合わせた金属錯体、オキサジアゾール誘導体金属錯体、ベンズアゾール誘導体金属錯体、クマリン誘導体、ピロロピリジン誘導体、ピロロピロール誘導体、シロール誘導体、ペリノン誘導体、チアジアゾロピリジン誘導体、ピロメテン誘導体、ポルフィリン白金錯体やトリス(2−フェニルピリジル)イリジウム錯体、トリス{2−(2−チオフェニル)ピリジル}イリジウム錯体、トリス{2−(2−ベンゾチオフェニル)ピリジル}イリジウム錯体、トリス(2−フェニルベンゾチアゾール)イリジウム錯体、トリス(2−フェニルベンゾオキサゾール)イリジウム錯体、トリスベンゾキノリンイリジウム錯体、ビス(2−フェニルピリジル)(アセチルアセトナート)イリジウム錯体、ビス{2−(2−チオフェニル)ピリジル}イリジウム錯体、ビス{2−(2−ベンゾチオフェニル)ピリジル}(アセチルアセトナート)イリジウム錯体、ビス(2−フェニルベンゾチアゾール)(アセチルアセトナート)イリジウム錯体、ビス(2−フェニルベンゾオキサゾール)(アセチルアセトナート)イリジウム錯体、ビスベンゾキノリン(アセチルアセトナート)イリジウム錯体など。また、電子輸送性材料として用いられる、8−ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリレン誘導体、ペリノン誘導体、ナフタレン導体、クマリン誘導体、ピリジン誘導体、キノリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、フェナントロリン誘導体、チオフェン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾチアゾール誘導体、ベンズオキサゾール誘導体、ベンズイミダゾール誘導体、ジフェニルリンオキサイド誘導体、シロール誘導体、トリフェニルシラン誘導体、ビススチリル誘導体、ピラジン誘導体など。   Although it does not specifically limit as an example of the said organic electroluminescent material, The following materials are mentioned. N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine or N, N′-dinaphthyl- used as a hole transport material Triphenylamines such as N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, carbazoles such as bis (N-allylcarbazole) and bis (N-alkylcarbazole), indole Derivatives, pyrazoline derivatives, stilbene compounds, hydrazone compounds, oxadiazole derivatives, phthalocyanine derivatives, heterocyclic compounds represented by porphyrin derivatives, and the like. In addition, fused ring derivatives such as anthracene, phenanthrene, pyrene, perylene, chrysene, tetracene, pentacene, naphthopylene, dibenzopyrene, and rubrene, and metal complexes of quinolinol derivatives such as tris (8-quinolinolato) aluminum, which are used as light emitting materials , Benzoxazole derivatives, stilbene derivatives, benzthiazole derivatives, thiadiazole derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, oxadiazole derivatives, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, and quinolinol derivatives Metal complexes combining ligands, oxadiazole derivative metal complexes, benzazole derivative metal complexes, coumarin derivatives, pyrrolopi Gin derivative, pyrrolopyrrole derivative, silole derivative, perinone derivative, thiadiazolopyridine derivative, pyromethene derivative, porphyrin platinum complex, tris (2-phenylpyridyl) iridium complex, tris {2- (2-thiophenyl) pyridyl} iridium complex, Tris {2- (2-benzothiophenyl) pyridyl} iridium complex, tris (2-phenylbenzothiazole) iridium complex, tris (2-phenylbenzoxazole) iridium complex, trisbenzoquinoline iridium complex, bis (2-phenylpyridyl) ) (Acetylacetonato) iridium complex, bis {2- (2-thiophenyl) pyridyl} iridium complex, bis {2- (2-benzothiophenyl) pyridyl} (acetylacetonato) iridium complex, bis ( - phenylbenzothiazole) (acetylacetonato) iridium complex, bis (2-phenyl-benzoxazole) (acetylacetonato) iridium complex, such as bis benzoquinoline (acetylacetonato) iridium complex. Further, quinolinol derivative metal complexes represented by 8-hydroxyquinoline aluminum, tropolone metal complexes, flavonol metal complexes, perylene derivatives, perinone derivatives, naphthalene conductors, coumarin derivatives, pyridine derivatives, quinoline derivatives, which are used as electron transporting materials, Quinoxaline derivatives, benzoquinoline derivatives, phenanthroline derivatives, thiophene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, triazole derivatives, benzothiazole derivatives, benzoxazole derivatives, benzimidazole derivatives, diphenyl phosphorus oxide derivatives, silole derivatives, triphenylsilane Derivatives, bisstyryl derivatives, pyrazine derivatives and the like.

以下、実施例および比較例をあげて本発明を説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited to these examples.

実施例1
図1に示す昇華精製装置を用いて下記式(1)に示す有機材料の昇華精製を行った。
Example 1
Sublimation purification of the organic material represented by the following formula (1) was performed using the sublimation purification apparatus shown in FIG.

図1の昇華精製装置において、真空チャンバー1には昇華部側を封じた長さ800mm、外径180mm、肉厚2mmの“パイレックス”(商標登録)管を用いた。昇華部A−1の長さは250mm、捕集部A−2の長さは250mm、冷却部A−3の長さは300mmとした。熱源3および熱源4には、カンタル線抵抗加熱式電気炉を用いた。ボート2には長さ130mm、幅100mm、高さ45mm、板厚0.3mmの箱形タンタルボートを用いた。バルブ5とバルブ6には手動弁を用いた。トラップ7には液体窒素トラップを用いた。真空計8には熱陰極電離真空計を用いた。真空ポンプ9には粗引き用の油回転ポンプと高真空用の油拡散ポンプの組み合わせを用いた。精製部Aと排気装置Bとは、大型ゲージポート付きフランジを介して連結した。   In the sublimation purification apparatus of FIG. 1, a “pyrex” (registered trademark) tube having a length of 800 mm, an outer diameter of 180 mm, and a wall thickness of 2 mm, which sealed the sublimation part side, was used for the vacuum chamber 1. The length of the sublimation part A-1 was 250 mm, the length of the collection part A-2 was 250 mm, and the length of the cooling part A-3 was 300 mm. As the heat source 3 and the heat source 4, a Kanthal wire resistance heating type electric furnace was used. The boat 2 was a box-shaped tantalum boat having a length of 130 mm, a width of 100 mm, a height of 45 mm, and a plate thickness of 0.3 mm. Manual valves were used for the valves 5 and 6. A liquid nitrogen trap was used as the trap 7. As the vacuum gauge 8, a hot cathode ionization vacuum gauge was used. As the vacuum pump 9, a combination of an oil rotary pump for roughing and an oil diffusion pump for high vacuum was used. The refinement | purification part A and the exhaust apparatus B were connected via the flange with a large gauge port.

HPLC純度(測定波長254nmにおける面積%)が98%である下記式(1)の有機材料 25gを昇華精製した。昇華条件は、真空度が2×10-4Paに到達した後、捕集部A−2の温度を200℃に上げると同時に昇華部A−1の温度を350℃に上げ、冷却部の温度を室温付近に保持し、3時間加熱した。次いで、捕集部A−2と昇華部A−1を室温付近まで冷却し、バルブ6を閉じ、バルブ5から大気をリークさせて装置内を大気圧に置換した。 Sublimation purification of 25 g of the organic material of the following formula (1) having HPLC purity (area% at a measurement wavelength of 254 nm) of 98% was performed. Sublimation conditions are as follows: after the degree of vacuum reaches 2 × 10 −4 Pa, the temperature of the collection part A-2 is raised to 200 ° C. and the temperature of the sublimation part A-1 is raised to 350 ° C. Was kept near room temperature and heated for 3 hours. Subsequently, the collection part A-2 and the sublimation part A-1 were cooled to near room temperature, the valve | bulb 6 was closed, air | atmosphere was leaked from the valve | bulb 5, and the inside of an apparatus was substituted to atmospheric pressure.

その結果、捕集部A−2より20g(回収率80%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は99.9%と極めて高いものであり、かつ、HPLCチャートにおいて分解物に由来するピークは見られなかった。   As a result, 20 g (recovery rate 80%) of material was recovered from the collection part A-2, and the HPLC purity (area% at a measurement wavelength of 254 nm) was extremely high as 99.9%, and in the HPLC chart A peak derived from the decomposition product was not observed.

Figure 2005279601
Figure 2005279601

実施例2〜7
ボート2の材質として表1に記載した材料を用いた他は実施例1と全く同様にして昇華精製を行った。但し、実施例4〜7では、ボート2の板厚を3mmとした。得られた結果を表1に示す。
Examples 2-7
Sublimation purification was performed in the same manner as in Example 1 except that the materials described in Table 1 were used as the material of the boat 2. However, in Examples 4-7, the plate | board thickness of the boat 2 was 3 mm. The obtained results are shown in Table 1.

Figure 2005279601
Figure 2005279601

比較例1
ボート2の材質としてステンレス(SUS316)を用いた他は実施例1と全く同様にして昇華精製を行った。その結果、捕集部A−2より20g(回収率80%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は98%であり、純度が向上しなかった。HPLCチャートには分解物に由来するピークが見られた。
Comparative Example 1
Sublimation purification was performed in the same manner as in Example 1 except that stainless steel (SUS316) was used as the material of the boat 2. As a result, 20 g (recovery rate 80%) of material was recovered from the collection part A-2, and the HPLC purity (area% at a measurement wavelength of 254 nm) was 98%, and the purity did not improve. The peak derived from the decomposition product was seen on the HPLC chart.

比較例2
ボート2の材質として“パイレックス”(商標登録)を用いた他は実施例4と全く同様にして昇華精製を行った。その結果、捕集部A−2より20g(回収率80%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は98%であり、純度が向上しなかった。HPLCチャートには分解物に由来するピークが見られた。
Comparative Example 2
Sublimation purification was performed in exactly the same manner as in Example 4 except that “Pyrex” (registered trademark) was used as the material of the boat 2. As a result, 20 g (recovery rate 80%) of material was recovered from the collection part A-2, and the HPLC purity (area% at a measurement wavelength of 254 nm) was 98%, and the purity did not improve. The peak derived from the decomposition product was seen on the HPLC chart.

比較例3
ボート2の材質としてカーボンを用いた他は実施例4と全く同様にして昇華精製を行った。その結果、捕集部A−2より18.8g(回収率75%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は95%でり、昇華前よりも純度が低下した。HPLCチャートには分解物に由来するピークが見られた。
Comparative Example 3
Sublimation purification was performed in the same manner as in Example 4 except that carbon was used as the material of the boat 2. As a result, 18.8 g (recovery rate: 75%) of material was recovered from the collection part A-2, and HPLC purity (area% at a measurement wavelength of 254 nm) was 95%, which was lower than before the sublimation. The peak derived from the decomposition product was seen on the HPLC chart.

実施例8
式(1)の有機材料の代わりに下記式(2)に示す有機材料を用い、捕集部A−2の温度を80℃、昇華部A−1の温度を200℃とし、大気の代わりに高純度窒素をリークさせて装置内を大気圧に置換した他は比較例1と全く同様にして昇華精製を行った。尚、精製前の下記式(2)に示す有機材料のHPLC純度(測定波長254nmにおける面積%)は99%であり、また、ρ(見かけの密度)は約0.3g/cm3でボートに仕込んだときの厚さhは約0.5cmであった。その結果、捕集部A−2より20g(回収率80%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は99.8%であり、かつ、HPLCチャートにおいて分解物に由来するピークは見られなかった。また、この材料を熱重量分析(測定条件:大気圧窒素雰囲気下、200℃で24時間保持)したところ、重量減少は全く見られず、大気中の水分などが吸着していないことが確認できた。
Example 8
Instead of the organic material of the formula (1), the organic material shown in the following formula (2) is used, the temperature of the collection part A-2 is 80 ° C., the temperature of the sublimation part A-1 is 200 ° C. Sublimation purification was performed in exactly the same manner as in Comparative Example 1 except that the inside of the apparatus was replaced with atmospheric pressure by leaking high purity nitrogen. The HPLC purity (area% at a measurement wavelength of 254 nm) of the organic material represented by the following formula (2) before purification is 99%, and ρ (apparent density) is about 0.3 g / cm 3 on a boat. The thickness h when charged was about 0.5 cm. As a result, 20 g (recovery rate: 80%) of material was recovered from the collection part A-2, the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.8%, and it was derived from the decomposition product in the HPLC chart. No peak was observed. Moreover, when this material was subjected to thermogravimetric analysis (measurement conditions: kept at 200 ° C. for 24 hours under an atmospheric pressure nitrogen atmosphere), no weight reduction was observed, and it was confirmed that moisture in the atmosphere was not adsorbed. It was.

Figure 2005279601
Figure 2005279601

比較例4
バルブ5から高純度窒素の代わりに大気をリークさせた他は実施例8と全く同様にして昇華精製を行った。その結果、捕集部A−2より20g(回収率80%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は99.8%であった。この材料を実施例8と同様の条件で熱重量分析したところ、0.5%の重量減少が見られ、大気中の水分などの不純物が吸着していることが確認できた。
Comparative Example 4
Sublimation purification was performed in exactly the same manner as in Example 8, except that air was leaked from the valve 5 instead of high-purity nitrogen. As a result, 20 g (recovery rate: 80%) of material was recovered from the collection part A-2, and the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.8%. When this material was subjected to thermogravimetric analysis under the same conditions as in Example 8, a weight loss of 0.5% was observed, confirming that impurities such as moisture in the atmosphere had been adsorbed.

実施例9
捕集部A−2の温度を80℃としてから昇華部A−1の温度を200℃にした他は実施例8と全く同様にして昇華精製を行った。その結果、捕集部A−2より20g(回収率80%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は99.85%であり、実施例8の場合よりも若干純度が向上していた。
Example 9
Sublimation purification was performed in exactly the same manner as in Example 8, except that the temperature of the collection part A-2 was 80 ° C and the temperature of the sublimation part A-1 was 200 ° C. As a result, 20 g (recovery rate: 80%) of material was recovered from the collection part A-2, and the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.85%, which is slightly more pure than in Example 8. Had improved.

実施例10
ボート2に、長さ110mm、幅100mm、高さ120mmのステンレス(SUS316)ボートを用い、有機材料の仕込量を300gとし、加熱時間を8時間とした他は実施例8と全く同様にして昇華精製を行った。尚、ボートに仕込んだときの有機材料の厚さhは約9.6cmであった。その結果、捕集部A−2より240g(回収率80%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は99.8%であった。昇華精製後のボート2の中には未昇華の有機材料が17g残存していた。
Example 10
Sublimation in exactly the same manner as in Example 8 except that a stainless steel (SUS316) boat with a length of 110 mm, a width of 100 mm and a height of 120 mm was used for the boat 2, the amount of organic material charged was 300 g, and the heating time was 8 hours. Purification was performed. It should be noted that the thickness h of the organic material when charged into the boat was about 9.6 cm. As a result, 240 g (recovery rate: 80%) of material was recovered from the collection part A-2, and the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.8%. In the boat 2 after sublimation purification, 17 g of non-sublimated organic material remained.

実施例11
ボート2に、長さ100mm、幅100mm、高さ120mmのステンレス(SUS316)ボートを用いた他は実施例10と全く同様にして昇華精製を行った。尚、ボートに仕込んだときの有機材料の厚さhは約10cmであった。その結果、捕集部A−2より195g(回収率65%)の材料が回収され、HPLC純度(測定波長254nmにおける面積%)は99.8%であった。昇華精製後のボート2の中には未昇華の有機材料が55g残存していた。
Example 11
Sublimation purification was performed in the same manner as in Example 10 except that a stainless steel (SUS316) boat having a length of 100 mm, a width of 100 mm, and a height of 120 mm was used for the boat 2. It should be noted that the thickness h of the organic material when charged into the boat was about 10 cm. As a result, 195 g (recovery rate: 65%) of material was recovered from the collection part A-2, and the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.8%. In the boat 2 after sublimation purification, 55 g of non-sublimated organic material remained.

本発明の昇華精製装置の一例の断面概略図である。It is the cross-sectional schematic of an example of the sublimation purification apparatus of this invention.

符号の説明Explanation of symbols

A 精製部
B 排気装置
A−1 昇華部
A−2 捕集部
A−3 冷却部
1 真空チャンバー
2 ボート
3 熱源
4 熱源
5 バルブ
6 バルブ
7 トラップ
8 真空計
9 真空ポンプ
A Purification unit B Exhaust device A-1 Sublimation unit A-2 Collection unit A-3 Cooling unit 1 Vacuum chamber 2 Boat 3 Heat source 4 Heat source 5 Valve 6 Valve 7 Trap 8 Vacuum gauge 9 Vacuum pump

Claims (4)

化学物質を昇華させる昇華部と昇華した該化学物質を捕集する捕集部とを有する精製部と、排気装置とを有する昇華精製装置であって、仕込み化学物質が接触する部分の材質がタンタル、モリブデン、チタン、アルミナ、ジルコニア、窒化ボロン、窒化ケイ素のいずれか少なくとも1種であることを特徴とする昇華精製装置。 A sublimation purification apparatus having a sublimation section for sublimating a chemical substance and a collection section for collecting the sublimated chemical substance, and an exhaust device, wherein the material of the portion in contact with the charged chemical substance is tantalum , Molybdenum, titanium, alumina, zirconia, boron nitride, and silicon nitride. 化学物質を昇華させる昇華部と昇華した該化学物質を捕集する捕集部とを有する精製部と、排気装置とを有する昇華精製装置を用いて化学物質を昇華させ、昇華した該化学物質を捕集することにより該化学物質を精製する昇華精製方法であって、昇華後に精製部を不活性ガスで大気圧に置換することを特徴とする昇華精製方法。 A sublimation purification apparatus having a sublimation section for sublimating a chemical substance and a collection section for collecting the sublimated chemical substance, and an exhaust device, sublimates the chemical substance, and sublimates the chemical substance. A sublimation purification method for purifying the chemical substance by collecting the sublimation purification method, wherein the purification part is replaced with an inert gas at atmospheric pressure after sublimation. 捕集部の温度を該化学物質の捕集温度に昇温した後に、昇華部の温度を該化学物質の昇華温度に昇温することを特徴とする請求項2記載の昇華精製方法。 3. The sublimation purification method according to claim 2, wherein the temperature of the sublimation part is raised to the sublimation temperature of the chemical substance after the temperature of the collection part is raised to the collection temperature of the chemical substance. W>20及びρ×h<3を満たす条件で行うことを特徴とする請求項2記載の昇華精製方法。
(ここで、Wは昇華部に仕込む化学物質の総重量(単位:g)である。また、ρは昇華部に仕込む化学物質の見かけの密度(単位:g/cm3)、hは昇華部に仕込んだ時の化学物質の厚さ(単位:cm)である。)
The sublimation purification method according to claim 2, which is performed under conditions satisfying W> 20 and ρ × h <3.
(W is the total weight (unit: g) of the chemical substance charged in the sublimation part, ρ is the apparent density (unit: g / cm 3 ) of the chemical substance charged in the sublimation part, and h is the sublimation part. (The thickness of the chemical substance when charged in (unit: cm).)
JP2004101855A 2004-03-31 2004-03-31 Sublimation refining apparatus and sublimation refining method Pending JP2005279601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101855A JP2005279601A (en) 2004-03-31 2004-03-31 Sublimation refining apparatus and sublimation refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101855A JP2005279601A (en) 2004-03-31 2004-03-31 Sublimation refining apparatus and sublimation refining method

Publications (1)

Publication Number Publication Date
JP2005279601A true JP2005279601A (en) 2005-10-13

Family

ID=35178548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101855A Pending JP2005279601A (en) 2004-03-31 2004-03-31 Sublimation refining apparatus and sublimation refining method

Country Status (1)

Country Link
JP (1) JP2005279601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299112B1 (en) 2013-03-06 2013-08-22 주식회사 피브이디 Sublimation purifying apparatus of organic matter having physical trap unit
CN113694559A (en) * 2021-08-30 2021-11-26 四川阿格瑞新材料有限公司 Organic material purification system and use method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299112B1 (en) 2013-03-06 2013-08-22 주식회사 피브이디 Sublimation purifying apparatus of organic matter having physical trap unit
CN113694559A (en) * 2021-08-30 2021-11-26 四川阿格瑞新材料有限公司 Organic material purification system and use method
CN113694559B (en) * 2021-08-30 2022-09-27 四川阿格瑞新材料有限公司 Organic material purification system and use method

Similar Documents

Publication Publication Date Title
JP2005313069A (en) Sublimation/purification apparatus and subliming/purifying method
KR102212540B1 (en) Method for vacuum purification
EP2803397B1 (en) Apparatus for purifying organicelectroluminescent material and method for purifying organic compound
JP6911060B2 (en) Injection with solid aluminum iodide (ALI3) to generate aluminum atomic ions and in-situ cleaning of aluminum iodide and its associated by-products
JP2005279601A (en) Sublimation refining apparatus and sublimation refining method
US7083680B2 (en) Sublimation and purification method
WO2016008312A1 (en) New purification method of organic solid material
JP4632601B2 (en) Sublimation purification apparatus, sublimation purification method, and organic electroluminescence device manufacturing method
KR101605025B1 (en) Method for purifying organic materials using ionic liquid
JP2014528899A (en) B2F4 manufacturing process
JPH062637B2 (en) Single crystal pulling device
JP6432874B1 (en) Purification equipment
JP5248721B2 (en) Method and apparatus for distillation purification of high melting point organic materials
KR101957054B1 (en) LN2 Trap apparatus for sublimation purifier
JP2005231956A (en) Apparatus and method of purifying silicon
JPH07138009A (en) Device for producing fullerene and method for recovering the same
JP4389784B2 (en) Cleaning method for chamber of vapor deposition apparatus for manufacturing organic EL element
JP2014018787A (en) Sublimation refining recovery method and sublimation refining recovery device
Möschel et al. A novel approach to the synthesis of endohedral fullerenes as demonstrated by endohedral barium fullerenes
CN204779760U (en) A vacuum sublimation device that is used for high chlorine arsenic production
JP2016138044A (en) Deposition method of organic compound and apparatus therefor
JP6851603B2 (en) Organic compound precipitation method
JPH07204402A (en) Vacuum purification apparatus and method of the same
JPS6152304A (en) Apparatus for producing pulverous metallic powder
JP2007130622A (en) Mercury removal apparatus of waste fluorescent lamp