JP2005279523A - Microchannel structure - Google Patents

Microchannel structure Download PDF

Info

Publication number
JP2005279523A
JP2005279523A JP2004099486A JP2004099486A JP2005279523A JP 2005279523 A JP2005279523 A JP 2005279523A JP 2004099486 A JP2004099486 A JP 2004099486A JP 2004099486 A JP2004099486 A JP 2004099486A JP 2005279523 A JP2005279523 A JP 2005279523A
Authority
JP
Japan
Prior art keywords
channel
flow path
discharge
continuous phase
dispersed phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004099486A
Other languages
Japanese (ja)
Other versions
JP4639624B2 (en
Inventor
Hiroki Takamiya
裕樹 高宮
Hideaki Kiritani
英昭 桐谷
Hidekazu Yoshizawa
秀和 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004099486A priority Critical patent/JP4639624B2/en
Publication of JP2005279523A publication Critical patent/JP2005279523A/en
Application granted granted Critical
Publication of JP4639624B2 publication Critical patent/JP4639624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchannel structure capable of producing microparticles having such a uniform grain size that the grain size dispersion of the microparticles produced in a channel on the intersection part between a dispersion phase flowing in the microchannel and a continuous phase which intersects the dispersion phase becomes less than 10%. <P>SOLUTION: The microchannel structure is provided with: at least one dispersion phase introducing port and dispersion phase introducing channel which introduce a dispersion phase; at least one continuous phase introducing port and continuous phase introducing channel which introduces a continuous phase; a liquid supply channel to a discharge channel from the intersection part on which the dispersion phase introducing channel and the continuous phase introducing channel intersect each other; and the discharge channel and a discharge port which discharge the microparticles prepared from the dispersion phase according to shear force between the continuous phase and the wall surface of channel on the intersection part and on the neighborhood thereof, on one of branches which are branched at a branching part of the end part on the downstream side of the liquid supply channel, and a sub discharge channel and a sub discharge port which discharge the by-product particles incidentally produced upon the microparticle preparation, on the other branch. Therein, such a microchannel structure that the dispersion phase introducing channel and the continuous phase introducing channel intersect each other on the intersection part at an arbitrary angle is used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分取・分離用カラム充填剤に用いられる微小粒子や医薬品、含酵素カプセル、化粧品、香料、表示・記録材料、接着剤、農薬等に利用されるマイクロカプセルに用いられる微小粒子の生成に好適な微小流路構造体に関する。   The present invention relates to microparticles used in preparative / separation column fillers and microparticles used in microcapsules used in pharmaceuticals, enzyme-containing capsules, cosmetics, fragrances, display / recording materials, adhesives, agricultural chemicals, and the like. The present invention relates to a microchannel structure suitable for generation.

近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路を有する微小流路構造体を用い、流体を微小流路へ導入することにより微小粒子の生成を行う研究が注目されており、界面張力の異なる2種類の液体を、前記2種類の流体の交差部が存在する流路に導入することにより微小粒子を生成することができる(例えば、特許文献1、非特許文献1参照)。なおここでいう微小粒子とは、固体状の微小粒子の他にも微小液滴や微小液滴の表面だけが硬化した微小粒子(以下、「半硬化」という。)や、非常に粘性が高い半固体状の微小粒子も含む。   In recent years, a fluid is introduced into a microchannel using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate of several cm square and a width and depth of sub-μm to several hundred μm. Research has been attracting attention for the production of microparticles, and the creation of microparticles by introducing two types of liquids with different interfacial tensions into the channel where the intersection of the two types of fluid exists. (For example, refer to Patent Document 1 and Non-Patent Document 1). The microparticles here are solid microparticles, microdroplets, microparticles obtained by curing only the surface of microdroplets (hereinafter referred to as “semi-cured”), and extremely high viscosity. Also includes semi-solid fine particles.

例えば、特許文献1あるいは非特許文献1に示されている手法は図1及びその流路のA−A’位置の断面図である図2に示すように、基板(1)に連続相導入口(2)、連続相を導入する流路(以下、連続相導入流路(3)という)、分散相導入口(4)、分散相を導入する流路(以下、分散相導入流路(5)という)、連続相中に微小粒子化した分散相を排出する流路(以下、排出流路(7)という)及び排出口(8)を有したT字型の流路を有し、基板の流路面側にカバー体を接合した微小流路構造体であり、マイクロチャンネル中を流れる連続相に対し、分散相を前記連続相の流れに交差する向きで分散相供給口より排出し、前記連続相のせん断力によって、前記分散相の供給チャンネルの幅より径の小さい微小液滴を得ている。ここで、マイクロチャンネルである連続相導入流路の幅は、特許文献1では100μm、非特許文献1では500μmと記載されている。また、分散相が流れる分散相導入流路の幅は、特許文献1及び非特許文献1ともに100μmであり、マイクロチャンネルである連続相導入流路の深さ及び分散相が流れる分散相導入流路の深さは、特許文献1及び非特許文献1ともに100μmである。以下では、導入された連続相と分散相とが交差する部分を以下、交差部(6)という。なお、特許文献1及び非特許文献1では、連続相導入流路はマイクロチャンネルと記載されているが、分散相導入流路は特にマイクロチャンネルであるとの記載はない。本手法を用い、分散相と連続相の流速を制御して送液を行うと、数百μm以下の微小液滴の生成が可能となる。また、分散相及び連続相の流量を制御することで生成する微小液滴の粒径を制御することが可能となる。得られた微小液滴の粒径としては、特許文献1では分散相の送液圧を2.45kPaに固定し、連続相の送液圧を4.85〜5.03kPaに変化させることで5〜25μmの粒径の微小液滴を得ていることが示されている。また、非特許文献1では分散相と連続相の送液圧を約20〜約250kPaの範囲で変化させることで最小約80μmから最大約数百μmの粒径の微小液滴を得ていることが示されている。   For example, the technique disclosed in Patent Document 1 or Non-Patent Document 1 is a continuous phase inlet port in the substrate (1) as shown in FIG. 1 and FIG. (2) a flow path for introducing a continuous phase (hereinafter referred to as a continuous phase introduction flow path (3)), a dispersed phase introduction port (4), a flow path for introducing a dispersed phase (hereinafter referred to as a dispersed phase introduction flow path (5) )), A T-shaped flow path having a flow path (hereinafter referred to as a discharge flow path (7)) and a discharge port (8) for discharging the finely divided dispersed phase in the continuous phase, and a substrate. A flow path surface side of the micro flow channel structure having a cover body joined thereto, with respect to the continuous phase flowing in the micro channel, the dispersed phase is discharged from the dispersed phase supply port in a direction crossing the flow of the continuous phase, Due to the shearing force of the continuous phase, microdroplets having a diameter smaller than the width of the supply channel of the dispersed phase are obtained. Here, the width of the continuous phase introduction flow path which is a microchannel is described as 100 μm in Patent Document 1 and 500 μm in Non-Patent Document 1. In addition, the width of the dispersed phase introduction channel through which the dispersed phase flows is 100 μm in both Patent Document 1 and Non-Patent Document 1, and the depth of the continuous phase introduction channel, which is a microchannel, and the dispersed phase introduction channel through which the dispersed phase flows. The depth of both is 100 μm in both Patent Document 1 and Non-Patent Document 1. Hereinafter, the portion where the introduced continuous phase and the dispersed phase intersect is hereinafter referred to as the intersection (6). In Patent Document 1 and Non-Patent Document 1, the continuous phase introduction flow path is described as a microchannel, but the dispersed phase introduction flow path is not particularly described as a microchannel. When this method is used and liquid feeding is performed by controlling the flow rates of the dispersed phase and the continuous phase, it is possible to generate micro droplets of several hundred μm or less. In addition, it is possible to control the particle size of the fine droplets generated by controlling the flow rates of the dispersed phase and the continuous phase. Regarding the particle diameter of the obtained microdroplets, in Patent Document 1, the liquid feeding pressure of the dispersed phase is fixed to 2.45 kPa, and the liquid feeding pressure of the continuous phase is changed to 4.85 to 5.03 kPa. It is shown that microdroplets with a particle size of ˜25 μm are obtained. Further, in Non-Patent Document 1, microdroplets having a particle size of about 80 μm minimum to about several hundred μm maximum are obtained by changing the liquid feeding pressure of the dispersed phase and the continuous phase in the range of about 20 to about 250 kPa. It is shown.

しかしながら前述した特許文献1及び非特許文献1では、生成された微小液滴の粒径の分布(以下、粒径分散度という。)に関しては一切記述されていない。ここで、粒径分散度とは、粒径の標準偏差を粒径の平均値(以下、平均粒径という。)で割った値であると定義する。そこで、実際に本発明者らが特許文献1及び非特許文献1に記載された微小流路構造体と同様な微小流路構造体を製作して微小液滴を生成する実験を行ったところ、確かに平均粒径が数十μm〜数百μmの微小液滴を得ることができたが、生成した微小液滴の粒径分散度は20〜30%以上と満足すべきものではなかった。特に、得られた微小液滴の平均粒径の20〜30%程度以下の粒径を有する平均粒径よりさらに小さな微小液滴(以下、副生微小液滴という。)が生成されてしまい、この副生微小液滴の存在が粒径分散度を悪くしており、粒径分散度を向上させる改善が求められていた。なお、本発明において粒径分散度が良いとは、粒径分散度が10%未満であることを意味する。   However, Patent Document 1 and Non-Patent Document 1 described above do not describe at all the particle size distribution (hereinafter referred to as particle size dispersion) of the generated microdroplets. Here, the particle size dispersion is defined as a value obtained by dividing the standard deviation of the particle size by the average value of the particle size (hereinafter referred to as the average particle size). Therefore, when the present inventors actually conducted an experiment to produce a microdroplet by producing a microchannel structure similar to the microchannel structure described in Patent Document 1 and Non-Patent Document 1, Certainly, microdroplets having an average particle size of several tens of μm to several hundreds of μm could be obtained, but the particle size dispersion of the generated microdroplets was not satisfactory at 20 to 30% or more. In particular, microdroplets (hereinafter referred to as by-product microdroplets) smaller than the average particle size having a particle size of about 20 to 30% or less of the average particle size of the obtained microdroplets are generated. The presence of the by-product fine droplets has deteriorated the particle size dispersion degree, and an improvement to improve the particle size dispersion degree has been demanded. In the present invention, “good particle size dispersion” means that the particle size dispersion is less than 10%.

国際公開WO02/068104パンフレットInternational Publication WO02 / 068104 Pamphlet

西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」、第4回化学とマイクロシステム研究会講演予稿集、59頁、2001年発行Takashi Nishisako et al., “Liquid microdroplet generation in microchannels”, Proceedings of the 4th Chemistry and Microsystem Study Group, 59 pages, 2001

以上のように従来技術による流路内における微小粒子生成の課題は、マイクロチャンネル中を流れる分散相と交差する連続相との交差部において、粒径分散度10%未満の均一な粒径を有する微小粒子を生成することであり、そのために特に、平均粒径の20〜30%程度以下の粒径の副生粒子の発生を抑えることである。   As described above, the problem of microparticle generation in the flow channel according to the prior art is that the particle size dispersion degree is less than 10% at the intersection between the dispersed phase flowing in the microchannel and the continuous phase. It is to generate fine particles, and for that purpose, to suppress generation of by-product particles having a particle size of about 20 to 30% or less of the average particle size.

すなわち、本発明の目的は、上記課題を鑑みてなされたもので、マイクロチャンネル中を流れる分散相と交差する連続相との交差部において流路で生成する微小粒子の粒径分散度を10%未満の均一な粒径を有する微小粒子を生成する微小流路構造体を提供することにある。   That is, the object of the present invention is made in view of the above problems, and the particle size dispersion degree of the microparticles generated in the flow path at the intersection of the dispersed phase flowing in the microchannel and the continuous phase intersects with 10%. An object of the present invention is to provide a microchannel structure that generates microparticles having a uniform particle size of less than 1.

上記課題を解決する本発明の微小流路構造体は、分散相を導入する少なくとも一つの分散相導入口及び分散相導入流路と、連続相を導入する少なくとも一つの連続相導入口及び連続相導入流路と、前記分散相導入流路と前記連続相導入流路とが交差する交差部より排出流路に至るまでの送液流路と、前記送液流路下流側端部の分岐部において分岐し、その一方には前記交差部及びその近傍で連続相と流路壁面のせん断力により分散相から生成される微小粒子を排出させる排出流路及び排出口、もう一方には前記微小粒子生成の際に副生する副生粒子を排出させる副排出流路及び副排出口と、を備えており、前記分散相導入流路と前記連続相導入流路とは交差部で任意の角度で交差しているものである。   The microchannel structure of the present invention that solves the above problems includes at least one dispersed phase introduction port and a dispersed phase introduction channel for introducing a dispersed phase, and at least one continuous phase introduction port and a continuous phase for introducing a continuous phase. An introduction channel, a liquid feed channel from the intersection where the dispersed phase introduction channel and the continuous phase introduction channel intersect to the discharge channel, and a branching portion at the downstream end of the liquid feed channel The discharge channel and the discharge port for discharging the microparticles generated from the dispersed phase by the shearing force of the continuous phase and the channel wall surface at the intersection and in the vicinity thereof, and the other at the intersection A sub-discharge channel and a sub-discharge port for discharging by-product particles by-produced during generation, and the dispersed phase introduction channel and the continuous phase introduction channel are at an arbitrary angle at the intersection. It is something that intersects.

また、副排出流路上流側端部が、微小粒子は実質的に通過できずかつ副生粒子は通過できる形状を有している微小流路構造体である。   Further, the upstream end portion of the secondary discharge flow channel is a micro flow channel structure having such a shape that the fine particles cannot substantially pass and the by-product particles can pass.

また、副排出流路上流側端部の流路中心線における横方向の長さが、排出流路上流側端部の流路中心線における横方向の長さよりも小さい微小流路構造体である。   Further, the micro-flow channel structure is such that the lateral length at the flow channel center line at the upstream end portion of the secondary discharge flow channel is smaller than the horizontal length at the flow channel center line at the upstream flow channel end portion. .

また、排出流路を連続相導入流路側に、副排出流路を分散相導入流路側に、備える微小流路構造体である。   Further, the microchannel structure includes a discharge channel on the continuous phase introduction channel side and a sub-discharge channel on the dispersed phase introduction channel side.

また、送液流路中の前記交差部又はその近傍において送液流路の幅が狭くなっている微小流路構造体である。   Moreover, it is a micro flow path structure in which the width of the liquid flow path is narrow at or near the intersection in the liquid flow path.

また、送液流路の幅が狭くなっている部位で、流路の底面、上面あるいは側面の内の一つの面または2以上の面から、1以上の突起が形成されている微小流路構造体である。   In addition, a minute channel structure in which one or more protrusions are formed from one or two or more of the bottom surface, top surface, or side surface of the channel at a portion where the width of the liquid feeding channel is narrow Is the body.

また、送液流路の幅が狭くなっている部位を分散相導入流路側に備える微小流路構造体である。   In addition, the microchannel structure includes a portion where the width of the liquid feeding channel is narrow on the dispersed phase introduction channel side.

また本発明の微小粒子製造方法は、前述したいずれかの形態を有する微小流路構造体を用いて微小粒子を生成する微小粒子製造方法であって、さらに、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御することを特徴とする微小粒子製造方法である。以下、本発明をさらに詳細に説明する。   The microparticle production method of the present invention is a microparticle production method for producing microparticles using a microchannel structure having any one of the forms described above, and further introduces a flow for introducing a dispersed phase. It is a method for producing microparticles characterized by controlling the particle size of microparticles generated by changing the angle at which a path and an introduction flow path for introducing a continuous phase intersect. Hereinafter, the present invention will be described in more detail.

本発明において用いられる導入流路、送液流路、排出流路、副排出流路などの各微小流路とは、一般的に幅500μm以下、深さ300μm以下のサイズの流路を示し、微小流路はマイクロチャンネルということもある。また以下では、前述のように定義した微小流路のみならず、微小流路より大きい幅と深さの流路を総じて、単に流路ということもある。   Each of the micro-channels such as the introduction channel, the liquid supply channel, the discharge channel, and the sub-discharge channel used in the present invention generally indicates a channel having a width of 500 μm or less and a depth of 300 μm or less, The microchannel is sometimes called a microchannel. Hereinafter, not only the microchannel defined as described above but also a channel having a width and depth larger than the microchannel may be simply referred to as a channel.

本発明においては、導入流路として分散相導入流路及び連続相導入流路が用いられるが、この内、分散相導入流路は、後述する分散相(流体)を分散相導入口より導き送液させるための流路である。また、連続相導入流路は、後述する連続相(流体)を連続相導入口より導き送液させるための流路である。そして、分散相及び連続相が、おのおの、導入流路を移動し、両流路が交差する交差部及びその近傍で連続相と流路壁面のせん断力により分散相から微小粒子と副生物として副生粒子が生成されるわけであるが、これらの粒子を前記交差部より下流側の分岐部に至るまでの流路を送液流路という。この送液流路は連続相導入流路と実質的に連続しており、連続相導入流路の延長として送液流路が存在することとなる。   In the present invention, a dispersed phase introduction channel and a continuous phase introduction channel are used as the introduction channel. Among these, the dispersed phase introduction channel guides a dispersed phase (fluid), which will be described later, from the dispersed phase introduction port. It is a flow path for making it liquid. Further, the continuous phase introduction flow path is a flow path for introducing and feeding a continuous phase (fluid) described later from the continuous phase introduction port. Then, the dispersed phase and the continuous phase each move in the introduction flow path, and by the shearing force of the continuous phase and the flow path wall surface at the intersection where both flow paths intersect, the by-product as microparticles and by-products are generated from the dispersed phase. Raw particles are generated, and the flow path from these particles to the branching portion on the downstream side from the intersecting portion is called a liquid feeding flow passage. This liquid supply flow path is substantially continuous with the continuous phase introduction flow path, and the liquid supply flow path exists as an extension of the continuous phase introduction flow path.

さらに送液流路の下流側端部の分岐部においては流路が分岐しており、一方には前記交差部及びその近傍で連続相と流路壁面のせん断力により分散相から生成される微小粒子を排出させる排出流路及びこの排出流路の下流側端部の排出口、他方には前記微小粒子生成の際に副生する副生粒子を排出させる副排出流路及びこの副排出流路の下流側端部の副排出口がある。もちろん、これら排出流路及び副排出流路は、本発明の目的を逸脱しない限り、それぞれ、2以上備えていても差し支えない。   Further, the flow path branches off at the branch portion at the downstream end of the liquid supply flow path, and one side is formed by a minute phase generated from the dispersed phase by the shearing force of the continuous phase and the flow path wall surface at and near the intersection. A discharge flow path for discharging particles and a discharge port at a downstream end of the discharge flow path, and a secondary discharge flow path for discharging by-product particles by-produced when the fine particles are generated, and the secondary discharge flow path There is a secondary outlet at the downstream end. Of course, two or more of these discharge channels and sub-discharge channels may be provided unless departing from the object of the present invention.

本発明においては、分散相導入流路はマイクロチャンネルであるが、連続相導入流路はマイクロチャンネルに限定されるものではなく、マイクロチャンネルであっても良いし、マイクロチャンネルでなくても良い。同様に、連続相導入流路と実質的に連続している送液流路及び排出流路もマイクロチャンネルに限定されるものではなく、マイクロチャンネルであっても良いし、マイクロチャンネルでなくても良い。むしろ、後述するように本発明の目的である微小粒子の粒径分散度を向上させるためには、連続相導入流路、送液流路及び排出流路はマイクロチャンネルでないことが好ましく、特に送液流路及び排出流路をマイクロチャンネルとしないことがさらに好ましい。一方、副生粒子は微小粒子生成の際に副生される粒子であって、微小粒子よりも小さな粒子である。このため、副排出流路は目的の微小粒子を実質的に通過させることなく主に副生粒子を通過させるために備えられており、副排出流路の上流側端部は実質的に微小粒子の通過を阻止できる形状である必然性があり、その態様の一つとしてマイクロチャンネルとすることが好ましい場合がある。   In the present invention, the dispersed phase introduction flow path is a microchannel, but the continuous phase introduction flow path is not limited to a microchannel, and may be a microchannel or not a microchannel. Similarly, the liquid supply flow path and the discharge flow path that are substantially continuous with the continuous phase introduction flow path are not limited to microchannels, and may be microchannels or not microchannels. good. Rather, in order to improve the particle size dispersion of the fine particles, which is the object of the present invention, as described later, it is preferable that the continuous phase introduction flow path, the liquid supply flow path, and the discharge flow path are not microchannels. More preferably, the liquid channel and the discharge channel are not microchannels. On the other hand, the by-product particles are particles that are by-produced when the fine particles are generated, and are smaller than the fine particles. For this reason, the sub-discharge channel is provided to pass mainly by-product particles without substantially passing the target micro-particles, and the upstream end of the sub-discharge channel is substantially micro-particles. In some cases, it is preferable to use a microchannel.

本発明における微小粒子とは、マイクロチャンネル中を流れる分散相に対し、連続相を前記分散相の流れに対し任意の角度で交差する向きで連続相供給口より排出し、前記連続相と流路内の壁面のせん断力によって分散相から生成される微小粒子であり、その微小粒子サイズは、一般的に直径が微小流路の幅あるいは深さよりも小さい。例えば、幅が100μm、深さが50μmの微小流路で生成される微小粒子の大きさは、微小粒子が完全球体であると仮定するとその直径は少なくとも100μmより小さい。また本発明により得られる微小粒子は、固体状の微小粒子の他にも微小液滴や微小液滴の表面だけが硬化した半硬化の微小粒子や、非常に粘性が高い半固体状の微小粒子も含む。   In the present invention, the fine particles are discharged from the continuous phase supply port in a direction intersecting the flow of the dispersed phase at an arbitrary angle with respect to the dispersed phase flowing in the microchannel. These are microparticles generated from the dispersed phase by the shearing force of the inner wall surface, and the microparticle size is generally smaller in diameter than the width or depth of the microchannel. For example, the size of a microparticle generated in a microchannel having a width of 100 μm and a depth of 50 μm is smaller than at least 100 μm, assuming that the microparticle is a perfect sphere. In addition to solid microparticles, the microparticles obtained by the present invention are microdroplets, semi-cured microparticles that are cured only on the surface of the microdroplets, and semisolid microparticles that are very viscous. Including.

微小粒子が生成される際に、副生物として微小粒子よりも小さく、例えば直径10μm未満の粒子が生成することがある。この副生粒子の生成機構は必ずしも明確ではないが、実用上これらの副生粒子を目的の微小粒子から分離あるいは排除する必要がある。本発明においては、この副生粒子の微小粒子からの分離あるいは排除のため、排出流路とは別に、上記した副排出流路が備えられている。   When the microparticles are generated, as a by-product, particles smaller than the microparticles, for example, less than 10 μm in diameter may be generated. The mechanism of by-product particles is not necessarily clear, but it is necessary to separate or exclude these by-product particles from the target microparticles in practice. In the present invention, in order to separate or exclude the by-product particles from the fine particles, the above-described auxiliary discharge channel is provided separately from the discharge channel.

本発明において用いられる分散相とは、微小粒子を生成させるための液状物であり、例えば、スチレンなどの重合用のモノマー、ジビニルベンゼンなどの架橋剤、重合開始剤等のゲル製造用の原料を適当な溶媒に溶解した媒体を指す。ここで分散相としては、本発明が微小な微小粒子を効率的に生成させることを目的としており、この目的を達成させるためであれば微小流路構造体中のマイクロチャンネルを送液できるものであれば特に制限されず、さらに微小粒子を形成させることができればその成分も特に制限されない。また、分散相中に例えば微小な粉末の様な固体状物が混在したスラリー状のものであっても差し支えないし、分散相が複数の流体から形成される層流であっても良いし、複数の流体から形成される混合流体であっても懸濁液(エマルション)であっても良い。   The dispersed phase used in the present invention is a liquid material for generating fine particles. For example, a polymerization monomer such as styrene, a crosslinking agent such as divinylbenzene, a raw material for gel production such as a polymerization initiator is used. It refers to a medium dissolved in a suitable solvent. Here, as the dispersed phase, the purpose of the present invention is to efficiently generate fine microparticles, and the microchannel in the microchannel structure can be fed to achieve this purpose. There is no particular limitation as long as it is fine, and the components are not particularly limited as long as fine particles can be formed. Further, it may be in the form of a slurry in which a solid phase such as a fine powder is mixed in the dispersed phase, or the dispersed phase may be a laminar flow formed from a plurality of fluids. It may be a mixed fluid formed from these fluids or a suspension (emulsion).

本発明において用いられる連続相とは、分散相をせん断して微小粒子を生成させるために用いられる液状物であり、例えば、ポリビニルアルコールのゲル製造用の分散剤を適当な溶媒に溶解した媒体を指す。ここで連続相としては分散相と同様に、微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに微小粒子を形成させることができればその成分は特に制限されない。また、連続相中に例えば微小な粉末の様な固体状物が混在したスラリー状のものであっても差し支えないし、分散相が複数の流体から形成される層流であっても良いし、複数の流体から形成される混合流体であっても懸濁液(エマルション)であっても良い。生成する微小粒子組成の観点から見た場合は、微小粒子の最外層が有機相であれば連続相の最外層は水相となり、微小粒子の最外層が水相であれば連続相の最外層は有機相となる。   The continuous phase used in the present invention is a liquid material used for generating fine particles by shearing the dispersed phase. For example, a medium in which a dispersant for producing a gel of polyvinyl alcohol is dissolved in an appropriate solvent is used. Point to. Here, as in the case of the dispersed phase, the continuous phase is not particularly limited as long as it can feed the flow path in the micro flow path structure, and the component is not particularly limited as long as micro particles can be formed. Further, it may be a slurry in which a solid material such as a fine powder is mixed in the continuous phase, or the dispersed phase may be a laminar flow formed from a plurality of fluids. It may be a mixed fluid formed from these fluids or a suspension (emulsion). From the viewpoint of the composition of the fine particles to be generated, if the outermost layer of the fine particles is an organic phase, the outermost layer of the continuous phase is an aqueous phase, and if the outermost layer of the fine particles is an aqueous phase, the outermost layer of the continuous phase Becomes the organic phase.

さらに、分散相と連続相とは微小粒子を生成させるために、実質的に交じり合わないあるいは相溶性がないことがさらに好ましく、例えば、分散相として水相を用いた場合には連続相としては水に実質的に溶解しない酢酸ブチルといった有機相が用いられることとなる。また、連続相として水相を用いた場合にはその逆となる。   Further, it is more preferable that the dispersed phase and the continuous phase do not substantially cross each other or have no compatibility in order to generate fine particles. For example, when the aqueous phase is used as the dispersed phase, An organic phase such as butyl acetate that is substantially insoluble in water will be used. Moreover, the reverse is true when an aqueous phase is used as the continuous phase.

上記のように、本発明の微小流路構造体は、分散相導入流路と、連続相導入流路と、送液流路と、排出流路及び副排出流路の各流路を備えており、分散相導入流路と連続相導入流路とは交差部で任意の角度で交差している。   As described above, the microchannel structure of the present invention includes a dispersed phase introduction channel, a continuous phase introduction channel, a liquid feeding channel, a discharge channel, and a sub-discharge channel. The disperse phase introduction channel and the continuous phase introduction channel intersect at an arbitrary angle at the intersection.

ここで、本発明における分散相導入流路と連続相が流れる連続相導入流路との交差の方式としては、基本的には図3に示すようなY字型の流路において、分散相導入口(4)から分散相を導入し、連続相導入口(2)から連続相を導入し、分散相と連続相との交差部(6)で分散相を連続相と壁面によるせん断力によりせん断して微小液滴である微小粒子(11)を生成する。しかしながら本発明はこの方式に限定されるものではなく、図4に示すように、分散相導入流路(5)中を流れる分散相(14)をその分散相の両側から連続相(13)が挟み込むように交差させて分散相と連続相の交差部(6)において連続相と流路の上下壁面とのせん断力でせん断して微小粒子(11)を生成する方式でも良いし、図5に示すように、連続相(13)が2以上の分散相(14)と交差して、その交差部(6)で連続相と流路の内壁の壁面とのせん断力で分散相がせん断されて微小粒子(11)を生成する方式でも良いし、図6に示すように、直線状流路の図6左側の分散相導入流路(4)より分散相(14)を、図6右側の連続相導入流路(3)より連続相(13)を導入し、連続相と分散相の交差部(6)において連続相と流路の内壁のせん断力で分散相をせん断させることで微小液滴である微小粒子(11)を生成させ、交差部(6)より1又は2以上の任意の方向の送液流路へと移送させ、排出流路、副排出流路へとつなげる方式でも良い。このようにすることで、微小粒子をより効率的に生成させることができる。なお、図6の方式の場合、生成した微小粒子を含む流体を、再度交差させて生成した微小粒子を回収することもできる。なお、本発明の微小流路構造体は図3〜図6の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。   Here, as a method of intersecting the dispersed phase introduction flow path and the continuous phase introduction flow path through which the continuous phase flows in the present invention, basically, in the Y-shaped flow path as shown in FIG. The dispersed phase is introduced from the port (4), the continuous phase is introduced from the continuous phase introduction port (2), and the dispersed phase is sheared by the shear force generated by the continuous phase and the wall surface at the intersection (6) between the dispersed phase and the continuous phase. Thus, microparticles (11) which are microdroplets are generated. However, the present invention is not limited to this method. As shown in FIG. 4, the dispersed phase (14) flowing in the dispersed phase introduction flow path (5) is separated from both sides of the dispersed phase by the continuous phase (13). It is possible to adopt a method in which the fine particles (11) are generated by shearing with the shearing force between the continuous phase and the upper and lower wall surfaces of the flow path at the intersecting portion (6) of the dispersed phase and the continuous phase. As shown, the continuous phase (13) intersects with two or more disperse phases (14), and the disperse phase is sheared by the shear force between the continuous phase and the wall of the inner wall of the flow path at the intersection (6). A method of generating fine particles (11) may be used, and as shown in FIG. 6, the dispersed phase (14) is connected from the dispersed phase introduction channel (4) on the left side of FIG. The continuous phase (13) is introduced from the phase introduction flow path (3) and connected at the intersection (6) of the continuous phase and the dispersed phase. The dispersed phase is sheared by the shearing force of the phase and the inner wall of the channel to generate microparticles (11) which are microdroplets, and the liquid-feeding channel in one or more arbitrary directions from the intersection (6) It is also possible to use a method of transferring to a discharge channel and a sub-discharge channel. By doing in this way, microparticles can be generated more efficiently. In the case of the method of FIG. 6, the microparticles generated by intersecting the fluid containing the generated microparticles again can be collected. Needless to say, the microchannel structure of the present invention is not limited to the examples of FIGS. 3 to 6 and can be arbitrarily changed without departing from the gist of the present invention.

ここで、分散相を導入するための導入口は分散相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて分散相を連続的に導入する機構としてもよい。同様に、連続相を導入するための導入口についても、連続相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて連続相を連続的に導入する機構としてもよい。   Here, the introduction port for introducing the dispersed phase means an opening for introducing the dispersed phase, and a mechanism for continuously introducing the dispersed phase by providing an appropriate attachment at the introduction port. Similarly, the introduction port for introducing the continuous phase also means an opening for introducing the continuous phase, and further, as a mechanism for continuously introducing the continuous phase with an appropriate attachment at the introduction port. Good.

分散相を導入するための分散相導入流路は、導入口と連通したマイクロチャンネルであり、分散相が導入されこの導入流路に沿って送液される。導入流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、その流路幅は500μm以下であり、好ましくは300μm以下である。また、連続相導入流路及び排出流路と任意の角度で交差する形状となっておればよい。また、連続相を導入するための連続相導入流路は連続相導入口と連通しており連続相が導入され、この導入流路に沿って送液される。導入流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、その流路は特にマイクロチャンネルに限定されておらず、連続相導入流路の流路幅はマイクロチャンネルに相当する幅でなくても良いし、マイクロチャンネルに相当する幅であっても良い。   The dispersed phase introduction flow path for introducing the dispersed phase is a microchannel communicating with the introduction port, and the dispersed phase is introduced and fed along the introduction flow path. The shape of the introduction channel affects the control of the shape and particle size of the fine particles, but the channel width is 500 μm or less, preferably 300 μm or less. Moreover, what is necessary is just to become a shape which cross | intersects a continuous phase introduction flow path and a discharge flow path at arbitrary angles. In addition, the continuous phase introduction flow path for introducing the continuous phase communicates with the continuous phase introduction port, and the continuous phase is introduced and fed along the introduction flow path. The shape of the introduction channel has an effect on controlling the shape and particle size of the microparticles, but the channel is not particularly limited to the microchannel, and the channel width of the continuous phase introduction channel corresponds to the microchannel. The width may not be a width to be used, or may be a width corresponding to a microchannel.

また、送液流路は連続相導入流路と実質的に連続しており、連続相導入流路の延長として送液流路が存在する。従って、連続相導入流路と実質的に連続している送液流路もマイクロチャンネルに限定されておらず、送液流路の幅はマイクロチャンネルに相当する幅でなくても良いし、マイクロチャンネルに相当する幅であっても良い。むしろ、本発明の目的である微小粒子の粒径分散度を向上させるためには、連続相導入流路及び分散相及び連続相により生成された微小粒子の送液流路及び送液流路の下流側端部の分岐部より送液流路と連通する排出流路はマイクロチャンネルでないことが好ましく、特に送液流路及び排出流路をマイクロチャンネルにしないことがさらに好ましい。また、排出流路とは別に、送液流路の下流側端部の分岐部より送液流路と連通する副排出流路は、マイクロチャンネルである。副排出流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、微小粒子は実質的に通過できずかつ副生粒子は通過できる形状を有しておればよく、また、副排出流路の上流側端部の流路中心線における横方向の長さが、排出流路の上流側端部の流路中心線における横方向の長さよりも小さいことが好ましい。より具体的には、目的とする微小粒子及び副生する副生粒子の粒径にもよるが、通常、その流路幅は、副排出流路の上流側端部の流路中心線における横方向の長さとして微小粒子の粒径よりも小さいことが好ましい。また、副排出流路は、送液流路の下流側端部の分岐部において排出流路と分岐しているのであるが、排出流路と任意の角度で交差する形状となっておればよい。更に副排出流路及び副排出口が分散相の導入流路側にあることがより好ましく、特に排出流路を連続相導入流路側に、副排出流路を分散相導入流路側に、備えた微小流路構造体の構成とすることが好ましい。   Moreover, the liquid feeding flow path is substantially continuous with the continuous phase introduction flow path, and the liquid feeding flow path exists as an extension of the continuous phase introduction flow path. Therefore, the liquid supply flow path substantially continuous with the continuous phase introduction flow path is not limited to the microchannel, and the width of the liquid supply flow path may not be the width corresponding to the microchannel. It may be a width corresponding to a channel. Rather, in order to improve the particle size dispersion degree of the microparticles, which is the object of the present invention, the continuous phase introduction channel and the liquid supply channel and the liquid supply channel of the microparticles generated by the dispersed phase and the continuous phase are used. It is preferable that the discharge flow path communicating with the liquid supply flow path from the branch portion at the downstream end is not a microchannel, and it is more preferable that the liquid supply flow path and the discharge flow path are not microchannels. In addition to the discharge channel, the sub-discharge channel that communicates with the liquid supply channel from the branch portion at the downstream end of the liquid supply channel is a microchannel. The shape of the sub-discharge channel affects the control of the shape and particle size of the fine particles, but it is sufficient that the fine particles cannot substantially pass and the by-product particles can pass, It is preferable that the horizontal length at the flow path center line at the upstream end of the sub-discharge flow path is smaller than the horizontal length at the flow path center line at the upstream end of the discharge flow path. More specifically, although it depends on the particle size of the target microparticles and by-product particles produced as a by-product, the channel width is usually the horizontal line at the channel center line at the upstream end of the sub-discharge channel. The length in the direction is preferably smaller than the particle size of the fine particles. In addition, the sub-discharge channel is branched from the discharge channel at the branching portion at the downstream end of the liquid-feed channel, but it only needs to have a shape that intersects the discharge channel at an arbitrary angle. . Further, it is more preferable that the sub-discharge channel and the sub-discharge port are on the dispersed-phase introduction channel side, and in particular, the minute channel provided on the continuous-phase introduction channel side and the sub-discharge channel on the dispersed-phase introduction channel side. It is preferable to have a flow path structure.

この理由を以下に図を用いてさらに詳細に説明する。   The reason for this will be described below in more detail with reference to the drawings.

本発明者らが鋭意検討した結果、マイクロチャンネル中を流れる連続相に対し、分散相を連続相の流れに交差する向きで、分散相導入流路の下流側端部である分散相供給口より排出し、連続相のせん断力によって分散相から微小液滴を生成した場合、以下に記述する現象がおきる。   As a result of intensive studies by the present inventors, the continuous phase flowing in the microchannel is oriented in a direction crossing the flow of the continuous phase from the dispersed phase supply port at the downstream end of the dispersed phase introduction channel. When discharging and generating microdroplets from the dispersed phase by the shear force of the continuous phase, the phenomenon described below occurs.

まず第1に、連続相のせん断力によって分散相から微小液滴を生成した場合、図7に示すように微小液滴である微小粒子(11)上流側には尾引き(15)が生じることがあり、この尾引きが微小粒子(11)と分かれると、目的の微小粒子の粒径よりさらに微小な副生粒子(16)が生成する。ここで、微小粒子の上流側(微小粒子の流れ方向の後方)に生じる尾引きとは、分散相(14)が連続相(13)のせん断によってちぎれる際に、分散相と連続相の界面張力の差によって、分散相がちぎれようとするときに生じる微小液滴の後部から続く、連続相で周囲を囲まれた細長く伸びた線状の主に分散相から構成されるものをいう。この微小液滴の尾引きは、図7に示すように分散相がせん断されて液滴になる際に尾の部分が一つあるいはばらばらにちぎれて複数に分かれ、10μm未満の副生粒子(16)が発生し、粒径分散度を悪化させる要因の一つとなる。この副生粒子が生成することにより、生成した微小液滴の粒径分散度は20〜30%以上と非常に悪くなってしまう。   First, when microdroplets are generated from the dispersed phase by the shearing force of the continuous phase, tailing (15) occurs upstream of the microparticles (11), which are microdroplets, as shown in FIG. When this tail is separated from the fine particles (11), by-product particles (16) that are finer than the particle size of the target fine particles are generated. Here, the tailing that occurs on the upstream side of the fine particles (behind the flow direction of the fine particles) is the interfacial tension between the dispersed phase and the continuous phase when the dispersed phase (14) is broken by the shear of the continuous phase (13). By the difference, the continuous phase mainly consists of elongated and elongated dispersed phases surrounded by a continuous phase, which continues from the rear of the fine droplets generated when the dispersed phase is about to be torn off. As shown in FIG. 7, when the dispersed phase is sheared into droplets, the tails of the fine droplets are divided into one or a plurality of tail parts, which are by-produced particles of less than 10 μm (16 ), Which is one of the factors that deteriorate the particle size dispersion. When these by-product particles are generated, the particle size dispersion degree of the generated microdroplets is very poor, 20-30% or more.

従って、生成した微小液滴の粒径分散度を向上させるためには、前述したような副生粒子を生じないように、または生成した副生粒子を、目的とする粒径の液滴とは分離あるいは除去できるように微小流路構造体から排出すれば良い。   Therefore, in order to improve the particle size dispersion degree of the generated micro droplets, the by-product particles as described above are not generated, or the generated by-product particles are defined as droplets having a target particle size. What is necessary is just to discharge | emit from a microchannel structure so that it can isolate | separate or remove.

本発明の微小流路構造体は、分散相と連続相とが交わる交差部より分岐部に至る送液流路中の一部の部位において、送液流路の幅が狭くなっているものとするのが好ましく、さらに、送液流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と連続相の交差部又はその近傍にあることが好ましい。また、排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と連続相の交差部の分散相の導入流路側にあることが好ましい。あるいは、これらの態様の内の一つのみならず、2以上の態様を同じにあわせもっていてもよい。   In the microchannel structure of the present invention, the width of the liquid feeding channel is narrow at a part of the liquid feeding channel from the intersection where the dispersed phase and the continuous phase intersect to the branching portion. In addition, it is preferable that the portion where the width of the liquid flow path is narrow is at or near the intersection of the dispersed phase flowing in the microchannel and the continuous phase. Moreover, it is preferable that the site | part where the width | variety of the discharge flow path is narrow exists in the introduction flow path side of the dispersed phase of the intersection part of the dispersed phase which flows in a microchannel, and a continuous phase. Alternatively, not only one of these embodiments but also two or more embodiments may be combined.

さらに、送液流路の幅が狭くなっている部位で、流路の底面、上面あるいは側面の内の一つの面または2以上の面から、1以上の突起が形成されていることが好ましい。   Furthermore, it is preferable that one or more protrusions are formed from one surface or two or more surfaces of the bottom surface, the top surface, or the side surface of the flow channel in a portion where the width of the liquid supply flow channel is narrow.

ここで図8〜図16に流路の特定の部位で、流路の底面、上面あるいは側面の内の一つの面または2以上の面から、1以上の突起を形成した例を示す。   Here, FIGS. 8 to 16 show examples in which one or more protrusions are formed from one surface or two or more surfaces of the bottom surface, the top surface, or the side surface of the flow channel at a specific portion of the flow channel.

図8は、流路の底面、上面あるいは側面の内の一つの面または2以上の面から、1以上の突起を形成した微小流路構造体の例を示した概念図である。図9〜図16は、図8の連続相導入流路(3)と分散相導入流路(5)の交差部(6)を拡大した部分とその断面図の例を示している。   FIG. 8 is a conceptual diagram showing an example of a microchannel structure in which one or more protrusions are formed from one surface or two or more surfaces of the bottom surface, top surface, or side surface of the channel. FIGS. 9-16 has shown the example of the part which expanded the intersection part (6) of the continuous phase introduction flow path (3) of FIG. 8, and a disperse phase introduction flow path (5), and its sectional drawing.

図9は、流路の底面から1以上の突起を形成した微小流路構造の例を示した概念図である。図10は図9における流路のB−B’断面図である。図11は、流路の上面から1以上の突起を形成した微小流路構造の例を示した概念図である。図12は図11における流路のC−C’断面図である。図13は、流路の底面及び側面から1以上の突起を形成した微小流路構造の例を示した概念図である。図14は図13における流路のD−D’断面図である。図15は、流路の底面、上面、側面から1以上の突起を形成した微小流路構造の例を示した概念図である。図16は図15における流路のE−E’断面図である。   FIG. 9 is a conceptual diagram showing an example of a micro-channel structure in which one or more protrusions are formed from the bottom surface of the channel. FIG. 10 is a B-B ′ cross-sectional view of the flow path in FIG. 9. FIG. 11 is a conceptual diagram showing an example of a micro-channel structure in which one or more protrusions are formed from the upper surface of the channel. FIG. 12 is a C-C ′ cross-sectional view of the flow path in FIG. 11. FIG. 13 is a conceptual diagram showing an example of a microchannel structure in which one or more protrusions are formed from the bottom and side surfaces of the channel. FIG. 14 is a cross-sectional view taken along the line D-D ′ in FIG. 13. FIG. 15 is a conceptual diagram showing an example of a micro-channel structure in which one or more protrusions are formed from the bottom, top, and side surfaces of the channel. 16 is a cross-sectional view taken along the line E-E 'of FIG.

このようにすることで、連続相の送液圧力に加えて、流路内が狭くなっていることによる内圧の上昇により、分散相をより容易にせん断することが可能となり、せん断する際に生じる図7に示すような微小液滴である微小粒子(11)後方の尾引き(15)を抑制することができ、図17に示すように尾引きの少ないあるいはない微小粒子(11)を生成することが可能となる。すなわち、上述したような流路構造を有する微小流路構造体を用いることにより、この微小液滴の尾引きを抑制することができ、副生粒子の発生を抑制することができる。   By doing in this way, in addition to the liquid feeding pressure of the continuous phase, it is possible to shear the dispersed phase more easily due to the increase in internal pressure due to the narrow inside of the flow path, which occurs when shearing The tail (15) behind the microparticle (11) which is a microdroplet as shown in FIG. 7 can be suppressed, and the microparticle (11) with little or no tailing is generated as shown in FIG. It becomes possible. That is, by using the microchannel structure having the channel structure as described above, tailing of the microdroplets can be suppressed, and generation of by-product particles can be suppressed.

しかし、前述した微小流路構造体は、副生粒子の発生を抑制できるが、以下では発生した副生粒子の目的の微小粒子への混入をさらに抑制する方法を述べる。すなわち本発明の微小流路構造体は、生成した微小液滴である微小粒子が微小流路構造体から排出されるまでに連続相とともに運ばれる送液流路に、図18に示すような実質的に副生粒子のみを排出させる副排出流路(24)及び副排出口(不図示)を導入することにより、生成した微小液滴である微小粒子(11)から流路内で副生粒子(16)を分離、排出することが可能となる。ここで、副生粒子(16)を排出させる副排出流路(24)は送液流路(10)の下流側端部にある分岐部(17)において、排出流路(7)と任意の角度で交差する形状となっておればよい。   However, although the microchannel structure described above can suppress the generation of by-product particles, a method for further suppressing the mixing of the generated by-product particles into the target microparticles will be described below. That is, the microchannel structure according to the present invention is substantially the same as that shown in FIG. 18 in the liquid supply channel that is transported together with the continuous phase until the microparticles that are generated microdroplets are discharged from the microchannel structure. By introducing a sub-discharge channel (24) for discharging only by-product particles and a sub-discharge port (not shown), by-product particles are generated in the channel from the micro particles (11) that are generated micro droplets. (16) can be separated and discharged. Here, the sub-discharge channel (24) for discharging the by-product particles (16) is connected to the discharge channel (7) at the branch end (17) at the downstream end of the liquid-feed channel (10). It only has to be a shape that intersects at an angle.

さらに、生成した微小粒子(11)及び副生粒子(16)は、図19に示すように、副排出流路(24)が排出流路(7)と同程度の断面積となっていると目的の微小粒子(11)まで副生粒子(16)とともに副排出流路(24)より排出されてしまう。そのため、副排出流路(24)の流路幅及び流路深さは図18に示すように排出流路(7)より小さくすることで副排出流路(24)へ微小粒子(11)が流れるのを抑止できるため好ましい。具体的には、図18〜20に示されるように、送液流路(10)の下流部端部にある分岐部(17)から排出流路(7)及び副排出流路(24)へと、生成した微小粒子(11)及び副生粒子(16)が流れる場合、図18におけるように副排出流路(24)は排出流路(7)よりも断面積が小さく、あるいは、副排出流路(24)の流路中心線における横方向の長さが排出流路(7)のそれよりも小さく、そのことにより排出流路(7)には微小粒子(11)が、副排出流路(24)には副生粒子(16)が流れることとなる。これに対し、図19のように排出流路(7)と副排出流路(24)が実質的に同じ断面積あるいは流路中心線における横方向の長さを有する場合や、図20のように排出流路(7)が副排出流路(24)よりも断面積あるいは流路中心線における横方向の長さが小さい場合には、本発明の目的を達することはできないものとなってしまう。   Furthermore, as shown in FIG. 19, the generated fine particles (11) and by-product particles (16) have a cross-sectional area of the sub-discharge channel (24) that is approximately the same as the discharge channel (7). The target fine particles (11) are discharged from the sub-discharge channel (24) together with the by-product particles (16). Therefore, the channel width and the channel depth of the sub-discharge channel (24) are made smaller than those of the discharge channel (7) as shown in FIG. 18, so that the fine particles (11) are introduced into the sub-discharge channel (24). Since it can suppress flowing, it is preferable. Specifically, as shown in FIGS. 18 to 20, from the branching portion (17) at the downstream end of the liquid feeding flow channel (10) to the discharge flow channel (7) and the sub discharge flow channel (24). When the generated fine particles (11) and by-product particles (16) flow, the sub-discharge channel (24) has a smaller cross-sectional area than the discharge channel (7) as shown in FIG. The lateral length of the flow path (24) at the flow path center line is smaller than that of the discharge flow path (7), so that the fine particles (11) are contained in the discharge flow path (7). By-product particles (16) will flow through the path (24). On the other hand, as shown in FIG. 19, the discharge channel (7) and the sub-discharge channel (24) have substantially the same cross-sectional area or the length in the horizontal direction at the channel center line, or as shown in FIG. If the discharge channel (7) is smaller in cross-sectional area or lateral length in the channel center line than the sub-discharge channel (24), the object of the present invention cannot be achieved. .

さらに、生成した微小粒子(11)及び副生粒子(16)は壁面に沿って排出流路内を移動する。副排出流路(24)が図20に示されるように連続相側にある場合、生成した目的の微小粒子(11)まで副生粒子(16)とともに副排出流路(24)より排出されてしまう。そのため、副排出流路(24)は図18に示すように分散相側にすることがより好ましい。   Further, the generated fine particles (11) and by-product particles (16) move along the wall surface in the discharge channel. When the sub-discharge channel (24) is on the continuous phase side as shown in FIG. 20, the produced fine particles (11) are discharged from the sub-discharge channel (24) together with the by-product particles (16). End up. Therefore, it is more preferable that the auxiliary discharge channel (24) is on the dispersed phase side as shown in FIG.

また、本発明の微小流路構造体は、副生粒子(16)を排出させる副排出流路の上流側端部の流路中心線における横方向の長さが、排出流路の上流側端部の流路中心線における横方向の長さよりも小さい微小流路構造体である。このような微小流路構造体とすることにより、生成した目的粒子径の微小粒子の形状を崩すことなく排出することができ、さらに目的とする微小粒子が副生粒子を排出させるための副排出口に至る副排出流路から排出されることを抑制でき、副生粒子と生成した目的粒子径の微小粒子とを効率的に分離、回収することが可能となる。このようにすることで、発生した副生粒子を目的の微小粒子と別の副排出流路から確実に排出することができる。   Further, in the microchannel structure according to the present invention, the length in the horizontal direction at the channel center line of the upstream end of the sub-discharge channel for discharging the by-product particles (16) is the upstream end of the discharge channel. This is a microchannel structure that is smaller than the horizontal length of the channel centerline of the part. By using such a microchannel structure, it is possible to discharge without breaking the shape of the generated microparticles having the target particle diameter, and to further discharge the by-product particles by the target microparticles. It is possible to suppress discharge from the secondary discharge flow path leading to the outlet, and it is possible to efficiently separate and collect the by-product particles and the generated fine particles having the target particle diameter. By doing so, the generated by-product particles can be reliably discharged from the sub-discharge flow path different from the target fine particles.

以上のような微小流路構造体とすることで、本発明の目的の一つである微小粒子の粒径分散度を10%未満の均一な粒径を有する微小粒子を生成する微小流路構造体を提供することが可能となる。   By using the above-described microchannel structure, a microchannel structure that generates microparticles having a uniform particle size with a particle size dispersion degree of less than 10%, which is one of the objects of the present invention. The body can be provided.

さらに、本発明の微小流路構造体においては、分散相を導入するための分散相導入流路と連続相を導入するための連続相導入流路とが任意の角度で交わると共に、これらの導入流路が任意の角度で排出流路へと繋がる構造であることが好ましい。このような2つの導入流路の交差する角度が任意の角度とすることで、交差部で生成する微小粒子を所望の粒径へと制御することが可能となる。交差角度の設定については、目的とする微小粒子の粒径に応じて適宜決めればよい。本発明の微小粒子製造方法は、前述した分散相と連続相とを後述する本発明における微小流路構造体へ各々の導入流路より導入し、両者が交差する交差部で分散相を連続相と流路内の壁面のせん断力によりせん断し微小粒子を生成させるものであるが、マイクロチャンネル中を流れる分散相を導入するための分散相導入流路と連続相を導入するための連続相導入流路とが交わる角度を変化させることで、生成する微小粒子の粒径を制御することが可能である。これは、従来の微小流路構造体を使った微小粒子の生成における分散相と連続相の導入速度を変えて生成させる場合よりもより制御しやすく、工業的な量産に適している。特に、分散相の導入速度と連続相の導入速度とが実質的に同じであれば、導入装置を1個用意することで足りるなどコスト面においても優れている。尚、ここでいう分散相の導入速度と連続相の導入速度とが実質的に同じとは、それぞれの相の導入速度に多少変動があっても生成する微小粒子の粒径には大きな影響を与えない(粒径分散度が変化しない)ことを意味している。このようにすることで、安定した粒径の微小粒子を生成することができる。また、連続相を過剰に供給する必要がなくなり、例えばゲル製造における連続相の低コスト化、工業的な量産が可能となる。   Furthermore, in the microchannel structure according to the present invention, the dispersed phase introduction channel for introducing the dispersed phase and the continuous phase introduction channel for introducing the continuous phase intersect at an arbitrary angle, and these introductions It is preferable that the flow path be connected to the discharge flow path at an arbitrary angle. By setting the angle at which the two introduction channels intersect to be an arbitrary angle, it is possible to control the fine particles generated at the intersection to a desired particle size. What is necessary is just to determine suitably about the setting of a crossing angle according to the particle size of the target fine particle. The method for producing fine particles of the present invention introduces the above-mentioned dispersed phase and continuous phase from the respective introduction flow channels into the micro flow channel structure according to the present invention, which will be described later. In order to generate fine particles by shearing with the shearing force of the wall surface in the flow channel, the continuous phase introduction for introducing the dispersed phase flow channel for introducing the dispersed phase flowing in the microchannel and the continuous phase is introduced. By changing the angle at which the flow path intersects, the particle size of the generated fine particles can be controlled. This is easier to control than the case of changing the introduction speed of the dispersed phase and the continuous phase in the generation of microparticles using the conventional microchannel structure, and is suitable for industrial mass production. In particular, if the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same, it is excellent in terms of cost, for example, it is sufficient to prepare one introduction device. Note that the introduction rate of the dispersed phase and the introduction rate of the continuous phase here are substantially the same, even if there is some variation in the introduction rate of each phase, the particle size of the generated fine particles is greatly affected. This means that the particle size dispersion is not changed. By doing in this way, the microparticle of the stable particle size can be produced | generated. Further, it is not necessary to supply the continuous phase excessively. For example, the cost of the continuous phase in gel production can be reduced, and industrial mass production can be achieved.

また、本発明の微小流路構造体は、微小流路構造体の中に複数の微小流路を平面的あるいは立体的に配置することで工業的に大量の微小粒子を生成することができる。図21及び図21中のG−G’断面図である図22、F−F’断面図である図23には、上記形態の一例を示した。流路(22)を有する基板(1)を重ねあわせ、共通流路(23)を前記基板を貫通させて構成した例である。この形態は、基板を積層し、立体的に多数の微小流路を集積する際に効果的である。なお本発明は、この形態のみに限定されるものではなく、1枚の基板に任意の配置で複数の流路を配置しても良く、発明の要旨を逸脱しない範囲で任意に変更が可能であることは言うまでもない。   In addition, the microchannel structure of the present invention can industrially generate a large amount of microparticles by arranging a plurality of microchannels planarly or three-dimensionally in the microchannel structure. An example of the above-described embodiment is shown in FIG. 22 which is a G-G ′ sectional view in FIG. 21 and FIG. 21 and FIG. 23 which is a F-F ′ sectional view. This is an example in which a substrate (1) having a flow path (22) is overlapped and a common flow path (23) is formed through the substrate. This form is effective when stacking substrates and collecting a large number of three-dimensional microchannels. The present invention is not limited to this embodiment, and a plurality of flow paths may be arranged in any arrangement on a single substrate, and can be arbitrarily changed without departing from the gist of the invention. Needless to say.

本発明の微小粒子製造方法において、微小粒子の用途の例として、高速液体クロマトグラフィー用カラムの充填剤、圧力測定フィルム、ノーカーボン(感圧複写)紙、トナー、熱膨張剤、熱媒体、調光ガラス、ギャップ剤(スペーサ)、サーモクロミック(感温液晶、感温染料)、磁気泳動カプセル、農薬、人工飼料、人工種子、芳香剤、マッサージクリーム、口紅、ビタミン類カプセル、活性炭、含酵素カプセル、DDS(ドラッグデリバリーシステム)などのマイクロカプセルやゲルが挙げられる。   In the method for producing microparticles of the present invention, examples of the use of microparticles include packing materials for high-performance liquid chromatography columns, pressure measurement films, carbonless (pressure-sensitive copying) paper, toners, thermal expansion agents, thermal media, preparations. Light glass, gap agent (spacer), thermochromic (thermosensitive liquid crystal, thermosensitive dye), magnetophoresis capsule, pesticide, artificial feed, artificial seed, fragrance, massage cream, lipstick, vitamins capsule, activated carbon, enzyme-containing capsule And microcapsules and gels such as DDS (drug delivery system).

また本発明の様々な形態において、流体導入口には一般にシリンジポンプなどの送液ポンプを用いて流体を導入するが、流路に配置された流路排出口から排出された流体を回収し、再び送液ポンプに戻して再度送液しても良い。このようにすることで、導入する連続相及び/または分散相を無駄無く使用することができる。   In various forms of the present invention, the fluid is generally introduced into the fluid introduction port using a liquid feed pump such as a syringe pump, but the fluid discharged from the flow passage outlet arranged in the flow passage is collected, The liquid may be returned again to the liquid feed pump and fed again. By doing in this way, the continuous phase and / or disperse phase to introduce can be used without waste.

本発明の微小流路構造体は、以上に述べた構造、性能を有しているが、分散相と連続相を導入するための導入部及び導入流路と、導入流路が交わる交差部と、液体を排出させるための排出流路及び排出口を備えた微小流路構造体が、少なくとも一方の面に流路が形成された基板と、流路が形成された基板面を覆うように、流路の所定の位置に、流路と微小流路構造体外部とを連通するための小穴が配置されたカバー体とが積層一体化されていてもよい。これにより、微小流路構造体外部から流路へ流体を導入し、再び微小流路構造体外部へ流体を排出することができ、流体が微小量であったとしても、流体を安定して流路内を通過させることが可能となる。流体の送液は、シリンジポンプやマイクロポンプなどの機械的手段によって可能となる。   The microchannel structure according to the present invention has the structure and performance described above, but includes an introduction part and an introduction channel for introducing a dispersed phase and a continuous phase, and an intersection where the introduction channel intersects. The micro flow channel structure having a discharge flow channel and a discharge port for discharging the liquid covers the substrate having the flow channel formed on at least one surface and the substrate surface on which the flow channel is formed. A cover body in which small holes for communicating the flow channel and the outside of the micro flow channel structure are arranged at a predetermined position of the flow channel may be laminated and integrated. As a result, the fluid can be introduced from the outside of the microchannel structure into the channel and discharged again to the outside of the microchannel structure, and the fluid can be stably flowed even if the amount of fluid is small. It is possible to pass through the road. The fluid can be fed by mechanical means such as a syringe pump or a micro pump.

流路が形成された基板及びカバー体の材質としては、流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものが望ましい。例えば、ガラス、石英、セラミック、シリコン、あるいは金属や樹脂等であっても良い。基板やカバー体の大きさや形状については特に限定はないが、厚みは数mm以下程度とすることが望ましい。カバー体に配置された小穴は、流路と微小流路構造体外部とを連通し、流体の導入口または排出口として用いる場合には、その径が例えば数百μm程度から数mm程度であることが望ましい。カバー体の小穴の加工には、化学的に、機械的に、あるいはレーザー照射やイオンエッチングなどの各種の手段によって可能とされる。   As the material of the substrate and the cover body on which the flow path is formed, it is desirable that the flow path can be formed, has excellent chemical resistance, and has an appropriate rigidity. For example, glass, quartz, ceramic, silicon, or metal or resin may be used. The size and shape of the substrate and cover body are not particularly limited, but the thickness is preferably about several mm or less. The small hole arranged in the cover body communicates the flow path and the outside of the micro flow path structure and has a diameter of, for example, about several hundred μm to several mm when used as a fluid inlet or outlet. It is desirable. The small holes in the cover body can be processed chemically, mechanically, or by various means such as laser irradiation or ion etching.

また本発明の微小流路構造体は、流路が形成された基板とカバー体とを熱処理接合あるいは熱硬化樹脂などの接着剤を用いた接着等の手段により積層一体化することができる。   In the microchannel structure of the present invention, the substrate on which the channel is formed and the cover body can be laminated and integrated by means such as heat bonding or bonding using an adhesive such as a thermosetting resin.

本発明の微小流路構造体は、分散相を導入する少なくとも一つの分散相導入口及び分散相導入流路と、連続相を導入する少なくとも一つの連続相導入口及び連続相導入流路と、前記分散相導入流路と前記連続相導入流路とが交差する交差部より排出流路に至るまでの送液流路と、前記送液流路下流側端部の分岐部において分岐し、一方には前記交差部及びその近傍で連続相と流路壁面のせん断力により分散相から生成される微小粒子を排出させる排出流路及び排出口、他方には前記微小粒子生成の際に副生する副生粒子を排出させる副排出流路及び副排出口と、を備えており、前記分散相導入流路と前記連続相導入流路とは交差部で任意の角度で交差している。このような構成とすることにより、副生粒子と生成した目的粒子径の微小粒子とを分離、回収することが可能となる。   The microchannel structure of the present invention includes at least one dispersed phase introduction port and a dispersed phase introduction channel for introducing a dispersed phase, at least one continuous phase introduction port and a continuous phase introduction channel for introducing a continuous phase, Branched at the liquid feed flow path from the intersection where the dispersed phase introduction flow path and the continuous phase introduction flow path cross to the discharge flow path, and at the branch portion at the downstream end of the liquid feed flow path, The discharge channel and the discharge port for discharging the fine particles generated from the dispersed phase by the shearing force of the continuous phase and the flow channel wall surface at the intersection and the vicinity thereof, and the other is by-produced during the generation of the fine particles. A secondary discharge channel and a secondary discharge port for discharging by-product particles are provided, and the dispersed phase introduction channel and the continuous phase introduction channel intersect at an arbitrary angle at the intersection. By adopting such a configuration, it is possible to separate and collect by-product particles and generated fine particles having a target particle size.

また、本発明の微小流路構造体は、副生粒子を排出させるための副排出流路及び副排出口が、分散相の導入流路側にある。このような構成とすることにより、壁面に沿って直進する副生粒子を単純な流路形状の排出用流路にて排出することが可能となり、目的粒径の微小粒子のみを回収し、粒径分散度が10%未満の非常に均一な平均粒径を有する微小粒子を生成することが可能となる。   In the microchannel structure of the present invention, the sub-discharge channel and the sub-discharge port for discharging the by-product particles are on the introduction channel side of the dispersed phase. By adopting such a configuration, it becomes possible to discharge by-product particles that go straight along the wall surface in a discharge channel having a simple channel shape, and only collect fine particles having a target particle size. It becomes possible to produce microparticles having a very uniform average particle size with a dimensional dispersion of less than 10%.

また、本発明の微小流路構造体は、送液流路中の前記交差部又はその近傍において送液流路の幅が狭くなっており、また、送液流路の幅が狭くなっている部位を分散相導入流路側に備え、さらに、送液流路の幅が狭くなっている部位で、流路の底面、上面あるいは側面の内の一つの面または2以上の面から、1以上の突起が形成されている。このような構成とすることにより、尾引きの少ない微小粒子を生成することが可能となり、分散相がせん断されて液滴になる際に尾の部分がばらばらにちぎれて、10μm未満の準微小液滴が発生することを抑えることが可能となり、副排出流路から排出される副生粒子の存在確率を減少させ、より確実に粒径分散度の良い微小粒子を生成することが可能となる。   Further, in the micro flow channel structure of the present invention, the width of the liquid flow channel is narrow at the intersection or in the vicinity thereof in the liquid flow channel, and the width of the liquid flow channel is narrow. A portion is provided on the dispersed phase introduction flow path side, and the width of the liquid feed flow path is narrowed, and one or more of one or more of the bottom, top, or side surfaces of the flow path A protrusion is formed. By adopting such a configuration, it becomes possible to generate microparticles with less tailing, and when the dispersed phase is sheared into droplets, the tail portion is broken apart, and a quasi-microfluid less than 10 μm. It is possible to suppress the generation of droplets, reduce the existence probability of by-product particles discharged from the sub-discharge flow path, and more reliably generate fine particles having a good particle size dispersion.

また、本発明の微小粒子製造方法は、前述したいずれかの形態を有する微小流路構造体を用いて微小粒子を生成する微小粒子製造方法であって、さらに、分散相を導入するための導入流路と連続相を導入するための導入流路の交わる角度を変化させて生成する微小粒子の粒径を制御することを特徴とする微小粒子製造方法であり、このような製造方法にすることで、流路形状により平均粒径を自由に制御することが可能となる。   The method for producing microparticles of the present invention is a microparticle production method for producing microparticles using a microchannel structure having any one of the forms described above, and is further used for introducing a dispersed phase. A method for producing microparticles, characterized by controlling the particle size of the microparticles generated by changing the angle at which the flow channel and the introduction flow channel for introducing the continuous phase intersect. Thus, the average particle diameter can be freely controlled by the flow path shape.

以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。   Hereinafter, examples of the present invention will be described, and the embodiments of the invention will be described in more detail. It is needless to say that the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.

本発明の第1の実施例における微小流路を図24及び図24中のH−H’断面図である図25、I−I’断面図である図26、J−J’断面図である図27に示す。70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、幅200μm、深さ80μmの連続相導入流路(3)、幅100μm、深さ40μmの微小流路に相当する分散相導入流路(4)及び幅300μm、深さ80μm、長さが30mmの送液流路(10)及び排出流路(7)、幅50μm、深さ20μm、長さが10mmの副排出流路(24)であり連続相導入流路(3)と分散相導入流路(5)とが44°の角度にて交わる交差部(6)と、排出流路と副排出流路とが44°の角度にて交わる分岐部(17)を持ったX字形状の流路を1本形成した基板(1)を作製した。   FIG. 25 is a cross-sectional view taken along a line HH ′ in FIGS. 24 and 24, FIG. 26 is a cross-sectional view taken along a line II ′, and a cross-sectional view taken along a line JJ ′ in FIG. It shows in FIG. Dispersed phase corresponding to a continuous phase introduction channel (3) having a width of 200 μm and a depth of 80 μm, a microchannel having a width of 100 μm and a depth of 40 μm on a Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness) Introducing flow path (4), liquid feeding flow path (10) and discharge flow path (7) having a width of 300 μm, depth of 80 μm and a length of 30 mm, sub discharge flow path having a width of 50 μm, a depth of 20 μm and a length of 10 mm (24) where the continuous phase introduction channel (3) and the dispersed phase introduction channel (5) intersect at an angle of 44 °, and the discharge channel and the sub-discharge channel are 44 °. A substrate (1) on which one X-shaped flow path having a branching portion (17) intersecting at an angle was formed.

この流路を有する微小流路構造体は、図28に示すように、厚さ1mmで70mm×20mmのガラス基板の一方の面に、微小流路を一般的なフォトリソグラフィーとウェットエッチングによりガラス基板に形成し、この基板(1)の流路を有する面に、流路の導入口(2)及び(4)と排出口(8)及び(25)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体(32)を熱接合し製作した。   As shown in FIG. 28, the micro-channel structure having this channel is formed on one surface of a glass substrate having a thickness of 1 mm and a size of 70 mm × 20 mm by a general photolithography and wet etching. A small hole having a diameter of 0.6 mm is formed in advance on the surface of the substrate (1) having the flow path at positions corresponding to the introduction ports (2) and (4) and the discharge ports (8) and (25) of the flow path. A glass cover body (32) having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided using mechanical processing means was manufactured by thermal bonding.

次に本実施例の微小粒子製造方法について説明する。図29に示すように微小流路構造体(19)に液体が送液可能なようにホルダー(31)などで保持すると共に、テフロン(登録商標)チューブ(29)及びフィレットジョイント(26)をホルダー(31)に固定する。テフロン(登録商標)チューブ(29)のもう一方はマイクロシリンジ(28)に接続する。これで微小流路構造体に液体の送液が可能となる。   Next, the fine particle manufacturing method of the present embodiment will be described. As shown in FIG. 29, the microchannel structure (19) is held by the holder (31) so that the liquid can be fed, and the Teflon (registered trademark) tube (29) and the fillet joint (26) are held by the holder. Fix to (31). The other end of the Teflon tube (29) is connected to the microsyringe (28). Thus, liquid can be fed to the microchannel structure.

次に微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をそれぞれのマイクロシリンジに注入し、マイクロシリンジポンプ(27)で送液を行った。送液速度は分散相1μl/min、連続相は15μl/minである。送液速度が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて、図30に示すような微小粒子(11)の生成が観察された。生成された微小液滴を観察すると平均粒径99.4μm、粒径分散度を示すCV値(%)は5.2%であり、粒径分散度が10%未満の均一な微小粒子であった。本実施例1で示すように、副生粒子を排出させるための副排出流路及び副排出口を導入することにより、後述する比較例よりも分散度が向上していることから、生成した副生粒子を目的とする粒径の微小粒子から分離、排出することができ、粒径分散度を5%程度に向上させることができるようになった。   Next, a mixed solution of divinylbenzene and butyl acetate is injected into the dispersed phase for generating fine particles, and a 3% aqueous solution of polyvinyl alcohol is injected into each microsyringe as the continuous phase, and the solution is fed by the microsyringe pump (27). It was. The liquid feeding speed is 1 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microparticles (11) as shown in FIG. 30 was observed at the intersection where the disperse phase and continuous phase of the microchannel structure intersect in a state where both the liquid feeding speeds were stable. Observation of the generated fine droplets revealed that the average particle size was 99.4 μm, the CV value (%) indicating the particle size dispersion was 5.2%, and the particles were uniform fine particles having a particle size dispersion of less than 10%. It was. As shown in the first embodiment, by introducing a sub-discharge channel and a sub-discharge port for discharging by-product particles, the degree of dispersion is improved as compared with the comparative example described later, and thus the generated sub-flow is generated. Raw particles can be separated and discharged from fine particles having a desired particle size, and the degree of particle size dispersion can be improved to about 5%.

本発明の第2の実施例における微小流路を図31に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、幅200μm、深さ80μmの連続相導入流路(3)、幅100μm、深さ40μmの微小流路に相当する分散相導入流路(5)及び幅300μm、深さ80μm、長さが30mmの送液流路(10)及び排出流路(7)、幅50μm、深さ20μm、長さが10mmの副排出流路(24)であり連続相導入流路(3)と分散相導入流路(5)とが44°の角度にて交わる交差部(6)、排出流路と副排出流路とが44°の角度にて交わる分岐部(17)を持ったX字形状の流路を1本形成した基板(1)を作製した。また、連続相導入流路(3)と分散相導入流路(5)の交差部直後の送液流路(10)において、分散相導入流路側の送液流路の内壁面に、図32に示すような、流路幅300μmに対して最大で約50μm内側に張り出した突起を形成した。   FIG. 31 shows a microchannel according to the second embodiment of the present invention. The microchannel is a Pyrex (registered trademark) glass of 70 mm × 40 mm × 1 t (thickness), a continuous phase introduction channel (3) having a width of 200 μm and a depth of 80 μm, and a microchannel having a width of 100 μm and a depth of 40 μm. Corresponding dispersed phase introduction flow path (5) and a liquid feed flow path (10) and discharge flow path (7) having a width of 300 μm, a depth of 80 μm and a length of 30 mm, a width of 50 μm, a depth of 20 μm and a length of 10 mm An intersection (6), which is a sub-discharge channel (24) and intersects the continuous-phase introduction channel (3) and the dispersed-phase introduction channel (5) at an angle of 44 °, a discharge channel and a sub-discharge channel A substrate (1) having one X-shaped channel having a branch portion (17) intersecting at an angle of 44 ° was produced. Further, in the liquid feeding channel (10) immediately after the intersection of the continuous phase introducing channel (3) and the dispersed phase introducing channel (5), the inner wall surface of the liquid feeding channel on the dispersed phase introducing channel side is shown in FIG. As shown in FIG. 5, a protrusion projecting inward by about 50 μm at maximum with respect to the flow path width of 300 μm was formed.

なお上記の流路は、一般的なフォトリソグラフィーとドライエッチングにより形成し、この流路が形成されたガラス基板の流路を有する面に、流路の導入口(2)及び(4)と排出口(8)及び(25)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体を実施例1と同様に熱接合し製作した。   The flow path is formed by general photolithography and dry etching, and the flow path inlets (2) and (4) are connected to the surface of the glass substrate on which the flow path is formed. A glass cover body having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided in advance at a position corresponding to the outlets (8) and (25) by using a mechanical processing means is prepared in the same manner as in Example 1. Joined and produced.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小液滴を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行って微小液滴である微小粒子を生成した。送液速度は分散相は1μl/min、連続相は15μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて微小粒子の生成が観察された。生成された微小粒子を観察すると平均粒径98.3μm、粒径の分散度を示すCV値(%)は3.1%であり、粒径分散度が10%未満の極めて均一な微小粒子であった。この実施例2において、粒径10μm未満の副生粒子は実質観察されなかった。   Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide is used as a dispersed phase for generating microdroplets in the same manner as in Example 1. Was injected into a microsyringe as a continuous phase, and liquid was fed with a microsyringe pump to produce microparticles as microdroplets. The liquid feeding speed is 1 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microparticles was observed at the intersection where the disperse phase and continuous phase of the microchannel structure intersect, with both flow rates stabilized. When the generated fine particles are observed, the average particle size is 98.3 μm, the CV value (%) indicating the degree of dispersion of the particle size is 3.1%, and the particle size dispersion is less than 10%. there were. In Example 2, substantially no by-product particles having a particle size of less than 10 μm were observed.

このように、連続相導入流路と分散相導入流路の交差部直後の送液流路において、分散相導入流路側の送液流路の壁面に突起を形成することで、微小液滴が連続相と流路の内壁のせん断でせん断されるときに生じる微小粒子の尾引きを抑えることができ、また図33にも示されるように、副生粒子(16)を排出させるための副排出流路(24)及び副排出口(不図示)を導入することにより、後述する比較例よりも分散度が向上していることから、生成した副生粒子(16)を、目的とする粒径の微小粒子(11)から分離、排出することができ、粒径分散度を5%未満に向上させることができるようになった。
比較例1
In this way, in the liquid supply flow path immediately after the intersection of the continuous phase introduction flow path and the dispersed phase introduction flow path, a microdroplet is formed by forming a protrusion on the wall surface of the liquid supply flow path on the dispersed phase introduction flow path side. It is possible to suppress the tailing of microparticles generated when sheared by the shear of the continuous phase and the inner wall of the flow path, and as shown in FIG. 33, the secondary discharge for discharging the byproduct particles (16) is also possible. By introducing a flow path (24) and a secondary discharge port (not shown), the degree of dispersion is improved as compared with a comparative example described later. The fine particles (11) can be separated and discharged, and the particle size dispersion can be improved to less than 5%.
Comparative Example 1

本発明の第1の比較例における微小流路を図34に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス製の基板(1)上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも200μm、深さ100μmで、連続相導入流路(3)と分散相導入流路(5)とが44°の角度にて交わる交差部(6)を持ったY字形状の流路を形成した。排出流路の長さは30mmである。   FIG. 34 shows a microchannel in the first comparative example of the present invention. The micro-channel is formed on a Pyrex (registered trademark) glass substrate (1) having a size of 70 mm × 40 mm × 1 t (thickness), a continuous phase introduction channel (3) corresponding to the micro-channel, and a dispersed phase introduction channel ( 5) The width of the discharge flow path (7) is 200 μm and the depth is 100 μm, and the intersecting portion where the continuous phase introduction flow path (3) and the dispersed phase introduction flow path (5) intersect at an angle of 44 ° ( A Y-shaped channel having 6) was formed. The length of the discharge channel is 30 mm.

なお微小流路は、一般的なフォトリソグラフィーとウエットエッチングにより形成し、この流路が形成されたガラス基板の流路を有する面に、流路の導入口(2)及び(4)と排出口(8)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体を実施例1と同様に熱接合し製作した。   The micro flow channel is formed by general photolithography and wet etching, and the flow channel inlets (2) and (4) and the discharge port are formed on the surface of the glass substrate on which the flow channel is formed. A glass cover body having a thickness of 1 mm and a thickness of 70 mm × 20 mm, in which a small hole having a diameter of 0.6 mm was previously provided at a position corresponding to (8) using mechanical processing means, was thermally bonded in the same manner as in Example 1.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、及び酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行って微小液滴を生成した。送液速度は分散相は1μl/min、連続相は15μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて微小液滴の生成が観察された。生成された微小液滴を観察すると、平均粒径89.5μm、粒径の分散度を示すCV値(%)は10.5%であり、粒径分散度が10%以上の比較的不均一な粒径の微小粒子であった。これは、図35に示すように連続相(13)と分散相(14)から生成した微小粒子(11)の後方に尾引き(15)が生じ、これが副生粒子(16)となって、図36に示すように、排出流路(7)のみならず副排出流路(24)にも微小粒子(11)が副生粒子(16)とともに流れているため上手く両者を分離できなかったためである。   Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, and butyl acetate is added to the dispersed phase for generating microparticles in the same manner as in Example 1, and the continuous phase A 3% aqueous solution of polyvinyl alcohol was injected into a microsyringe, and liquid was fed with a microsyringe pump to generate microdroplets. The liquid feeding speed is 1 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microdroplets was observed at the intersection where the dispersed phase and continuous phase of the microchannel structure intersect, with both flow rates stabilized. Observation of the generated fine droplets reveals that the average particle size is 89.5 μm, the CV value (%) indicating the degree of dispersion of the particle size is 10.5%, and the particle size dispersion is relatively non-uniform with a degree of dispersion of 10% or more. It was a fine particle with a small particle size. As shown in FIG. 35, tailing (15) occurs behind the fine particles (11) generated from the continuous phase (13) and the dispersed phase (14), and this becomes by-product particles (16). As shown in FIG. 36, since the fine particles (11) are flowing along with the by-product particles (16) not only in the discharge channel (7) but also in the sub-discharge channel (24), the two cannot be separated well. is there.

本発明の第3の実施例における微小流路を図37に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス製の基板(1)上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも200μm、深さ300μmで、連続相導入流路(3)と分散相導入流路(5)とが44°の角度にて交わる交差部(6)を持ち、さらに送液流路(10)の下流側端部に分岐部(17)を介して排出流路(7)及び副排出流路(24)を持ったX字形状の流路と、連続相導入流路(3)と分散相導入流路(5)とが22°の角度にて交わる交差部(6)を持ち、さらに送液流路(10)の下流側端部に分岐部(17)を介して排出流路(7)及び副排出流路(24)を持ったX字形状の流路の2本の微小流路を形成した。従って本実施例は、実施例2において、連続相導入流路と分散相導入流路の交差部における角度を変えた場合の例である。   FIG. 37 shows a microchannel according to the third embodiment of the present invention. The micro-channel is formed on a Pyrex (registered trademark) glass substrate (1) having a size of 70 mm × 40 mm × 1 t (thickness), a continuous phase introduction channel (3) corresponding to the micro-channel, and a dispersed phase introduction channel ( 5) and the discharge channel (7) both have a width of 200 μm and a depth of 300 μm, and the continuous phase introduction channel (3) and the dispersed phase introduction channel (5) intersect at an angle of 44 ° ( 6) and an X-shaped channel having a discharge channel (7) and a sub-discharge channel (24) via a branching portion (17) at the downstream end of the liquid feeding channel (10). And the continuous phase introduction channel (3) and the dispersed phase introduction channel (5) have an intersection (6) where they intersect at an angle of 22 °, and further at the downstream end of the liquid feed channel (10). Two micro-channels of an X-shaped channel having a discharge channel (7) and a sub-discharge channel (24) were formed through the branch part (17). Therefore, the present embodiment is an example in which the angle at the intersection of the continuous phase introduction flow path and the dispersed phase introduction flow path is changed in the second embodiment.

なお微小流路は、一般的なフォトリソグラフィーとドライエッチングにより形成し、この流路が形成されたガラス基板の流路を有する面に、流路の導入口(2)及び(4)と排出口(8)及び(25)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体を実施例1と同様に熱接合し製作した。   The micro flow channel is formed by general photolithography and dry etching, and the flow channel inlets (2) and (4) and the discharge port are formed on the surface of the glass substrate on which the flow channel is formed. A glass cover body having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided in advance with a small hole having a diameter of 0.6 mm at a position corresponding to (8) and (25) using mechanical processing means is thermally bonded in the same manner as in Example 1. I made it.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行って微小液滴を生成した。送液速度は分散相は1μl/min、連続相は15μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部(6)にて微小液滴の生成が観察された。生成された微小粒子を観察すると、交差部(6)が22°の角度で交わる場合は、平均粒径110.5μm、粒径の分散度を示すCV値(%)は8.7%であり、交差部(6)が44°の角度で交わる場合は、平均粒径87.8μm、粒径の分散度を示すCV値(%)は8.9%であり、いずれも粒径分散度が10%未満の極めて均一な微小粒子であった。   Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide is added to the dispersed phase for producing microparticles in the same manner as in Example 1. Then, a 3% aqueous solution of polyvinyl alcohol was injected into the microsyringe as a continuous phase, and liquid was fed with a microsyringe pump to generate microdroplets. The liquid feeding speed is 1 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microdroplets was observed at the intersection (6) where the dispersed phase and continuous phase of the microchannel structure intersect, with both the flow rates stabilized. When the generated fine particles are observed, when the intersecting portion (6) intersects at an angle of 22 °, the average particle diameter is 110.5 μm, and the CV value (%) indicating the degree of dispersion of the particle diameter is 8.7%. When the intersection (6) intersects at an angle of 44 °, the average particle size is 87.8 μm, and the CV value (%) indicating the degree of dispersion of the particle size is 8.9%, both of which have a particle size dispersion degree of Very uniform fine particles of less than 10%.

本実施例5で示すように、分散相及び連続相の送液速度の条件を変えることなく、分散相導入流路と連続相導入流路の交差部の角度を変えることで粒径をコントロールすることが可能であることがわかる。   As shown in Example 5, the particle size is controlled by changing the angle of the intersection of the dispersed phase introduction channel and the continuous phase introduction channel without changing the conditions of the liquid feeding speed of the dispersed phase and the continuous phase. It can be seen that it is possible.

従来の微小粒子を生成する微小流路を示す概略平面図である。It is a schematic plan view which shows the microchannel which produces the conventional microparticles. 図1の従来の微小粒子を生成する微小流路中のA−A’断面図である。It is A-A 'sectional drawing in the microchannel which produces | generates the conventional microparticle of FIG. 流路の交差部近傍において、分散相を連続相と流路の内壁によるせん断力でせん断して微小粒子を形成する方法を示す概念平面図である。It is a conceptual top view which shows the method of forming a microparticle by shearing a disperse phase with the shearing force by the continuous phase and the inner wall of a flow path in the crossing part vicinity of a flow path. 流路の交差部近傍において両側の連続相が中央の分散相を挟み込むようにして、分散相を前記両側の連続相と流路の上下の内壁とのせん断力でせん断して微小粒子を形成する方法を示す概念平面図である。The continuous phase on both sides sandwiches the central dispersed phase in the vicinity of the intersection of the channels, and the dispersed phase is sheared by the shear force between the continuous phases on both sides and the upper and lower inner walls of the channel to form microparticles. It is a conceptual top view which shows a method. 流路の交差部近傍において中央の連続相が両側の分散を前記連続相と流路の内壁のせん断力でせん断して微小粒子を形成する方法を示す概念平面図である。FIG. 4 is a conceptual plan view showing a method in which a central continuous phase in the vicinity of a crossing portion of a flow path shears dispersion on both sides with a shear force of the continuous phase and the inner wall of the flow path to form fine particles. 流路の交差部近傍において直線状に一方の側より分散相を、もう一方の側より連続相を導入し、分散相を連続相と流路の内壁のせん断力でせん断して微小粒子を生成し、任意の方向へ排出させる方法を示す概念平面図である。In the vicinity of the intersection of the channels, a dispersed phase is introduced linearly from one side and a continuous phase is introduced from the other side, and the dispersed phase is sheared by the shearing force of the continuous phase and the inner wall of the channel to generate fine particles. And it is a conceptual top view which shows the method of discharging in arbitrary directions. 微小粒子が生成されるときの状態を示す概念図であり、微小粒子が生成されるときに尾引きを生じ、副生粒子が生成する様子を示した概念平面図である。It is a conceptual diagram which shows a state when a microparticle is produced | generated, and is a conceptual top view which showed a mode that a tail is produced when a microparticle is produced | generated and a by-product particle | grain is produced | generated. 流路の底面、上面、側面のいずれか1面あるいは2面以上から1以上の突起を形成した微小流路構造体の例を示した概念平面図である。It is the conceptual top view which showed the example of the microchannel structure which formed the 1 or more protrusion from any one of the bottom face, the upper surface, and the side surface of a flow path, or 2 surfaces or more. 図8の交差部6近傍の拡大図であり、流路の底面から1以上の突起を形成した微小流路構造体の例を示した概念平面図である。FIG. 9 is an enlarged view of the vicinity of the intersection 6 in FIG. 8, and is a conceptual plan view showing an example of a microchannel structure in which one or more protrusions are formed from the bottom surface of the channel. 図9における流路のB−B’断面図である。FIG. 10 is a B-B ′ sectional view of the flow path in FIG. 9. 図8の交差部6近傍の拡大図であり、流路の上面から1以上の突起を形成した微小流路構造体の例を示した概念平面図である。FIG. 9 is an enlarged view of the vicinity of an intersection 6 in FIG. 8 and is a conceptual plan view showing an example of a micro flow channel structure in which one or more protrusions are formed from the upper surface of the flow channel. 図11における流路のC−C’断面図である。It is C-C 'sectional drawing of the flow path in FIG. 図8の交差部6近傍の拡大図であり、流路の底面及び側面から1以上の突起を形成した微小流路構造体の例を示した概念平面図である。FIG. 9 is an enlarged view of the vicinity of the intersection 6 in FIG. 8, and is a conceptual plan view showing an example of a microchannel structure in which one or more protrusions are formed from the bottom and side surfaces of the channel. 図13における流路のD−D’断面図である。It is D-D 'sectional drawing of the flow path in FIG. 図8の交差部6近傍の拡大図であり、流路の底面、上面、側面から1以上の突起を形成した微小流路構造体の例を示した概念平面図である。FIG. 9 is an enlarged view of the vicinity of the intersection 6 in FIG. 8, and is a conceptual plan view illustrating an example of a microchannel structure in which one or more protrusions are formed from the bottom surface, the top surface, and the side surface of the channel. 図15における流路のE−E’断面図である。It is E-E 'sectional drawing of the flow path in FIG. 微小粒子が生成される時と生成された後の状態を示す概念平面図であり、微小粒子の平均粒径が流路の幅または深さに対して小さくかつ液滴生成時に流路の内径を絞り、さらに連続相のせん断応力によって微小液滴の後部が次第に崩れる前に流路の幅と深さを大きくした場合で、微小粒子が生成されるときに尾引きが発生せず、微小粒子が崩れない様子を示した概念平面図である。It is a conceptual plan view showing a state when fine particles are generated and a state after being generated. The average particle size of the fine particles is small with respect to the width or depth of the flow channel, and the inner diameter of the flow channel is set at the time of droplet generation. When the width and depth of the flow path are increased before the rear part of the micro droplet gradually collapses due to the restriction and further the shear stress of the continuous phase, no tailing occurs when the micro particle is generated, and the micro particle It is the conceptual top view which showed a mode that it did not collapse. 副排出流路を導入した微小流路における生成した微小粒子及び副生粒子の排出される様子を示した概念平面図である。It is the conceptual top view which showed a mode that the produced | generated microparticle and byproduct particle | grains in the microchannel which introduce | transduced the subdischarge channel were discharged | emitted. 副排出流路の幅を排出流路の幅または深さと同じにした場合の生成した微小粒子及び副生粒子の排出される様子を示した概念平面図である。It is the conceptual top view which showed a mode that the produced | generated fine particle and byproduct particle | grains were discharged | emitted when the width | variety of a subdischarge channel is made the same with the width | variety or depth of a discharge channel. 副排出流路を排出流路の連続相側に導入した場合の生成した微小粒子及び副生粒子の排出される様子を示した概念平面図である。It is the conceptual top view which showed a mode that the produced | generated microparticle and byproduct particle | grains at the time of introduce | transducing a sub discharge channel into the continuous phase side of a discharge channel are discharged | emitted. 流路を有する基板を立体的に重ねあわせて構成した微小流路構造体の例である。It is an example of the micro channel structure which constituted the substrate which has a channel in three dimensions. 図21の微小流路構造体中のG−G’断面図である。It is G-G 'sectional drawing in the microchannel structure of FIG. 図21の微小流路構造体中のF−F’断面図である。It is F-F 'sectional drawing in the microchannel structure of FIG. 第1の実施例における微小流路を示す概念平面図である。It is a conceptual top view which shows the microchannel in a 1st Example. 図24における流路のH−H’断面図である。FIG. 25 is an H-H ′ sectional view of the flow path in FIG. 24. 図25における流路のI−I’断面図である。It is I-I 'sectional drawing of the flow path in FIG. 図25における流路のJ−J’断面図である。It is J-J 'sectional drawing of the flow path in FIG. 第1の実施例における微小流路構造体を示す概念斜視図である。It is a conceptual perspective view which shows the microchannel structure in a 1st Example. 第1の実施例における微小粒子の製造方法について説明した斜視図である。It is the perspective view explaining the manufacturing method of the microparticles in a 1st Example. 第1の実施例において観察された微小粒子の生成の様子を示す図である。It is a figure which shows the mode of the production | generation of the microparticles observed in the 1st Example. 第2の実施例における微小流路構造体を示す概念平面図である。It is a conceptual top view which shows the microchannel structure in a 2nd Example. 図31の流路中の交差部6近傍の拡大平面図である。FIG. 32 is an enlarged plan view of the vicinity of an intersection 6 in the flow path of FIG. 31. 図31の流路中の交差部6近傍の拡大平面図である。FIG. 32 is an enlarged plan view of the vicinity of an intersection 6 in the flow path of FIG. 31. 第1の比較例における微小流路構造体を示す概念平面図である。It is a conceptual top view which shows the microchannel structure in a 1st comparative example. 図34の流路中の交差部6近傍の拡大平面図である。FIG. 35 is an enlarged plan view near the intersection 6 in the flow path of FIG. 34. 図34の流路中の交差部6近傍の拡大平面図である。FIG. 35 is an enlarged plan view near the intersection 6 in the flow path of FIG. 34. 第3の実施例における微小流路構造体を示す概念平面図である。It is a conceptual top view which shows the microchannel structure in a 3rd Example.

符号の説明Explanation of symbols

1:基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:交差部
7:排出流路
8:排出口
9:微小流路の幅
10:送液流路
11:微小粒子
12:微小粒子の直径
13:連続相
14:分散相
15:尾引き
16:副生粒子
17:分岐部
18:流路の内壁
19:流路の深さ及び/または幅が大きくなる位置
19:微小流路構造体
20:上カバー体
21:下カバー体
22:流路
23:共通流路
24:副排出流路
25:副排出口
26:フィレットジョイント
27:マイクロシリンジポンプ
28:マイクロシリンジ
29:テフロン(登録商標)チューブ
30:ビーカー
31:ホルダー
32:カバー体
1: Substrate 2: Continuous phase introduction port 3: Continuous phase introduction channel 4: Dispersed phase introduction port 5: Dispersed phase introduction channel 6: Intersection 7: Discharge channel 8: Discharge port 9: Microchannel width 10 : Liquid feeding flow path 11: fine particle 12: diameter of fine particle 13: continuous phase 14: dispersed phase 15: tailing 16: byproduct particle 17: branching part 18: inner wall 19 of flow path: depth of flow path and / Or position 19 where the width increases 19: micro flow channel structure 20: upper cover body 21: lower cover body 22: flow channel 23: common flow channel 24: sub-discharge channel 25: sub-discharge port 26: fillet joint 27: Micro syringe pump 28: Micro syringe 29: Teflon (registered trademark) tube 30: Beaker 31: Holder 32: Cover body

Claims (7)

分散相を導入する少なくとも一つの分散相導入口及び分散相導入流路と、連続相を導入する少なくとも一つの連続相導入口及び連続相導入流路と、前記分散相導入流路と前記連続相導入流路とが交差する交差部より排出流路に至るまでの送液流路と、前記送液流路下流側端部の分岐部において分岐し、一方には前記交差部及びその近傍で連続相と流路壁面のせん断力により分散相から生成される微小粒子を排出させる排出流路及び排出口、他方には前記微小粒子生成の際に副生する副生粒子を排出させる副排出流路及び副排出口と、を備えた微小流路構造体であって、前記分散相導入流路と前記連続相導入流路とは交差部で任意の角度で交差している微小流路構造体。 At least one dispersed phase introduction port and a dispersed phase introduction channel for introducing a dispersed phase, at least one continuous phase introduction port and a continuous phase introduction channel for introducing a continuous phase, the dispersed phase introduction channel and the continuous phase Branches at the liquid supply flow path from the intersection where the introduction flow path intersects to the discharge flow path, and at the branch portion at the downstream end of the liquid supply flow path, one of which is continuous at the intersection and its vicinity A discharge flow path and a discharge port for discharging fine particles generated from the dispersed phase by the shearing force of the phase and the flow path wall surface, and a secondary discharge flow path for discharging by-product particles by-produced when the fine particles are generated And a sub-discharge port, wherein the dispersed-phase introduction channel and the continuous-phase introduction channel intersect at an arbitrary angle at an intersection. 副排出流路上流側端部が、微小粒子は実質的に通過できずかつ副生粒子は通過できる形状を有していることを特徴とする請求項1に記載の微小流路構造体。 2. The microchannel structure according to claim 1, wherein the upstream end portion of the sub-discharge channel has a shape in which the microparticles cannot substantially pass and the byproduct particles can pass. 副排出流路上流側端部の流路中心線における横方向の長さが、排出流路上流側端部の流路中心線における横方向の長さよりも小さいことを特徴とする請求項1に記載の微小流路構造体。 The lateral length of the flow path center line at the upstream end portion of the sub-discharge flow path is smaller than the horizontal length of the flow path center line of the upstream flow path end portion. The microchannel structure according to the description. 排出流路を連続相導入流路側に、副排出流路を分散相導入流路側に、備えることを特徴とする請求項1〜3のいずれかに記載の微小流路構造体。 The microchannel structure according to any one of claims 1 to 3, further comprising a discharge channel on the continuous phase introduction channel side and a sub-discharge channel on the dispersed phase introduction channel side. 送液流路中の前記交差部又はその近傍において送液流路の幅が狭くなっていることを特徴とする請求項1〜4のいずれかに記載の微小流路構造体。 The microchannel structure according to any one of claims 1 to 4, wherein a width of the liquid feeding channel is narrow at or near the intersection in the liquid feeding channel. 送液流路の幅が狭くなっている部位で、流路の底面、上面あるいは側面の内の一つの面または2以上の面から、1以上の突起が形成されていることを特徴とする請求項5に記載の微小流路構造体。 One or more protrusions are formed from one surface or two or more surfaces of the bottom surface, the top surface, or the side surface of the flow channel at a portion where the width of the liquid flow channel is narrow. Item 6. The microchannel structure according to Item 5. 送液流路の幅が狭くなっている部位を分散相導入流路側に備えることを特徴とする請求項5記載の微小流路構造体。
6. The microchannel structure according to claim 5, wherein a portion where the width of the liquid feeding channel is narrow is provided on the dispersed phase introduction channel side.
JP2004099486A 2004-03-30 2004-03-30 Micro channel structure Expired - Fee Related JP4639624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099486A JP4639624B2 (en) 2004-03-30 2004-03-30 Micro channel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099486A JP4639624B2 (en) 2004-03-30 2004-03-30 Micro channel structure

Publications (2)

Publication Number Publication Date
JP2005279523A true JP2005279523A (en) 2005-10-13
JP4639624B2 JP4639624B2 (en) 2011-02-23

Family

ID=35178476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099486A Expired - Fee Related JP4639624B2 (en) 2004-03-30 2004-03-30 Micro channel structure

Country Status (1)

Country Link
JP (1) JP4639624B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187470A (en) * 2006-01-11 2007-07-26 Ricoh Co Ltd Microflow channel structure and emulsification method using the same
WO2007086321A1 (en) * 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Nanosemiconductor particle
US7307104B2 (en) 2003-05-16 2007-12-11 Velocys, Inc. Process for forming an emulsion using microchannel process technology
WO2009088021A1 (en) * 2008-01-08 2009-07-16 Nippon Telegraph And Telephone Corporation Capillary pump unit and flow cell
JP2012520174A (en) * 2009-03-13 2012-09-06 プレジデント アンド フェローズ オブ ハーバード カレッジ Scale up microfluidic devices
JP2013543434A (en) * 2010-09-30 2013-12-05 キュー チップ リミテッド Apparatus and method for making solid beads
US9259701B2 (en) 2010-09-30 2016-02-16 Q Chip Ltd. Method for making solid beads
CN113952903A (en) * 2021-11-17 2022-01-21 上海东富龙拓溥科技有限公司 Preparation method of medicinal microcapsule
JP7468234B2 (en) 2020-08-03 2024-04-16 Jsr株式会社 DEVICE HAVING MICRO-FLUID CHANNEL, LIQUID TRANSPORT SYSTEM AND METHOD FOR PRODUCING PARTICLES

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215985B (en) * 2016-07-26 2018-08-21 西安交通大学 A kind of micro-fluidic chip for quickly mixing and detecting for fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507962A (en) * 1994-10-22 1998-08-04 セントラル リサーチ ラボラトリーズ リミティド Method and apparatus for diffusion transfer between immiscible fluids
WO2002068104A1 (en) * 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507962A (en) * 1994-10-22 1998-08-04 セントラル リサーチ ラボラトリーズ リミティド Method and apparatus for diffusion transfer between immiscible fluids
WO2002068104A1 (en) * 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307104B2 (en) 2003-05-16 2007-12-11 Velocys, Inc. Process for forming an emulsion using microchannel process technology
JP2007187470A (en) * 2006-01-11 2007-07-26 Ricoh Co Ltd Microflow channel structure and emulsification method using the same
WO2007086321A1 (en) * 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Nanosemiconductor particle
JP5223339B2 (en) * 2006-01-27 2013-06-26 コニカミノルタエムジー株式会社 Method for producing nano semiconductor particles
JPWO2009088021A1 (en) * 2008-01-08 2011-05-26 日本電信電話株式会社 Capillary pump unit and flow cell
WO2009088021A1 (en) * 2008-01-08 2009-07-16 Nippon Telegraph And Telephone Corporation Capillary pump unit and flow cell
JP4987088B2 (en) * 2008-01-08 2012-07-25 日本電信電話株式会社 Flow cell
US8398936B2 (en) 2008-01-08 2013-03-19 Nippon Telegraph And Telephone Corporation Capillary pump unit and flow cell
JP2016005837A (en) * 2009-03-13 2016-01-14 プレジデント アンド フェローズ オブ ハーバード カレッジ Scale-up of microfluidic devices
US9056299B2 (en) 2009-03-13 2015-06-16 President And Fellows Of Harvard College Scale-up of flow-focusing microfluidic devices
JP2012520174A (en) * 2009-03-13 2012-09-06 プレジデント アンド フェローズ オブ ハーバード カレッジ Scale up microfluidic devices
US9486757B2 (en) 2009-03-13 2016-11-08 President And Fellows Of Harvard College Scale-up of microfluidic devices
KR101793744B1 (en) * 2009-03-13 2017-11-03 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Scale-up of flow-focusing microfluidic devices
US10518230B2 (en) 2009-03-13 2019-12-31 President And Fellows Of Harvard College Scale-up of microfluidic devices
US11517864B2 (en) 2009-03-13 2022-12-06 President And Fellows Of Harvard College Scale-up of microfluidic devices
JP2013543434A (en) * 2010-09-30 2013-12-05 キュー チップ リミテッド Apparatus and method for making solid beads
US9259701B2 (en) 2010-09-30 2016-02-16 Q Chip Ltd. Method for making solid beads
JP7468234B2 (en) 2020-08-03 2024-04-16 Jsr株式会社 DEVICE HAVING MICRO-FLUID CHANNEL, LIQUID TRANSPORT SYSTEM AND METHOD FOR PRODUCING PARTICLES
CN113952903A (en) * 2021-11-17 2022-01-21 上海东富龙拓溥科技有限公司 Preparation method of medicinal microcapsule

Also Published As

Publication number Publication date
JP4639624B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
US8524173B2 (en) Microchannel structure and fine-particle production method using the same
US7718099B2 (en) Fine channel device, fine particle producing method and solvent extraction method
JP4639624B2 (en) Micro channel structure
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP2005152740A (en) Method and apparatus for manufacturing emulsion
JP4305145B2 (en) Particle production method using micro flow channel
JP5072057B2 (en) Microcapsule manufacturing method using microchannel structure
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
US10807054B2 (en) Mixing of fluids
JP4356312B2 (en) Microchannel structure
JP2005238118A (en) Method and device for preparing solidified particle using micro-flow channel structure
JP4144302B2 (en) Droplet generation method
JP4743165B2 (en) Micro channel structure
JP4547967B2 (en) Microchannel structure and droplet generation method using the same
JP4470640B2 (en) Fine particle manufacturing method and microchannel structure therefor
JP5625900B2 (en) Microchannel structure and method for producing microparticles using the same
JP4385886B2 (en) Method for producing solid particles using microchannel structure
JP4752173B2 (en) Micro channel structure
JP2005156500A (en) Micro flow path structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees