JP2005278121A - Piezo-electric element and piezo-electric component - Google Patents

Piezo-electric element and piezo-electric component Download PDF

Info

Publication number
JP2005278121A
JP2005278121A JP2004092611A JP2004092611A JP2005278121A JP 2005278121 A JP2005278121 A JP 2005278121A JP 2004092611 A JP2004092611 A JP 2004092611A JP 2004092611 A JP2004092611 A JP 2004092611A JP 2005278121 A JP2005278121 A JP 2005278121A
Authority
JP
Japan
Prior art keywords
piezoelectric
temperature
piezoelectric element
temperature range
piezo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004092611A
Other languages
Japanese (ja)
Inventor
Katsuhiro Horikawa
勝弘 堀川
Tetsuya Morimura
哲也 森村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004092611A priority Critical patent/JP2005278121A/en
Publication of JP2005278121A publication Critical patent/JP2005278121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezo-electric element and a piezo-electric component, which are not influenced from a loss caused by conductivity in a real usage temperature range of the piezo-electric part even if they are under high temperature circumstances. <P>SOLUTION: The piezo-electric element includes: a polarized piezo-electric substrate; each electrode formed on positive and negative pole sides in the polarized direction of the piezo-electric substrate; and a temperature sensing semiconductor formed on the piezo-electric substrate and having a negative resistance temperature coefficient for connecting the respective electrodes electrically. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は圧電ブザー、圧電センサ、圧電トランス、圧電アクチュエータ、バルク波フィルタ・発振子、表面波フィルタ・発振子などに用いられる圧電素子とこれを用いた圧電部品に関し、特に優れた耐熱性、熱安定性を必要とする圧電素子とこれを用いた圧電部品に関する。 The present invention relates to a piezoelectric element used for a piezoelectric buzzer, a piezoelectric sensor, a piezoelectric transformer, a piezoelectric actuator, a bulk wave filter / oscillator, a surface wave filter / oscillator, and a piezoelectric component using the piezoelectric element, and particularly has excellent heat resistance and heat resistance. The present invention relates to a piezoelectric element that requires stability and a piezoelectric component using the same.

近年、圧電体を用いた電子部品は多岐に渡り、圧電ブザー、圧電センサ、圧電トランス、圧電アクチュエータ、フィルタ、発振子などが、移動体通信機器、AV機器、OA機器などに数多く使用されている。これらの機器では、電子部品の高密度実装のために半田リフロー工程を用いるため、半田リフロー工程を用いても特性変化の小さい電子部品の要求が非常に強い。また移動体通信機器向けの電子部品では加工工程等で一時的に高温環境下に置かれる場合もあるため、高温での一時放置や熱衝撃に対する特性安定性や信頼性の向上の要求が強い。特に鉛フリー半田リフロー工程への移行に伴い、圧電素子やそれを用いた電子部品への耐熱性向上の要求は急激に高まっている。   In recent years, there are a wide variety of electronic parts using a piezoelectric body, and a large number of piezoelectric buzzers, piezoelectric sensors, piezoelectric transformers, piezoelectric actuators, filters, oscillators, and the like are used in mobile communication devices, AV devices, OA devices, and the like. . In these devices, since a solder reflow process is used for high-density mounting of electronic components, there is a strong demand for electronic components with small characteristic changes even when the solder reflow process is used. In addition, electronic parts for mobile communication devices may be temporarily placed in a high temperature environment during processing or the like, and therefore there is a strong demand for improved stability of characteristics and reliability against temporary storage at high temperatures and thermal shock. In particular, with the shift to the lead-free solder reflow process, the demand for improving the heat resistance of the piezoelectric element and electronic parts using the piezoelectric element is rapidly increasing.

特に、圧電性が高い材料では、焦電係数も大きくなることから、半田リフローなどの高温熱処理や同等の高温熱衝撃が加えられた場合、圧電材料の分極方向に応じて焦電電荷が発生し、これが圧電材料の分極状態を変化させて、圧電素子やこれを用いた圧電部品の特性変化や素子の破壊の原因となることが知られている。   In particular, the pyroelectric coefficient of materials with high piezoelectricity increases, so when high-temperature heat treatment such as solder reflow or equivalent high-temperature thermal shock is applied, pyroelectric charges are generated according to the polarization direction of the piezoelectric material. It is known that this changes the polarization state of the piezoelectric material and causes a change in the characteristics of the piezoelectric element and the piezoelectric component using the piezoelectric element and destruction of the element.

このような焦電電荷による影響を軽減するために、特許文献1〜3では、弾性表面波素子を対象としてIDT(interdigital transducer)間に導電性材料を形成することにより、焦電電荷を放電させる技術が提案されている。また、これと同様の効果を用いて、特許文献4,5では、圧電部品や圧電素子を対象に、電極間に導電性材料あるいは抵抗材料を形成した圧電素子や圧電部品が開示されている。さらに、特許文献6,7では、圧電磁器材料そのものの室温における電気抵抗率を材料設計により低下させるとともに、所望の圧電特性を両立した高耐熱性の圧電磁器が開示されている。
特開平09−055574号公報 特開平09−172649号公報 特開平09−199974号公報 特開平11−298996号公報 特開平11−330578号公報 特開平09−100158号公報 特開平10−955666号公報
In order to reduce the influence of such pyroelectric charges, in Patent Documents 1 to 3, a pyroelectric charge is discharged by forming a conductive material between IDTs (interdigital transducers) for surface acoustic wave elements. Technology has been proposed. Also, using the same effect, Patent Documents 4 and 5 disclose piezoelectric elements and piezoelectric parts in which a conductive material or a resistive material is formed between electrodes for piezoelectric parts and piezoelectric elements. Further, Patent Documents 6 and 7 disclose a high heat-resistant piezoelectric ceramic that reduces the electrical resistivity at room temperature of the piezoelectric ceramic material itself by material design and at the same time achieves desired piezoelectric characteristics.
Japanese Patent Laid-Open No. 09-055574 JP 09-172649 A JP 09-199974 A JP-A-11-298996 JP-A-11-330578 Japanese Patent Laid-Open No. 09-1000015 Japanese Patent Laid-Open No. 10-955666

しかしながら、焦電電荷の影響を軽減するために、上記のような導電性材料や抵抗材料を用いた圧電素子や、電気抵抗率の低い圧電磁器を採用した圧電素子では、圧電素子の実使用温度範囲内の電気抵抗率が低いため、その導電性に起因する損失によって、圧電素子の損失が増大するという問題があった。   However, in order to reduce the effect of pyroelectric charge, the piezoelectric element using the conductive material or the resistance material as described above, or the piezoelectric element using the piezoelectric ceramic having a low electrical resistivity, the actual operating temperature of the piezoelectric element. Since the electrical resistivity within the range is low, there is a problem that the loss of the piezoelectric element increases due to the loss due to the conductivity.

特に、素子厚みを薄くしたり、積層体の1層厚みを薄くすることにより、圧電素子に印加される電界を大きくしている圧電素子や、圧電アクチュエータ、圧電トランスなどの大電界駆動を前提とした圧電部品、さらには弾性表面波フィルタや低損失セラミックフィルタのように低損失特性が要求される圧電部品では、導電性に起因する損失が大きな問題となっていた。   In particular, it is premised on driving large electric fields such as piezoelectric elements, piezoelectric actuators, and piezoelectric transformers that increase the electric field applied to the piezoelectric elements by reducing the element thickness or reducing the thickness of one layer of the laminate. In such piezoelectric parts, and in piezoelectric parts that require low loss characteristics such as surface acoustic wave filters and low loss ceramic filters, loss due to conductivity has been a major problem.

さらに、分極処理時に高電界が印加できないという理由から、導電性材料や抵抗材料の形成は圧電基板を分極した後に形成する必要があり、工程設計や部品設計の制約が大きいという問題があった。また低抵抗率の圧電磁器を採用する場合は、低抵抗率特性と所望の材料特性とを両立させるための材料設計上の制約が大きいという問題があった。   In addition, because a high electric field cannot be applied during the polarization process, the conductive material and the resistive material must be formed after the piezoelectric substrate is polarized, and there is a problem that the process design and part design are greatly restricted. In addition, when a low resistivity piezoelectric ceramic is employed, there is a problem that there is a great restriction on material design for achieving both low resistivity characteristics and desired material characteristics.

我々は上記問題について鋭意研究した結果、圧電基板の分極方向の正負極側に形成されたそれぞれの電極を、負の抵抗温度係数を有する感温半導体で接続することにより、上記課題を解決し得ることを見出した。   As a result of intensive research on the above problem, the above problems can be solved by connecting each electrode formed on the positive and negative sides of the polarization direction of the piezoelectric substrate with a temperature-sensitive semiconductor having a negative resistance temperature coefficient. I found out.

つまり、負の抵抗温度係数を有する感温半導体を接続することにより、圧電部品の実使用条件の温度範囲内では、圧電部品に使用される圧電素子は高い電気抵抗率を維持し、圧電部品の実使用条件の温度範囲の上限温度より高温側では圧電素子の電気抵抗率を低下させることにより、上記課題を解決し得るに至った。   In other words, by connecting a temperature-sensitive semiconductor having a negative resistance temperature coefficient, the piezoelectric element used for the piezoelectric component maintains a high electrical resistivity within the temperature range of the actual usage condition of the piezoelectric component, and the piezoelectric component By reducing the electrical resistivity of the piezoelectric element on the higher temperature side than the upper limit temperature of the temperature range of the actual use conditions, the above-mentioned problems can be solved.

すなわち、圧電素子やこれを用いた圧電部品が高温環境下に置かれた場合には、焦電電荷の影響を大きく受ける高温域でのみ焦電電荷を選択的に放電し、かつ圧電部品の実使用温度範囲内では導電性に起因する損失の影響を受けない圧電素子およびこれを用いた圧電部品を見出した。   That is, when a piezoelectric element or a piezoelectric component using the piezoelectric element is placed in a high temperature environment, the pyroelectric charge is selectively discharged only in a high temperature range that is greatly affected by the pyroelectric charge, and The inventors have found a piezoelectric element that is not affected by the loss due to conductivity within the operating temperature range and a piezoelectric component using the piezoelectric element.

圧電材料は一般的に高温になるに従い、抗電界が低下し、比較的低電界でも分極変化が起こりやすいことが知られている。また焦電電荷は焦電係数pと単位時間tあたりの温度変化率ΔT/tに比例することが知られている。   It is known that piezoelectric materials generally have a lower coercive electric field as the temperature rises, and polarization changes are likely to occur even at a relatively low electric field. It is also known that the pyroelectric charge is proportional to the pyroelectric coefficient p and the temperature change rate ΔT / t per unit time t.

ここで、焦電電荷によって圧電体の分極方向とは逆の電界がかかるのは降温時であるため、熱処理後の降温過程に注目すると、熱処理直後の方が圧電素子の温度変化率ΔT/tは大きく、室温に近づくにつれてΔT/tは小さくなる(熱処理直後は室温と熱処理温度との差が大きいため、圧電素子の温度は急激に低下するが、時間経過とともに圧電素子の温度は室温に近づき、圧電素子の温度変化率は小さくなる)。   Here, since the electric field opposite to the polarization direction of the piezoelectric material is applied by pyroelectric charge when the temperature is lowered, paying attention to the temperature lowering process after the heat treatment, the temperature change rate ΔT / t of the piezoelectric element immediately after the heat treatment ΔT / t decreases as the temperature approaches room temperature (since the difference between the room temperature and the heat treatment temperature is large immediately after the heat treatment, the temperature of the piezoelectric element rapidly decreases, but over time, the temperature of the piezoelectric element approaches the room temperature. The temperature change rate of the piezoelectric element is small).

このΔT/tの大きさと、前述の高温時の抗電界の低下を加味した場合、焦電電荷の影響は高温域でより大きいことがわかる。よって感温半導体を用いて、高温域でのみ電気抵抗率が低下する圧電素子を形成することにより、高温域の焦電電荷を選択的に放電させることで焦電電荷の影響を低減でき、耐熱性に優れた圧電素子および圧電部品が得られる。   When the magnitude of ΔT / t and the above-described decrease in coercive electric field at high temperatures are taken into account, it can be seen that the influence of pyroelectric charge is greater in the high temperature range. Therefore, by using a temperature-sensitive semiconductor to form a piezoelectric element whose electrical resistivity decreases only at high temperatures, the effect of pyroelectric charges can be reduced by selectively discharging pyroelectric charges at high temperatures. Piezoelectric elements and piezoelectric parts having excellent properties can be obtained.

一方、圧電部品の実使用温度範囲内では、圧電素子は高い電気抵抗率を維持するため、導電性に起因する損失の影響を受けない。これにより本発明の圧電素子およびは実使用温度範囲内では低損失特性を維持でき、さらに使用上必要な高電界の印加や分極処理時の高電界の印加が可能である。さらに本発明の圧電素子および圧電部品は採用する圧電材料自体の電気抵抗率の制約を受けないため、材料設計上の自由度が飛躍的に向上する。   On the other hand, within the actual use temperature range of the piezoelectric component, the piezoelectric element maintains a high electrical resistivity and is not affected by the loss due to conductivity. As a result, the piezoelectric element of the present invention and the low loss characteristic can be maintained within the actual use temperature range, and further, it is possible to apply a high electric field necessary for use and a high electric field during polarization treatment. Furthermore, since the piezoelectric element and the piezoelectric component of the present invention are not restricted by the electrical resistivity of the piezoelectric material itself employed, the degree of freedom in material design is greatly improved.

上述の様に、本発明の圧電素子は、実使用温度範囲内では高い電気抵抗率を維持し、実使用温度範囲の上限温度より高温域で、電気抵抗率が低下する。よって本発明の圧電素子の電気抵抗率は使用温度範囲の上限温度より高温域では負の温度係数を有する。   As described above, the piezoelectric element of the present invention maintains a high electrical resistivity within the actual use temperature range, and the electrical resistivity decreases at a temperature higher than the upper limit temperature of the actual use temperature range. Therefore, the electrical resistivity of the piezoelectric element of the present invention has a negative temperature coefficient in a temperature range higher than the upper limit temperature of the operating temperature range.

さらに、使用温度範囲の上限温度より高温側の温度域での電気抵抗率の温度係数が、使用温度範囲内の電気抵抗率の温度係数より負の大きな値を有する。   Furthermore, the temperature coefficient of the electrical resistivity in the temperature range higher than the upper limit temperature of the operating temperature range has a negative value larger than the temperature coefficient of the electrical resistivity in the operating temperature range.

具体的には、実使用温度範囲内では圧電素子の電気抵抗率が1×1011Ω・cm以上で、かつ使用温度範囲の上限温度より高温域では電気抵抗が1×1011Ω・cm未満に低下することが好ましい。例えば実使用温度範囲が150℃未満の場合、150℃における圧電素子の電気抵抗率が25℃における電気抵抗率より一桁以上小さいことがより望ましい。また以下の実施例では圧電素子の実使用温度範囲の上限温度は150℃未満を想定しており、具体的には使用温度範囲の上限温度130℃までは効果を確認している。 Specifically, the electrical resistivity of the piezoelectric element is 1 × 10 11 Ω · cm or more within the actual usage temperature range, and the electrical resistance is less than 1 × 10 11 Ω · cm at a temperature higher than the upper limit temperature of the usage temperature range. It is preferable to decrease to. For example, when the actual use temperature range is less than 150 ° C., it is more desirable that the electrical resistivity of the piezoelectric element at 150 ° C. is smaller by one digit or more than the electrical resistivity at 25 ° C. In the following examples, the upper limit temperature of the actual use temperature range of the piezoelectric element is assumed to be less than 150 ° C., and specifically, the effect is confirmed up to the upper limit temperature of 130 ° C. of the use temperature range.

本発明の圧電素子またはこれを用いた圧電部品は、その加工工程または放置状態により150℃以上の高温環境下に置かれる場合には、本発明の圧電素子あるいはこれを用いた圧電部品の耐熱効果は有効に作用し、特にその高温環境下が、半田リフロー工程などの200℃以上の高温条件である場合には、非常に有効である。   When the piezoelectric element of the present invention or a piezoelectric component using the piezoelectric element is placed in a high-temperature environment of 150 ° C. or higher depending on the processing step or being left standing, the heat resistance effect of the piezoelectric element of the present invention or the piezoelectric component using the piezoelectric element. Works effectively, and is particularly effective when the high temperature environment is a high temperature condition of 200 ° C. or higher such as a solder reflow process.

本発明に係る圧電素子は、圧電素子の実使用条件の温度範囲の上限温度より高温側では圧電素子の電気抵抗率が低下するため、圧電素子が半田リフロー工程などの熱処理や、同等の高温環境下に置かれた場合でも、焦電電荷の影響を大きく受ける高温域でのみ焦電電荷を選択的に放電するため優れた耐熱性を示す。   In the piezoelectric element according to the present invention, since the electrical resistivity of the piezoelectric element decreases at a temperature higher than the upper limit temperature of the actual usage condition of the piezoelectric element, the piezoelectric element is subjected to heat treatment such as a solder reflow process or an equivalent high temperature environment. Even when placed underneath, the pyroelectric charge is selectively discharged only in a high temperature range that is greatly affected by the pyroelectric charge, and thus exhibits excellent heat resistance.

さらに、本発明の圧電素子は、圧電素子の実使用条件の温度範囲内では、圧電素子が高い電気抵抗率を維持するため、導電性に起因する損失の影響を受けず、優れた特性を発現する。   Furthermore, the piezoelectric element of the present invention exhibits excellent characteristics without being affected by loss due to conductivity because the piezoelectric element maintains high electrical resistivity within the temperature range of the actual usage conditions of the piezoelectric element. To do.

したがって、本発明の圧電素子では、例えば半田リフロー工程などの高温熱処理にも対応可能な優れた耐熱性と使用温度範囲内での優れた特性とをあわせ持つ圧電素子が得られる。   Therefore, in the piezoelectric element of the present invention, it is possible to obtain a piezoelectric element having both excellent heat resistance that can cope with high-temperature heat treatment such as a solder reflow process and excellent characteristics within the operating temperature range.

また、使用上必要な高電界の印加や分極処理時の高電界の印加が可能で、かつ採用する圧電磁器自体の材料設計上の制約を受けないため、圧電素子設計、加工工程設計上の自由度が向上する。   In addition, it is possible to apply a high electric field that is necessary for use and a high electric field during polarization processing, and it is not subject to restrictions on the material design of the piezoelectric ceramic itself that is used. The degree is improved.

さらに、この圧電素子を用いた圧電部品でも、優れた耐熱性と使用温度範囲内での優れた特性が両立でき、例えば半田リフロー工程などの高温熱処理が可能でかつ優れた特性を有する圧電部品が得られる。   Furthermore, even with a piezoelectric component using this piezoelectric element, it is possible to achieve both excellent heat resistance and excellent characteristics within the operating temperature range. For example, a piezoelectric component that can be subjected to high-temperature heat treatment such as a solder reflow process and has excellent characteristics. can get.

以下に、本発明の実施例を図表に沿って説明する。図1は本発明の実施例の概略図である。圧電基板の両主面に電極を形成し、その電極間を短絡するように感温半導体を配置している。この場合の分極方向は厚み方向である。本実施例では、圧電体材料としてチタン酸ジルコン酸鉛(PZT)系圧電セラミック材料を用いており、また感温半導体材料には金属とシリカガラスの複合材料を用いた。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of an embodiment of the present invention. Electrodes are formed on both main surfaces of the piezoelectric substrate, and a temperature-sensitive semiconductor is arranged so as to short-circuit the electrodes. The polarization direction in this case is the thickness direction. In this embodiment, a lead zirconate titanate (PZT) piezoelectric ceramic material is used as the piezoelectric material, and a metal / silica glass composite material is used as the temperature-sensitive semiconductor material.

次に、本実施例の試料の作製工程を述べる。圧電セラミック材料としては、ソフト系、ハード系の2種類の圧電材料を用いた。ソフト系には組成式Pb(Zr0.52Ti0.46Nb0.02)O3で表される圧電材料Aを、ハ−ド系には組成式Pb{(Mn1/3Nb2/3)0.10Zr0.43Ti0.47}O3で表される圧電材料Bを用いた。これらの圧電材料は、素原料としてPb34、ZrO2、TiO2、MnCO3、Nb25を用い、上記圧電材料A、Bの組成式が得られるように秤量し、これを通常の固相法(ボールミル混合粉砕、仮焼)により合成した。得られた粉末にバインダーを添加し、プレス成形、焼成後、得られた焼結体を表面研磨、カットの工程を経て、圧電磁器矩形板を作製した。この矩形板の両主面にAg電極を焼付け、ソフト系圧電材料Aを用いた圧電素子A,ハード系圧電材料Bを用いた圧電素子Bを得た。 Next, a manufacturing process of the sample of this example will be described. Two types of piezoelectric materials, soft and hard, were used as the piezoelectric ceramic material. Piezoelectric material A represented by the composition formula Pb (Zr 0.52 Ti 0.46 Nb 0.02 ) O 3 is used for the soft system, and composition formula Pb {(Mn 1/3 Nb 2/3 ) 0.10 Zr 0.43 Ti for the hard system. Piezoelectric material B represented by 0.47 } O 3 was used. These piezoelectric materials use Pb 3 O 4 , ZrO 2 , TiO 2 , MnCO 3 , and Nb 2 O 5 as raw materials, and are weighed so that the composition formulas of the piezoelectric materials A and B are obtained. The solid phase method (ball mill mixing and calcination) was synthesized. A binder was added to the obtained powder, and after press molding and firing, the obtained sintered body was subjected to surface polishing and cutting steps to produce a piezoelectric ceramic rectangular plate. Ag electrodes were baked on both main surfaces of the rectangular plate to obtain a piezoelectric element A using the soft piezoelectric material A and a piezoelectric element B using the hard piezoelectric material B.

また、本実施例では、感温半導体にZn−シリカガラス複合材料を用いた。この複合材料はJournal of Ceramic Society of Japan 109[2] p.122-126 (2001)に記載されている製法に従い、Znを約35vol%含有するシリカガラス複合材料を作製した。上記文献ではこの複合材料をCTR(critical temperature resistivity)特性を示す材料として報告しているが、我々がこの材料を本実施例に使用した理由は、この材料の電気抵抗率の温度特性が、圧電素子の想定する使用温度範囲より高温側の温度域で負の大きな温度係数を有するからである。   In this example, a Zn-silica glass composite material was used for the temperature-sensitive semiconductor. For this composite material, a silica glass composite material containing about 35 vol% Zn was prepared according to the production method described in Journal of Ceramic Society of Japan 109 [2] p.122-126 (2001). In the above document, this composite material is reported as a material exhibiting CTR (critical temperature thermally) characteristics. The reason why we used this material in this example is that the temperature characteristic of the electrical resistivity of this material is piezoelectric. This is because it has a large negative temperature coefficient in a temperature range higher than the operating temperature range assumed by the device.

次にこの圧電素子A、Bを用いて表1、2に示す圧電素子サンプルを構成した。   Next, piezoelectric element samples shown in Tables 1 and 2 were constructed using the piezoelectric elements A and B.

Figure 2005278121
Figure 2005278121

Figure 2005278121
Figure 2005278121

本発明の圧電素子サンプルであるA−1,B−1の構成概要図を図1に、また比較例の圧電素子サンプルであるA−2,B−2およびA−3,B−3,B−4の構成の概要図を図10および図11にそれぞれ示す。   FIG. 1 is a schematic configuration diagram of A-1 and B-1 which are piezoelectric element samples of the present invention, and A-2 and B-2 and A-3, B-3 and B which are piezoelectric element samples of comparative examples. Schematic diagrams of the configuration of −4 are shown in FIGS. 10 and 11, respectively.

ここで、本発明のA−1,B−1はそれぞれ圧電素子A、Bの両主面電極間を、上記の感温半導体を用いて短絡した圧電素子である。また比較例のA−2,B−2はそれぞれ圧電素子A,Bの両主面電極間を、導電性接着剤を用いて短絡した圧電素子であり、特許文献5にて開示されている圧電素子と同様のものである。また、比較例のA−3,B−3はそれぞれ圧電素子A,Bの両主面電極が開放状態のものである。さらに、比較例のB−4は圧電材料Bを用いて、特許文献6と同様の手法で電気抵抗率を低下させた圧電素子である。   Here, A-1 and B-1 of the present invention are piezoelectric elements in which the main surface electrodes of the piezoelectric elements A and B are short-circuited using the above-described temperature-sensitive semiconductor. Comparative examples A-2 and B-2 are piezoelectric elements in which the main surface electrodes of the piezoelectric elements A and B are short-circuited using a conductive adhesive, respectively. It is the same as the element. Moreover, A-3 and B-3 of the comparative example are those in which both principal surface electrodes of the piezoelectric elements A and B are in an open state. Furthermore, B-4 of the comparative example is a piezoelectric element in which the electrical resistivity is reduced by using the piezoelectric material B in the same manner as in Patent Document 6.

A−1〜A−3,B−1〜B−4の電気抵抗率の温度依存性を図2、図3にそれぞれ示す。またA−1〜A−3,B−1〜B−4の各測定温度での電気抵抗率を表3、表4にそれぞれ示す。   The temperature dependence of the electrical resistivity of A-1 to A-3 and B-1 to B-4 is shown in FIGS. 2 and 3, respectively. Tables 3 and 4 show the electrical resistivity at each measurement temperature of A-1 to A-3 and B-1 to B-4.

Figure 2005278121
Figure 2005278121

Figure 2005278121
Figure 2005278121

図2,3および表3,4から本発明の圧電素子A−1、B−1は150℃では1×1011 Ω・cm以下の低い電気抵抗率を示すのに対し、0℃から130℃の間では1×101 1Ω・cm以上の高い抵抗率を維持していることがわかる。これに対しA−2、B−2では、室温付近でも1×1011Ω・cm以下の低い抵抗率を示している。 2 and 3 and Tables 3 and 4, the piezoelectric elements A-1 and B-1 of the present invention show a low electrical resistivity of 1 × 10 11 Ω · cm or less at 150 ° C., whereas 0 to 130 ° C. It can be seen that a high resistivity of 1 × 10 1 1 Ω · cm or more is maintained in between. On the other hand, A-2 and B-2 show low resistivity of 1 × 10 11 Ω · cm or less even near room temperature.

一方、A−3、B−3では130℃以下では1×1011Ω・cm以上の抵抗率を示しているが、150℃においても尚1×1011Ω・cm以上の高い抵抗率を示している。 On the other hand, A-3 and B-3 show a resistivity of 1 × 10 11 Ω · cm or higher at 130 ° C. or lower, but still show a high resistivity of 1 × 10 11 Ω · cm or higher at 150 ° C. ing.

さらに、B−4では室温付近では1×1011Ω・cm以上の抵抗率を示してはいるが、温度の上昇とともに電気抵抗率が急激に低下していることがわかる。 Furthermore, although B-4 shows a resistivity of 1 × 10 11 Ω · cm or more near room temperature, it can be seen that the electrical resistivity decreases rapidly with increasing temperature.

この電気抵抗率の温度依存性の違いが、本発明の圧電素子と従来技術の圧電素子の最大の相違点である。   This difference in temperature dependence of the electrical resistivity is the greatest difference between the piezoelectric element of the present invention and the piezoelectric element of the prior art.

つまり、圧電素子の実使用温度範囲の上限温度が例えば130℃であった場合、本発明の圧電素子はその実使用温度範囲内では、高い電気抵抗率を維持し、実使用条件の温度範囲の上限温度より高温側では電気抵抗率が顕著に低下することになる。   That is, when the upper limit temperature of the actual use temperature range of the piezoelectric element is, for example, 130 ° C., the piezoelectric element of the present invention maintains high electrical resistivity within the actual use temperature range, and the upper limit of the temperature range of the actual use condition. On the higher temperature side than the temperature, the electrical resistivity is remarkably lowered.

この場合、焦電電荷の影響を大きく受ける高温域でのみその影響を選択的に低減できる。また、少なくとも実使用温度範囲の上限温度が130℃以下の場合は、実使用温度範囲内では電気抵抗率が高く維持されるため、導電性に起因する損失の影響を受ず、そのため優れた特性を発現できることになる。   In this case, the influence can be selectively reduced only in a high temperature range that is greatly affected by the pyroelectric charge. In addition, at least when the upper limit temperature of the actual use temperature range is 130 ° C. or lower, the electrical resistivity is kept high within the actual use temperature range, so that it is not affected by the loss due to conductivity, and therefore has excellent characteristics. Can be expressed.

以下に、上記の電気抵抗率の温度依存性がもたらす効果について、具体的な測定結果をもとに説明する。   Hereinafter, the effect of the temperature dependency of the electrical resistivity will be described based on specific measurement results.

A−1〜A−3の各温度における電気抵抗率および熱処理前後の電気機械結合係数kの変化率、室温での高電界印加時の圧電歪み定数を表3にまとめる。   Table 3 summarizes the electrical resistivity at each temperature of A-1 to A-3, the rate of change of the electromechanical coupling coefficient k before and after the heat treatment, and the piezoelectric strain constant when a high electric field is applied at room temperature.

表3からA−1、A−2では熱処理前後のkの変化率が小さく良好であるのに対し、A−3では変化率が大きいことがわかる。一方、室温での高電界駆動時のd定数はA−1、A−3が大きいのに対し、A−2では低下が顕著である。熱処理前後の特性変化を抑制するためには、これまで述べてきたように、焦電電荷を放電するために電気抵抗率が低い方が好ましい。   From Table 3, it can be seen that the change rate of k before and after the heat treatment is small and good in A-1 and A-2, whereas the change rate is large in A-3. On the other hand, the d constants during high electric field driving at room temperature are large for A-1 and A-3, whereas the decrease is significant for A-2. In order to suppress the characteristic change before and after the heat treatment, it is preferable that the electrical resistivity is low in order to discharge the pyroelectric charge as described above.

しかしながら、A−2のように使用温度での電気抵抗率までが低いと、一定の高電圧を圧電素子に印加した場合には、圧電素子に実際に印加される電圧が降下していまうため、好ましくない。   However, when the electrical resistivity at the operating temperature is low as in A-2, when a constant high voltage is applied to the piezoelectric element, the voltage actually applied to the piezoelectric element drops, It is not preferable.

よって、上記すべての特性を好ましい方向で両立するためには、A−1のように実使用条件では高い電気抵抗率を維持し、それより高温側では低い電気抵抗率となる圧電素子が有効である。   Therefore, in order to make all the above characteristics compatible in a preferable direction, a piezoelectric element that maintains a high electrical resistivity under actual use conditions and has a low electrical resistivity at higher temperatures is effective, as in A-1. is there.

次に、B−1〜B−4の各温度における電気抵抗率および熱処理前後の共振周波数Frの変化率、室温での機械的品質係数Qmを表4にまとめる。またB−1〜B−4の機械的品質係数Qmの温度特性を図4に示す。   Next, Table 4 summarizes the electrical resistivity at each temperature of B-1 to B-4, the change rate of the resonance frequency Fr before and after the heat treatment, and the mechanical quality factor Qm at room temperature. Moreover, the temperature characteristic of the mechanical quality factor Qm of B-1 to B-4 is shown in FIG.

表4から高温域かあるいは全温度域で電気抵抗率が低いB−1,B−2,B−4では、熱処理前後のFrの変化率が小さく良好である。これに対し、全温度域で電気抵抗率が高いB−3では熱処理前後のFrの変化率が大きくなっており好ましくない。   From Table 4, B-1, B-2, and B-4, which have low electrical resistivity in the high temperature range or in the entire temperature range, are good because the Fr change rate before and after the heat treatment is small. On the other hand, B-3, which has a high electrical resistivity in the entire temperature range, is not preferable because the Fr change rate before and after the heat treatment is large.

また、室温での電気抵抗率が高いB−1,B−2,B−4では室温のQmが大きく低損失であるのに対し、室温での電気抵抗率が低いB−2ではQmが小さく(損失が大きく)なっている。   Also, B-1, B-2, and B-4, which have a high electrical resistivity at room temperature, have a large Qm at room temperature and low loss, whereas B-2, which has a low electrical resistivity at room temperature, has a small Qm. (Loss is large).

さらに、図4から、0〜130℃の範囲で高抵抗率であるB−1,B−2,B−3は同温度域でのQmの温度依存性は小さく良好であるが、0〜130℃で抵抗率が急激に低下するB−4では高温側でQmが急激に低下しており好ましくない。これらのQmの挙動は導電性に起因する損失によって左右されていると言える。   Furthermore, FIG. 4 shows that B-1, B-2, and B-3, which have high resistivity in the range of 0 to 130 ° C., have a small Qm temperature dependency in the same temperature range, but are good. In B-4 in which the resistivity rapidly decreases at ° C., Qm rapidly decreases on the high temperature side, which is not preferable. It can be said that the behavior of these Qm depends on the loss due to conductivity.

したがって、上記すべての特性を好ましい方向で両立するためには、B−1のように実使用温度範囲内では高い電気抵抗率を維持し、それより高温側で低い電気抵抗率となる圧電素子が非常に有効である。   Therefore, in order to make all the above characteristics compatible in a preferable direction, a piezoelectric element that maintains a high electric resistivity within the actual use temperature range and has a low electric resistivity on the higher temperature side, as in B-1. It is very effective.

尚、上述の実施例では矩形板形状の圧電体の両主面電極を感温半導体で短絡する構造の圧電素子について述べたが、本発明の圧電素子はこれに限定されるものではない。   In the above-described embodiment, the piezoelectric element having a structure in which both main surface electrodes of the rectangular plate-shaped piezoelectric element are short-circuited with a temperature-sensitive semiconductor is described, but the piezoelectric element of the present invention is not limited to this.

たとえば、図5のように圧電積層体の電極間を感温半導体で短絡する場合や、図6のように弾性表面波素子などのIDTを有する圧電素子のIDT間を感温半導体で短絡することにより同様の効果が得られる。   For example, when the electrodes of the piezoelectric laminate are short-circuited with a temperature-sensitive semiconductor as shown in FIG. 5, or between IDTs of piezoelectric elements having an IDT such as a surface acoustic wave element are short-circuited with a temperature-sensitive semiconductor as shown in FIG. Thus, the same effect can be obtained.

また、図7のように本発明の圧電素子を圧電トランスに応用した場合、圧電トランスの1次側および2次側の電極間を感温半導体で短絡することにより、使用温度範囲内では低損失(高効率)で、かつ半田リフロー工程を通しても特性劣化がほとんど見られない優れた特性の圧電トランスが得られる。   In addition, when the piezoelectric element of the present invention is applied to a piezoelectric transformer as shown in FIG. 7, the primary and secondary electrodes of the piezoelectric transformer are short-circuited with a temperature-sensitive semiconductor, so that low loss is maintained within the operating temperature range. A piezoelectric transformer having excellent characteristics (high efficiency) and almost no characteristic deterioration can be obtained even through the solder reflow process.

さらに、図8のように圧電素子の電極間にスルーホール等を形成し、そこに感温半導体を形成したり、あるいは図9のように感温半導体薄膜を用いて、圧電積層体、弾性表面波素子の電極間を短絡させても同様の効果が得られることは明らかである。   Furthermore, a through hole or the like is formed between the electrodes of the piezoelectric element as shown in FIG. 8, and a temperature sensitive semiconductor is formed there, or a temperature sensitive semiconductor thin film is used as shown in FIG. It is clear that the same effect can be obtained even if the electrodes of the wave element are short-circuited.

尚、上述の実施例では、圧電体材料としてPZT系圧電セラミック材料を、また感温半導体としてZn−シリカガラス複合材料を用いたが、本発明はこれらの材料に限定されるものではない。   In the above-described embodiments, a PZT piezoelectric ceramic material is used as the piezoelectric material and a Zn-silica glass composite material is used as the temperature-sensitive semiconductor. However, the present invention is not limited to these materials.

本発明の圧電素子の本質は、使用温度範囲より高温域では電気抵抗率が低いため、高温域の焦電電荷を選択的に放電することができ、これにより耐熱性を向上させるとともに、使用温度範囲内では高い電気抵抗率を維持するため、導電性に起因する損失の影響を受けず、したがって優れた特性を発現することである。また本発明の圧電素子は少なくとも圧電基板と感温半導体で構成されるものである。   The essence of the piezoelectric element of the present invention is that the electrical resistivity is lower in the high temperature range than the operating temperature range, so that the pyroelectric charge in the high temperature range can be selectively discharged, thereby improving the heat resistance and the operating temperature. In order to maintain a high electric resistivity within the range, it is not affected by the loss due to the conductivity, and thus exhibits excellent characteristics. The piezoelectric element of the present invention is composed of at least a piezoelectric substrate and a temperature sensitive semiconductor.

したがって、圧電基板として、例えばチタン酸鉛やBi層状化合物などのPZT系以外の圧電セラミック材料や、ニオブ酸リチウム、タンタル酸リチウムなどの単結晶材料を用いた場合でも、同様の効果が得られることは明白である。   Therefore, even when a piezoelectric ceramic material other than PZT such as lead titanate or Bi layered compound or a single crystal material such as lithium niobate or lithium tantalate is used as the piezoelectric substrate, the same effect can be obtained. Is obvious.

さらに、本実施例では、感温半導体としてZn−シリカガラス複合材料を用いたが、例えばAgやNiとガラスを用いた他の複合材料や、酸化バナジウム系などの負の温度係数を有する半導体を用いても同様の効果が得られることは明白である。   Furthermore, in this example, a Zn-silica glass composite material was used as the temperature-sensitive semiconductor, but other composite materials using, for example, Ag and Ni and glass, and semiconductors having a negative temperature coefficient such as vanadium oxide are used. It is clear that the same effect can be obtained even if it is used.

ただし、例えば酸化バナジウムを用いる場合には、抵抗率が急激に変化する温度は70〜80℃程度であるため、これを用いた本発明の圧電素子の場合、その使用温度の上限温度が70〜80℃になる。   However, for example, when vanadium oxide is used, the temperature at which the resistivity changes abruptly is about 70 to 80 ° C. Therefore, in the case of the piezoelectric element of the present invention using this, the upper limit temperature of its use temperature is 70 to 80 ° C. 80 ° C.

このように、圧電体と感温半導体の組み合わせにより、圧電素子が所望の温度域で所望の抵抗率が得られるように、材料選択、素子設計を行う必要はあるが、本発明はそれらの限られた設計に限定されるものではなく、本発明の圧電素子の設計方法、設計思想に順ずる全ての圧電素子およびこれを用いた圧電部品に関して共通の効果をもたらすものである。   As described above, it is necessary to select a material and design an element so that a piezoelectric element can obtain a desired resistivity in a desired temperature range by combining a piezoelectric body and a temperature-sensitive semiconductor. The present invention is not limited to the above-described design, and the piezoelectric element design method of the present invention, all piezoelectric elements conforming to the design concept, and piezoelectric parts using the same are brought about in common.

本発明の圧電素子の一例を示す図であり、圧電体の両主面に形成された電極間を、感温半導体で短絡した実施例を示す図である。It is a figure which shows an example of the piezoelectric element of this invention, and is a figure which shows the Example which short-circuited between the electrodes formed in both the main surfaces of a piezoelectric material with the temperature sensitive semiconductor. 本発明の圧電素子をソフト系PZT圧電材料を用いて構成した場合の圧電素子の電気抵抗率の温度特性の一例を示す図であり、従来技術の圧電素子との比較を示す図である。It is a figure which shows an example of the temperature characteristic of the electrical resistivity of a piezoelectric element at the time of comprising the piezoelectric element of this invention using a soft type | system | group PZT piezoelectric material, and is a figure which shows a comparison with the piezoelectric element of a prior art. 本発明の圧電素子をハード系PZT圧電材料を用いて構成した場合の圧電素子の電気抵抗率の温度特性の一例を示す図であり、従来技術の圧電素子との比較を示す図である。It is a figure which shows an example of the temperature characteristic of the electrical resistivity of a piezoelectric element at the time of comprising the piezoelectric element of this invention using a hard type PZT piezoelectric material, and is a figure which shows a comparison with the piezoelectric element of a prior art. 本発明の圧電素子をハード系PZT圧電材料を用いて構成した場合の圧電素子の機械的品質係数の温度特性の一例を示す図であり、従来技術の圧電素子との比較を示す図である。It is a figure which shows an example of the temperature characteristic of the mechanical quality factor of a piezoelectric element at the time of comprising the piezoelectric element of this invention using a hard type PZT piezoelectric material, and is a figure which shows a comparison with the piezoelectric element of a prior art. 本発明の圧電素子の一例を示す図であり、積層圧電素子を用いた場合の実施例を示す図である。It is a figure which shows an example of the piezoelectric element of this invention, and is a figure which shows the Example at the time of using a laminated piezoelectric element. 本発明の圧電素子の一例を示す図であり、IDTを有する圧電素子を用いた場合の実施例を示す図である。It is a figure which shows an example of the piezoelectric element of this invention, and is a figure which shows the Example at the time of using the piezoelectric element which has IDT. 本発明の圧電素子を用いた電子部品の一例を示す図であり、圧電トランスに応用した場合の実施例を示す図である。It is a figure which shows an example of the electronic component using the piezoelectric element of this invention, and is a figure which shows the Example at the time of applying to a piezoelectric transformer. 本発明の圧電素子の一例を示す図であり、圧電素子の電極間をスルーホール中に形成された感温半導体にて短絡した一例を示す図である。感温半導体の形成方法以外の素子構造は図1、図5に示す圧電素子と同様である。It is a figure which shows an example of the piezoelectric element of this invention, and is a figure which shows an example which short-circuited between the electrodes of the piezoelectric element with the temperature-sensitive semiconductor formed in the through hole. The element structure other than the method of forming the temperature-sensitive semiconductor is the same as that of the piezoelectric element shown in FIGS. 本発明の圧電素子の一例を示す図であり、圧電素子の電極間を感温半導体膜を用いて短絡した一例を示す図である。感温半導体の形成方法以外の素子構造は図5、図6に示す圧電素子と同様である。ただし積層圧電素子は図5よりも層数を増加させた積層アクチュエータでの応用例を示している。It is a figure which shows an example of the piezoelectric element of this invention, and is a figure which shows an example which short-circuited between the electrodes of the piezoelectric element using the temperature-sensitive semiconductor film. The element structure other than the method for forming the temperature-sensitive semiconductor is the same as that of the piezoelectric element shown in FIGS. However, the laminated piezoelectric element shows an application example in a laminated actuator in which the number of layers is increased as compared with FIG. 従来技術の圧電素子の概略を示す図であり、圧電体の両主面に形成された電極間を、導電性材料または抵抗体で短絡した圧電素子を示す図である。It is a figure which shows the outline of the piezoelectric element of a prior art, and is a figure which shows the piezoelectric element which short-circuited between the electrodes formed in the both main surfaces of a piezoelectric material with the electroconductive material or the resistor. 従来技術の圧電素子の概略を示す図であり、圧電体の両主面に形成された電極間を短絡していない圧電素子を示す図である。It is a figure which shows the outline of the piezoelectric element of a prior art, and is a figure which shows the piezoelectric element which has not short-circuited between the electrodes formed in both the main surfaces of a piezoelectric material.

符号の説明Explanation of symbols

11,51,71,81電極
12.52,62,72,82 圧電体(板)
13,53.63,73,83 感温半導体
61.IDT
11, 51, 71, 81 electrodes 12.52, 62, 72, 82 Piezoelectric material (plate)
13, 53.63, 73, 83 Temperature-sensitive semiconductor IDT

Claims (6)

分極された圧電基板と、前記圧電基板の分極方向の正負極側それぞれ形成された電極と、前記圧電基板に形成され、前記各電極を電気的に接続する負の抵抗温度係数を有する感温半導体と、からなることを特徴とする、圧電素子。 Polarized piezoelectric substrate, electrodes formed on the positive and negative sides of the piezoelectric substrate in the polarization direction, and a temperature-sensitive semiconductor formed on the piezoelectric substrate and having a negative resistance temperature coefficient that electrically connects the electrodes. And a piezoelectric element. 分極された圧電基板がその分極方向を互いに異ならせた状態で複数積層された積層体と、前記積層体の前記圧電基板を間に介在させて配置、形成された電極と、前記積層体に形成され、前記各電極を電気的に接続する負の抵抗温度係数を有する感温半導体と、からなることを特徴とする、圧電素子。 A laminated body in which a plurality of polarized piezoelectric substrates are stacked with their polarization directions different from each other, electrodes arranged and formed with the piezoelectric substrate of the laminated body interposed therebetween, and formed in the laminated body And a temperature-sensitive semiconductor having a negative resistance temperature coefficient that electrically connects the electrodes. 請求項1ないし2の圧電素子を用いて構成される圧電部品であって、前記感温半導体の抵抗温度係数が、前記圧電部品の使用温度範囲の上限温度より高温側の温度域において、前記圧電部品の使用温度範囲内の温度域と比べて負の大きな値を有していることを特徴とする、圧電部品。 3. A piezoelectric component comprising the piezoelectric element according to claim 1, wherein the temperature coefficient of resistance of the temperature-sensitive semiconductor is in a temperature range higher than the upper limit temperature of the operating temperature range of the piezoelectric component. A piezoelectric component having a large negative value as compared with a temperature range within the operating temperature range of the component. 請求項1ないし2の圧電素子を用いて構成される圧電部品であって、前記圧電素子の抵抗温度係数が、前記圧電部品の使用温度範囲の上限温度より高温側の温度域において、負の値を有していることを特徴とする、圧電部品。 3. A piezoelectric component configured using the piezoelectric element according to claim 1, wherein a resistance temperature coefficient of the piezoelectric element is a negative value in a temperature range higher than an upper limit temperature of a use temperature range of the piezoelectric component. A piezoelectric component characterized by comprising: 圧電部品の加工工程または放置状態において150℃以上の高温環境下に置かれることを特徴とする、請求項3ないし4に記載の圧電部品。 5. The piezoelectric component according to claim 3, wherein the piezoelectric component is placed in a high-temperature environment of 150 ° C. or higher in a processing step of the piezoelectric component or in a standing state. 前記高温環境下が、半田リフロー工程であることを特徴とする、請求項3ないし4に記載の圧電部品。 5. The piezoelectric component according to claim 3, wherein the high temperature environment is a solder reflow process.
JP2004092611A 2004-03-26 2004-03-26 Piezo-electric element and piezo-electric component Pending JP2005278121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092611A JP2005278121A (en) 2004-03-26 2004-03-26 Piezo-electric element and piezo-electric component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092611A JP2005278121A (en) 2004-03-26 2004-03-26 Piezo-electric element and piezo-electric component

Publications (1)

Publication Number Publication Date
JP2005278121A true JP2005278121A (en) 2005-10-06

Family

ID=35177261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092611A Pending JP2005278121A (en) 2004-03-26 2004-03-26 Piezo-electric element and piezo-electric component

Country Status (1)

Country Link
JP (1) JP2005278121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163688A (en) * 2010-02-23 2011-08-24 株式会社田村制作所 Piezoelectric body module
WO2019197081A1 (en) * 2018-04-11 2019-10-17 RF360 Europe GmbH Baw resonator with improved power durability and heat resistance and rf filter comprising a baw resonator
WO2019197087A1 (en) * 2018-04-11 2019-10-17 RF360 Europe GmbH Saw resonator with improved power durability and heat resistance and rf filter comprising an saw resonator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163688A (en) * 2010-02-23 2011-08-24 株式会社田村制作所 Piezoelectric body module
JP2011175990A (en) * 2010-02-23 2011-09-08 Tamura Seisakusho Co Ltd Piezoelectric module
CN102163688B (en) * 2010-02-23 2015-01-07 株式会社田村制作所 Piezoelectric body module
WO2019197081A1 (en) * 2018-04-11 2019-10-17 RF360 Europe GmbH Baw resonator with improved power durability and heat resistance and rf filter comprising a baw resonator
WO2019197087A1 (en) * 2018-04-11 2019-10-17 RF360 Europe GmbH Saw resonator with improved power durability and heat resistance and rf filter comprising an saw resonator
US11722118B2 (en) 2018-04-11 2023-08-08 Rf360 Singapore Pte. Ltd. SAW resonator with improved power durability and heat resistance and RF filter comprising an SAW resonator
US11742823B2 (en) 2018-04-11 2023-08-29 RF360 Singapore BAW resonator with improved power durability and heat resistance and RF filter comprising a BAW resonator

Similar Documents

Publication Publication Date Title
US8955947B2 (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
US4918350A (en) Energy-trapping-by-frequency lowering-type piezoelectric resonance device
JP4881315B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic
KR101779899B1 (en) Piezoelectric multilayer actuator with piezoelectric single crystal
Pavlič et al. Small reduction of the piezoelectric d33 response in potassium sodium niobate thick films
US7541716B2 (en) Resonator
JP5444662B2 (en) Method for manufacturing piezoelectric device
US20090065731A1 (en) Method for producing piezoelectric ceramic
JP4404217B2 (en) Piezoelectric element
JP4169203B2 (en) Piezoelectric ceramic composition
JP2005278121A (en) Piezo-electric element and piezo-electric component
US8212457B2 (en) Piezoelectric ceramic composition, piezoelectric element, and resonator
JP2003277143A (en) Piezoelectric ceramics
US6764609B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
KR20150042075A (en) Piezoelectric materials for low sintering
US20080258100A1 (en) Piezoelectric ceramic composition and resonator
JP2003023187A (en) Highly heat resistant piezoelectric element and piezoelectric device comprising it
JP3385999B2 (en) Piezoelectric ceramic composition, piezoelectric buzzer and piezoelectric actuator using the same
US6404102B1 (en) Piezoelectric resonator and piezoelectric resonator part
KR100455218B1 (en) Piezoelectric ceramic composition and piezoelectric device using the same
JPH11322422A (en) Piezoelectric ceramic material
WO2024070626A1 (en) Lead-free piezoelectric composition, and piezoelectric element
JP2005244962A (en) Piezoelectric device
JP2020202338A (en) Piezoelectric ceramic
JP2002314361A (en) Piezoelectric resonance parts