JP2005276451A - 質量分析装置 - Google Patents

質量分析装置 Download PDF

Info

Publication number
JP2005276451A
JP2005276451A JP2004083761A JP2004083761A JP2005276451A JP 2005276451 A JP2005276451 A JP 2005276451A JP 2004083761 A JP2004083761 A JP 2004083761A JP 2004083761 A JP2004083761 A JP 2004083761A JP 2005276451 A JP2005276451 A JP 2005276451A
Authority
JP
Japan
Prior art keywords
thin film
film layer
ions
conductor
ion guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083761A
Other languages
English (en)
Inventor
Yuichi Kuratani
雄一 藏谷
Kazuo Nakamura
一夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004083761A priority Critical patent/JP2005276451A/ja
Publication of JP2005276451A publication Critical patent/JP2005276451A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

【課題】 軸方向に傾斜電位を有する直流電場を形成するためのイオンガイドを容易に且つ高い精度で以て形成する。
【解決手段】 イオンガイド3を構成するポール電極31として、円柱形状の基体31aをセラミックで形成し、その出口側端部に近い位置に酸化ルテニウムの抵抗体薄膜層31cを形成し、それを挟んで両側に金の導電体薄膜層31bを形成する。抵抗体薄膜層31cと導電体薄膜層31bの境界は一部をオーバーラップさせることで接触抵抗を小さくする。また、給電線をハンダ付けする部分には銀パラジウム合金の接点用導電体薄膜層31dを形成する。こうしたポール電極31をホルダ32に装着して相互の配置を決めイオンガイド3とする。
【選択図】 図1

Description

本発明は質量分析装置に関し、更に詳しくは、質量分析装置においてイオンを保持しつつ後段へ移送するためのイオン光学系に関する。
従来より、3次元四重極電場を形成するイオントラップを利用した質量分析装置が知られている。図5は特許文献1に記載のイオントラップ型質量分析装置の要部の構成図、図6はこの質量分析装置のイオンガイドの構成(a)と軸方向の直流電位分布(b)を示す図である。図5において、イオン供給源1から引き出されたイオンは、所定時間だけ開く入口側ゲート電極2を経てイオンガイド3に流入する。イオンガイド3は偶数本の略円柱形状ポール電極をイオン光軸Cの周囲に互いに平行に且つ軸対称に配置したものであり、1本のポール電極は、その出口側の一部のみを抵抗体3bで構成し、入口側を導電体3aで構成している。上記所定時間以外の期間は、イオンがイオンガイド3に入らないように、且つ、一旦イオンガイド3内に入ったイオンが外に出ないように入口側ゲート電極2に高い直流電圧(正イオンの場合)を印加することで入口側ゲート電極2を閉鎖する。これにより、イオンの導入が阻止されるとともに、イオンガイド3内のイオンが入口側に来たときにこれを跳ね返す。
イオンガイド3には高周波電圧が印加されており、イオンガイド3内に入ったイオンは高周波電場によりイオンガイド3の内部に保持されるとともに、初期運動エネルギーによりイオンガイド3内を移動する。イオンガイド3端部の出口側ゲート電極4にも高い直流電圧が印加されており、イオンガイド3内のイオンは出口側ゲート電極4及び入口側ゲート電極2に近づくと直流電場による反発力を受けてイオンガイド3の中央部側に押し戻される。イオンガイド3の内部にはクーリングガスが導入されており、イオンがイオンガイド3内で往復運動をする際にクーリングガス分子と衝突することにより、イオンは運動エネルギーを徐々に失う。また、イオンガイド3の両端部に印加される直流電圧によって、イオンガイド3には入口側から出口側に向かうに従い傾斜を有する直流電場が形成されているため、運動エネルギーを失ったイオンは電位傾斜に沿って出口側端部に集積されてゆく。
上記のようにしてイオンガイド3の出口側端部にイオンを集積した後に出口側ゲート電極4の電位を下げて、集積しておいたイオンを一気にイオンレンズ5を介してイオントラップ6内の空間に導入する。イオントラップ6は、内面が回転1葉双曲面形状を有する1個の環状のリング電極63と、該リング電極63を挟むように対向して設けられた、内面が回転2葉双曲面形状を有する入口側エンドキャップ電極61、及び出口側エンドキャップ電極62とを含む。上記のように前段のイオンガイド3からイオンを受け容れる際には例えばリング電極63に印加される高周波(RF)電圧をゼロにしておき、イオントラップ6内にイオンを受け容れた後にリング電極63に高周波電圧を印加することでイオンをトラップする。
上述したような構成のイオンガイド3を利用して、イオントラップ6内部に効率良くイオンを導入することができる。上記のような複数のポール電極で構成されるイオンガイド3の内部でイオンの運動エネルギーを減衰させながら効率良くイオンを保持するには、イオンガイド3内に形成される電場の乱れができるだけ生じないようにすることが重要であり、そのためには、各ポール電極の寸法や特性が揃っていることと、これらポール電極がイオン光軸Cの周囲に高い精度で軸対称に配置されることとが必要である。
特許第3386048号公報
しかしながら、実際のポール電極の生産性や組立性を考えると、図6(a)に示すように抵抗体3bと導電体3aとを結合した構成では、各ポール電極において高い寸法精度や高い抵抗精度を確保し、且つ、複数のポール電極の寸法や精度が揃ったものとすることはかなり難しく、コストが高くなることが避けられない。
本発明はかかる課題に鑑みて成されたものであって、質量分析装置においてイオンを保持しつつ後段へと移送するために、軸方向に傾斜を有する電場を形成するためのイオンガイドを高い精度で且つ容易に得ることを目的としている。
上記課題を解決するために成された本発明は、イオンを保持しつつ後段へ移送するためにイオン光軸の周りに偶数本の略円柱状のポール電極をイオン光軸と略平行な方向に配置して成るイオン光学系を備えた質量分析装置において、前記ポール電極は、
a)絶縁体から成る基体と、
b)該基体の周面の軸方向の両端からそれぞれ内側に所定の位置まで形成された導電体薄膜層と、
c)前記両側の導電体薄膜層で挟まれる部分に各導電体薄膜層にそれぞれオーバーラップする部分を有して形成された抵抗体薄膜層と、
を有し、前記ポール電極の両端部間に入口側と出口側とで異なる直流電圧に同一の高周波電圧を重畳した電圧を印加することで、ポール電極で囲まれる空間にイオンを閉じ込める高周波電場を形成するとともに、前記抵抗体薄膜層の部分においては軸方向に傾斜電位を有する直流電場を形成することを特徴としている。
本発明に係る質量分析装置においては、軸方向に傾斜電位を有する直流電場を形成したい部分にだけポール電極の基体の周面に抵抗体薄膜層を形成し、それ以外の部分には導電体薄膜層を形成する。実際には、偶数本のポール電極の出口側端部にのみイオンを集積して後段へと一気にイオンを吐き出すようにするためには、抵抗体薄膜層がポール電極の出口側端部に片寄って形成された構成とすれば十分である。このとき、抵抗体薄膜層と導電体薄膜層との境界部分では両者をオーバーラップさせることにより両薄膜層の接触抵抗を小さくする。例えば絶縁体としてセラミック等を用いれば、高い寸法精度で以て略円柱体を形成することができ、熱膨張率が小さいので温度変化があっても寸法の狂いが小さい。
抵抗体薄膜層及び導電体薄膜層は各種の方法で形成することができるが、例えばペースト状の材料を基体に塗布し、その後、所定温度で焼成する方法が考えられる。いずれにしても、薄膜層の膜厚や軸方向の寸法を高い精度で決めることができ、抵抗体薄膜層部分の抵抗値を容易に目標値にすることができる。この抵抗体薄膜層及び導電体薄膜層の材料としては各種のものを利用することができるが、抵抗体薄膜層は膜厚のむらが抵抗値のばらつきとなって現れるので、薄膜層の形成時に膜厚の均一性が高いものであることが好ましい。また、導電体薄膜層はイオンによる表面の汚染を防止するために化学的反応性の低い導電体を使用することが好ましい。また、ポール電極に小さな接触抵抗で確実に給電を行うためには給電線をハンダ付けすることが望ましいが、ハンダ付け部分には大きな外力が加わるので導電体薄膜層が剥離し易い。そこで、導電体薄膜層は、化学的反応性の低い導電体から成る電場形成用導電体薄膜層と、基体との密着性が良好な導電体から成り給電線がハンダ付けされる接点用導電体薄膜層とを含んで構成することが好ましい。
また、イオン光学系では、特にイオン光軸を挟んで対向する2本のポール電極で抵抗値が異なっていると電場の歪みが生じ易いから、ポール電極の個々の抵抗値を予め測定しておき、できるだけ抵抗値の揃った2本のポール電極を組にしてそれらが対向位置にくるようにポール電極の配置を決めるとよい。
本発明に係る質量分析装置によれば、各ポール電極の寸法精度や抵抗値精度などが良好に揃うので、偶数本のポール電極で構成されるイオン光学系の内部に安定的に且つ効率良くイオンを保持するための良好な高周波電場及び直流電場を形成することができる。それによって、例えばこのイオン光学系で保持したイオンを後段のイオントラップに導入する場合には、イオントラップ内に効率良くイオンを送り込むことができ、質量分析の感度を向上させることができる。また、こうした良好な電場を形成するためのポール電極を高い生産性を以て安定的に得ることができるので、製品のコストダウンを図ることができる。
以下、本発明の一実施例による質量分析装置を図面を参照して説明する。この質量分析装置の全体構成は図5に示したものと同様であるので説明を省略し、本実施例の特徴的な構成であるイオンガイド3について説明する。図1は本実施例の質量分析装置におけるイオンガイド3の正面図(a)及び側面図(b)、図2は図1中の要部の拡大図、図3は各ポール電極への印加電圧の一例を示す図、図4はイオンガイド3とその前後の入口側ゲート電極に相当するスキマーと出口側ゲート電極との配置を示す図(a)及び軸方向の直流電位の分布状況を示す図(b)である。
なお、本実施例のイオンガイド3は8本の円柱形状のポール電極31をイオン光軸Cの周りに等角度間隔で配置したオクタポール型の構成であるが、これに限るものではなく、偶数本であれば、4本、6本などの構成としてもよい。
図1及び図2に示すように、イオンガイド3を構成する各ポール電極31の基体31aは絶縁体から成る。ここでは、セラミックの一種であるアルミナ(主成分はAl2O3)を基体31aの材料としている。ポール電極31には後述するように高周波電圧が印加されることから、誘電正接が小さいことが重要である。セラミックはこの条件を満足する。また、ポール電極31相互の位置は電場の形状に大きく影響するため、基体31aは高い寸法精度が得られることが好ましいが、セラミックはこうした条件も満たす。さらにまた、熱膨張率も低いので、温度変化があった場合でも形状変化による電場の変化が小さい。ここでは、基体31aの寸法は、外形がφ2mm、長さが100mmとしている。
この基体31aの出口側端部よりも少し内側には、軸方向に所定長さの抵抗体薄膜層31cを形成する。この抵抗体の材料としては例えば酸化ルテニウム(RuO2)を用いる。各ポール電極31における抵抗体薄膜層31cの位置のずれ、膜厚の不均一性、抵抗値のばらつき等が電場の歪みの原因となるから、こうした要素をできるだけ抑制することが好ましい。酸化ルテニウムは温度安定性、膜厚の均一性に優れる好適な材料である。
上記抵抗体薄膜層31cを挟んで両側には導電体薄膜層31bを形成する。このとき、隣接する抵抗体薄膜層31cとの電気的接続を確保するために、抵抗体薄膜層31cの端部と導電体薄膜層31bの一部をオーバーラップさせる。図1で明らかなように、本実施例では、入口側端部の導電体薄膜層31bは軸方向に非常に長く、出口側端部の導電体薄膜層31bは軸方向に短い。この導電体薄膜層31bの材料が化学的な反応性が高いものであると、イオンを移送する際にイオンにより表面に汚染物が形成され易く電場の乱れを起こし易い。そこで、化学的な反応性の低い金(Au)などが好適である。
さらに、ポール電極31の両端近くには、上記導電体薄膜層31bではなく同じ導電体であるが、ハンダ付け処理に適した接点用導電体薄膜層31dを形成する。すなわち、上記導電体薄膜層31bに直接金属接点を押し付けて給電することも可能ではあるが、ポール電極31は円柱形状であるため単なる接触では導通不良が生じ易い。また、給電線(リード線)を直接、導電体薄膜層31bにハンダ付けすることも可能ではあるが、一般に金などの場合、焼成を行うことで形成された薄膜は剥離が生じ易い。そこで、導電体薄膜層31bとは別に基体31aのアルミナとの密着性が高い、例えば銀(Ag)とパラジウム(Pd)の合金により接点用導電体薄膜層31dを形成する。これによって、給電線33をこの接点用導電体薄膜層31dに容易に且つ強固にハンダ付けすることができる。なお、この接点用導電体薄膜層31dによる給電線33の引き出し部は、できるだけポール電極31の端部に近い位置とすることが望ましい。これは、このイオンガイド3によって形成される電場をできるだけ理想的な状態とするためである。
上記のような構成を有するポール電極31は、同形状の2個の電極ホルダ32によって適正な位置に保持される。電極ホルダ32は基体31aと同様に、絶縁体であって誘電正接の小さい材料から形成することが好ましい。ここでは、8本のポール電極31がφ5.4mmの内接円に接し、且つイオン光軸Cの周りに等角度間隔となるように配置される。イオン光軸Cを挟んで対向する2本のポール電極31は抵抗値が揃っていることが好ましいから、上記のように電極ホルダ32に装着する前に、各ポール電極31の抵抗値を測定しておき、抵抗値の近いもの同士を組にして対向位置に配置するとよい。
図1のようにイオンガイド3が組み上げられた後、各ポール電極31の両端にそれぞれ接続された給電線33は、図3(a)に示すように周方向に1本おきに接続される。質量分析時には、周方向に隣接するポール電極31には、同一の直流電圧に位相が反転した高周波電圧がそれぞれ重畳された電圧VDC±VRF・cosωtが印加される。また、或る1本のポール電極31の入口端と出口端とでは、高周波電圧は同一であって異なる直流電圧VDC1,VDC2が重畳された電圧が印加される。高周波電圧成分VRF・cosωtは分析対象であるイオンの質量数によって走査されるが、直流電圧成分VDC1,VDC2は通常、質量数に依らずに一定である。イオンガイド3内に形成される高周波電場はイオンをイオン光軸C近傍に閉じ込めるように作用する。一方、イオンガイド3内に形成される直流電場は、図4(b)に示すように、イオンガイド3の入口側端部から続く導電体薄膜層31bの部分ではほぼ同電位となっており、抵抗体薄膜層31cの部分では出口側端部に向かうに従って下方に傾斜する電位となる。
図4(a)において図5中の入口側ゲート電極2に相当する左端のスキマーよりもさらに左方に配置されている図示しないイオン供給源で発生したイオンをイオンガイド3内に取り込む際には、スキマーの電位を下げてスキマーを開放状態にし、出口側ゲート電極4には電圧VDC2よりも高い電圧を印加することで出口側ゲート電極4を閉鎖しておく。このときにはイオンがイオンガイド3内に入ってくる。イオンがイオンガイド3内に導入された後に、スキマーの電位を上げてスキマーを閉鎖状態にする。これによって、イオンガイド3内に導入されたイオンは入口側ゲート電極(スキマー)2と出口側ゲート電極4との両方で反発され、イオンガイド3内を往復する間にクーリングガスとの衝突により徐々に運動エネルギーを奪われて、出口側端部の電位の下がった部分に集積される。
このイオンガイド3ではポール電極31の寸法精度や抵抗値精度などが非常に良く揃っているので、高周波電場や軸方向の直流電場の乱れが少なく、上記のようにイオンガイド3内に保持されたイオンが発散せずに良好に保存される。イオンガイド3の出口側端部に集積されたイオンは、出口側ゲート電極4を開放するべく印加電圧を下げたときに出口側ゲート電極4を経て右方へと排出され、右方に配置されたイオントラップにイオンが導入されることになるが、イオンガイド3に保持している間のイオンの損失が少ないので、多量のイオンをイオントラップに導入して分析感度を向上させることができる。
なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正及び追加を行っても本発明に包含されることは明らかである。
例えば、上記実施例に記載のポール電極31を構成する各部の材料は単に一例であって、上記記載に限定されない。また、寸法等の数値も上記記載のものに限定されない。また、上記のようなイオンガイドは後段のイオントラップ内にイオンを導入するのみならず、例えば四重極質量フィルタや飛行時間型質量分析部等のイオントラップ以外の質量分析部に時間を限定してイオンを導入するために利用することができるのは当然である。
本発明の一実施例の質量分析装置におけるイオンガイドの正面図(a)及び側面図(b)。 図1中の要部の拡大図。 各ポール電極への印加電圧の一例を示す図。 イオンガイドとその前後の入口側ゲート電極に相当するスキマー及び出口側ゲート電極との配置を示す図(a)及び軸方向の直流電位の分布状況を示す図(b)。 本実施例のイオンガイドを適用するイオントラップ型質量分析装置の要部の構成図。 従来のイオントラップ型質量分析装置のイオンガイドの構成(a)と軸方向の直流電位分布(b)。
符号の説明
1…イオン供給源
2…入口側ゲート電極
3…イオンガイド
31…ポール電極
31a…基体
31b…導電体薄膜層
31c…抵抗体薄膜層
31d…接点用導電体薄膜層
32…電極ホルダ
33…給電線
4…出口側ゲート電極
5…イオンレンズ
C…イオン光軸

Claims (3)

  1. イオンを保持しつつ後段へ移送するためにイオン光軸の周りに偶数本の略円柱状のポール電極をイオン光軸と略平行な方向に配置して成るイオン光学系を備えた質量分析装置において、前記ポール電極は、
    a)絶縁体から成る基体と、
    b)該基体の周面の軸方向の両端からそれぞれ内側に所定の位置まで形成された導電体薄膜層と、
    c)前記両側の導電体薄膜層で挟まれる部分に各導電体薄膜層にそれぞれオーバーラップする部分を有して形成された抵抗体薄膜層と、
    を有し、前記ポール電極の両端部間に入口側と出口側とで異なる直流電圧に同一の高周波電圧を重畳した電圧を印加することで、ポール電極で囲まれる空間にイオンを閉じ込める高周波電場を形成するとともに、前記抵抗体薄膜層の部分においては軸方向に傾斜電位を有する直流電場を形成することを特徴とする質量分析装置。
  2. 前記抵抗体薄膜層はポール電極の出口側端部に片寄って形成されることを特徴とする請求項1に記載の質量分析装置。
  3. 前記導電体薄膜層は、化学的反応性の低い導電体から成る電場形成用導電体薄膜層と、基体との密着性が良好な導電体から成り給電線がハンダ付けされる接点用導電体薄膜層とを含むことを特徴とする請求項1又は2に記載の質量分析装置。
JP2004083761A 2004-03-23 2004-03-23 質量分析装置 Pending JP2005276451A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083761A JP2005276451A (ja) 2004-03-23 2004-03-23 質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083761A JP2005276451A (ja) 2004-03-23 2004-03-23 質量分析装置

Publications (1)

Publication Number Publication Date
JP2005276451A true JP2005276451A (ja) 2005-10-06

Family

ID=35175908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083761A Pending JP2005276451A (ja) 2004-03-23 2004-03-23 質量分析装置

Country Status (1)

Country Link
JP (1) JP2005276451A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454020C (zh) * 2005-10-19 2009-01-21 广州禾信自动化系统有限公司 基于射频四极杆的气相分子离子反应器装置及其实现方法与应用
US20110260048A1 (en) * 2010-04-22 2011-10-27 Wouters Eloy R Ion Transfer Tube for a Mass Spectrometer Having a Resistive Tube Member and a Conductive Tube Member
CN102412110A (zh) * 2011-09-28 2012-04-11 厦门大学 直流离子阱
CN106611694A (zh) * 2017-01-20 2017-05-03 东北大学 质谱仪用极杆及质谱仪

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454020C (zh) * 2005-10-19 2009-01-21 广州禾信自动化系统有限公司 基于射频四极杆的气相分子离子反应器装置及其实现方法与应用
US20110260048A1 (en) * 2010-04-22 2011-10-27 Wouters Eloy R Ion Transfer Tube for a Mass Spectrometer Having a Resistive Tube Member and a Conductive Tube Member
CN102412110A (zh) * 2011-09-28 2012-04-11 厦门大学 直流离子阱
CN102412110B (zh) * 2011-09-28 2013-10-09 厦门大学 直流离子阱
CN106611694A (zh) * 2017-01-20 2017-05-03 东北大学 质谱仪用极杆及质谱仪
CN106611694B (zh) * 2017-01-20 2018-04-10 东北大学 质谱仪用极杆及质谱仪

Similar Documents

Publication Publication Date Title
CN107078020B (zh) 超小型质谱分析装置和超小型粒子加速装置
EP3005403B1 (en) Reflectron
JP4324554B2 (ja) 質量分析器デバイス及び質量分析器の製造方法
EP1643536A2 (en) Multipole device for a mass spectrometer
JP3578477B2 (ja) 多層多重極
US11637007B2 (en) Integrated low cost curtain plate, orifice PCB and ion lens assembly
US9524857B2 (en) Ion optics components and method of making the same
US20120305758A1 (en) Abridged multipole structure for the transport and selection of ions in a vacuum system
JP2002015699A (ja) イオンガイドおよびこれを用いた質量分析装置
JP2005276451A (ja) 質量分析装置
US20230360899A1 (en) Collision cell with enhanced ion beam focusing and transmission
US9818592B2 (en) Ion guide or filters with selected gas conductance
JP2585030B2 (ja) マスフィルター
US12002671B2 (en) Electrode arrangement
JPH08329884A (ja) Ms/ms型四重極質量分析装置
JPH1186781A (ja) 四重極質量分析装置
EP3550589A1 (en) Ion guide comprising electrode plates and ion beam deposition system
CA2837876A1 (en) Abridged multipole structure for the transport, selection, trapping and analysis of ions in a vacuum system