JP2005275171A - Method for forming pattern - Google Patents

Method for forming pattern Download PDF

Info

Publication number
JP2005275171A
JP2005275171A JP2004090651A JP2004090651A JP2005275171A JP 2005275171 A JP2005275171 A JP 2005275171A JP 2004090651 A JP2004090651 A JP 2004090651A JP 2004090651 A JP2004090651 A JP 2004090651A JP 2005275171 A JP2005275171 A JP 2005275171A
Authority
JP
Japan
Prior art keywords
substrate
group
pattern
compound
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004090651A
Other languages
Japanese (ja)
Other versions
JP4287776B2 (en
Inventor
Koichi Kawamura
浩一 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004090651A priority Critical patent/JP4287776B2/en
Priority to EP20050006375 priority patent/EP1581031B1/en
Priority to DE200560023925 priority patent/DE602005023925D1/en
Priority to US11/088,769 priority patent/US20050214550A1/en
Publication of JP2005275171A publication Critical patent/JP2005275171A/en
Application granted granted Critical
Publication of JP4287776B2 publication Critical patent/JP4287776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a pattern, with which a high-resolution graft polymer pattern is easily formed on a solid surface. <P>SOLUTION: In the method for forming the pattern, a step to bond a compound having a photopolymerization initiating site to initiate radical polymerization with photo-cleavage and a substrate bonding site to a substrate, a step to carry out pattern exposure and to deactivate the photopolymerization initiating site on the exposure region, and a step to bring an unsaturated compound capable of radical polymerization into contact with the substrate, and subsequently to generate a graft polymer by exposing an entire surface of the substrate, generating the photo-cleavage on the photopolymerization initiating site remaining on the unexposed region in the pattern exposure and initiating the radical polymerization, are carried out in this order. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はパターン形成に関し、より詳細には、固体表面に解像度に優れたパターンを容易に形成することができるパターン形成方法に関する。   The present invention relates to pattern formation, and more particularly to a pattern formation method capable of easily forming a pattern with excellent resolution on a solid surface.

固体表面のポリマーによる表面修飾は、固体表面のぬれ性、汚れ性、接着性、表面摩擦、細胞親和性などの性質を変えることができるため、工業的な分野で幅広く研究されている。その中でも、固体表面にポリマーを共有結合により直接結合させてなる表面グラフトポリマーによる表面修飾は、i)表面とグラフトポリマーとの間に強固な結合が形成されるという利点を有すること、ii)グラフトポリマーの物質に対する親和性が一般的な塗布架橋で形成されたポリマーとは大きく異なり、この親和性の相違に起因した特異的な性質を発現しうること、が知られている。
上記のような利点を有する表面グラフトポリマーは、その特異的な性質を利用した種々の応用技術が提案されており、例えば、細胞培養、抗血栓性人工血管、人工関節などの生体分野や、表面に高い親水性を必要とする親水性フィルム及び印刷版の親水性支持体などに用いられている。
Surface modification with a polymer on a solid surface is widely studied in the industrial field because it can change the properties of the solid surface such as wettability, dirtiness, adhesion, surface friction, and cell affinity. Among them, surface modification with a surface graft polymer obtained by directly bonding a polymer to a solid surface by a covalent bond has the advantage that i) a strong bond is formed between the surface and the graft polymer, ii) grafting It is known that the affinity of a polymer for a substance is greatly different from that of a polymer formed by general coating crosslinking, and a specific property resulting from this difference in affinity can be expressed.
As for the surface graft polymer having the above-mentioned advantages, various applied technologies utilizing its specific properties have been proposed. For example, cell culture, antithrombotic artificial blood vessels, artificial joints and other biological fields, and surface It is used for hydrophilic films that require high hydrophilicity and hydrophilic supports for printing plates.

また、このような表面グラフトポリマーをパターン状に形成することでで、グフトポリマーの有する特異的な性質がパターン状に反映されるため、印刷原板、区画培養、及び色素画像形成などの各分野で用いられている。   In addition, by forming such a surface graft polymer in a pattern, the specific properties of the guft polymer are reflected in the pattern, so it is used in various fields such as printing master plates, compartment culture, and dye image formation. It has been.

例えば、非特許文献1には、イニファーターと呼ばれる表面に固定化した重合開始基を用いて親水性グラフトパターンを形成し、それを細胞区画培養材料として用いることが、非特許文献2には、グラフトパターンに染料を吸着(トルイジンブルー染色)させることで可視画像のパターンができることが報告されている。   For example, in Non-Patent Document 1, it is possible to form a hydrophilic graft pattern using a polymerization initiating group immobilized on a surface called an iniferter and use it as a cell compartment culture material. It has been reported that a visible image pattern can be formed by adsorbing a dye to a graft pattern (toluidine blue staining).

非特許文献3には、表面に固定化したイニファーター重合開始剤を用いて、親水性又は疎水性モノマーをパターン状に重合させたグラフトポリマーパターンを得る技術や、色素構造を有するモノマーをグラフトさせることにより色素ポリマーのパターンを得る技術が報告されている。
非特許文献4には、マイクロコンタクト印刷法を用いて開始剤を金基板の上に画像様に付着させ、その開始剤から原子移動重合(ATRP重合)を起こさせ、HEMA(ヒドロキシエチルメタクリレート)やMMA(メチルメタクリレート)のグラフトポリマーをパターン状に形成し、それをレジストとして応用する技術が報告されている。
更に、非特許文献5には、基板に固定化したシラン化合物からのアニオンラジカル重合や、カチオンラジカル重合によりグラフトのパターンを作製する方法が提案されている。
In Non-Patent Document 3, using an iniferter polymerization initiator immobilized on the surface, a technique for obtaining a graft polymer pattern obtained by polymerizing a hydrophilic or hydrophobic monomer in a pattern, or a monomer having a dye structure is grafted Thus, a technique for obtaining a dye polymer pattern has been reported.
In Non-Patent Document 4, an initiator is attached imagewise on a gold substrate using a microcontact printing method, atom transfer polymerization (ATRP polymerization) is caused from the initiator, HEMA (hydroxyethyl methacrylate) or There has been reported a technique of forming a MMA (methyl methacrylate) graft polymer in a pattern and applying it as a resist.
Further, Non-Patent Document 5 proposes a method for producing a graft pattern by anion radical polymerization from a silane compound immobilized on a substrate or cation radical polymerization.

しかしながら、上述したような、従来のイニファーター法や、原子移動重合法を用いて固体表面にグラフトパターンを作製しようとすると、反応時間が長いことから、製造適性が充分ではないという欠点があった。また、アニオンラジカル重合法やカチオンラジカル重合法を用いた場合についても、重合反応に厳密な制御を必要とすることから、製造適性が充分ではないという欠点があった。   However, when trying to produce a graft pattern on a solid surface using the conventional iniferter method or the atom transfer polymerization method as described above, there is a disadvantage that the suitability for production is not sufficient because the reaction time is long. . In addition, when an anion radical polymerization method or a cation radical polymerization method is used, since the polymerization reaction requires strict control, there is a drawback that the production suitability is not sufficient.

このように、固体表面をグラフトポリマーにより修飾することで、効果的な表面改質材料や高機能材料を得るためのパターン形成方法が望まれているが、グラフトポリマーパターンを、実用的な製造時間で容易に形成しうる方法については、未だ得られていないのが現状である。
松田ら著、「Journal of biomedical materials research」、2000年、第53巻、第584頁 松田ら著、「Langumuir」、1999年、第15巻、第5560頁 Metters,A,Tら著、「Macromolecules」、2003年、第36巻、第6739頁 C.J.Hawkerら著、「Macromolecules」、2000年、第33巻、第597頁 Ingallら著、「J.Am.Chem.Soc」、1999年、第121巻、第3607頁
As described above, there is a demand for a pattern forming method for obtaining an effective surface-modifying material or a highly functional material by modifying a solid surface with a graft polymer. As for the method that can be easily formed, the present situation has not yet been obtained.
Matsuda et al., "Journal of biomedical materials research", 2000, 53, 584 Matsuda et al., "Langumuir", 1999, Vol. 15, p. 5560 Metters, A, T et al., "Macromolecules", 2003, 36, 6739 CJHawker et al., “Macromolecules”, 2000, 33, 597 Ingall et al., "J.Am.Chem.Soc", 1999, 121, 3607

本発明の前記従来における問題点を解決し、以下の目的を達成することを課題とする。
即ち、本発明の目的は、固体表面に高解像度のグラフトポリマーパターンを容易に形成しうるパターン形成方法を提供することにある。
An object of the present invention is to solve the conventional problems of the present invention and achieve the following objects.
That is, an object of the present invention is to provide a pattern forming method capable of easily forming a high resolution graft polymer pattern on a solid surface.

前記課題を解決するための手段は以下の通りである。
即ち、本発明のパターン形成方法は、光開裂によりラジカル重合を開始しうる光重合開始部位と基材結合部位とを有する化合物を基材に結合させる工程と、
パターン露光を行い、露光領域の該光重合開始部位を失活させる工程と、
前記基材上にラジカル重合可能な不飽和化合物を接触させた後、全面露光を行い、前記パターン露光時における非露光領域に残存した該光重合開始部位に光開裂を生起させ、ラジカル重合を開始させることでグラフトポリマーを生成させる工程と、
をこの順に行うことを特徴とする。
また、本発明においては、前記重合開始部位が、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合からなる群より選択されるいずれかを含むことが好ましい。
Means for solving the above-mentioned problems are as follows.
That is, the pattern forming method of the present invention comprises a step of bonding a compound having a photopolymerization initiation site capable of initiating radical polymerization by photocleavage and a substrate binding site to a substrate,
Performing pattern exposure and deactivating the photopolymerization initiation site in the exposed area;
After contacting an unsaturated compound capable of radical polymerization on the substrate, the whole surface is exposed, photocleavage occurs at the photopolymerization start site remaining in the non-exposed area at the time of pattern exposure, and radical polymerization is started. A step of generating a graft polymer by,
Are performed in this order.
In the present invention, the polymerization initiation site is selected from the group consisting of C—C bond, C—N bond, C—O bond, C—Cl bond, N—O bond, and S—N bond. It is preferable to include any of them.

本発明における詳細なメカニズムは未だ明確ではないが、本発明におけるラジカル重合反応は、フリーラジカル重合を用いた重合反応であるため重合速度が速く、また重合反応には厳密な制御を必要としないため、固体表面に容易にグラフトポリマーパターンを形成することが可能になったものと考えられる。   Although the detailed mechanism in the present invention is not yet clear, since the radical polymerization reaction in the present invention is a polymerization reaction using free radical polymerization, the polymerization rate is high, and the polymerization reaction does not require strict control. It is considered that the graft polymer pattern can be easily formed on the solid surface.

本発明のパターン形成方法によれば、固体表面に高解像度のグラフトポリマーパターンを容易に形成することができる。   According to the pattern forming method of the present invention, a high-resolution graft polymer pattern can be easily formed on a solid surface.

以下、本発明を詳細に説明する。
本発明のパターン形成方法は、光開裂によりラジカル重合を開始しうる光重合開始部位と基材結合部位とを有する化合物を基材に結合させる工程(以下、適宜、「光開裂化合物結合工程」と称する。)と、パターン露光を行い、露光領域の該光重合開始部位を失活させる工程(以下、適宜、「重合開始能失活工程」と称する。)と、前記基材上にラジカル重合可能な不飽和化合物を接触させた後、全面露光を行い、前記パターン露光時における非露光領域に残存した該光重合開始部位に光開裂を生起させ、ラジカル重合を開始させることでグラフトポリマーを生成させる工程(以下、適宜、「グラフトポリマー生成工程」と称する。)と、をこの順に行うことを特徴とする。
Hereinafter, the present invention will be described in detail.
The pattern forming method of the present invention comprises a step of bonding a compound having a photopolymerization initiation site capable of initiating radical polymerization by photocleavage and a base material binding site to a base material (hereinafter referred to as “photocleavable compound binding step” as appropriate). A pattern exposure, a step of deactivating the photopolymerization initiation site in the exposed region (hereinafter, referred to as “a polymerization initiation ability deactivation step” as appropriate), and radical polymerization on the substrate. After exposure to the unsaturated compound, the whole surface is exposed, photo-cleavage occurs in the photo-polymerization initiation site remaining in the non-exposed region at the time of pattern exposure, and radical polymerization is initiated to generate a graft polymer. Steps (hereinafter referred to as “graft polymer generation step” as appropriate) are performed in this order.

まず、本発明のパターン形成方法の概略について、図1を用いて説明する。ここで、図1は本発明のパターン形成方法における各工程の概略を示す概念図である。
図1(a)に示されるように、基材表面には当初より官能基(図中、Zで表される)が存在する。ここに、基材結合部位(Q)と、光開裂によりラジカル重合を開始しうる重合開始部位(Y)と、を有する化合物(Q−Y)を付与し、基材表面に接触させる。これにより、図1(b)に示されるように、基材表面に存在する官能基(Z)と、基材結合部位(Q)と、が結合して、基材表面に化合物(Q−Y)が導入される〔光開裂化合物結合工程〕。その後、この化合物(Q−Y)が導入された面に、図1(b)の矢印のようにパターン露光を行う。これにより、重合開始部位(Y)は、露光エネルギーにより光開裂する。その結果、図1(c)に示されるように、化合物(Q−Y)の露光部は、重合開始部位(Y)が失活して、重合開始能失活部位(S)となる〔重合開始能失活工程〕。
その後、図1(d)に示されるように、モノマー等の公知のグラフトポリマー原料を接触させた状態で、図1(d)の矢印のように全面露光を行う。これにより、図1(e)に示すされるように、重合開始部位(Y)が残存している領域において、化合物(Q−Y)の重合開始部位(Y)を起点としてグラフトポリマーが生成する〔グラフトポリマー生成工程〕。
First, the outline of the pattern formation method of this invention is demonstrated using FIG. Here, FIG. 1 is a conceptual diagram showing an outline of each step in the pattern forming method of the present invention.
As shown in FIG. 1A, a functional group (represented by Z in the figure) is present on the substrate surface from the beginning. Here, a compound (QY) having a substrate binding site (Q) and a polymerization initiation site (Y) capable of initiating radical polymerization by photocleavage is imparted and brought into contact with the substrate surface. As a result, as shown in FIG. 1B, the functional group (Z) present on the substrate surface and the substrate binding site (Q) are bonded to each other, and the compound (QY) is bonded to the substrate surface. ) Is introduced [photocleavable compound binding step]. Thereafter, pattern exposure is performed on the surface into which the compound (QY) is introduced as indicated by the arrow in FIG. Thereby, the polymerization initiation site (Y) is photo-cleavage by the exposure energy. As a result, as shown in FIG. 1 (c), in the exposed portion of the compound (QY), the polymerization initiation site (Y) is deactivated to become a polymerization initiation ability deactivated site (S) [polymerization. Initiation ability deactivation process].
Thereafter, as shown in FIG. 1 (d), the entire surface is exposed as shown by the arrow in FIG. 1 (d) in a state where a known graft polymer raw material such as a monomer is brought into contact. Thereby, as shown in FIG.1 (e), in the area | region where the polymerization start site | part (Y) remains, a graft polymer produces | generates from the polymerization start site | part (Y) of a compound (QY). [Graft polymer production step].

以下、このようなパターン形成方法について具体的に説明する。
図1においてZで表示される基は、基材表面に存在する官能基であり、具体的には、例えば、水酸基、カルボキシル基、アミノ基などが挙げられる。これらの官能基はシリコン基板、ガラス基板における基材の材質に起因して基材表面にもともと存在しているものでもよく、基材表面にコロナ処理などの表面処理を施すことにより表面に存在させたものであってもよい。
Hereinafter, such a pattern forming method will be specifically described.
The group represented by Z in FIG. 1 is a functional group present on the surface of the substrate, and specific examples include a hydroxyl group, a carboxyl group, and an amino group. These functional groups may be originally present on the surface of the base material due to the material of the base material in the silicon substrate or glass substrate, and may be present on the surface by subjecting the base material surface to a surface treatment such as corona treatment. It may be.

次に、光開裂によりラジカル重合を開始しうる重合開始部位(以下、単に、重合開始部位と称する。)と基材結合部位とを有する化合物の構造について具体的に説明する。この化合物について、図1の概念図における、基材結合部位(Q)と、重合開始部位(Y)と、を有する化合物(Q−Y)のモデルを用いて詳細に説明すれば、一般に、重合開始部位(Y)は、光により開裂しうる単結合を含む構造である。
この光により開裂する単結合としては、カルボニルのα開裂、β開裂反応、光フリー転位反応、フェナシルエステルの開裂反応、スルホンイミド開裂反応、スルホニルエステル開裂反応、N−ヒドロキシスルホニルエステル開裂反応、ベンジルイミド開裂反応、活性ハロゲン化合物の開裂反応などを利用して開裂が可能な単結合が挙げられる。これらの反応により、光により開裂しうる単結合が切断される。この開裂しうる単結合としては、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合等が挙げられる。
Next, the structure of a compound having a polymerization initiation site capable of initiating radical polymerization by photocleavage (hereinafter simply referred to as polymerization initiation site) and a substrate binding site will be specifically described. If this compound is described in detail using a model of a compound (QY) having a base material binding site (Q) and a polymerization initiation site (Y) in the conceptual diagram of FIG. The initiation site (Y) is a structure containing a single bond that can be cleaved by light.
As the single bond that is cleaved by this light, carbonyl α-cleavage, β-cleavage reaction, light-free rearrangement reaction, phenacyl ester cleavage reaction, sulfonimide cleavage reaction, sulfonyl ester cleavage reaction, N-hydroxysulfonyl ester cleavage reaction, benzyl Examples thereof include a single bond that can be cleaved by using an imide cleavage reaction, a cleavage reaction of an active halogen compound, or the like. These reactions break a single bond that can be cleaved by light. Examples of the single bond that can be cleaved include a C—C bond, a C—N bond, a C—O bond, a C—Cl bond, a N—O bond, and a S—N bond.

また、これらの光により開裂しうる単結合を含む重合開始部位(Y)は、グラフトポリマー生成工程におけるグラフト重合の起点となることから、光により開裂しうる単結合が開裂すると、その開裂反応によりラジカルを発生させる機能を有する。このように、光により開裂しうる単結合を有し、かつ、ラジカルを発生可能な重合開始部位(Y)の構造としては、芳香族ケトン基、フェナシルエステル基、スルホンイミド基、スルホニルエステル基、N−ヒドロキシスルホニルエステル基、ベンジルイミド基、トリクロロメチル基、ベンジルクロライド基などの基を含む構造が挙げられる。   In addition, since the polymerization initiation site (Y) containing a single bond that can be cleaved by light is the starting point of graft polymerization in the graft polymer production step, when the single bond that can be cleaved by light is cleaved, the cleavage reaction causes Has the function of generating radicals. Thus, the structure of the polymerization initiation site (Y) having a single bond that can be cleaved by light and capable of generating radicals includes an aromatic ketone group, a phenacyl ester group, a sulfonimide group, and a sulfonyl ester group. , N-hydroxysulfonyl ester groups, benzylimide groups, trichloromethyl groups, benzyl chloride groups, and other structures.

このような重合開始部位(Y)は、露光により開裂してラジカルを発生するため、そのラジカル周辺に重合可能な化合物が存在する場合には、このラジカルがグラフト重合反応の起点として機能し、所望のグラフトポリマーを生成することができる(グラフトポリマー生成領域)。
一方、重合開始部位(Y)が露光により開裂してラジカルが発生しても、ラジカルの周辺に重合可能な化合物が存在しない場合には、そのラジカルは使用されず失活してしまい、その結果、重合開始能自体が失活することとなる。その結果、このような領域はグラフトポリマー非生成領域となる。
Since such a polymerization initiation site (Y) is cleaved by exposure to generate a radical, if there is a polymerizable compound in the vicinity of the radical, this radical functions as a starting point for the graft polymerization reaction. The graft polymer can be produced (graft polymer production region).
On the other hand, even if the polymerization initiation site (Y) is cleaved by exposure and a radical is generated, if there is no polymerizable compound in the vicinity of the radical, the radical is deactivated without being used. The polymerization initiating ability itself is deactivated. As a result, such a region becomes a non-grafted polymer region.

一方、基材結合部位(Q)としては、基材表面に存在する官能基(Z)と反応して結合しうる反応性基で構成され、その反応性基としては、具体的には、以下に示すような基が挙げられる。   On the other hand, the base material binding site (Q) is composed of a reactive group capable of reacting with and binding to the functional group (Z) present on the base material surface. And groups as shown below.

Figure 2005275171
Figure 2005275171

また、重合開始部位(Y)と、基材結合部位(Q)と、は直接結合していてもよいし、連結基を介して結合していてもよい。この連結基としては、炭素、窒素、酸素、及び硫黄からなる群より選択される原子を含む連結基が挙げられ、具体的には、例えば、飽和炭素基、芳香族基、エステル基、アミド基、ウレイド基、エーテル基、アミノ基、スルホンアミド基等が挙げられる。なお、この連結基は更に置換基を有していてもよく、その導入可能な置換基としては、アルキル基、アルコキシ基、ハロゲン原子等が挙げられる。   The polymerization initiation site (Y) and the substrate binding site (Q) may be directly bonded or may be bonded via a linking group. Examples of the linking group include a linking group containing an atom selected from the group consisting of carbon, nitrogen, oxygen, and sulfur. Specifically, for example, a saturated carbon group, an aromatic group, an ester group, an amide group. Ureido group, ether group, amino group, sulfonamide group and the like. This linking group may further have a substituent, and examples of the substituent that can be introduced include an alkyl group, an alkoxy group, and a halogen atom.

基材結合部位(Q)と、重合開始部位(Y)と、を有する化合物(Q−Y)の具体例〔例示化合物1〜例示化合物16〕を、開裂部と共に以下に示すが、本発明はこれらに制限されるものではない。   Specific examples [Exemplary Compound 1 to Exemplified Compound 16] of Compound (QY) having a substrate binding site (Q) and a polymerization initiation site (Y) are shown below together with the cleavage portion. However, it is not limited to these.

Figure 2005275171
Figure 2005275171

Figure 2005275171
Figure 2005275171

Figure 2005275171
Figure 2005275171

本発明における光開裂化合物結合工程は、このような化合物(Q−Y)を基材に結合させる工程である。
例示された如き化合物(Q−Y)を基材表面に存在する官能基Zに結合させる方法としては、化合物(Q−Y)を、トルエン、ヘキサン、アセトンなどの適切な溶媒に溶解又は分散し、その溶液又は分散液を基材表面に塗布する方法、又は、溶液又は分散液中に基材を浸漬する方法などを適用すればよい。このとき、溶液中又は分散液の化合物(Q−Y)の濃度としては、0.01質量%〜30質量%が好ましく、特に0.1質量%〜15質量%であることが好ましい。接触させる場合の液温としては、0℃〜100℃が好ましい。接触時間としては、1秒〜50時間が好ましく、10秒〜10時間がより好ましい。
The photocleavable compound bonding step in the present invention is a step of bonding such a compound (QY) to a substrate.
As a method for bonding the compound (QY) as exemplified to the functional group Z present on the substrate surface, the compound (QY) is dissolved or dispersed in a suitable solvent such as toluene, hexane, acetone or the like. A method of applying the solution or dispersion to the surface of the substrate or a method of immersing the substrate in the solution or dispersion may be applied. At this time, the concentration of the compound (QY) in the solution or in the dispersion is preferably 0.01% by mass to 30% by mass, and particularly preferably 0.1% by mass to 15% by mass. As a liquid temperature in the case of making it contact, 0 to 100 degreeC is preferable. The contact time is preferably 1 second to 50 hours, and more preferably 10 seconds to 10 hours.

本発明において用いられる基材には、特に制限はなく、基材表面に、水酸基、カルボキシル基、アミノ基などの官能基(Z)を有する基材、或いは、コロナ処理、グロー処理、プラズマ処理などの表面処理により、水酸基、カルボキシル基などを発生させた基材などを適用できる。
また、一般的には、平板状の基材が用いられるが、必ずしも平板状の基材に限定されず、円筒形などの任意の形状の基材表面にも同様にグラフトポリマーを導入することができる。
There is no restriction | limiting in particular in the base material used in this invention, The base material which has functional groups (Z), such as a hydroxyl group, a carboxyl group, and an amino group, or a corona treatment, a glow process, a plasma treatment, etc. By this surface treatment, a substrate in which a hydroxyl group, a carboxyl group or the like is generated can be applied.
In general, a flat substrate is used, but the substrate is not necessarily limited to a flat substrate, and the graft polymer may be similarly introduced to the surface of a substrate having an arbitrary shape such as a cylindrical shape. it can.

本発明に好適な基材として、具体的には、ガラス、石英、ITO、シリコン等の表面水酸基を有する各種基材、コロナ処理、グロー処理、プラズマ処理などの表面処理により、表面に水酸基やカルボキシル基などを発生させたPET、ポリプロピレン、ポリイミド、エポキシ、アクリル、ウレタンなどのプラスチック基材等が挙げられる。
基材の厚みは、使用目的に応じて選択され、特に限定はないが、一般的には、10μm〜10cm程度である。
Specific examples of the base material suitable for the present invention include various base materials having surface hydroxyl groups such as glass, quartz, ITO, and silicon, and surface treatment such as corona treatment, glow treatment, plasma treatment, and the like. Examples thereof include plastic base materials such as PET, polypropylene, polyimide, epoxy, acrylic, and urethane in which groups are generated.
The thickness of the substrate is selected according to the purpose of use and is not particularly limited, but is generally about 10 μm to 10 cm.

その後、重合開始能失活工程において、グラフトポリマーを生成させたくない領域に沿ってパターン露光を行い、基材表面に結合している化合物(Q−Y)を光開裂させ、重合開始能を失活させる。   Then, in the polymerization initiating ability deactivation step, pattern exposure is performed along the region where the graft polymer is not desired to be generated, and the compound (QY) bonded to the substrate surface is photocleavaged to lose the polymerization initiating ability. Make it live.

そして、このようにして、重合開始可能領域と、重合開始能失活領域と、が形成された後、グラフトポリマー生成工程が行なわれる。
このグラフトポリマー生成工程では、重合開始可能領域と重合開始能失活領域とを有する基材を、所望とするグラフトポリマーの材料となる、ラジカル重合可能な不飽和化合物(例えば、親水性モノマーなど)を接触させた後、全面露光を行い、重合開始可能領域の重合開始基を活性化させてラジカルを発生させ、そのラジカルを起点として、ラジカル重合可能な不飽和化合物との間で、グラフト化反応を生起、進行させる。その結果、重合開始可能領域にのみ、グラフトポリマーが生成する。
In this way, after the polymerization startable region and the polymerization initiating ability deactivation region are formed, a graft polymer generation step is performed.
In this graft polymer formation step, a radically polymerizable unsaturated compound (for example, a hydrophilic monomer) is used as a material for the desired graft polymer, using a substrate having a polymerization startable region and a polymerization initiating ability deactivated region. Then, the entire surface is exposed to activate the polymerization initiating group in the polymerization startable region to generate a radical, and the graft reaction between the radical and the unsaturated compound capable of radical polymerization is started. Occur and progress. As a result, a graft polymer is formed only in the region where polymerization can be initiated.

なお、ラジカル重合可能な不飽和化合物を基材表面に接触させる方法としては、ラジカル重合可能な不飽和化合物が溶解された溶液又は分散された分散液を塗布する方法、溶液又は分散液に基材を浸漬する方法などがある。   In addition, as a method of bringing the unsaturated compound capable of radical polymerization into contact with the substrate surface, a method of applying a solution or a dispersed dispersion in which the unsaturated compound capable of radical polymerization is dissolved, the substrate in the solution or the dispersion liquid There is a method of soaking.

グラフトポリマー生成工程において用いられるラジカル重合可能な不飽和化合物としては、ラジカル重合性基を有する化合物であれば、如何なるものも用いることができるが、例えば、親水性モノマー、疎水性モノマー、マクロマー、オリゴマー、重合性不飽和基を有するポリマーなどが挙げられる。本発明においては、極性基である親水性基を有する、親水性ポリマー、親水性マクロマー、親水性モノマーなどが好ましい。
以下に、グラフトポリマー生成工程において好適に用いられる、ラジカル重合可能な不飽和化合物について具体的に例示する。
As the unsaturated compound capable of radical polymerization used in the graft polymer production step, any compound having a radical polymerizable group can be used. For example, hydrophilic monomers, hydrophobic monomers, macromers, oligomers can be used. And polymers having a polymerizable unsaturated group. In the present invention, hydrophilic polymers, hydrophilic macromers, hydrophilic monomers and the like having a hydrophilic group which is a polar group are preferred.
Specific examples of the unsaturated compound capable of radical polymerization that are preferably used in the graft polymer production step are shown below.

−重合性不飽和基を有する親水性ポリマー−
重合性不飽和基を有する親水性ポリマーとは、分子内に、ビニル基、アリル基、(メタ)アクリル基などのエチレン付加重合性不飽和基が導入されたラジカル重合性基含有親水性ポリマーを指す。このラジカル重合性基含有親水性ポリマーは、重合性基を主鎖末端及び/又は側鎖に有することを要し、その双方に重合性基を有することが好ましい。以下、重合性基を(主鎖末端及び/又は側鎖に)有する親水性ポリマーを、ラジカル重合性基含有親水性ポリマーと称する。
-Hydrophilic polymer having a polymerizable unsaturated group-
The hydrophilic polymer having a polymerizable unsaturated group is a radically polymerizable group-containing hydrophilic polymer in which an ethylene addition polymerizable unsaturated group such as a vinyl group, an allyl group or a (meth) acryl group is introduced in the molecule. Point to. This radical polymerizable group-containing hydrophilic polymer needs to have a polymerizable group at the main chain end and / or side chain, and preferably has a polymerizable group at both of them. Hereinafter, a hydrophilic polymer having a polymerizable group (at the main chain end and / or side chain) is referred to as a radical polymerizable group-containing hydrophilic polymer.

このようなラジカル重合性基含有親水性ポリマーは以下のようにして合成することができる。
合成方法としては、(a)親水性モノマーとエチレン付加重合性不飽和基を有するモノマーとを共重合する方法、(b)親水性モノマーと二重結合前駆体を有するモノマーとを共重合させ、次に塩基などの処理により二重結合を導入する方法、(c)親水性ポリマーの官能基とエチレン付加重合性不飽和基を有するモノマーとを反応させる方法、が挙げられる。これらの中でも、特に好ましいのは、合成適性の観点から、(c)親水性ポリマーの官能基とエチレン付加重合性不飽和基を有するモノマーとを反応させる方法である。
Such a radically polymerizable group-containing hydrophilic polymer can be synthesized as follows.
As a synthesis method, (a) a method of copolymerizing a hydrophilic monomer and a monomer having an ethylene addition polymerizable unsaturated group, (b) copolymerizing a hydrophilic monomer and a monomer having a double bond precursor, Next, a method of introducing a double bond by treatment with a base or the like, and (c) a method of reacting a functional group of a hydrophilic polymer with a monomer having an ethylene addition polymerizable unsaturated group. Among these, from the viewpoint of synthesis suitability, (c) a method of reacting a functional group of a hydrophilic polymer with a monomer having an ethylene addition polymerizable unsaturated group is particularly preferable.

上記(a)や(b)の方法において、ラジカル重合性基含有親水性ポリマーの合成に用いられる親水性モノマーとしては、(メタ)アクリル酸若しくはそのアルカリ金属塩及びアミン塩、イタコン酸若しくはそのアルカリ金属塩及びアミン塩、2−ヒドロキシエチル(メタ)アクリレート、(メタ)アクリルアミド、N−モノメチロール(メタ)アクリルアミド、N−ジメチロール(メタ)アクリルアミド、アリルアミン若しくはそのハロゲン化水素酸塩、3−ビニルプロピオン酸若しくはそのアルカリ金属塩及びアミン塩、ビニルスルホン酸若しくはそのアルカリ金属塩及びアミン塩、2−スルホエチル(メタ)アクリレート、ポリオキシエチレングリコールモノ(メタ)アクリレート、2−アクリルアミド−2−メチルプロパンスルホン酸、アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレートなどの、カルボキシル基、スルホン酸基、リン酸基、アミノ基若しくはそれらの塩、水酸基、アミド基及びエーテル基などの親水性基を有するモノマーが挙げられる。
また、(c)の方法で用いられる親水性ポリマーとしては、これらの親水性モノマーから選ばれる少なくとも一種を用いて得られる親水性ホモポリマー若しくはコポリマーが用いられる。
In the methods (a) and (b), the hydrophilic monomer used for the synthesis of the radical polymerizable group-containing hydrophilic polymer includes (meth) acrylic acid or its alkali metal salt and amine salt, itaconic acid or its alkali. Metal salt and amine salt, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, N-monomethylol (meth) acrylamide, N-dimethylol (meth) acrylamide, allylamine or its hydrohalide, 3-vinylpropion Acid or alkali metal salt and amine salt thereof, vinyl sulfonic acid or alkali metal salt and amine salt thereof, 2-sulfoethyl (meth) acrylate, polyoxyethylene glycol mono (meth) acrylate, 2-acrylamido-2-methylpropanesulfone Monomers having hydrophilic groups such as carboxyl groups, sulfonic acid groups, phosphoric acid groups, amino groups or salts thereof, hydroxyl groups, amide groups and ether groups, such as acid phosphooxypolyoxyethylene glycol mono (meth) acrylate Can be mentioned.
As the hydrophilic polymer used in the method (c), a hydrophilic homopolymer or copolymer obtained using at least one selected from these hydrophilic monomers is used.

(a)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性モノマーと共重合するエチレン付加重合性不飽和基を有するモノマーとしては、例えば、アリル基含有モノマーがあり、具体的には、アリル(メタ)アクリレート、2−アリルオキシエチルメタクリレートが挙げられる。   When the radically polymerizable group-containing hydrophilic polymer is synthesized by the method (a), examples of the monomer having an ethylene addition polymerizable unsaturated group that is copolymerized with the hydrophilic monomer include an allyl group-containing monomer. Examples include allyl (meth) acrylate and 2-allyloxyethyl methacrylate.

また、(b)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性モノマーと共重合する二重結合前駆体を有するモノマーとしては、2−(3−クロロ−1−オキソプロポキシ)エチルメタクリレー卜が挙げられる。   Further, when the radical polymerizable group-containing hydrophilic polymer is synthesized by the method (b), a monomer having a double bond precursor that is copolymerized with a hydrophilic monomer is 2- (3-chloro-1-oxopropoxy). ) Ethyl methacrylate.

更に、(c)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性ポリマー中のカルボキシル基、アミノ基若しくはそれらの塩と、水酸基及びエポキシ基などの官能基と、の反応を利用して不飽和基を導入することが好ましい。このために用いられる付加重合性不飽和基を有するモノマーとしては、(メタ)アクリル酸、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、2−イソシアナトエチル(メタ)アクリレートなど挙げられる。   Further, when the radical polymerizable group-containing hydrophilic polymer is synthesized by the method (c), a reaction between a carboxyl group, an amino group or a salt thereof in the hydrophilic polymer and a functional group such as a hydroxyl group and an epoxy group is performed. It is preferable to introduce an unsaturated group using it. Examples of the monomer having an addition polymerizable unsaturated group used for this purpose include (meth) acrylic acid, glycidyl (meth) acrylate, allyl glycidyl ether, and 2-isocyanatoethyl (meth) acrylate.

−親水性マクロモノマー−
本発明において用い得るマクロモノマーの製造方法は、例えば、平成1年9月20日にアイピーシー出版局発行の「マクロモノマーの化学と工業」(編集者 山下雄也)の第2章「マクロモノマーの合成」に各種の製法が提案されている。
本発明で用い得る親水性マクロモノマーで特に有用なものとしては、アクリル酸、メタクリル酸などのカルホキシル基含有のモノマーから誘導されるマクロモノマー、2−アクリルアミド−2−メチルプロパンスルホン酸、ビニルステレンスルホン酸、及びその塩のモノマーから誘導されるスルホン酸系マクロモノマー、(メタ)アクリルアミド、N−ビニルアセトアミド、N−ビニルホルムアミド、N−ビニルカルボン酸アミドモノマーから誘導されるアミド系マクロモノマー、ヒドロキシエチルメタクリレー卜、ヒドロキシエチルアクリレート、グリセロールモノメタクリレートなどの水酸基含有モノマーから誘導されるマクロモノマー、メトキシエチルアクリレート、メトキシポリエチレングリコールアクリレート、ポリエチレングリコールアクリレートなどのアルコキシ基若しくはエチレンオキシド基含有モノマーから誘導されるマクロモノマーである。また、ポリエチレングリコール鎖若しくはポリプロピレングリコール鎖を有するモノマーも本発明のマクロモノマーとして有用に使用することができる。
これらの親水性マクロモノマーのうち有用なものの分子量は、250〜10万の範囲で、特に好ましい範囲は400〜3万である。
-Hydrophilic macromonomer-
The method for producing a macromonomer that can be used in the present invention is described in, for example, Chapter 2 of “Macromonomer Chemistry and Industry” (Editor, Yuya Yamashita) published on September 20, 1999 by the IP Publishing Bureau. Various production methods have been proposed in “Synthesis”.
Particularly useful hydrophilic macromonomers that can be used in the present invention include macromonomers derived from carboxyl group-containing monomers such as acrylic acid and methacrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and vinylsterene sulfone. Sulfonic acid macromonomer derived from monomer of acid and its salt, (meth) acrylamide, N-vinylacetamide, N-vinylformamide, amide macromonomer derived from N-vinylcarboxylic amide monomer, hydroxyethyl Macromonomers derived from hydroxyl group-containing monomers such as methacrylic acid, hydroxyethyl acrylate, glycerol monomethacrylate, methoxyethyl acrylate, methoxypolyethylene glycol acrylate, polyethylene glycol Macromonomers derived from alkoxy group or ethylene oxide group-containing monomers such Lumpur acrylate. A monomer having a polyethylene glycol chain or a polypropylene glycol chain can also be usefully used as the macromonomer of the present invention.
Among these hydrophilic macromonomers, useful ones have a molecular weight in the range of 250 to 100,000, and a particularly preferable range is 400 to 30,000.

−親水性モノマー−
親水性モノマーとしては、アンモニウム、ホスホニウムなどの正の荷電を有するモノマー、若しくは、スルホン酸基、カルボキシル基、リン酸基、ホスホン酸基などの負の荷電を有するか負の荷電に解離しうる酸性基を有するモノマーが挙げられるが、その他にも、例えば、水酸基、アミド基、スルホンアミド基、アルコキシ基、シアノ基などの非イオン性の基を有する親水性モノマーを用いることもできる。
-Hydrophilic monomer-
The hydrophilic monomer may be a monomer having a positive charge such as ammonium or phosphonium, or an acid having a negative charge such as a sulfonic acid group, a carboxyl group, a phosphoric acid group, or a phosphonic acid group or capable of dissociating into a negative charge. Examples thereof include monomers having a group, but other hydrophilic monomers having a nonionic group such as a hydroxyl group, an amide group, a sulfonamide group, an alkoxy group, and a cyano group can also be used.

本発明において用いうる親水性モノマーの具体例としては、次のモノマーを挙げることができる。
例えば、(メタ)アクリル酸若しくはそのアルカリ金属塩及びアミン塩、イタコン酸若しくはそのアルカリ金属塩及びアミン塩、アリルアミン若しくはそのハロゲン化水素酸塩、3−ビニルプロピオン酸若しくはそのアルカリ金属塩及びアミン塩、ビニルスルホン酸若しくはそのアルカリ金属塩及びアミン塩、スチレンスルホン酸若しくはそのアルカリ金属塩及びアミン塩、2−スルホエチレン(メタ)アクリレート、3−スルホプロピレン(メタ)アクリレート若しくはそのアルカリ金属塩及びアミン塩、2−アクリルアミド−2−メチルプロパンスルホン酸若しくはそのアルカリ金属塩及びアミン塩、アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート若しくはそれらの塩、2−ジメチルアミノエチル(メタ)アクリレート若しくはそのハロゲン化水素酸塩、3−トリメチルアンモニウムプロピル(メタ)アクリレート、3−トリメチルアンモニウムプロピル(メタ)アクリルアミド、N,N,N−トリメチル−N−(2−ヒドロキシ−3−メタクリロイルオキシプロピル)アンモニウムクロライドなどを使用することができる。また、2−ヒドロキシエチル(メタ)アクリレート、(メタ)アクリルアミド、N−モノメチロール(メタ)アクリルアミド、N−ジメチロール(メタ)アクリルアミド、N−ビニルピロリドン、N−ビニルアセトアミド、ポリオキシエチレングリコールモノ(メタ)アクリレートなども有用である。
Specific examples of the hydrophilic monomer that can be used in the present invention include the following monomers.
For example, (meth) acrylic acid or its alkali metal salt and amine salt, itaconic acid or its alkali metal salt and amine salt, allylamine or its hydrohalide salt, 3-vinylpropionic acid or its alkali metal salt and amine salt, Vinyl sulfonic acid or its alkali metal salt and amine salt, styrene sulfonic acid or its alkali metal salt and amine salt, 2-sulfoethylene (meth) acrylate, 3-sulfopropylene (meth) acrylate or its alkali metal salt and amine salt, 2-acrylamido-2-methylpropanesulfonic acid or alkali metal salts and amine salts thereof, acid phosphooxypolyoxyethylene glycol mono (meth) acrylate or salts thereof, 2-dimethylaminoethyl (meta Acrylate or its hydrohalide, 3-trimethylammoniumpropyl (meth) acrylate, 3-trimethylammoniumpropyl (meth) acrylamide, N, N, N-trimethyl-N- (2-hydroxy-3-methacryloyloxypropyl) Ammonium chloride and the like can be used. In addition, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, N-monomethylol (meth) acrylamide, N-dimethylol (meth) acrylamide, N-vinylpyrrolidone, N-vinylacetamide, polyoxyethylene glycol mono (meth) ) Acrylate is also useful.

−溶媒−
上述のラジカル重合可能な不飽和化合物を溶解、分散するための溶媒としては、該化合物や必要に応じて添加される添加剤が溶解可能ならば特に制限はない。
例えば、親水性モノマー等の親水性の化合物が適用される場合であれば、水、水溶性溶剤などの水性溶剤が好ましく、これらの混合物や、溶剤に更に界面活性剤を添加したものなどが好ましい。水溶性溶剤は、水と任意の割合で混和しうる溶剤を言い、そのような水溶性溶剤としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリンの如きアルコール系溶剤、酢酸の如き酸、アセトンの如きケトン系溶剤、ホルムアミドの如きアミド系溶剤などが挙げられる。
また、疎水性モノマー等の疎水性の化合物が適用される場合であれば、メタノール、エタノール、1−メトキシ−2−プロパノールの如きアルコール系の溶剤、メチルエチルケトンの如きケトン系の溶剤、トルエンの如き芳香族炭化水素系の溶剤などが好ましい。
-Solvent-
The solvent for dissolving and dispersing the above-mentioned radically polymerizable unsaturated compound is not particularly limited as long as the compound and additives added as necessary can be dissolved.
For example, when a hydrophilic compound such as a hydrophilic monomer is applied, an aqueous solvent such as water or a water-soluble solvent is preferable, and a mixture thereof or a solvent in which a surfactant is further added is preferable. . The water-soluble solvent refers to a solvent miscible with water in an arbitrary ratio, and examples of such a water-soluble solvent include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, and glycerin, acids such as acetic acid, Examples include ketone solvents such as acetone and amide solvents such as formamide.
When hydrophobic compounds such as hydrophobic monomers are applied, alcohol solvents such as methanol, ethanol, 1-methoxy-2-propanol, ketone solvents such as methyl ethyl ketone, and aromatics such as toluene. A group hydrocarbon solvent is preferred.

本発明のパターン形成方法の重合開始能失活工程におけるパターン露光、及びグラフトポリマー生成工程における全面露光に用いうる露光方法には特に制限はなく、前記重合開始部位(Y)において開裂を生じさせるエネルギーを付与できる露光であれば、紫外線による露光でも、可視光による露光でもよい。また、重合開始能失活工程におけるパターン露光、及び、グラフトポリマー生成工程における全面露光は、同じ露光条件で行なわれてもよいし、異なる露光条件で行なわれてもよい。
露光に用いられる光源としては、紫外光、深紫外光、可視光、レーザー光等が挙げられ、具体的には、紫外光、i線、g線、KrF、ArFなどのエキシマレーザーが用いられる。中でも、好ましくは、i線、g線、エキシマレーザーである。
There is no particular limitation on the exposure method that can be used for the pattern exposure in the polymerization inactivation ability deactivation step of the pattern formation method of the present invention and the overall exposure in the graft polymer generation step, and the energy that causes cleavage at the polymerization start site (Y). As long as exposure is possible, exposure with ultraviolet rays or exposure with visible light may be used. Moreover, the pattern exposure in the polymerization initiating ability deactivation step and the entire surface exposure in the graft polymer generation step may be performed under the same exposure conditions or different exposure conditions.
Examples of the light source used for exposure include ultraviolet light, deep ultraviolet light, visible light, and laser light. Specifically, excimer lasers such as ultraviolet light, i-line, g-line, KrF, and ArF are used. Among these, i-line, g-line, and excimer laser are preferable.

本発明により形成されるパターンの解像度は露光条件に左右される。
本発明のパターン形成方法を用いれば、高解像度のパターン形成が可能であり、高精細のパターン露光を施すことにより、露光に応じた高精細パターンが形成される。高精細パターン形成のための露光方法としては、光学系を用いた光ビーム走査露光、マスクを用いた露光などが挙げられ、所望のパターンの解像度に応じた露光方法をとればよい。
高精細パターン露光としては、具体的には、i線ステッパー、g線ステッパー、KrFステッパー、ArFステッパーのようなステッパー露光などが挙げられる。
The resolution of the pattern formed by the present invention depends on the exposure conditions.
By using the pattern forming method of the present invention, a high-resolution pattern can be formed, and a high-definition pattern corresponding to the exposure can be formed by performing high-definition pattern exposure. Examples of the exposure method for forming a high-definition pattern include light beam scanning exposure using an optical system, exposure using a mask, and the like, and an exposure method corresponding to the resolution of a desired pattern may be taken.
Specific examples of the high-definition pattern exposure include stepper exposure such as i-line stepper, g-line stepper, KrF stepper, and ArF stepper.

このように、本発明のパターン形成方法により、表面にグラフトポリマーの生成領域と非生成領域とからなるパターンが形成された基材は、露光後、溶剤浸漬や溶剤洗浄などの処理を行って、残存するホモポリマーを除去して、精製する。具体的には、水やアセトンによる洗浄、乾燥などが挙げられる。ホモポリマーの除去性の観点からは、超音波などの手段を採ることが好ましい。精製後の基材は、その表面に残存するホモポリマーが完全の除去され、基材と強固に結合したパターン状のグラフトポリマーのみが存在することになる。   Thus, by the pattern formation method of the present invention, the substrate on which the pattern composed of the graft polymer generation region and the non-generation region is formed on the surface is subjected to a treatment such as solvent immersion or solvent washing after exposure, The remaining homopolymer is removed and purified. Specifically, washing with water or acetone, drying and the like can be mentioned. From the viewpoint of homopolymer removability, it is preferable to adopt means such as ultrasonic waves. The purified base material has the homopolymer remaining on the surface completely removed, and only the patterned graft polymer firmly bonded to the base material is present.

これらのことから、本発明のパターン形成方法によれば、露光の解像度に応じた微細なパターンが容易に形成されることから、その応用範囲は広い。   For these reasons, according to the pattern forming method of the present invention, a fine pattern corresponding to the exposure resolution can be easily formed, so that the application range is wide.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(合成例1:化合物Aの合成)
前記例示化合物1の合成は、以下の2つのステップにより行われる。それぞれのステップのスキームを挙げて説明する。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
(Synthesis Example 1: Synthesis of Compound A)
The exemplary compound 1 is synthesized by the following two steps. A description will be given of the scheme of each step.

1.ステップ1(化合物aの合成)
DMAc50gとTHF50gの混合溶媒に1−ヒドロキシシクロヘキシルフェニルケトン24.5g(0.12mol)を溶かし、氷浴下でNaH(60% in oil)7.2g(0.18mol)を徐々に加えた。そこに、11−ブロモ−1−ウンデセン(95%)44.2g(0.18mol)を滴下し、室温で反応を行った。1時間で反応が終了した。反応溶液を氷水中に投入し、酢酸エチルで抽出し、黄色溶液状の化合物aを含む混合物が得られた。この混合物37gをアセトニトリル370mlに溶かし、水7.4gを加えた。p−トルエンスルホン酸一水和物1.85gを加え、室温で20分間撹拌した。酢酸エチルで有機相を抽出し、溶媒を留去した。カラムクロマトグラフィー(充填剤:ワコーゲルC−200、展開溶媒:酢酸エチル/ヘキサン=1/80)で化合物aを単離した。
合成スキームを以下に示す。
1. Step 1 (Synthesis of Compound a)
24.5 g (0.12 mol) of 1-hydroxycyclohexyl phenyl ketone was dissolved in a mixed solvent of DMAc 50 g and THF 50 g, and 7.2 g (0.18 mol) of NaH (60% in oil) was gradually added in an ice bath. Thereto, 44.2 g (0.18 mol) of 11-bromo-1-undecene (95%) was added dropwise and reacted at room temperature. The reaction was completed in 1 hour. The reaction solution was poured into ice water and extracted with ethyl acetate to obtain a mixture containing Compound a in the form of a yellow solution. 37 g of this mixture was dissolved in 370 ml of acetonitrile, and 7.4 g of water was added. 1.85 g of p-toluenesulfonic acid monohydrate was added and stirred at room temperature for 20 minutes. The organic phase was extracted with ethyl acetate and the solvent was distilled off. Compound a was isolated by column chromatography (filler: Wakogel C-200, developing solvent: ethyl acetate / hexane = 1/80).
A synthesis scheme is shown below.

Figure 2005275171
Figure 2005275171

1H NMR(300MHz CDCl3
δ=1.2−1.8(mb,24H),2.0(q,2H),3.2(t,J=6.6,2H),4.9−5.0(m,2H)5.8(ddt,J=24.4,J=10.5,J=6.6,1H.),7.4(t,J=7.4,2H),7.5(t,J=7.4,1H),8.3(d,1H)
1 H NMR (300 MHz CDCl 3 )
δ = 1.2-1.8 (mb, 24H), 2.0 (q, 2H), 3.2 (t, J = 6.6, 2H), 4.9-5.0 (m, 2H) ) 5.8 (ddt, J = 24.4, J = 10.5, J = 6.6, 1H . ), 7.4 (t, J = 7.4, 2H), 7.5 (t, J = 7.4, 1H), 8.3 (d, 1H)

2.ステップ2(化合物aのハイドロシリル化による化合物Aの合成)
化合物a5.0g(0.014mol)にSpeir catalyst(H2PtCl・6H2O/2−PrOH、0.1mol/l)を2滴加え、氷浴下でトリクロロシラン2.8g(0.021mol)を滴下して撹拌した。更に1時間後にトリクロロシラン1.6g(0.012mol)を滴下してから室温に戻した。3時間後に反応が終了した。反応終了後、未反応のトリクロロシランを減圧留去し、化合物Aを得た。
合成スキームを以下に示す。
2. Step 2 (Synthesis of Compound A by Hydrosilylation of Compound a)
Compound 5.0 g of (0.014 mol) in Speir catalyst (H 2 PtCl 6 · 6H 2 O / 2-PrOH, 0.1mol / l) and 2 drops of an ice bath trichlorosilane 2.8 g (0.021 mol ) Was added dropwise and stirred. After 1 hour, 1.6 g (0.012 mol) of trichlorosilane was added dropwise, and the temperature was returned to room temperature. The reaction was complete after 3 hours. After completion of the reaction, unreacted trichlorosilane was distilled off under reduced pressure to obtain Compound A.
A synthesis scheme is shown below.

Figure 2005275171
Figure 2005275171

1H NMR(300MHz CDCl3
δ=1.2−1.8(m,30H),3.2(t,J=6.3,2H),7.3−7.7(m,3H),8.3(d,2H)
1 H NMR (300 MHz CDCl 3 )
δ = 1.2−1.8 (m, 30H), 3.2 (t, J = 6.3, 2H), 7.3-7.7 (m, 3H), 8.3 (d, 2H) )

(合成例2:重合性基を有する親水性ポリマーPの合成)
ポリアクリル酸(平均分子量25,000)18gをDMAc(ジメチルアセトアミド)300gに溶解し、そこに、ハイドロキノン0.41gと2−メタクリロイルオキシエチルイソシアネート19.4gとジブチルチンジラウレート0.25gとを添加し、65℃で4時間反応させた。得られたポリマーの酸価は7.02meq/gであった。1mol/lの水酸化ナトリウム水溶液でカルボキシル基を中和し、酢酸エチルに加えポリマーを沈殿させ、よく洗浄し、重合性基を有する親水性ポリマーPを得た。
(Synthesis Example 2: Synthesis of hydrophilic polymer P having a polymerizable group)
18 g of polyacrylic acid (average molecular weight 25,000) is dissolved in 300 g of DMAc (dimethylacetamide), and 0.41 g of hydroquinone, 19.4 g of 2-methacryloyloxyethyl isocyanate and 0.25 g of dibutyltin dilaurate are added thereto. , Reacted at 65 ° C. for 4 hours. The acid value of the obtained polymer was 7.02 meq / g. The carboxyl group was neutralized with a 1 mol / l sodium hydroxide aqueous solution, the polymer was precipitated in addition to ethyl acetate, and washed well to obtain a hydrophilic polymer P having a polymerizable group.

〔実施例1〕
(光開裂化合物結合工程)
ガラス基板(日本板硝子(株)製)を、終夜、ピランハ液(硫酸/30%過酸化水素=1/1vol混合液)に浸漬した後、純水で洗浄した。その基板を、窒素置換したセパラブルフラスコ中に入れ12.5質量%の化合物Aの脱水トルエン溶液に1時間浸漬した。取り出し後、トルエン、アセトン、純水で順に洗浄した。このようにして得られた化合物Aが結合した基板を基板A1とする。
[Example 1]
(Photocleavable compound binding step)
A glass substrate (manufactured by Nippon Sheet Glass Co., Ltd.) was immersed in a piranha solution (sulfuric acid / 30% hydrogen peroxide = 1/1 vol mixed solution) overnight and then washed with pure water. The substrate was placed in a separable flask purged with nitrogen and immersed in a dehydrated toluene solution of 12.5% by mass of Compound A for 1 hour. After taking out, it wash | cleaned in order with toluene, acetone, and a pure water. The substrate to which compound A thus obtained is bonded is referred to as substrate A1.

(重合開始能失活工程)
基材A1の片面に、パターンマスク(NC−1、凸版印刷社製)を密着させるようにクリップで留め、露光機(UVX−02516S1LP01、ウシオ電機社製)で1分間パターン露光を行った。このように処理を施した基板を基板B1とする。
(Polymerization initiation ability deactivation process)
A pattern mask (NC-1, manufactured by Toppan Printing Co., Ltd.) was clipped to one side of the substrate A1, and pattern exposure was performed for 1 minute with an exposure machine (UVX-02516S1LP01, manufactured by USHIO INC.). The substrate thus treated is referred to as a substrate B1.

(グラフトポリマー生成工程)
親水性ポリマーP(0.5g)を純水4.0gとアセトニトリル2.0gとの混合溶媒に溶かし、グラフトポリマー生成用塗布液を調製した。そのグラフト形成層用塗布液を、スピンコーターで基板B1のパターン露光面に塗布した。スピンコーターは、まず300rpmで5秒間、その後1000rpmで20秒間回転させた。塗布後の基板B1を、100℃で2分間乾燥した。乾燥後のグラフトポリマー生成層の膜厚は2μmであった。
グラフトポリマー生成層を有する基板上を、露光機(UVX−02516S1LP01、ウシオ電機社製)で5分間全面露光を行った。その後、露光面を純水で充分洗浄した。
以上のようにして、パターンC1を形成した。
(Graft polymer production process)
Hydrophilic polymer P (0.5 g) was dissolved in a mixed solvent of 4.0 g of pure water and 2.0 g of acetonitrile to prepare a coating solution for producing a graft polymer. The graft forming layer coating solution was applied to the pattern exposure surface of the substrate B1 by a spin coater. The spin coater was first rotated at 300 rpm for 5 seconds and then at 1000 rpm for 20 seconds. The coated substrate B1 was dried at 100 ° C. for 2 minutes. The thickness of the graft polymer production layer after drying was 2 μm.
The entire surface of the substrate having the graft polymer generation layer was exposed with an exposure machine (UVX-02516S1LP01, manufactured by USHIO INC.) For 5 minutes. Thereafter, the exposed surface was sufficiently washed with pure water.
As described above, a pattern C1 was formed.

〔実施例2〕
(光開裂化合物結合工程)
片面をコロナ処理した厚さ188μmのPET(二軸延伸ポリエチレンテレフタレートフィルム)を5cm×5cmのサイズに切り、その基板を、窒素置換したセパラブルフラスコ中に入れ、12.5質量%の化合物Aの脱水トルエン溶液に1時間浸漬した。取り出し後、トルエン、アセトン、純水で順に洗浄した。このようにして得られた化合物Aが結合した基板を基板A2とする。
[Example 2]
(Photocleavable compound binding step)
A single-side corona-treated PET (biaxially stretched polyethylene terephthalate film) having a thickness of 188 μm is cut into a size of 5 cm × 5 cm, and the substrate is placed in a separable flask purged with nitrogen to contain 12.5% by mass of Compound A. It was immersed in a dehydrated toluene solution for 1 hour. After taking out, it wash | cleaned in order with toluene, acetone, and a pure water. The substrate to which compound A thus obtained is bonded is referred to as substrate A2.

(重合開始能失活工程)
基材A2の化合物Aが結合した面に、実施例1と同様にして、パターン露光を行った。このように処理を施した基板を基板B2とする。
(Polymerization initiation ability deactivation process)
Pattern exposure was performed on the surface of Compound A2 on which Compound A was bonded in the same manner as in Example 1. The substrate thus treated is referred to as substrate B2.

(グラフトポリマー生成工程)
基板B2のパターン露光面に、アクリル酸の20質量%の水溶液1.0mlに垂らし、その上に、石英ガラスをかぶせることで、PET基板(基板A2)と石英板との間にアクリル酸の水溶液を挟み込んだ。
その後、実施例1と同様にして、全面露光を行った。その後、露光面を純水で充分洗浄した。
以上のようにして、パターンC2を形成した。
(Graft polymer production process)
Acrylic acid aqueous solution is placed between the PET substrate (substrate A2) and the quartz plate by suspending it in 1.0 ml of a 20% by mass aqueous solution of acrylic acid on the pattern exposure surface of the substrate B2, and placing quartz glass thereon. Was sandwiched.
Thereafter, the entire surface exposure was performed in the same manner as in Example 1. Thereafter, the exposed surface was sufficiently washed with pure water.
As described above, the pattern C2 was formed.

<パターンの確認及び評価>
実施例1及び2により得られたパターンC1及びC2について、下記確認方法(1)及び(2)によりパターンの確認を行った。
<Confirmation and evaluation of pattern>
About pattern C1 and C2 obtained by Example 1 and 2, the pattern was confirmed with the following confirmation method (1) and (2).

〔確認方法(1)〕
パターンC1及びC2を、原子間顕微鏡AFM(ナノピクス1000,セイコーインスツルメンツ社製、DFMカンチレバー使用)で観察した。解像できた最小のラインアンドスペースの線幅を表1示す。
〔確認方法(2)〕
0.1質量%メチレンブルー水溶液に、パターンC1及びC2を有する基板を5分間浸漬し、純水で洗浄した。その後、光学顕微鏡で各パターンを確認した。解像できた最小のラインアンドスペースの線幅を表1示す。
[Confirmation method (1)]
The patterns C1 and C2 were observed with an atomic microscope AFM (Nanopics 1000, manufactured by Seiko Instruments Inc., using a DFM cantilever). Table 1 shows the minimum line-and-space line width that could be resolved.
[Confirmation method (2)]
The substrate having the patterns C1 and C2 was immersed in a 0.1% by mass methylene blue aqueous solution for 5 minutes and washed with pure water. Then, each pattern was confirmed with the optical microscope. Table 1 shows the minimum line-and-space line width that could be resolved.

Figure 2005275171
Figure 2005275171

表1に示されるように、本発明のパターン形成方法によりパターン形成を行った実施例1及び2では、いずれにおいてもラインアンドスペースが10μm以下の微細なグラフトポリマーパターンが容易に形成されたことが確認された。   As shown in Table 1, in Examples 1 and 2 in which pattern formation was performed by the pattern formation method of the present invention, a fine graft polymer pattern having a line and space of 10 μm or less was easily formed in both cases. confirmed.

本発明のパターン形成方法における各工程の概略を示す概念図である。It is a conceptual diagram which shows the outline of each process in the pattern formation method of this invention.

Claims (2)

光開裂によりラジカル重合を開始しうる光重合開始部位と基材結合部位とを有する化合物を基材に結合させる工程と、
パターン露光を行い、露光領域の該光重合開始部位を失活させる工程と、
前記基材上にラジカル重合可能な不飽和化合物を接触させた後、全面露光を行い、前記パターン露光時における非露光領域に残存した該光重合開始部位に光開裂を生起させ、ラジカル重合を開始させることでグラフトポリマーを生成させる工程と、
をこの順に行うことを特徴とするパターン形成方法。
Binding a compound having a photopolymerization initiation site capable of initiating radical polymerization by photocleavage and a substrate binding site to the substrate;
Performing pattern exposure and deactivating the photopolymerization initiation site in the exposed area;
After contacting an unsaturated compound capable of radical polymerization on the substrate, the whole surface is exposed, photocleavage occurs at the photopolymerization start site remaining in the non-exposed area at the time of pattern exposure, and radical polymerization is started. A step of generating a graft polymer by,
Are formed in this order.
前記重合開始部位が、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合からなる群より選択されるいずれかを含むことを特徴とする請求項1に記載のパターン形成方法。   The polymerization initiation site includes any one selected from the group consisting of C—C bond, C—N bond, C—O bond, C—Cl bond, N—O bond, and S—N bond. The pattern forming method according to claim 1.
JP2004090651A 2004-03-25 2004-03-25 Pattern formation method Expired - Fee Related JP4287776B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004090651A JP4287776B2 (en) 2004-03-25 2004-03-25 Pattern formation method
EP20050006375 EP1581031B1 (en) 2004-03-25 2005-03-23 Methods of forming a pattern and a conductive pattern
DE200560023925 DE602005023925D1 (en) 2004-03-25 2005-03-23 Method for producing a pattern and a conductive pattern
US11/088,769 US20050214550A1 (en) 2004-03-25 2005-03-25 Method of forming a pattern, conductive patterned material, and method of forming a conductive pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090651A JP4287776B2 (en) 2004-03-25 2004-03-25 Pattern formation method

Publications (2)

Publication Number Publication Date
JP2005275171A true JP2005275171A (en) 2005-10-06
JP4287776B2 JP4287776B2 (en) 2009-07-01

Family

ID=35174888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090651A Expired - Fee Related JP4287776B2 (en) 2004-03-25 2004-03-25 Pattern formation method

Country Status (1)

Country Link
JP (1) JP4287776B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003160A (en) * 2006-06-20 2008-01-10 Fujifilm Corp Pattern forming method
JP2008004304A (en) * 2006-06-20 2008-01-10 Fujifilm Corp Conductive pattern formation method, and wire grid polarizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003160A (en) * 2006-06-20 2008-01-10 Fujifilm Corp Pattern forming method
JP2008004304A (en) * 2006-06-20 2008-01-10 Fujifilm Corp Conductive pattern formation method, and wire grid polarizer
JP4709079B2 (en) * 2006-06-20 2011-06-22 富士フイルム株式会社 Pattern formation method

Also Published As

Publication number Publication date
JP4287776B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
EP0402718B1 (en) Control of cell arrangement
WO2010026944A1 (en) Polymer film and laminate
JP3172179B2 (en) Surface coating of polymer material
JP2011078316A (en) Support for culturing cell and method for producing the same
JPH0751061B2 (en) Manufacturing method of cell array control tool
JP2011079877A (en) Polymeric ultrathin film and polymeric ultrathin film pattern, and composition for patterning
JP2021504114A (en) Methods for Producing Flat Polymer Stacks
JP2009066986A (en) Surface functional material and its manufacturing method
JP4287776B2 (en) Pattern formation method
JP4244327B2 (en) Surface graft material and graft pattern forming method using the same
US5464538A (en) Reverse osmosis membrane
JP4502855B2 (en) Pattern formation method
JP2609073B2 (en) Cell arrangement control tool and cell arrangement control method
JP4709079B2 (en) Pattern formation method
JP7389910B2 (en) Method for nanostructuring substrates
JP4986848B2 (en) Graft pattern forming method, graft pattern material obtained thereby, and lithography method using the same
JP2007106966A (en) Super-hydrophilic base material and method for producing the same
JP2007161857A (en) Method for modifying substrate surface
JP2018009086A (en) Polymer, photosensitive resin composition and method for producing cell culture substrate
JP4328252B2 (en) Conductive pattern forming method
JP2000072904A (en) Surface treatment method using active energy ray
JP4328251B2 (en) Conductive pattern forming method
JP2010042670A (en) Polymer super-thin film
JP4359544B2 (en) Surface modification method
JP4216751B2 (en) Conductive pattern forming method and conductive pattern material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees