JP2005274416A - Gas chromatograph - Google Patents

Gas chromatograph Download PDF

Info

Publication number
JP2005274416A
JP2005274416A JP2004089254A JP2004089254A JP2005274416A JP 2005274416 A JP2005274416 A JP 2005274416A JP 2004089254 A JP2004089254 A JP 2004089254A JP 2004089254 A JP2004089254 A JP 2004089254A JP 2005274416 A JP2005274416 A JP 2005274416A
Authority
JP
Japan
Prior art keywords
pressure
branch point
detector
gas chromatograph
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004089254A
Other languages
Japanese (ja)
Inventor
Masanao Furukawa
雅直 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004089254A priority Critical patent/JP2005274416A/en
Publication of JP2005274416A publication Critical patent/JP2005274416A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas chromatograph capable of saving time and labor, and efficiently setting the pressure of a carrier gas. <P>SOLUTION: The gas chromatograph is constituted, in such a way that the carrier gas passed through a column system 1 is branched to a main detector 6 and a sub-detector 8 at a branch point 7, and is provided with pressure control parts 4a and 4b each for restricting the downstream-side pressure of a column, immediately in front of the branch point 7 and the pressure of the branch point 7. The quantity of flow of the carrier gas through each channel, before and after the branch point 7, is computed and displayed by a prescribed computational expression on the basis of pressure setting values inputted to the pressure-control parts 4a and 4b by an operator. Since the quantity of flow through each channel is immediately accordingly displayed, when the settings of the pressure control parts 4a and 4b are changed by the operator by this constitution, the operator can speedily set the pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば食品や香料中の匂い成分を分析するガスクロマトグラフに関する。   The present invention relates to a gas chromatograph that analyzes, for example, odor components in foods and fragrances.

図2に、匂い成分分析用に構成された従来のガスクロマトグラフの流路構成の一例を示す。
同図において、キャリアガスボンベ5から供給されるキャリアガスが、圧力制御部4aで所定圧力に調圧され、試料導入部3を通り、カラム系1を経て主検出器6(例えば、質量分析装置)に流れるように流路が構成されている。主検出器6の前段に設けた分岐点7でこの流路から分かれる分岐路には副検出器8(例えば、匂い嗅ぎ装置)が設けられる。
ここで、カラム系1は、最も簡単な場合は単一のカラムで構成されるが、多くの場合は複数のカラムとこれらを切り換える切り換え機構(図示しない)で構成され、さらには、中間段階での分離状況を見るためのモニタ検出器(図示しない)を含む場合もある。
なお、匂い嗅ぎ装置とは、別名スニファー、またはスニフィングポートとも呼ばれ、オペレータ自身の嗅覚により匂い成分を検知するための漏斗状の器具である。
FIG. 2 shows an example of a flow path configuration of a conventional gas chromatograph configured for odor component analysis.
In the figure, a carrier gas supplied from a carrier gas cylinder 5 is adjusted to a predetermined pressure by a pressure control unit 4a, passes through a sample introduction unit 3, passes through a column system 1, and is a main detector 6 (for example, a mass spectrometer). The flow path is configured to flow through A sub-detector 8 (for example, a sniffing device) is provided on a branch path that is separated from this flow path at a branch point 7 provided in the front stage of the main detector 6.
In this case, the column system 1 is composed of a single column in the simplest case, but in many cases is composed of a plurality of columns and a switching mechanism (not shown) for switching them, and further, in an intermediate stage. In some cases, a monitor detector (not shown) is used for viewing the separation status.
The scent sniffing device is also called a sniffer or sniffing port, and is a funnel-shaped instrument for detecting an odor component by an operator's own sense of smell.

上記のように匂い成分分析用に構成された装置による分析は以下のように行われる。
一般のガスクロマトグラフ質量分析装置と同様に、試料導入部3から試料を導入し、カラム系1で目的成分を前後の夾雑成分から分離し、主検出器6(質量分析装置)において検出し定性或いは定量を行うが、これと並行してオペレータが副検出器8(匂い嗅ぎ装置)を用いて自身の嗅覚により目的成分を検知する。
Analysis by the apparatus configured for odor component analysis as described above is performed as follows.
Similar to a general gas chromatograph mass spectrometer, a sample is introduced from the sample introduction unit 3, the target component is separated from the front and rear contaminant components by the column system 1, and is detected by the main detector 6 (mass spectrometer) to be qualitative or In parallel with this, the operator detects the target component by using his / her own olfaction using the sub-detector 8 (smell sniffer).

カラム系1が複数のカラムから成る場合、これらを切り換えるには、流路をバルブ等で直接切り換えずに、適切に圧力を調整したガス(メークアップガスと呼ぶ)を流路の分岐点付近に流して圧力バランスを変えることにより流れを切り換えるDeansスイッチングと呼ばれる方式を用いる。この方式により分析途中でカラムを切り換える分析法はマルチディメンジョンガスクロマトグラフィとも呼ばれ、特許文献1に従来技術として説明されている。図2では、最も簡単な場合として、カラム系1が単一のカラムで構成される場合を例示してあるが、匂い成分分析用の装置としては、上記のようなマルチディメンジョンガスクロマトグラフとして構成されるケースが多い。   When the column system 1 is composed of a plurality of columns, in order to switch between them, a gas whose pressure is appropriately adjusted (referred to as a makeup gas) is placed near the branch point of the flow path without directly switching the flow path with a valve or the like. A method called Deans switching is used in which the flow is switched by changing the pressure balance. An analysis method for switching a column during analysis by this method is also called multi-dimension gas chromatography, and is described in Patent Document 1 as a prior art. In FIG. 2, the case where the column system 1 is composed of a single column is illustrated as the simplest case, but the apparatus for analyzing odor components is configured as a multi-dimension gas chromatograph as described above. There are many cases.

特開平11−311620号公報Japanese Patent Laid-Open No. 11-31620

上記従来装置のようにキャリアガス流路に分岐路を持つガスクロマトグラフにおいて、分岐された各流路の流量を適切に設定するには、各流路の下流で流量計を用いて実際に流量を測定しながら、設定圧力を少しずつ変え、カットアンドトライで適正値を求める必要があった。これは煩雑で手間と時間の掛かる作業であり、特に、カラム系がマルチディメンジョンガスクロマトグラフとして構成されている場合は、分岐路の数も多くなるので、その煩雑さは甚だしいものであった。
本発明は、このような事情に鑑みてなされたものであり、手間と時間を省き能率良くキャリアガスの圧力設定を行うことのできるガスクロマトグラフを提供することを目的とする。
In a gas chromatograph having a branch path in the carrier gas flow path as in the above-described conventional apparatus, in order to appropriately set the flow rate of each branched flow path, the flow rate is actually measured using a flow meter downstream of each flow path. While measuring, it was necessary to change the set pressure little by little and obtain an appropriate value by cut and try. This is a cumbersome and time-consuming work, and particularly when the column system is configured as a multi-dimension gas chromatograph, the number of branch paths increases, and the complexity is considerable.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a gas chromatograph capable of efficiently setting a carrier gas pressure while saving time and effort.

本発明は、上記課題を解決するために、カラム系を通ったキャリアガスが分岐点で2つの検出器に分流するように構成されたガスクロマトグラフにおいて、前記分岐点直前のカラムの上流側の圧力と前記分岐点の圧力とをそれぞれ規制する圧力制御部を設け、該圧力制御部にオペレータが入力する圧力設定値に基づいて所定計算式により前記分岐点前後の各流路のキャリアガス流量を算出し表示するように構成した。   In order to solve the above-mentioned problems, the present invention provides a gas chromatograph configured such that a carrier gas that has passed through a column system is divided into two detectors at a branch point, and a pressure upstream of the column immediately before the branch point. And a pressure control unit that regulates the pressure at the branch point respectively, and the carrier gas flow rate of each flow path before and after the branch point is calculated by a predetermined calculation formula based on the pressure setting value input by the operator to the pressure control unit And configured to display.

本発明は、上記のように構成されているので、オペレータが圧力制御部の設定を変えると直ちにそれに応じて各分岐路の流量が表示されるので、オペレータは煩わしい流量測定を行うことなく、所望の流量となるように圧力制御部の設定を迅速に行うことができる。   Since the present invention is configured as described above, when the operator changes the setting of the pressure control unit, the flow rate of each branch path is displayed accordingly, so that the operator can perform the desired measurement without performing cumbersome flow rate measurement. The pressure control unit can be quickly set so that the flow rate is as follows.

図1に本発明の一実施形態を示す。同図において、図2と同一の構成要素には同符号を付してあるので再度の説明を省く。
本実施形態が図2に示す従来例と流路構成上で相違する点は、圧力制御部4bにより圧力P1に調圧されたキャリアガスと同種のガスが分岐点7に供給されていることである。これにより分岐点7における圧力は、たとえキャリアガス流量が変わっても強制的にP1に維持される。言い換えれば、分岐点7における圧力は圧力制御部4bにより規制される。
カラム系1が単一のカラムで構成される場合、分岐点7の直前のカラムの上流側の圧力も、同様の意味で圧力制御部4aによって規制され、圧力P0に維持される(抵抗が殆ど無い試料導入部3前後の圧力は同じP0と見なすことができる)。
FIG. 1 shows an embodiment of the present invention. In the figure, the same components as those in FIG.
The present embodiment differs from the conventional example shown in FIG. 2 in the flow path configuration in that the same type of gas as the carrier gas adjusted to the pressure P1 by the pressure control unit 4b is supplied to the branch point 7. is there. As a result, the pressure at the branch point 7 is forcibly maintained at P1 even if the carrier gas flow rate changes. In other words, the pressure at the branch point 7 is regulated by the pressure control unit 4b.
When the column system 1 is composed of a single column, the pressure on the upstream side of the column immediately before the branch point 7 is also regulated by the pressure control unit 4a in the same sense and maintained at the pressure P0 (the resistance is almost not increased). The pressure before and after the sample introduction part 3 without it can be regarded as the same P0).

この状態で、分岐点7前後の各流路のキャリアガス流量は、ポアズイユ式から導かれる次式で表すことができる。
F0=K0×(P0+2P1)×P0 …………………(1)
F1=K1×(P1+2Pa)×P1 …………………(2)
F2=K2×(P1+2Pv)×P1 …………………(3)
ここで
F0:分岐点7直前のカラムに流れる流量
F1:副検出器8に流れる流量
F2:主検出器6に流れる流量
Pa:大気圧
Pv:主検出器6(質量分析装置)における真空圧
K0、K1、K2:各流路の抵抗、温度等で定まる係数である。
In this state, the carrier gas flow rate of each flow path around the branch point 7 can be expressed by the following equation derived from the Poiseuille equation.
F0 = K0 × (P0 + 2P1) × P0 (1)
F1 = K1 × (P1 + 2Pa) × P1 (2)
F2 = K2 × (P1 + 2Pv) × P1 (3)
Here, F0: Flow rate flowing in the column immediately before the branch point 7 F1: Flow rate flowing in the sub-detector 8 F2: Flow rate flowing in the main detector 6 Pa: Atmospheric pressure Pv: Vacuum pressure in the main detector 6 (mass spectrometer) K0 , K1, K2: coefficients determined by resistance, temperature, etc. of each flow path.

図1における2はコンピュータを利用した流量計算表示手段である。
上記(1)(2)(3)式におけるP0、P1はそれぞれ圧力制御部4a、4bによって調整される圧力であり、その値は、図示しないキーボード等からオペレータがそれぞれ設定値p0、p1を入力して設定することができるが、この設定値p0、p1は同時に流量計算表示手段2にも入力されるように構成される。また、K0、K1、K2は、各流路の流量の実測値から逆算すれば求められ、Paは物理定数であり、Pvは質量分析装置の仕様で定まるから、これらの値をコンピュータに入力して記憶させておけば、上記(1)(2)(3)式により各流量値を算出し表示することが可能となる。
Reference numeral 2 in FIG. 1 denotes a flow rate calculation display means using a computer.
In the above equations (1), (2), and (3), P0 and P1 are pressures adjusted by the pressure control units 4a and 4b, respectively, and the values are input by the operator from the keyboard (not shown). The set values p0 and p1 are configured to be input to the flow rate calculation display means 2 at the same time. K0, K1, and K2 can be obtained by back-calculating from the measured values of the flow rate of each flow path, Pa is a physical constant, and Pv is determined by the specifications of the mass spectrometer, so these values are input to the computer. If stored, each flow rate value can be calculated and displayed by the above equations (1), (2), and (3).

この場合の流量計算表示手段2で用いられるコンピュータは新たに準備する必要はない。最近のガスクロマトグラフは総合的に内蔵コンピュータで制御されているから、そのコンピュータの機能の一部を流量計算表示手段2として利用できる。即ち、この場合の流量計算表示手段2はハードウェアとしては存在せず、ソフトウェア的に構成されるものと考えてよい。
なお、上記K0、K1、K2は温度の関数であるから、(1)(2)(3)式の計算を行うには温度値もコンピュータに入力する必要があるが、これも、ガスクロマトグラフの温度制御のために既にコンピュータに取り込まれている温度値を利用することができる。
There is no need to newly prepare a computer used in the flow rate calculation display means 2 in this case. Since recent gas chromatographs are comprehensively controlled by a built-in computer, some of the functions of the computer can be used as the flow rate calculation display means 2. That is, the flow rate calculation display means 2 in this case does not exist as hardware, and may be considered to be configured by software.
Since K0, K1, and K2 are functions of temperature, it is necessary to input a temperature value to the computer in order to calculate the equations (1), (2), and (3). The temperature value already taken into the computer can be used for temperature control.

以上はカラム系1が単一カラムで構成される場合についての説明であるが、複数のカラムを切り換えて分析するマルチディメンジョンガスクロマトグラフィの場合にも本発明を適用できる。
その場合は、圧力制御部4a、4bと同様のものを増設し、これを通して流路を切り換えるためのメークアップガスを供給するように構成する。このメークアップガスの圧力が切り換え点前後のカラムの上流側、または下流側の圧力を規制することになるから、当該カラムに関して(1)式と類似の式が成立し、その式により切り換え点前後のカラムまたは分岐路に流れる流量を計算し表示することができる。
The above is a description of the case where the column system 1 is composed of a single column, but the present invention can also be applied to the case of multi-dimension gas chromatography in which a plurality of columns are switched for analysis.
In that case, a configuration similar to that of the pressure control units 4a, 4b is added, and makeup gas for switching the flow path is supplied through this. Since the pressure of this makeup gas regulates the upstream or downstream pressure of the column before and after the switching point, an equation similar to the equation (1) is established for the column, and that equation is used before and after the switching point. It is possible to calculate and display the flow rate flowing through the column or branch.

本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 従来の構成を示す図である。It is a figure which shows the conventional structure.

符号の説明Explanation of symbols

1 カラム系
2 流量計算表示手段
3 試料導入部
4a 圧力制御部
4b 圧力制御部
5 キャリアガスボンベ
6 主検出器
7 分岐点
8 副検出器
DESCRIPTION OF SYMBOLS 1 Column system 2 Flow rate calculation display means 3 Sample introduction part 4a Pressure control part 4b Pressure control part 5 Carrier gas cylinder 6 Main detector 7 Branch point 8 Sub detector

Claims (2)

試料導入部を通ったキャリアガスが1本以上のカラムから成るカラム系を通過した後、分岐点において主検出器と副検出器に分流するように流路が構成されたガスクロマトグラフにおいて、前記カラム系に属する前記分岐点直前のカラムの上流側の圧力と前記分岐点の圧力とをオペレータが入力する設定値にそれぞれ規制する圧力制御部と、前記設定値にもとづき所定計算式により前記分岐点に連通する各流路に流れるキャリアガス流量を算出し表示する流量計算表示手段とを備えて成るガスクロマトグラフ。   In the gas chromatograph in which the flow path is configured so that the carrier gas that has passed through the sample introduction part is diverted to the main detector and the sub-detector at the branch point after passing through the column system including one or more columns. A pressure control unit that regulates the upstream pressure of the column immediately before the branch point belonging to the system and the pressure at the branch point to a set value input by an operator, and a predetermined calculation formula based on the set value to the branch point. A gas chromatograph comprising flow rate calculation display means for calculating and displaying a flow rate of a carrier gas flowing in each communicating channel. 前記主検出器が質量分析装置であり、且つ前記副検出器が匂い嗅ぎ装置である請求項1に記載するガスクロマトグラフ。   The gas chromatograph according to claim 1, wherein the main detector is a mass spectrometer and the sub-detector is an odor device.
JP2004089254A 2004-03-25 2004-03-25 Gas chromatograph Pending JP2005274416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089254A JP2005274416A (en) 2004-03-25 2004-03-25 Gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089254A JP2005274416A (en) 2004-03-25 2004-03-25 Gas chromatograph

Publications (1)

Publication Number Publication Date
JP2005274416A true JP2005274416A (en) 2005-10-06

Family

ID=35174239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089254A Pending JP2005274416A (en) 2004-03-25 2004-03-25 Gas chromatograph

Country Status (1)

Country Link
JP (1) JP2005274416A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170333A (en) * 2007-01-12 2008-07-24 Jeol Ltd Sniffing-chromatograph mass spectrometer
JP2009257960A (en) * 2008-04-17 2009-11-05 Gerstel Kk Gc-ms analyzer for switching between one-dimensional and two-dimensional analysis
JP2010185732A (en) * 2009-02-12 2010-08-26 Shimadzu Corp Smell measuring device
JP2011017606A (en) * 2009-07-08 2011-01-27 Shimadzu Corp Design for gas chromatograph analyzer and analysis support program
JP2012207982A (en) * 2011-03-29 2012-10-25 Takasago Internatl Corp Aroma component analyzer
JP2014211338A (en) * 2013-04-18 2014-11-13 ゲステル株式会社 Sample gas branching apparatus
WO2015045028A1 (en) * 2013-09-25 2015-04-02 株式会社島津製作所 Gas chromatograph-mass spectrometer
JP2016080536A (en) * 2014-10-17 2016-05-16 ゲステル株式会社 Sample gas flow dividing device and two-dimensional gas chromatograph using the same
JP2016102718A (en) * 2014-11-28 2016-06-02 フロンティア・ラボ株式会社 Gaseous phase component analysis device
JPWO2018047279A1 (en) * 2016-09-08 2019-07-04 株式会社島津製作所 Gas chromatograph
CN112534255A (en) * 2018-09-03 2021-03-19 株式会社岛津制作所 Gas chromatography device and analysis assistance method for gas chromatography device
US11047835B2 (en) * 2016-10-11 2021-06-29 Shimadzu Corporation Gas chromatograph

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170333A (en) * 2007-01-12 2008-07-24 Jeol Ltd Sniffing-chromatograph mass spectrometer
KR101482280B1 (en) * 2008-04-17 2015-01-13 게스테루 가부시키가이샤 Gc―ms analyzer switchable between one―dimensional and two―dimensional modes
JP2009257960A (en) * 2008-04-17 2009-11-05 Gerstel Kk Gc-ms analyzer for switching between one-dimensional and two-dimensional analysis
JP4533940B2 (en) * 2008-04-17 2010-09-01 ゲステル株式会社 1D-2D switching GC-MS analyzer
US8119983B2 (en) 2008-04-17 2012-02-21 Gerstel K.K. GC-MS analyzer switchable between one-dimensional and two-dimensional modes
JP2010185732A (en) * 2009-02-12 2010-08-26 Shimadzu Corp Smell measuring device
JP2011017606A (en) * 2009-07-08 2011-01-27 Shimadzu Corp Design for gas chromatograph analyzer and analysis support program
JP2012207982A (en) * 2011-03-29 2012-10-25 Takasago Internatl Corp Aroma component analyzer
JP2014211338A (en) * 2013-04-18 2014-11-13 ゲステル株式会社 Sample gas branching apparatus
WO2015045028A1 (en) * 2013-09-25 2015-04-02 株式会社島津製作所 Gas chromatograph-mass spectrometer
JPWO2015045028A1 (en) * 2013-09-25 2017-03-02 株式会社島津製作所 Gas chromatograph mass spectrometer
JP2016080536A (en) * 2014-10-17 2016-05-16 ゲステル株式会社 Sample gas flow dividing device and two-dimensional gas chromatograph using the same
JP2016102718A (en) * 2014-11-28 2016-06-02 フロンティア・ラボ株式会社 Gaseous phase component analysis device
JPWO2018047279A1 (en) * 2016-09-08 2019-07-04 株式会社島津製作所 Gas chromatograph
US11047835B2 (en) * 2016-10-11 2021-06-29 Shimadzu Corporation Gas chromatograph
CN112534255A (en) * 2018-09-03 2021-03-19 株式会社岛津制作所 Gas chromatography device and analysis assistance method for gas chromatography device
CN112534255B (en) * 2018-09-03 2023-02-21 株式会社岛津制作所 Gas chromatography device and analysis assistance method for gas chromatography device

Similar Documents

Publication Publication Date Title
JP2005274416A (en) Gas chromatograph
US6338823B1 (en) Gas chromatograph
JP5594989B2 (en) Design and analysis support program for gas chromatograph analyzer
JP5962577B2 (en) Gas chromatograph
JP2006226678A (en) Multi-dimensional gas chromatograph apparatus
JP4020016B2 (en) Gas chromatograph
TWI706134B (en) Gas chromatography device and analysis support method for gas chromatography device
US9651526B2 (en) Liquid chromatograph
JP2015206774A (en) Flow rate adjustment device and gas chromatograph equipped therewith
JP2010060335A (en) Multi-dimensional gas chromatograph apparatus
JP4762159B2 (en) Sniffing-chromatograph mass spectrometer
JP6658906B2 (en) Gas chromatograph
JP2010203951A (en) Gas chromatograph device
US10203309B2 (en) Chromatogram display method, chromatogram display device, and chromatograph comprising said device
JP5134636B2 (en) High speed liquid chromatograph apparatus and liquid feeding method of high speed liquid chromatograph apparatus
JP2009121970A (en) Multidimensional gas chromatograph apparatus
JP2006329703A (en) Multidimensional gas chromatograph apparatus
JP5386927B2 (en) Micro flow rate liquid feeding device and liquid feeding method
JP2005283403A (en) Gas chromatograph
US20110290001A1 (en) Gas Chromatograph Comprising A Controllable Switching Device
JP7380324B2 (en) Gas chromatograph
JP4179189B2 (en) Gas chromatograph
JP6036573B2 (en) Discharge ionization current detector and analyzer equipped with the same
JP2005351717A (en) Gradient liquid feed system
JP2012150032A (en) Column system and method for measuring component using column system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080529

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310