JP2005273116A - Conjugate fiber and method for producing the same - Google Patents

Conjugate fiber and method for producing the same Download PDF

Info

Publication number
JP2005273116A
JP2005273116A JP2004100257A JP2004100257A JP2005273116A JP 2005273116 A JP2005273116 A JP 2005273116A JP 2004100257 A JP2004100257 A JP 2004100257A JP 2004100257 A JP2004100257 A JP 2004100257A JP 2005273116 A JP2005273116 A JP 2005273116A
Authority
JP
Japan
Prior art keywords
molecular weight
number average
fiber
average molecular
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004100257A
Other languages
Japanese (ja)
Other versions
JP3953040B2 (en
Inventor
Sungu-Jin Oo
スング−ジン オー
Hyoung-Jae Lee
ヒョング−ジェ リー
Yang-Kuk Son
ヤング−クック ソン
Ik-Hyeon Kwon
イク−ヒェオン クウォン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyosung Corp
Original Assignee
Hyosung Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyosung Corp filed Critical Hyosung Corp
Publication of JP2005273116A publication Critical patent/JP2005273116A/en
Application granted granted Critical
Publication of JP3953040B2 publication Critical patent/JP3953040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/062Load-responsive characteristics stiff, shape retention

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crimp forming conjugate fiber excellent in stretchability and improved in product stability in post processing and a method for producing the same. <P>SOLUTION: The crimp forming conjugate fiber is a side-by-side or an excentric sheath-core type fiber remarkably stable for heat hysteresis, tension and the like given to the fiber in knitting, weaving and dyeing processing. The stretchable conjugate fiber produced by the invention is remarkably excellent in product stability during post processing as the fiber has high stretchability with ≥40% rate of crimp stretch, ≥70% elastic recovery factor, ≥155°C maximum temperature of thermal contraction stress and ≤3% iron shrinkage of the finally processed fabric. Different fiber forming polymers having 5,000-70,000 number average molecular weight difference and 1.5-2.5 molecular weight distribution index in each fiber are used as the polymer.in the invention. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は伸縮性が優れており、後加工の際の製品安定性が改善されたクリンプ(crimp)形成性複合繊維及びその製造方法に関し、より詳しくは、捲縮伸張率が40%以上、弾性回復率が70%以上の高伸縮性を持っていながら、熱収縮応力最大温度が155℃以上であるため、製織、染加工の際、繊維が受ける熱履歴及び張力に非常に安定したサイドバイサイド又は偏心芯鞘型(Sheath-Core)タイプのクリンプ形成性複合繊維及びその製造方法に関する。   The present invention relates to a crimp-forming composite fiber having excellent stretchability and improved product stability during post-processing, and a method for producing the same, and more particularly, a crimp extension ratio of 40% or more, elasticity Side-by-side or eccentricity that is very stable to the thermal history and tension applied to the fibers during weaving and dyeing because the maximum temperature of heat shrinkage stress is 155 ° C or higher while having a high stretchability of 70% or higher. The present invention relates to a sheath-core type crimp-forming composite fiber and a method for producing the same.

特許文献1には、極限粘度差を有するポリエチレンテレフタレート(PET)2種を使用する方法が開示されている。又、特許文献2及び特許文献3には、一般ポリエチレンテレフタレート及び高収縮性の共重合ポリエチレンテレフタレートを使用してポリエステル系潜在捲縮発現性繊維を製造する方法を公知している。この他にも、特許文献4及び特許文献5には、ポリエチレンテレフタレート(PET)にストレッチ性を有するポリトリメチレンテレフタレート(PTT)又はポリブチレンテレフタレート(PBT)を使用する方法も提示している。   Patent Document 1 discloses a method using two types of polyethylene terephthalate (PET) having an intrinsic viscosity difference. Patent Documents 2 and 3 disclose a method for producing a polyester-based latent crimp-expressing fiber using general polyethylene terephthalate and highly shrinkable copolymer polyethylene terephthalate. In addition, Patent Document 4 and Patent Document 5 also present a method of using polytrimethylene terephthalate (PTT) or polybutylene terephthalate (PBT) having stretch properties in polyethylene terephthalate (PET).

しかし、従来の前記特許に記載された製造方法によって製造されたクリンプが発現された伸縮性複合繊維の場合には、後工程の際、布帛の縮小が普通10%以上であり、最終加工後にも、アイロン(Iron)の際、3%以上の形態変形が発生するため、製品加工の際、その条件設定が難しく、縫製品の寸法を安定化させることが難しいという問題点が発生する。   However, in the case of a stretchable composite fiber with a crimp produced by the production method described in the above-mentioned patent, the reduction of the fabric is usually 10% or more in the post-process, and even after the final processing. In the case of ironing, 3% or more of the shape deformation occurs, so that it is difficult to set conditions during product processing, and it is difficult to stabilize the dimensions of the sewn product.

一般的に、繊維製品は製織/染加工、熱固定(Thermal Setting)及びアイロンの際、130〜190℃の熱履歴及び1〜2g/d程度の張力を受けるが、熱に対する製品の形態安定性は製品の品位を決定する重要な因子である。従って、製品のアイロンの際の形態変形を最小化するためには、アイロンの際、3%以上の形態変形が発生する従来技術の問題点を解決しなければならない。   In general, textile products are subjected to a heat history of 130 to 190 ° C. and a tension of about 1 to 2 g / d during weaving / dyeing, thermal setting and ironing. Is an important factor that determines the quality of a product. Therefore, in order to minimize the deformation of the product when ironing, it is necessary to solve the problem of the prior art in which a deformation of 3% or more occurs during ironing.

本発明者らは、加工布帛のアイロンの際発生する収縮率は繊維の熱収縮応力最大温度と密接な関係があることを認知し、熱収縮応力最大温度を155℃以上にする場合、加工布帛のアイロンの際の収縮率が3%以下になり、最終製品の形態安定性が優秀になることが分かった。   The inventors of the present invention have recognized that the shrinkage rate generated when ironing the processed fabric is closely related to the maximum heat shrinkage stress temperature of the fiber. It was found that the shrinkage rate during ironing was 3% or less, and the shape stability of the final product was excellent.

又、特許文献6には、熱収縮応力最大温度が130℃以下、熱収縮応力最大ピック値0.20cN/dtex以上の伸縮性複合繊維について記載されているが、最終繊維製品の形態安定性に及ぶ効果に関する言及はない。一般的に、一般繊維に比べ、伸縮性繊維製品の場合、製織/染加工、熱固定及びアイロンの際の熱履歴及び張力に敏感であるため、形態安定性が問題になる。これは、製品の染色均一性、染加工地及び縫製品の寸法安定性に重要な影響を及ぼし、一般的に、アイロン収縮率を基準として3%以上であると、製品性が不良であると判断される。   Patent Document 6 describes a stretchable composite fiber having a heat shrinkage stress maximum temperature of 130 ° C. or less and a heat shrinkage stress maximum pick value of 0.20 cN / dtex or more. There is no mention of the effect that will be affected. In general, stretchable fiber products are more sensitive to heat history and tension during weaving / dyeing, heat setting and ironing, compared to general fibers, and thus form stability becomes a problem. This has an important influence on the dyeing uniformity of the product, the dyed fabric and the dimensional stability of the sewn product. Generally, if the iron shrinkage ratio is 3% or more, the product quality is poor. To be judged.

又、従来の伸縮性複合繊維に関する特許は大体、異なるポリエステル高分子による複合紡糸についてのみ提案されているだけで、複合繊維を構成する異なる高分子の重合物自体の分子量による複合繊維の物性については言及されていない。特許文献4には、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、そして改質されたPET、PTTに対する粘度の変化による物性の変化については言及されているが、この特許もまた複合繊維を構成する異なる高分子の分子量についての言及はない。勿論、マーク−ホインク式(Mark-Hawink equation)によって、粘度―分子量の関係から分子量の推定はできるが、分子量分布に関する情報は得ることができない。又、特許文献4には、PTT相互間、又はPTT−PET、PTT−PBT等の2種の異なる粘度差を有するポリエステル系重合体を利用した伸縮性複合繊維について言及しているが、これもまた分子量及び分子量分布に関する情報はない。それで、本発明者らは2種の異なる粘度差を有するポリエステル系重合体の分子量、分子量分布及び延伸の熱固定温度が、繊維の熱収縮応力最大温度、伸縮特性及び加工布帛のアイロンの際の収縮率に影響を及ぼす因子であることを発見し、最適の2種重合体の分子量及び分子量分布を設計した。
特開平10−72732号公報 特開2000−328378号公報 特開平9−41234号公報 米国特許第3,671,379号公報 特開平11−189923号公報 特開2002−54030号公報
In addition, patents relating to conventional stretchable composite fibers are generally only proposed for composite spinning with different polyester polymers. Regarding the physical properties of composite fibers based on the molecular weight of the polymers of the different polymers that make up the composite fibers. Not mentioned. Patent Document 4 mentions a change in physical properties due to a change in viscosity with respect to polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), and modified PET, PTT. There is no mention of the molecular weight of the different macromolecules that make up. Of course, the molecular weight can be estimated from the relationship between the viscosity and the molecular weight by the Mark-Hawink equation, but information on the molecular weight distribution cannot be obtained. Patent Document 4 refers to a stretchable composite fiber using a polyester polymer having two different viscosity differences between PTT or between PTT-PET and PTT-PBT. There is no information on molecular weight and molecular weight distribution. Therefore, the present inventors have determined that the molecular weight, molecular weight distribution, and stretching heat setting temperature of the polyester polymer having two different viscosity differences are the maximum heat shrinkage stress temperature of the fiber, the stretching property, and the ironing of the processed fabric. It was discovered that this is a factor affecting the shrinkage rate, and the optimal molecular weight and molecular weight distribution of the bipolymer were designed.
Japanese Patent Laid-Open No. 10-72732 JP 2000-328378 A Japanese Patent Laid-Open No. 9-41234 U.S. Pat. No. 3,671,379 Japanese Patent Laid-Open No. 11-189923 JP 2002-54030 A

本発明は、工業的に使用が可能である繊維形成性高分子を利用して、伸縮性が優れており、製品の形態安定性が優れているクリンプ形成性複合繊維及びその製造方法を提供することを目的とする。   The present invention provides a crimp-forming composite fiber having excellent stretchability and excellent product form stability, and a method for producing the same, using a fiber-forming polymer that can be used industrially. For the purpose.

従って、本発明者らは、このような目的を充足させるために、鋭意研究した結果、繊維形成性高分子の中でも数平均分子量の差が5,000〜70,000で、各々の分子量分布指数が1.5〜2.5である異なる繊維形成性高分子を利用して製造される複合繊維が伸縮性が優れていることが分かり、又、各々の重合物は、数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5の第1成分の繊維形成性高分子と、数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5の第2成分の繊維形成性高分子から構成される場合が、伸縮特性とアイロン(Iron)の際の形態変形を最小化するための最適の重合体であることが分かった。重合体の数平均分子量の差が5.000以下である場合、原糸の捲縮伸張率及び弾性回復率の発現が難しく、70,000以上である場合、紡糸温度の高温化による分子量減少の深化により効果を期待できなく、又、紡糸の際の曲糸の発生により工程性の確保が困難であり、高分子量による収縮効果上昇により、アイロン収縮率が不良になる短所がある。又、分子量分布指数を1.5〜2.5に限定するのは、分子量分布指数がもし1.5より少ないと、分子量分布があまりにも均一になり、低分子量物質の自己可塑性(self-plasticizing)の役割が微々になって、工程上の問題点が生じやすく、分子量分布指数が2.5より大きいと、分子量分布が大きくなり、いくつの重合物が混ざっているような効果が発現されるため、熱固定温度を一定水準以上へ上げた時、ホットプレートで可塑化される現象が発生し、究極的に熱収縮応力最大温度を高めるのが難しくなり、形態安定性と伸縮性が低下する問題が発生する。   Therefore, the present inventors have conducted extensive studies to satisfy such a purpose, and as a result, among the fiber-forming polymers, the number average molecular weight difference is 5,000 to 70,000, and each molecular weight distribution index. It can be seen that the composite fibers produced using different fiber-forming polymers having a 1.5 to 2.5 have excellent stretchability, and each polymer has a number average molecular weight of 10, The first component fiber-forming polymer having a molecular weight distribution index of 1.5 to 2.5, a number average molecular weight of 15,000 to 90,000, and a molecular weight distribution index of 1.5 to 2 .5 of the second component fiber-forming polymer has been found to be the optimal polymer for minimizing stretch properties and morphological deformation during ironing. When the difference in the number average molecular weight of the polymers is 5.000 or less, it is difficult to express the crimp elongation rate and elastic recovery rate of the raw yarn. When the difference is 70,000 or more, the molecular weight is decreased by increasing the spinning temperature. The effect cannot be expected due to deepening, and it is difficult to ensure processability due to the generation of bent yarns during spinning, and the iron shrinkage rate becomes poor due to the increase in shrinkage effect due to high molecular weight. Also, the molecular weight distribution index is limited to 1.5 to 2.5 if the molecular weight distribution index is less than 1.5, the molecular weight distribution becomes too uniform, and the self-plasticizing of low molecular weight substances ) Is a minor role and is likely to cause problems in the process. When the molecular weight distribution index is greater than 2.5, the molecular weight distribution increases and the effect of mixing several polymers is exhibited. Therefore, when the heat setting temperature is raised to a certain level or more, the phenomenon of plasticization occurs in the hot plate, and it becomes difficult to ultimately increase the maximum temperature of the heat shrinkage stress, and the morphological stability and elasticity are reduced. A problem occurs.

又、分子量が高い重合体の場合、紡糸間熱分解による分子量の減少がひどくなり、分子量分布も又広くなるため、紡糸パック内重合体溶融体の滞留時間を5分以内と最小化すると、前記特性による物性及び機能性の発現を極大化させることができることが分かった。   Further, in the case of a polymer having a high molecular weight, the decrease in the molecular weight due to the inter-spin thermal decomposition is serious and the molecular weight distribution is also widened. Therefore, when the residence time of the polymer melt in the spin pack is minimized to within 5 minutes, It has been found that the expression of physical properties and functionality due to characteristics can be maximized.

本発明の他の側面としては、溶融紡糸のよる伸縮性複合繊維の場合、後工程の際、布帛の縮小が普通10%以上であり、最終加工後にも3%以上の形態変形が発生して、製品加工の際、その条件設定が難しく、縫製品の寸法を安定化させることが難しいことが分かった。一般的な繊維製品は普通、製織/染加工、熱固定(Thermal Setting)及びアイロンの際、130〜190℃の熱履歴及び1〜2g/d程度の張力を受けるが、製品の形態安定性はアイロン収縮率を基準として±3%以内でなければならない。このような特徴は繊維の熱収縮応力最大温度と密接な関係があることを発見し、熱収縮応力最大温度を155℃以上の水準に向上させた時、伸縮性製品の形態安定性が優秀になることが分かった。   As another aspect of the present invention, in the case of a stretchable composite fiber by melt spinning, the reduction of the fabric is usually 10% or more in the post-process, and the shape deformation of 3% or more occurs after the final processing. It was found that it was difficult to set the conditions when processing the product, and it was difficult to stabilize the dimensions of the sewing product. General textile products usually receive a heat history of 130-190 ° C and a tension of about 1-2 g / d during weaving / dyeing, thermal setting and ironing. Must be within ± 3% based on iron shrinkage. It has been discovered that such characteristics are closely related to the maximum heat shrinkage stress temperature of the fiber, and when the maximum heat shrinkage stress temperature is increased to a level of 155 ° C or higher, the shape stability of the stretchable product is excellent. I found out that

本発明によって製造された伸縮性複合繊維は捲縮伸張率が40%以上、弾性回復率が70%以上の高伸縮性を持っていながら、熱収縮応力最大温度が155℃以上であるため、最終加工布帛のアイロン(Iron)収縮率が3%以下と、後加工の際の製品安定性が非常に優れている。又、本発明によって製造される複合繊維は、紡糸間パック内重合体の滞留時間を減少させることにより、分子量減少、原糸物性及び伸縮性の低下を最小化し、既存原糸と比べ、熱収縮応力最大温度を向上させて後工程の際の製品安定性を図り、又、原糸の強伸度及び伸縮特性等が優れているので、織物、緯編、経編等の多様な用途に適用することができる。   The stretchable composite fiber produced according to the present invention has a high stretchability of 40% or more of crimp extension and 70% or more of elastic recovery rate, and the maximum temperature of heat shrinkage stress is 155 ° C or more. The iron shrinkage of the processed fabric is 3% or less, and the product stability during post-processing is very excellent. In addition, the composite fiber produced by the present invention minimizes the decrease in molecular weight, raw yarn properties and stretchability by reducing the residence time of the interspinning pack polymer, and heat shrinkage compared to existing raw yarns. Improves the maximum stress temperature to improve product stability during the post-process, and is excellent in the strength and elasticity of the raw yarn, so it can be used in various applications such as woven fabrics, weft knitting and warp knitting. can do.

本発明は、2種の溶融紡糸が可能である繊維形成性重合体を用いて得られた、繊維の熱収縮応力最大温度が155℃以上、無荷重沸騰水処理後の捲縮伸張率が40%以上、弾性回復率が70%以上で、これから製造される加工布帛のアイロン収縮率が3%以下である形態安定性の優れた伸縮性複合繊維を提供する。   In the present invention, the maximum temperature of the heat shrinkage stress of the fiber obtained by using a fiber-forming polymer capable of two types of melt spinning is 155 ° C. or higher, and the crimp elongation after treatment with no-load boiling water is 40. %, An elastic recovery rate is 70% or more, and a stretchable composite fiber having excellent shape stability, in which an iron shrinkage rate of a processed fabric produced therefrom is 3% or less.

又、前記1種の重合物はポリエチレンテレフタレートで、その数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5であり、他の1種の重合物はポリトリメチレンテレフタレートで、その数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5であり、二つの重合物の数平均分子量差が5,000〜70,000であることが特徴である。   The one kind of polymer is polyethylene terephthalate, the number average molecular weight is 10,000 to 20,000, the molecular weight distribution index is 1.5 to 2.5, and the other one kind of polymer is polytriene. Methylene terephthalate having a number average molecular weight of 15,000 to 90,000, a molecular weight distribution index of 1.5 to 2.5, and a difference in number average molecular weight of the two polymers of 5,000 to 70,000. It is a feature.

又、1種の重合物はポリエチレンテレフタレートで、その数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5であり、他の1種の重合物はポリエチレンテレフタレート、ポリブチレンテレフタレート又はポリエチレンテレフタレート共重合体で、その数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5であり、二つの重合物の数平均分子量差が5,000〜70,000であることが特徴である。   One kind of polymer is polyethylene terephthalate, the number average molecular weight is 10,000 to 20,000, the molecular weight distribution index is 1.5 to 2.5, and the other one kind of polymer is polyethylene terephthalate. A polybutylene terephthalate or polyethylene terephthalate copolymer having a number average molecular weight of 15,000 to 90,000, a molecular weight distribution index of 1.5 to 2.5, and a difference in number average molecular weight of the two polymers of 5,000 to It is characteristic that it is 70,000.

又、断面の形態がサイドバイサイド型又は偏心芯鞘(Sheath-Core)型であることが好ましい。   The cross-sectional shape is preferably a side-by-side type or an eccentric core-sheath (Sheath-Core) type.

又、捲縮の直径が8mm以下であることが好ましい。   Moreover, it is preferable that the diameter of crimp is 8 mm or less.

又、本発明は(A)1種の重合物はポリエチレンテレフタレートで、その数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5であり、他の1種の重合物はポリトリメチレンテレフタレートで、その数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5である2種のポリエステルを溶融させる工程と、
(B)前記溶融物を紡糸パック内の滞留時間が5分以下になるように、紡糸パックを通過させた後、2,200〜5,000m/分の紡糸速度でサイドバイサイド型又は偏心芯鞘型の複合糸に引取する工程と、(С)引取された複合糸を85〜95℃の温度で延伸及び160〜220℃の温度で熱固定する工程を含む方法によって製造される伸縮性複合繊維の製造方法を提供する。
In the present invention, (A) one kind of polymer is polyethylene terephthalate, the number average molecular weight is 10,000 to 20,000, the molecular weight distribution index is 1.5 to 2.5, The polymer is polytrimethylene terephthalate, the number average molecular weight is 15,000-90,000, the process of melting two kinds of polyesters having a molecular weight distribution index of 1.5-2.5,
(B) After passing the melt through the spin pack so that the residence time in the spin pack is 5 minutes or less, side-by-side type or eccentric core-sheath type at a spinning speed of 2,200 to 5,000 m / min An elastic composite fiber produced by a method comprising the steps of: taking the composite yarn of (С); and (С) drawing the drawn composite yarn at a temperature of 85 to 95 ° C. and heat-setting at a temperature of 160 to 220 ° C. A manufacturing method is provided.

又、本発明は(A)1種の重合物はポリエチレンテレフタレートで、その数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5であり、他の1種の重合物はポリエチレンテレフタレート、ポリブチレンテレフタレート又はポリエチレンテレフタレート共重合体で、その数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5である2種のポリエステルを溶融させる工程と、(B)前記溶融物を紡糸パック内の滞留時間が5分以下になるように、紡糸パックを通過させた後、2,200〜5,000m/分の紡糸速度でサイドバイサイド型又は偏心芯鞘型の複合糸に引取する工程と、(С)引取された複合糸を85〜95℃の温度で延伸及び160〜220℃の温度で熱固定する工程を含む方法によって製造される伸縮性複合繊維の製造方法を提供する。   In the present invention, (A) one kind of polymer is polyethylene terephthalate, the number average molecular weight is 10,000 to 20,000, the molecular weight distribution index is 1.5 to 2.5, The polymer is polyethylene terephthalate, polybutylene terephthalate or polyethylene terephthalate copolymer, which melts two polyesters having a number average molecular weight of 15,000 to 90,000 and a molecular weight distribution index of 1.5 to 2.5. And (B) side by side type or eccentricity at a spinning speed of 2,200 to 5,000 m / min after passing the melt through the spin pack so that the residence time in the spin pack is 5 minutes or less. A method comprising drawing a core-sheath type composite yarn, and (С) drawing the drawn composite yarn at a temperature of 85 to 95 ° C. and heat-setting at a temperature of 160 to 220 ° C. Thus to provide a method for producing a stretchable composite fibers produced.

又、本発明の伸縮性複合繊維の製造方法は部分配向―延伸/仮撚工法又は紡糸直接延伸工法によって製造されることが好ましい。   The production method of the stretchable conjugate fiber of the present invention is preferably produced by a partial orientation-stretching / false twist method or a direct spinning method.

又、前記延伸温度が85〜95℃で、熱固定温度は160〜220℃であることが好ましい。   The stretching temperature is preferably 85 to 95 ° C, and the heat setting temperature is preferably 160 to 220 ° C.

又、本発明は前記伸縮性複合繊維から製造され、撚数(TM:twist/meter)が150〜2,000である加工糸を提供する。   The present invention also provides a processed yarn having a twist number (TM: twist / meter) of 150 to 2,000, which is produced from the stretchable conjugate fiber.

又、本発明は前記伸縮性複合繊維と伸度50%以上、沸騰水収縮率が15%以上である高収縮特性の原糸が混繊されている混繊糸を提供する。   In addition, the present invention provides a mixed yarn in which the elastic composite fiber is mixed with an original yarn having a high shrinkage characteristic and having an elongation of 50% or more and a boiling water shrinkage of 15% or more.

又、本発明は前記伸縮性複合繊維を含む布帛を提供する。   Moreover, this invention provides the fabric containing the said elastic composite fiber.

アイロンの際の形態変形を最小化するための伸縮性を有する複合繊維を製造するために、数平均分子量の差が5,000〜70,000で、各々の分子量分布指数が1.5〜2.5である異なる繊維形成性高分子を使用することが好ましく、各々の高分子の特性とその分析方法、そして製造方法に関して、次のように重合物材料、これを利用した紡糸工程について説明する。   In order to produce a composite fiber having elasticity for minimizing morphological deformation during ironing, the difference in number average molecular weight is 5,000 to 70,000, and each molecular weight distribution index is 1.5 to 2. It is preferable to use different fiber-forming polymers that are .5, and with respect to the characteristics of each polymer, its analysis method, and production method, the polymer material and the spinning process using this will be described as follows. .

(1)数平均分子量の差が5,000〜70,000で、各々の分子量分布指数が1.5〜2.5である異なる繊維形成性高分子の特性とその分析方法   (1) Characteristics of different fiber-forming polymers having a number average molecular weight difference of 5,000 to 70,000 and a molecular weight distribution index of 1.5 to 2.5, and an analysis method thereof

本発明に用いられる2種の重合体は、数平均分子量の差を5,000〜70,000とし、各々の分子量分布指数が1.5〜2.5になるようにするためには、一つの成分の数平均分子量が10,000〜20,000で、分子量分布指数が1.5〜2.5でなければならなく、他の成分の数平均分子量が15,000〜90,000で、分子量分布指数が1.5〜2.5でなければならない。   The two types of polymers used in the present invention have a number average molecular weight difference of 5,000 to 70,000 and a molecular weight distribution index of 1.5 to 2.5. The number average molecular weight of one component must be 10,000 to 20,000, the molecular weight distribution index must be 1.5 to 2.5, the number average molecular weight of the other component is 15,000 to 90,000, The molecular weight distribution index must be between 1.5 and 2.5.

用いられる重合物は工業的に利用されるポリエステル、ナイロン等の重合物と、これらの改質重合物等が使用可能である。その他に、ポリウレタンやポリアクリロニトリル等の重合物も使用できるが、これらは高温での工程で分解されるという問題が発生するため、実際適用は困難である。ポリエステルやナイロン等の重合物と、これらの改質重合物が使用可能であり、その具体的な例としては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等で代表されるポリエステルと、イソフタル酸(Isophthalic acid)、ポリエチレングリコール等で改質されたこれらの共重合体、そしてナイロン6、ナイロン66、ナイロン46等で代表されるナイロンと、メタキシレンジアミン(m-xylene diamine)等で改質されたこれらの共重合体等、溶融成型が可能な重合物を挙げることができる。   As the polymer used, industrially utilized polymers such as polyester and nylon, and modified polymers thereof can be used. In addition, polymers such as polyurethane and polyacrylonitrile can also be used, but these are difficult to be actually applied because of the problem that they are decomposed in a process at a high temperature. Polymers such as polyester and nylon and these modified polymers can be used. Specific examples thereof include polyesters typified by polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and isophthalic acid. These copolymers modified with (Isophthalic acid), polyethylene glycol, etc., and nylons represented by nylon 6, nylon 66, nylon 46, etc., and m-xylene diamine, etc. In addition, a polymer that can be melt-molded, such as these copolymers, can be mentioned.

一つの重合物の数平均分子量が10,000〜20,000で、分子量分布指数が1.5〜2.5でなければならなく、他の一つの重合物の数平均分子量が15,000〜90,000で、分子量分布指数が1.5〜2.5でなければならないということは、一つの成分と他の一つの成分の重合物が確定されているということではなく、例えば、一つの重合物の数平均分子量が10,000〜20,000で、分子量分布指数が1.5〜2.5であれば、他の一つの重合物の数平均分子量が15,000〜90,000で、分子量分布指数が1.5〜2.5であればいいということである。より具体的には、例えば、数平均分子量が10,000〜20,000で、分子量分布指数が1.5〜2.5である重合物がポリエチレンテレフタレートであれば、数平均分子量が15,000〜90,000で、分子量分布指数が1.5〜2.5である重合物はポリトリメチレンテレフタレートやポリブチレンテレフタレート、ナイロン6であってもよく、同じポリエチレンテレフタレートであってもいいという意味である。即ち、ゲル透過クロマトグラフィ法による数平均分子量の差と分子量分布指数が本発明で限定する範囲内にあれば、重合体の種類が同一であるか異なるかは関係がないという意味である。従って、本発明では、数平均分子量が10,000〜20,000で、分子量分布指数が1.5〜2.5である重合物を低分子量高分子と称し、数平均分子量が15,000〜90,000で、分子量分布指数が1.5〜2.5である重合物は高分子量高分子と称する。   The number average molecular weight of one polymer must be 10,000 to 20,000, the molecular weight distribution index must be 1.5 to 2.5, and the number average molecular weight of the other polymer is 15,000 to 90,000. The fact that the molecular weight distribution index must be 1.5 to 2.5 does not mean that a polymer of one component and another component has been established, for example, the number average molecular weight of one polymer Is 10,000 to 20,000 and the molecular weight distribution index is 1.5 to 2.5, the number average molecular weight of the other polymer is 15,000 to 90,000 and the molecular weight distribution index is 1.5. That means it should be ~ 2.5. More specifically, for example, if the polymer having a number average molecular weight of 10,000 to 20,000 and a molecular weight distribution index of 1.5 to 2.5 is polyethylene terephthalate, the number average molecular weight is 15,000. The polymer having a molecular weight distribution index of 1.5 to 2.5 may be polytrimethylene terephthalate, polybutylene terephthalate, nylon 6 or the same polyethylene terephthalate. is there. That is, if the difference in the number average molecular weight and the molecular weight distribution index determined by the gel permeation chromatography method are within the range limited by the present invention, it means that it does not matter whether the types of polymers are the same or different. Therefore, in the present invention, a polymer having a number average molecular weight of 10,000 to 20,000 and a molecular weight distribution index of 1.5 to 2.5 is referred to as a low molecular weight polymer, and the number average molecular weight is 15,000 to A polymer having 90,000 and a molecular weight distribution index of 1.5 to 2.5 is referred to as a high molecular weight polymer.

これら重合物は一般的に知られた塊状重合、溶液重合、界面重合等から製造されるが、本発明で対象とする重合物はこの中でどの方法で製造されたものでも使用でき、特に好ましくは、塊状重合法の中でも溶融重合又は固状重合から製造される重合物が製造経費の面で有利である。   These polymers are produced from generally known bulk polymerization, solution polymerization, interfacial polymerization, etc., and the polymer targeted by the present invention can be used by any of these methods, and is particularly preferred. Among the bulk polymerization methods, a polymer produced from melt polymerization or solid polymerization is advantageous in terms of production cost.

本発明において、低分子量高分子の分子量の最低値を10,000とし、高分子量高分子の分子量の最高値を90,000とする理由は次のようである。分子量10,000未満の重合物を製造することは、重合方法自体としては難しくはない。しかし、この重合物を利用して繊維化するためには、チップ(又はペレット)の形態としてあることが有利である。分子量が10,000未満になると、チップに製造する時、あまりにも砕けやすいので、均一な形状を有するチップの製造が困難になる。分子量が90,000を超えると、溶融重合法又は固状重合法では製造が困難であり、もしこれが可能であるとしても、その時間が長くなりすぎて経済的に不利であるばかりでなく、紡糸温度を過度に高めなければならないので、熱分解による分子量の減少によりその効果が期待できない。   In the present invention, the reason why the minimum molecular weight of the low molecular weight polymer is 10,000 and the maximum molecular weight of the high molecular weight polymer is 90,000 is as follows. It is not difficult as a polymerization method itself to produce a polymer having a molecular weight of less than 10,000. However, in order to fiberize using this polymer, it is advantageous to be in the form of chips (or pellets). If the molecular weight is less than 10,000, it is too fragile when manufactured into a chip, which makes it difficult to manufacture a chip having a uniform shape. When the molecular weight exceeds 90,000, it is difficult to produce by the melt polymerization method or the solid polymerization method, and even if this is possible, the time is too long and not only economically disadvantageous, but also spinning. Since the temperature must be increased excessively, the effect cannot be expected due to the decrease in molecular weight due to thermal decomposition.

又、分子量分布指数を1.5〜2.5に限定するのは、分子量分布指数がもし1.5より少ないと、分子量分布があまりにも均一になり、低分子量物質の自己可塑性(self-plasticizing)の役割が微々になって、工程上の問題点が生じやすく、分子量分布指数が2.5より大きいと、分子量分布が大きくなり、いくつの重合物が混ざっているような効果が発現されるため、熱固定温度を一定水準以上へ上げた時、ホットプレートで可塑化される現象が発生し、究極的に熱収縮応力最大温度を高めるのが難しくなり、形態安定性 と伸縮性が低下するので好ましくない。   Also, the molecular weight distribution index is limited to 1.5 to 2.5 if the molecular weight distribution index is less than 1.5, the molecular weight distribution becomes too uniform, and the self-plasticizing of low molecular weight substances ) Is a minor role and is likely to cause problems in the process. When the molecular weight distribution index is greater than 2.5, the molecular weight distribution increases and the effect of mixing several polymers is exhibited. Therefore, when the heat setting temperature is raised to a certain level or more, a phenomenon of plasticization occurs on the hot plate, ultimately making it difficult to increase the maximum temperature of the heat shrinkage stress, resulting in a decrease in form stability and elasticity. Therefore, it is not preferable.

本発明で数平均分子量及び分子量分布指数は、重合物や製造された複合繊維をヘキサフルオロイソプロピルアルコール(Hexafluoroisopropylalcohol, HFIP)に溶解して、米国ウォータース(Waters)社の高温用GPCセットを利用して、ポリスチレン(Polystyrene)を基準物質として数平均分子量(Number average molecular weight, Mn) と重量平均分子量(Weight average molecular weight, Mw)を測定し、次の式から分子量分布指数(Polydispersity Index, PDI)を換算した。   In the present invention, the number average molecular weight and molecular weight distribution index are obtained by dissolving a polymer or a produced composite fiber in hexafluoroisopropyl alcohol (HFIP) and using a high-temperature GPC set of Waters, USA. The number average molecular weight (Mn) and weight average molecular weight (Mw) were measured using polystyrene as a reference substance, and the molecular weight distribution index (PDI) was calculated from the following formula: Was converted.

Figure 2005273116
Figure 2005273116

(2)複合繊維の製造   (2) Manufacture of composite fiber

複合繊維を製造するための溶融紡糸の際の重合物の紡糸温度は、各重合物の溶融温度より20〜70℃高い温度とした。重合物の紡糸温度が重合物の溶融温度より20℃以上高くないと、不均一に溶融されて押出機内での圧力が高くなりすぎて作業性が低下し、又、製造される複合繊維の物性が不均一になる等の問題が発生するので好ましくない。又、重合物の紡糸温度が重合物の溶融温度に比べて70℃よりもう高いと、重合物の流れ性は改善されるが、重合物の熱分解等の問題が発生するので好ましくない。   The spinning temperature of the polymer during melt spinning for producing the composite fiber was 20 to 70 ° C. higher than the melting temperature of each polymer. If the spinning temperature of the polymer is not higher than the melting temperature of the polymer by 20 ° C. or more, it is melted non-uniformly, the pressure in the extruder becomes too high, and the workability decreases, and the physical properties of the composite fiber produced This is not preferable because problems such as non-uniformity occur. On the other hand, if the spinning temperature of the polymer is higher than 70 ° C. compared with the melting temperature of the polymer, the flowability of the polymer is improved, but problems such as thermal decomposition of the polymer occur, which is not preferable.

吐出された個々の繊維状重合体を紡糸口金の真下で接合させてサイドバイサイド断面の複合繊維を取得するか、又は重合体が分配板を通過して紡糸口金へ入りながら接合される偏心芯鞘型断面の繊維の製造が可能である。   Eccentric core-sheath type in which each discharged fibrous polymer is bonded directly under the spinneret to obtain a composite fiber having a side-by-side cross section, or the polymer is bonded while passing through the distribution plate and entering the spinneret. It is possible to produce cross-section fibers.

又、本発明者は分子量の高い重合体の場合、紡糸間熱分解による分子量の減少がひどくなり、分子量分布もまた広くなるので、紡糸パック内の重合体溶融体の滞留時間を5分以下と最小化して、前記特性による物性及び機能性の発現を極大化させることができることが分かった。   In addition, in the case of a polymer having a high molecular weight, the present inventor has a serious decrease in molecular weight due to thermal decomposition during spinning, and the molecular weight distribution is also widened. Therefore, the residence time of the polymer melt in the spinning pack is 5 minutes or less. It was found that the expression of physical properties and functionality due to the above characteristics can be maximized by minimization.

得られた複合繊維は、通常のポリエステル複合繊維の製造に利用される部分配向糸―延伸/仮撚工法や紡糸直接延伸工法によって繊維化することができる。   The obtained conjugate fiber can be made into a fiber by a partially oriented yarn-drawing / false twisting method or a direct spinning method used for production of a normal polyester conjugate fiber.

本発明の核心的な技術構成要素としては、紡糸速度を2,200〜5,500m/分とすることである。これは、2,200m/分以下の紡糸速度で紡糸すると、低速紡糸による重合体溶融体の吐出量の減少のため、経済性側面で不利であるばかりでなく、延伸の際、延伸比の向上による熱収縮率の上昇によって、究極的にはアイロンの際の収縮率が3%以上になるので、最終製品の熱に対する形態安定性が急激に落ちるからである。一般的に、低い紡糸速度で高倍率延伸によって形成された結晶を有している繊維は熱に対して高い収縮率を示す。又、5,000m/分以上の紡糸速度で紡糸すると、2種の異なる分子量の重合体間熱的、物理的特性があまりにも異なることによる紡糸性の低下のため、紡糸工程の安定性が落ちるので好ましくない。   The core technical component of the present invention is to set the spinning speed to 2,200-5,500 m / min. This is not only economically disadvantageous when spinning at a spinning speed of 2,200 m / min or less, because the amount of polymer melt discharged by low-speed spinning is reduced, but also the stretch ratio is improved during stretching. This is because an increase in the heat shrinkage rate caused by the iron ultimately causes the shrinkage rate during ironing to be 3% or more, so that the morphological stability of the final product with respect to heat drops sharply. In general, fibers having crystals formed by high-stretch drawing at a low spinning speed exhibit a high shrinkage ratio with respect to heat. In addition, when spinning at a spinning speed of 5,000 m / min or more, the spinning process is deteriorated due to a decrease in spinnability due to too different thermal and physical properties between two different molecular weight polymers. Therefore, it is not preferable.

本発明は、他の核心的な技術構成要素として、部分配向―延伸/仮撚工法や紡糸直接延伸工法によって製造する時、延伸温度は85〜95℃、熱固定温度は160〜220℃にすることをその特徴とする。延伸温度の場合、85℃以下では均一延伸が難しく、95℃以上では熱によって可塑化される程度がひどくなり、紡糸間工程性及びその物性が不安定になる。熱固定温度は160℃以下になると、熱収縮応力最大温度が155℃以下になり、 最終加工布帛のアイロンの際、織物の高い収縮が発生して製品の形態安定性の不均一になることにより、最終製品の品位が落ちるので好ましくない。又、220℃以上になると、可塑化がひどくなり、工程性及び諸般物性が弱化するので好ましくない。   In the present invention, as another core technical component, when manufacturing by a partial orientation-stretching / false twisting method or a direct spinning method, the stretching temperature is 85 to 95 ° C, and the heat setting temperature is 160 to 220 ° C. It is characterized by that. When the stretching temperature is 85 ° C. or lower, uniform stretching is difficult, and when it is 95 ° C. or higher, the degree of plasticization by heat becomes severe, and the inter-spinning process properties and the physical properties become unstable. When the heat setting temperature is 160 ° C. or less, the maximum temperature of heat shrinkage stress is 155 ° C. or less, and when the final processed fabric is ironed, high shrinkage of the fabric occurs, resulting in uneven shape stability of the product. This is not preferable because the quality of the final product is lowered. On the other hand, when the temperature is 220 ° C. or higher, plasticization becomes severe, and process properties and various physical properties are weakened.

従来のクリンプが発現された伸縮性複合繊維の場合、後工程の際の布帛の縮小が普通10%以上で、最終加工後にも、アイロンの際、3%以上の形態変形が発生し、製品加工の際、その条件設定が難しく、又、縫製品の寸法を安定化することが難しいという問題点がある。一般的な繊維製品は普通、製織/染加工、熱固定及びアイロンの際、130〜190℃の熱履歴及び1〜2g/d程度の張力を受けるが、製品の形態安定性は繊維の熱収縮応力最大温度と密接な関係があることを本発明者らは発見し、熱収縮応力最大温度を155℃以上へ向上させた時、製品の形態安定性が優秀になることが分かった。   In the case of stretchable composite fibers in which conventional crimps are expressed, the reduction of the fabric in the post-process is usually 10% or more, and after the final processing, 3% or more of the shape deformation occurs during ironing, and the product processing In this case, there are problems that it is difficult to set the conditions and it is difficult to stabilize the dimensions of the sewn product. Common textile products usually receive a heat history of 130-190 ° C and a tension of 1-2 g / d during weaving / dyeing, heat setting and ironing. The present inventors have found that there is a close relationship with the maximum stress temperature, and it has been found that when the maximum heat shrinkage stress temperature is increased to 155 ° C. or higher, the shape stability of the product becomes excellent.

本発明の製糸条件による繊維の物性及び機能性を表1に示した。   Table 1 shows the physical properties and functionality of the fibers according to the yarn production conditions of the present invention.

以下、本発明を下記の実施例に基づき、より詳しく説明する。下記の実施例は本発明を例示するだけであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be described in more detail based on the following examples. The following examples merely illustrate the invention and do not limit the scope of the invention.

本発明による方法によって製造された接合型複合繊維の物性の評価基準及びその測定方法について先ず説明する。   First, an evaluation standard of physical properties of a bonded composite fiber manufactured by the method according to the present invention and a measuring method thereof will be described.

(a)熱収縮応力の測定
初荷重0.5g/d、昇温速度2.2℃/秒でKanebo社のThermal stress testerを利用して測定した。
(A) Measurement of thermal shrinkage stress It measured using the thermal stress tester of Kanebo with initial load 0.5g / d and the temperature increase rate of 2.2 degreeC / sec.

(b)数平均分子量及び分子量分布の測定
重合物や製造された複合繊維をヘキサフルオロイソプロピルアルコール(Hexafluoroisopropylalcohol, HFIP)に溶解して、米国ウォータース(Waters)社の高温用GPCセットを利用して、ポリスチレン(Polystyrene)を基準物質として数平均分子量(Number average molecular weight, Mn) と重量平均分子量(Weight average molecular weight, Mw)を測定し、次の式から分子量分布指数(Polydispersity Index, PDI)を換算した。
(B) Measurement of number average molecular weight and molecular weight distribution A polymer and a produced composite fiber are dissolved in hexafluoroisopropyl alcohol (HFIP), and a high-temperature GPC set of Waters, USA is used. Measure the number average molecular weight (Mn) and weight average molecular weight (Mw) using Polystyrene as a reference substance, and calculate the molecular weight distribution index (PDI) from the following formula: Converted.

Figure 2005273116
Figure 2005273116

(c)捲縮伸張率及び弾性回復率の測定
実施例で製造されたクリンプ形成性複合繊維の物性である捲縮伸張率及び弾性回復率を測定するために、下記のように行った。
(C) Measurement of Crimp Elongation Rate and Elastic Recovery Rate In order to measure the crimp extension rate and elastic recovery rate, which are physical properties of the crimp-forming composite fibers produced in the examples, the following procedure was performed.

繊維束を無荷重下で、沸騰水の中で30分間浸漬した後、室温上で乾燥させた。2分間0.1g/dの荷重を加えた後, 除重して10分間放置した。前記段階を経た試料を0.002g/dの荷重下で2分間放置した後、その時の長さ(L)を測定した。前記試料に0.1g/dの荷重を加え、2分後、長さ(L)を測定した。それから、0.1g/dの荷重を除去して2分経過後、その時の長さ(L)を測定した。捲縮伸張率及び弾性回復率を下記式によって算出した。 The fiber bundle was immersed in boiling water for 30 minutes under no load, and then dried at room temperature. After applying a load of 0.1 g / d for 2 minutes, the sample was deweighted and allowed to stand for 10 minutes. The sample after the above stage was allowed to stand for 2 minutes under a load of 0.002 g / d, and then the length (L 1 ) at that time was measured. A load of 0.1 g / d was applied to the sample, and after 2 minutes, the length (L 2 ) was measured. Then, the load (0.1 g / d) was removed, and after 2 minutes, the length (L 3 ) at that time was measured. The crimp extension rate and elastic recovery rate were calculated by the following formula.

捲縮伸張率(%)=〔(L−L)/L〕×100 Crimp elongation (%) = [(L 2 −L 1 ) / L 2 ] × 100

弾性回復率(%)=〔(L−L)/L−L)〕×100 Elastic recovery rate (%) = [(L 2 −L 3 ) / L 2 −L 1 )] × 100

(d)アイロン収縮率の測定
アイロン収縮率は通常の方法によって製編織、染加工する後、KS K 0558−2001,A−1(乾熱アイロン法)に基づいて測定した。
(D) Measurement of iron shrinkage rate The iron shrinkage rate was measured based on KS K 0558-2001, A-1 (dry heat iron method) after weaving and dyeing by a normal method.

(e)クリンプ直径の測定
20個の繊維をランダムサムプリングして、自重下光学顕微鏡でクリンプの直径を測定した後、その平均値を求めた。
(E) Measurement of crimp diameter After 20 fibers were randomly sampled and the diameter of the crimp was measured with an optical microscope under its own weight, the average value was obtained.

(実施例1)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)12,632、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)19,149、分子量分布指数(PDI)2.4のポリトリメチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(d)の偏心芯鞘型断面で、紡糸温度270℃、紡糸速度2,200m/分、パック内の滞留時間4分に設定して、単糸繊度が3.4デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は1.75、延伸温度85℃、熱固定温度160℃で実施し、その結果を表1に示した。原糸及び織物において非常に優れた伸縮特性及び形態安定性を示した。
(Example 1)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 12,632 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 19,149, a molecular weight distribution index (PDI) of The polytrimethylene terephthalate of 2.4 is used in the eccentric core-sheath section of FIG. 2- (d) at a weight ratio of 5: 5 using a conventional melt-combined spinning equipment, spinning temperature is 270 ° C., spinning speed is 2 , 200 m / min, and the residence time in the pack was set to 4 minutes, and a polyester composite fiber was produced so that the single yarn fineness was 3.4 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The stretching ratio at the time of stretching was 1.75, the stretching temperature was 85 ° C., and the heat setting temperature was 160 ° C. The results are shown in Table 1. In the raw yarn and woven fabric, very good stretch properties and shape stability were exhibited.

(実施例2)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)15,385、分子量分布指数(PDI)2.1のポリエチレンテレフタレートと、数平均分子量(Mn)33,522、分子量分布指数(PDI)2.1のポリトリメチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度275℃、紡糸速度2,600m/分、パック内の滞留時間4分に設定して、単糸繊度が3.4デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は1.70、延伸温度90℃、熱固定温度180℃で実施し、その結果を表1に示した。原糸及び織物において非常に優れた伸縮特性及び形態安定性を示した。
(Example 2)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 15,385 and a molecular weight distribution index (PDI) of 2.1, a number average molecular weight (Mn) of 33,522, a molecular weight distribution index (PDI) The polytrimethylene terephthalate of 2.1 was used in a side-by-side cross section of FIG. 2- (a) using a conventional melt compound spinning equipment at a weight ratio of 5: 5, spinning temperature of 275 ° C., spinning speed of 2,600 m / s. And a residence time in the pack of 4 minutes, a polyester composite fiber was produced so that the single yarn fineness was 3.4 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The drawing ratio was 1.70, the drawing temperature was 90 ° C., and the heat setting temperature was 180 ° C. The results are shown in Table 1. In the raw yarn and woven fabric, very good stretch properties and shape stability were exhibited.

(実施例3)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)18,211、分子量分布指数(PDI)2.1のポリエチレンテレフタレートと、数平均分子量(Mn)88,245、分子量分布指数(PDI)1.6のポリトリメチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度285℃、紡糸速度3,800m/分、パック内の滞留時間4分に設定して、紡糸直接延伸法により単糸繊度が3.4デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。紡糸直接延伸時の延伸比は3.7、延伸温度90℃、熱固定温度170℃で実施し、その結果を表1に示した。原糸及び織物において非常に優れた伸縮特性及び形態安定性を示した。
(Example 3)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 18,211 and a molecular weight distribution index (PDI) of 2.1, a number average molecular weight (Mn) of 88,245, a molecular weight distribution index (PDI) A polytrimethylene terephthalate of 1.6 in a weight ratio of 5: 5 using a conventional melt-combined spinning equipment, with a side-by-side cross section of FIG. 2- (a), a spinning temperature of 285 ° C., a spinning speed of 3,800 m / And a residence time in the pack of 4 minutes, and a polyester composite fiber was produced by a direct spinning method so that the single yarn fineness was 3.4 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The drawing ratio at the time of direct spinning was 3.7, the drawing temperature was 90 ° C., and the heat setting temperature was 170 ° C. The results are shown in Table 1. In the raw yarn and woven fabric, very good stretch properties and shape stability were exhibited.

(実施例4)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)12,632、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)25,984、分子量分布指数(PDI)2.2のポリエチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度285℃、紡糸速度2,600m/分、パック内の滞留時間4分に設定して、単糸繊度が4.6デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.8デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は1.70、延伸温度90℃、熱固定温度160℃で実施し、その結果を表1に示した。原糸及び織物において非常に優れた伸縮特性及び形態安定性を示した。
Example 4
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 12,632 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 25,984, a molecular weight distribution index (PDI) 2.2 Polyethylene terephthalate having a weight ratio of 5: 5 by using a conventional melt-combined spinning equipment, a spinning temperature of 285 ° C., a spinning speed of 2,600 m / min, in a side-by-side cross section of FIG. A polyester composite fiber was produced by setting the residence time in the pack to 4 minutes so that the single yarn fineness was 4.6 denier. The composite fiber obtained by spinning / winding was stretched using a separate stretching device to produce a crimp-expressing stretchable composite fiber having a single-fiber fineness of 2.8 denier and provided with a spring-shaped crimp. . The drawing ratio was 1.70, the drawing temperature was 90 ° C., and the heat setting temperature was 160 ° C. The results are shown in Table 1. In the raw yarn and woven fabric, very good stretch properties and shape stability were exhibited.

(実施例5)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)13,691、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)25,984、分子量分布指数(PDI)2.2のポリエチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(d)の偏心芯鞘型断面で、紡糸温度285℃、紡糸速度2,600m/分、パック内の滞留時間4分に設定して、単糸繊度が6.9デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度4.2デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は1.70、延伸温度90℃、熱固定温度160℃で実施し、その結果を表1に示した。原糸及び織物において非常に優れた伸縮特性及び形態安定性を示した。
(Example 5)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 13,691 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 25,984, a molecular weight distribution index (PDI) The polyethylene terephthalate of 2.2 was used in the eccentric core-sheath section of Fig. 2- (d) at a weight ratio of 5: 5 with a conventional melt compound spinning equipment, spinning temperature 285 ° C, spinning speed 2,600m. The polyester composite fiber was manufactured so that the single yarn fineness was 6.9 deniers at a setting time of 4 minutes per minute. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp expression type stretchable conjugate fiber having a single-denier fineness of 4.2 denier and provided with a spring-shaped crimp. . The drawing ratio was 1.70, the drawing temperature was 90 ° C., and the heat setting temperature was 160 ° C. The results are shown in Table 1. In the raw yarn and woven fabric, very good stretch properties and shape stability were exhibited.

(実施例6)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)15,385、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)31,300、分子量分布指数(PDI)2.1のポリエチレンテレフタレートを、重量比6:4の比率で従来の溶融複合紡糸設備を利用して図2-(b)のサイドバイサイド断面で、紡糸温度295℃、紡糸速度2,400m/分、パック内の滞留時間4分に設定して、単糸繊度が3.4デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は1.62、延伸温度90℃、熱固定温度220℃で実施し、その結果を表1に示した。原糸及び織物において非常に優れた伸縮特性及び形態安定性を示した。
(Example 6)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 15,385 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 31,300, a molecular weight distribution index (PDI) 2.1 Polyethylene terephthalate of 2.1 in a weight ratio of 6: 4 using a conventional melt compound spinning equipment, with a spinning temperature of 295 ° C., spinning speed of 2,400 m / min, in a side-by-side cross section of FIG. A polyester composite fiber was produced so that the residence time in the pack was set to 4 minutes and the single yarn fineness was 3.4 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The stretching ratio during stretching was 1.62, the stretching temperature was 90 ° C., and the heat setting temperature was 220 ° C. The results are shown in Table 1. In the raw yarn and woven fabric, very good stretch properties and shape stability were exhibited.

(実施例7)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)15,385、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)23,300、分子量分布指数(PDI)2.2のイソフタル酸が10モル%置換されたポリエチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度275℃、紡糸速度2,900m/分、パック内の滞留時間4分に設定して、単糸繊度が3.4デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は1.67、延伸温度90℃、熱固定温度180℃で実施し、その結果を表1に示した。原糸及び織物において非常に優れた伸縮特性及び形態安定性を示した。
(Example 7)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 15,385 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 23,300, a molecular weight distribution index (PDI) Polyethylene terephthalate substituted with 10 mol% of isophthalic acid of 2.2 is used in a side-by-side cross section of FIG. 2- (a) at a weight ratio of 5: 5 and a spinning temperature of 275 ° C. Polyester composite fibers were produced at a spinning speed of 2,900 m / min and a residence time in the pack of 4 minutes so that the single yarn fineness was 3.4 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The stretching ratio during stretching was 1.67, the stretching temperature was 90 ° C., and the heat setting temperature was 180 ° C. The results are shown in Table 1. In the raw yarn and woven fabric, very good stretch properties and shape stability were exhibited.

(実施例8)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)15,385、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)33,691、分子量分布指数(PDI)2.2のポリブチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度275℃、紡糸速度2,400m/分、パック内の滞留時間4分に設定して、単糸繊度が3.4デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は1.67、延伸温度90℃、熱固定温度180℃で実施し、その結果を表1に示した。原糸及び織物において非常に優れた伸縮特性及び形態安定性を示した。
(Example 8)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 15,385 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 33,691, and a molecular weight distribution index (PDI) The polybutylene terephthalate of 2.2 was used in a side-by-side cross section of FIG. 2- (a) using a conventional melt compound spinning equipment at a weight ratio of 5: 5, spinning temperature of 275 ° C., spinning speed of 2,400 m / min. The polyester composite fiber was produced so that the residence time in the pack was set to 4 minutes and the single yarn fineness was 3.4 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The stretching ratio during stretching was 1.67, the stretching temperature was 90 ° C., and the heat setting temperature was 180 ° C. The results are shown in Table 1. In the raw yarn and woven fabric, very good stretch properties and shape stability were exhibited.

(比較例1)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)12,632、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)16,950、分子量分布指数(PDI)2.4のポリトリメチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度270℃、紡糸速度2,500m/分、パック内の滞留時間4分に設定して、単糸繊度が3.4デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は1.70、延伸温度75℃、熱固定温度145℃で実施し、その結果を表2に示した。原糸及び織物において伸縮特性が非常に減少し、不安定な形態安定性を示した。
(Comparative Example 1)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 12,632 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 16,950, a molecular weight distribution index (PDI) The polytrimethylene terephthalate of 2.4 was used in a side-by-side cross section of FIG. 2- (a) at a weight ratio of 5: 5 using a conventional melt-combined spinning equipment, spinning temperature 270 ° C., spinning speed 2,500 m / s. And a residence time in the pack of 4 minutes, a polyester composite fiber was produced so that the single yarn fineness was 3.4 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The stretching ratio at the time of stretching was 1.70, the stretching temperature was 75 ° C., and the heat setting temperature was 145 ° C. The results are shown in Table 2. Stretching properties were greatly reduced in raw yarns and woven fabrics and showed unstable morphological stability.

(比較例2)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)12,691、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)24,411、分子量分布指数(PDI)2.7のポリトリメチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(d)の偏心芯鞘型断面で、紡糸温度265℃、紡糸速度1,500m/分、パック内の滞留時間8分に設定して、単糸繊度が6.0デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は2.85、延伸温度75℃、熱固定温度140℃で実施し、その結果を表2に示した。原糸及び織物において伸縮特性が多少減少し、不安定な形態安定性を示した。
(Comparative Example 2)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 12,691 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 24,411, and a molecular weight distribution index (PDI) of 2.7 Polytrimethylene terephthalate having a weight ratio of 5: 5 using a conventional melt-combined spinning equipment, and having an eccentric core-sheath section of FIG. 2- (d), a spinning temperature of 265 ° C., a spinning speed of 1 , 500 m / min, and the residence time in the pack was set to 8 minutes, and a polyester composite fiber was produced so that the single yarn fineness was 6.0 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The stretching ratio during stretching was 2.85, the stretching temperature was 75 ° C., and the heat setting temperature was 140 ° C. The results are shown in Table 2. Stretch characteristics were slightly reduced in the raw yarn and woven fabric, and unstable morphological stability was exhibited.

(比較例3)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)15,805、分子量分布指数(PDI)2.6のポリエチレンテレフタレートと、数平均分子量(Mn)30,680、分子量分布指数(PDI)2.6のポリトリメチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度270℃、紡糸速度1,400m/分、パック内の滞留時間8分に設定して、単糸繊度が8.1デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.8デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は2.90、延伸温度80℃、熱固定温度150℃で実施し、その結果を表2に示した。原糸及び織物において伸縮特性が多少減少し、不安定な形態安定性を示した。
(Comparative Example 3)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 15,805 and a molecular weight distribution index (PDI) of 2.6, a number average molecular weight (Mn) of 30,680, a molecular weight distribution index (PDI) of A polytrimethylene terephthalate of 2.6 is used in a side-by-side cross section of FIG. 2- (a) at a weight ratio of 5: 5, with a spinning temperature of 270 ° C., a spinning speed of 1,400 m / s. And a residence time in the pack of 8 minutes, and a polyester composite fiber was produced so that the single yarn fineness was 8.1 denier. The composite fiber obtained by spinning / winding was stretched using a separate stretching device to produce a crimp-expressing stretchable composite fiber having a single-fiber fineness of 2.8 denier and provided with a spring-shaped crimp. . The stretching ratio during stretching was 2.90, the stretching temperature was 80 ° C., and the heat setting temperature was 150 ° C. The results are shown in Table 2. Stretch characteristics were slightly reduced in the raw yarn and woven fabric, and unstable morphological stability was exhibited.

(比較例4)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)15,385、分子量分布指数(PDI)2.2のポリエチレンテレフタレートと、数平均分子量(Mn)31,292、分子量分布指数(PDI)2.8のポリブチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度275℃、紡糸速度1,400m/分、パック内の滞留時間8分に設定して、単糸繊度が6.0デニールになるように、ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は2.90、延伸温度75℃、熱固定温度145℃で実施し、その結果を表2に示した。原糸及び織物において伸縮特性が多少減少し、不安定な形態安定性を示した。
(Comparative Example 4)
In producing crimp-forming composite fibers, polyethylene terephthalate having a number average molecular weight (Mn) of 15,385 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 31,292, a molecular weight distribution index (PDI) The polybutylene terephthalate of 2.8 is used at a weight ratio of 5: 5 by using a conventional melt-combined spinning equipment, and the spinning temperature is 275 ° C. and the spinning speed is 1,400 m / min. The polyester composite fiber was manufactured so that the residence time in the pack was set to 8 minutes and the single yarn fineness was 6.0 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The stretching ratio at the time of stretching was 2.90, the stretching temperature was 75 ° C., and the heat setting temperature was 145 ° C. The results are shown in Table 2. Stretch characteristics were slightly reduced in the raw yarn and woven fabric, and unstable morphological stability was exhibited.

(比較例5)
クリンプ形成性複合繊維を製造するにおいて、数平均分子量(Mn)13,490、分子量分布指数(PDI)2.2のナイロン6と、数平均分子量(Mn)31,290、分子量分布指数(PDI)2.8のポリトリメチレンテレフタレートを、重量比5:5の比率で従来の溶融複合紡糸設備を利用して図2-(a)のサイドバイサイド断面で、紡糸温度270℃、紡糸速度1,400m/分、パック内の滞留時間8分に設定して、単糸繊度が6.0デニールになるように、ポリアミド/ポリエステル複合繊維を製造した。前記紡糸/巻取して収得された複合繊維を別途の延伸装置を利用して延伸し、スプリング形状のクリンプを付与した単糸繊度2.1デニール級のクリンプ発現型伸縮性複合繊維を製造した。延伸時の延伸比は2.90、延伸温度75℃、熱固定温度145℃で実施し、その結果を表2に示した。原糸及び織物において伸縮特性が多少減少し、不安定な形態安定性を示した。
(Comparative Example 5)
In producing crimp-forming composite fibers, nylon 6 having a number average molecular weight (Mn) of 13,490 and a molecular weight distribution index (PDI) of 2.2, a number average molecular weight (Mn) of 31,290 and a molecular weight distribution index (PDI) of A polytrimethylene terephthalate of 2.8 is used in a side-by-side cross section of FIG. 2- (a) at a weight ratio of 5: 5, and a spinning temperature of 270 ° C., a spinning speed of 1,400 m / s. And a residence time in the pack of 8 minutes, and a polyamide / polyester composite fiber was produced so that the single yarn fineness was 6.0 denier. The conjugate fiber obtained by spinning / winding was drawn using a separate drawing device to produce a crimp-expressing elastic conjugate fiber having a single-denier fineness of 2.1 denier with a spring-shaped crimp. . The stretching ratio at the time of stretching was 2.90, the stretching temperature was 75 ° C., and the heat setting temperature was 145 ° C. The results are shown in Table 2. Stretch characteristics were slightly reduced in the raw yarn and woven fabric, and unstable morphological stability was exhibited.

Figure 2005273116
Figure 2005273116

Figure 2005273116
Figure 2005273116

本発明で用いられる伸縮性及び後加工の際の形態安定性の優れたクリンプ形成性複合繊維の熱収縮応力分析図である。It is a heat-shrinkage-stress analysis figure of the crimp-forming composite fiber excellent in the stretchability used in this invention and the form stability in the post-processing. (a)〜(d)は本発明によって製造された伸縮性及び後加工の際の形態安定性の優れたクリンプ形成性複合繊維の断面図である。(A)-(d) is sectional drawing of the crimp-forming composite fiber excellent in the elasticity and the shape stability in the case of post-processing manufactured by this invention.

Claims (11)

2種の溶融紡糸が可能である繊維形成性重合体を用いて得られた、繊維の熱収縮応力最大温度が155℃以上、無荷重下沸騰水処理後の捲縮伸張率が40%以上、弾性回復率が70%以上で、アイロン(Iron)収縮率が3%以下である加工布帛の製造ができることを特徴とする形態安定性の優れた伸縮性複合繊維。   Obtained using a fiber-forming polymer capable of two types of melt spinning, the maximum heat shrinkage stress temperature of the fiber is 155 ° C. or higher, and the crimp elongation after boiling water treatment under no load is 40% or higher, A stretchable composite fiber excellent in form stability, characterized in that a processed fabric having an elastic recovery rate of 70% or more and an iron shrinkage of 3% or less can be produced. 1種の重合物はポリエチレンテレフタレートで、その数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5であり、他の1種の重合物はポリトリメチレンテレフタレートで、その数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5であり、二つの重合物の数平均分子量差が5,000〜70,000であることを特徴とする請求項1記載の形態安定性の優れた伸縮性複合繊維。   One kind of polymer is polyethylene terephthalate, the number average molecular weight is 10,000 to 20,000, the molecular weight distribution index is 1.5 to 2.5, and the other kind of polymer is polytrimethylene terephthalate. The number average molecular weight is 15,000 to 90,000, the molecular weight distribution index is 1.5 to 2.5, and the number average molecular weight difference between the two polymers is 5,000 to 70,000. The stretchable composite fiber having excellent shape stability according to claim 1. 1種の重合物はポリエチレンテレフタレートで、その数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5であり、他の1種の重合物はポリエチレンテレフタレート、ポリブチレンテレフタレート又はポリエチレンテレフタレート共重合体で、その数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5であり、二つの重合物の数平均分子量差が5,000〜70,000であることを特徴とする請求項1記載の形態安定性の優れた伸縮性複合繊維。   One polymer is polyethylene terephthalate having a number average molecular weight of 10,000 to 20,000 and a molecular weight distribution index of 1.5 to 2.5, and the other polymer is polyethylene terephthalate and polybutylene. A terephthalate or polyethylene terephthalate copolymer having a number average molecular weight of 15,000 to 90,000, a molecular weight distribution index of 1.5 to 2.5, and a difference in number average molecular weight of the two polymers of 5,000 to 70, The elastic composite fiber having excellent shape stability according to claim 1, wherein the elastic composite fiber is 000. 断面の形態がサイドバイサイド型又は偏心芯鞘(Sheath-Core)型であることを特徴とする請求項1記載の形態安定性の優れた伸縮性複合繊維。   The stretchable composite fiber having excellent shape stability according to claim 1, wherein the cross-sectional shape is a side-by-side type or an eccentric core-sheath (Sheath-Core) type. 捲縮の直径が8mm以下であることを特徴とする請求項1記載の形態安定性の優れた伸縮性複合繊維。   2. The stretchable composite fiber having excellent shape stability according to claim 1, wherein the crimp has a diameter of 8 mm or less. (A)1種の重合物はポリエチレンテレフタレートで、その数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5であり、他の1種の重合物はポリトリメチレンテレフタレートで、その数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5である2種のポリエステルを溶融させる工程と、
(B)前記溶融物を紡糸パック内の滞留時間が5分以下になるように、紡糸パックを通過させた後、2,200〜5,000m/分の紡糸速度でサイドバイサイド型又は偏心芯鞘型の複合糸に引取する工程と、
(С)引取された複合糸を85〜95℃の温度で延伸及び160〜220℃の温度で熱固定する工程を含む方法によって製造される形態安定性の優れた伸縮性複合繊維の製造方法。
(A) One polymer is polyethylene terephthalate having a number average molecular weight of 10,000 to 20,000 and a molecular weight distribution index of 1.5 to 2.5. Melting methylene terephthalate with two polyesters having a number average molecular weight of 15,000 to 90,000 and a molecular weight distribution index of 1.5 to 2.5;
(B) After passing the melt through the spin pack so that the residence time in the spin pack is 5 minutes or less, side-by-side type or eccentric core-sheath type at a spinning speed of 2,200 to 5,000 m / min A process of taking the composite yarn,
(С) A method for producing a stretchable composite fiber having excellent shape stability, which is produced by a method comprising a step of drawing a drawn composite yarn at a temperature of 85 to 95 ° C and heat-setting at a temperature of 160 to 220 ° C.
(A)1種の重合物はポリエチレンテレフタレートで、その数平均分子量が10,000〜20,000、分子量分布指数が1.5〜2.5であり、他の1種の重合物はポリエチレンテレフタレート、ポリブチレンテレフタレート又はポリエチレンテレフタレート共重合体で、その数平均分子量が15,000〜90,000、分子量分布指数が1.5〜2.5である2種のポリエステルを溶融させる工程と、
(B)前記溶融物を紡糸パック内の滞留時間が5分以下になるように、紡糸パックを通過させた後、2,200〜5,000m/分の紡糸速度でサイドバイサイド型又は偏心芯鞘型の複合糸に引取する工程と、
(С)引取された複合糸を85〜95℃の温度で延伸及び160〜220℃の温度で熱固定する工程を含む方法によって製造される形態安定性の優れた伸縮性複合繊維の製造方法。
(A) One kind of polymer is polyethylene terephthalate, the number average molecular weight is 10,000 to 20,000, the molecular weight distribution index is 1.5 to 2.5, and the other one kind of polymer is polyethylene terephthalate. A step of melting two polyesters having a number average molecular weight of 15,000 to 90,000 and a molecular weight distribution index of 1.5 to 2.5 in a polybutylene terephthalate or polyethylene terephthalate copolymer;
(B) After passing the melt through the spin pack so that the residence time in the spin pack is 5 minutes or less, side-by-side type or eccentric core-sheath type at a spinning speed of 2,200 to 5,000 m / min A process of taking the composite yarn,
(С) A method for producing a stretchable composite fiber having excellent shape stability, which is produced by a method comprising a step of drawing a drawn composite yarn at a temperature of 85 to 95 ° C and heat-setting at a temperature of 160 to 220 ° C.
部分配向―延伸/仮撚工法又は紡糸直接延伸工法によって製造されることを特徴とする請求項6又は7記載の形態安定性の優れた伸縮性複合繊維の製造方法。   The method for producing a stretchable composite fiber having excellent shape stability according to claim 6 or 7, wherein the method is produced by a partial orientation-drawing / false twisting method or a spinning direct drawing method. 請求項1記載の伸縮性複合繊維から製造され、撚数(TM:twist/meter)が150〜2,000であることを特徴とする加工糸。   A processed yarn produced from the stretchable conjugate fiber according to claim 1 and having a twist number (TM: twist / meter) of 150 to 2,000. 請求項1記載の伸縮性複合繊維と、伸度50%以上、沸騰水収縮率が15%以上である高収縮特性の原糸が混繊されている混繊糸。   A blended yarn in which the stretchable composite fiber according to claim 1 is mixed with a high-shrinkage property yarn having an elongation of 50% or more and a boiling water shrinkage of 15% or more. 請求項1記載の伸縮性複合繊維を含むことを特徴とする布帛。   A fabric comprising the stretchable conjugate fiber according to claim 1.
JP2004100257A 2004-03-25 2004-03-30 Composite fiber and method for producing the same Expired - Lifetime JP3953040B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2004-0020445A KR100531617B1 (en) 2004-03-25 2004-03-25 Conjugated fiber and manufacturing thereof

Publications (2)

Publication Number Publication Date
JP2005273116A true JP2005273116A (en) 2005-10-06
JP3953040B2 JP3953040B2 (en) 2007-08-01

Family

ID=35046195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100257A Expired - Lifetime JP3953040B2 (en) 2004-03-25 2004-03-30 Composite fiber and method for producing the same

Country Status (4)

Country Link
JP (1) JP3953040B2 (en)
KR (1) KR100531617B1 (en)
CN (1) CN1280462C (en)
TW (1) TWI286167B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045112A (en) * 2013-08-29 2015-03-12 ユニチカトレーディング株式会社 Long and short composite spun yarn, and knitted fabric using the same
CN104499091A (en) * 2014-12-31 2015-04-08 江苏恒力化纤股份有限公司 Polyester paralleling composite yarn and prepared method thereof
WO2024018818A1 (en) * 2022-07-22 2024-01-25 東レ株式会社 Composite fiber, structural yarn, woven and knitted fabric, and clothing
WO2024018814A1 (en) * 2022-07-22 2024-01-25 東レ株式会社 False-twist textured yarn, and clothes, woven knitted product, twist yarn, and composite false-twist textured yarn including same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378833B (en) * 2009-03-31 2014-07-02 郡是株式会社 Core-sheath conjugate fiber
CN101974802A (en) * 2010-09-21 2011-02-16 常熟市海欣复合材料有限公司 Environment-friendly colored composite elastic fiber and processing method thereof
TWI470126B (en) * 2011-09-23 2015-01-21 Shinkong Synthetic Fibers Corp Core-sheath type composite fiber and its manufacturing method and fabric
CN103668552A (en) * 2012-09-17 2014-03-26 东丽纤维研究所(中国)有限公司 Nylon-series composite fiber and preparation method thereof
CN104593904A (en) * 2015-02-06 2015-05-06 海兴材料科技有限公司 Production method of PTT/PET parallel composite elastic short fibers without mechanical crimping
US20200087820A1 (en) * 2016-12-14 2020-03-19 Toray Industries, Inc. Eccentric core-sheath composite fiber and combined filament yarn
KR101979655B1 (en) * 2017-12-27 2019-08-28 주식회사 대영합섬 The method for preparation of false-twisted yarn using polyester latent crimp yarn and false-twisted yarn therefrom
KR101979656B1 (en) * 2018-01-26 2019-05-17 주식회사 대영합섬 Composite false-twist yarn and Manufacturing method thereof
JP7355014B2 (en) * 2018-11-06 2023-10-03 東レ株式会社 Stretched yarn and textile products
KR102303275B1 (en) * 2020-04-10 2021-09-16 (주)서원테크 Method for preparing a potential crimped pet/pbt conjugated yarn with high elasticity that can express melange color
KR102303269B1 (en) * 2020-04-10 2021-09-17 (주)서원테크 Method for preparing a potential crimped pet/pbt conjugated yarn with anatibacterial and uv protection function
KR102380277B1 (en) * 2020-09-25 2022-03-29 (주)서원테크 Manufacturing method of high elasticity recycled PET/PTT-based latent crimped composite yarn with excellent deep colorability and fabric using the same
CN113373535A (en) * 2021-06-28 2021-09-10 福建省海兴凯晟科技有限公司 Preparation process of PET/PTT bi-component stretch yarn

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045112A (en) * 2013-08-29 2015-03-12 ユニチカトレーディング株式会社 Long and short composite spun yarn, and knitted fabric using the same
CN104499091A (en) * 2014-12-31 2015-04-08 江苏恒力化纤股份有限公司 Polyester paralleling composite yarn and prepared method thereof
WO2024018818A1 (en) * 2022-07-22 2024-01-25 東レ株式会社 Composite fiber, structural yarn, woven and knitted fabric, and clothing
WO2024018814A1 (en) * 2022-07-22 2024-01-25 東レ株式会社 False-twist textured yarn, and clothes, woven knitted product, twist yarn, and composite false-twist textured yarn including same

Also Published As

Publication number Publication date
CN1280462C (en) 2006-10-18
CN1673426A (en) 2005-09-28
KR20050095207A (en) 2005-09-29
TW200532061A (en) 2005-10-01
TWI286167B (en) 2007-09-01
KR100531617B1 (en) 2005-11-28
JP3953040B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP3953040B2 (en) Composite fiber and method for producing the same
US7989061B2 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
JP2003238775A (en) Resin composition and molding
JP3953055B2 (en) Composite fiber and method for producing the same
US8293364B2 (en) Highly shrinkable fiber
JP3953052B2 (en) Composite fiber and method for producing the same
JP4487973B2 (en) Polyester resin composition
KR101103379B1 (en) Composite fibers of high elastic polyester with being improved dyeing and method of manufacturing the same
KR101043884B1 (en) Method for preparing polyester conjugated fiber having latent crimping characteristics and the conjugated fiber prepared thereby
JP4562907B2 (en) Polyester composite fiber for stretch woven and knitted fabric and method for producing the same
CN113005562A (en) High-elasticity composite fiber and application thereof
JP2000328359A (en) Production of polyester blended yarn
JP2018048413A (en) Latent Crimpable Composite Fiber, Crimpable Composite Fiber, and Fabric
KR100519015B1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
KR20030022553A (en) High crimping polyester composite fibre
KR100537253B1 (en) Process for producing a potential polyamide crimped yarn
JP3570166B2 (en) Method for producing core-sheath composite fiber and method for producing false twisted yarn comprising the same
KR20070047088A (en) Method for preparing polyester conjugated fiber having latent crimping characteristics and the conjugated fiber prepared thereby
KR20050034265A (en) Polyester-based, latent-crimping conjugated fiber and method for preparing the same
JP2008174889A (en) Polylactic acid conjugate fiber
JP2008063671A (en) Dyeable polypropylene-based crimped fiber and fiber product
JP2005146503A (en) Soft stretch yarn and fabric
JPH07207541A (en) Polyester combined filament yarn having different shrinkage

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3953040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250