JP2005272731A - Method for hydrogenation treatment - Google Patents

Method for hydrogenation treatment Download PDF

Info

Publication number
JP2005272731A
JP2005272731A JP2004090425A JP2004090425A JP2005272731A JP 2005272731 A JP2005272731 A JP 2005272731A JP 2004090425 A JP2004090425 A JP 2004090425A JP 2004090425 A JP2004090425 A JP 2004090425A JP 2005272731 A JP2005272731 A JP 2005272731A
Authority
JP
Japan
Prior art keywords
mass
catalyst
oxygen
hydrogen
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004090425A
Other languages
Japanese (ja)
Other versions
JP4219839B2 (en
Inventor
Hiroaki Hara
浩昭 原
Toshio Shimizu
俊夫 清水
Yutaka Miyata
豊 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Exploration Co Ltd
Nippon Steel Corp
Inpex Corp
Japan Oil Gas and Metals National Corp
Original Assignee
Cosmo Oil Co Ltd
Japan Petroleum Exploration Co Ltd
Nippon Steel Corp
Inpex Corp
Japan Oil Gas and Metals National Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Japan Petroleum Exploration Co Ltd, Nippon Steel Corp, Inpex Corp, Japan Oil Gas and Metals National Corp filed Critical Cosmo Oil Co Ltd
Priority to JP2004090425A priority Critical patent/JP4219839B2/en
Priority to US11/631,794 priority patent/US8158841B2/en
Publication of JP2005272731A publication Critical patent/JP2005272731A/en
Application granted granted Critical
Publication of JP4219839B2 publication Critical patent/JP4219839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for a hydrogenation treatment of a synthetic hydrocarbon oil formed by a Fischer-Tropsch (FT) synthesis which permits efficient conversion thereof into a liquid fuel suitable as a fuel for a diesel car by removing olefins and oxygen-containing compounds with a suppressed gasification ratio by a hydrogenation treatment thereof. <P>SOLUTION: The method for the hydrogenation treatment comprises removing olefins and oxygen-containing compounds with a gasification ratio of a certain value or lower by the hydrogenation treatment of the synthetic hydrocarbon oil formed by the FT synthesis using a catalyst comprising a certain catalyst metal supported on a carrier under a certain treatment condition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一酸化炭素と水素との反応、所謂フィッシャー・トロプシュ(FT)合成で生成されたパラフィン系合成燃料の水素化処理方法に関するものである。   The present invention relates to a method for hydrotreating a paraffinic synthetic fuel produced by a reaction between carbon monoxide and hydrogen, so-called Fischer-Tropsch (FT) synthesis.

原油由来の灯軽油留出分は一般的に硫黄化合物を含み、それらの油をディーゼル車用燃料として使用する場合には、硫黄化合物中に存在する硫黄が低分子量の硫黄化合物に転化して、大気中に排出される。また、近年導入されつつある排出ガス後処理装置において、燃料中に硫黄化合物が存在すると、使用されている触媒を被毒する恐れがある。また、原油由来の灯軽油留出分は芳香族を含んでおり、芳香族含有量が多いと、粒子状物質(PM)や窒素酸化物(NOx)が増加するとの報告例も多数ある。従って、ディーゼル車用燃料は、硫黄分や芳香族の含有量が少ないものが望ましい。   The crude oil-derived kerosene oil distillate generally contains sulfur compounds, and when these oils are used as fuel for diesel vehicles, the sulfur present in the sulfur compounds is converted into low molecular weight sulfur compounds, Released into the atmosphere. In addition, in exhaust gas aftertreatment devices that are being introduced in recent years, if a sulfur compound is present in the fuel, the catalyst used may be poisoned. In addition, the crude oil-derived kerosene oil distillate contains aromatics, and there are many reports that particulate matter (PM) and nitrogen oxides (NOx) increase when the aromatic content is high. Accordingly, it is desirable that the diesel vehicle fuel has a low sulfur content or aromatic content.

一方、一酸化炭素と水素からなる合成ガスを用いてフィッシャー・トロプシュ合成(以下、FT法ともいう。)によって生成される合成炭化水素油は、合成ガス中の不純物は除去されるため、硫黄化合物は含まれていない。また、パラフィンが主成分であるため、芳香族はほとんど含まれていない。従って、FT法による合成炭化水素油は、ディーゼル車用燃料として好適な燃料と言える。   On the other hand, synthetic hydrocarbon oil produced by Fischer-Tropsch synthesis (hereinafter also referred to as FT method) using synthesis gas composed of carbon monoxide and hydrogen removes impurities in the synthesis gas. Is not included. Moreover, since paraffin is a main component, aromatics are hardly contained. Therefore, it can be said that the synthetic hydrocarbon oil by the FT method is a suitable fuel as a diesel vehicle fuel.

しかし、FT法によって生成される合成燃料は、ノルマルパラフィンが主成分ではあるが、オレフィンや含酸素化合物を多少なりとも含んでいる。これらの物質は、原油由来の灯軽油留出分には一般的に含まれていない。オレフィンが自動車用燃料に多量に含まれていると、過酸化物を形成して、燃料フィルターなどで閉塞が起こる可能性がある。また、含酸素化合物は少量でも含まれると、燃料タンクや燃料供給系の腐食の原因となる。従って、FT法によって生成された合成炭化水素油を自動車燃料として使用するためには、オレフィンや含酸素化合物を除去する必要がある。
これまでにも、FT法によって生成された合成炭化水素油を、水素化触媒を用いて、異性化や分解が起こらない条件で水素化処理して、オレフィンや含酸素化合物を除去することが提案されている(例えば、特許文献1参照)。
欧州特許出願公開第0583836号明細書
However, the synthetic fuel produced by the FT method has normal paraffin as a main component, but contains some olefin and oxygen-containing compound. These substances are generally not included in kerosene distillate derived from crude oil. If an olefin is contained in a large amount in an automobile fuel, a peroxide may be formed, and the fuel filter or the like may be clogged. In addition, if a small amount of oxygen-containing compound is contained, it may cause corrosion of the fuel tank or the fuel supply system. Therefore, in order to use the synthetic hydrocarbon oil produced by the FT method as an automobile fuel, it is necessary to remove olefins and oxygen-containing compounds.
So far, it has been proposed to remove olefins and oxygenated compounds by hydrotreating synthetic hydrocarbon oils produced by the FT method using hydrogenation catalysts under conditions that do not cause isomerization or decomposition. (For example, refer to Patent Document 1).
European Patent Application No. 0583836

上記のとおり、FT法によって生成される合成炭化水素油は、自動車燃料として使用するためには、オレフィンや含酸素化合物を除去する必要がある。これらの化合物を水素化処理により除去する方法として知られている従来の方法では、オレフィンや含酸素化合物の除去に際し、ガス化率が高いという問題がある。また、オレフィンや含酸素化合物の除去率も不十分である。   As described above, the synthetic hydrocarbon oil produced by the FT method needs to remove olefins and oxygen-containing compounds in order to be used as automobile fuel. The conventional method known as a method for removing these compounds by hydrogenation has a problem that the gasification rate is high when removing olefins and oxygen-containing compounds. Also, the removal rate of olefins and oxygen-containing compounds is insufficient.

本発明は、以上のような実情下において、FT法により生成された合成炭化水素油を、水素化処理により、ガス化率を抑えて、オレフィンおよび含酸素化合物を除去し、ディーゼル車用燃料として好適な液体燃料に効率良くなし得る、該合成炭化水素油の水素化処理方法を提供することを目的とする。   Under the circumstances as described above, the present invention removes olefins and oxygenated compounds by reducing the gasification rate of a synthetic hydrocarbon oil produced by the FT method by a hydrotreating process, and used as a diesel vehicle fuel. It is an object of the present invention to provide a method for hydrotreating the synthetic hydrocarbon oil, which can be efficiently made into a suitable liquid fuel.

本発明者らは、上記目的を達成するために検討を重ねた結果、ある種の触媒を用いた特定の反応条件下で、FT法により生成された合成炭化水素油を水素化処理すると、ガス化率が抑えられ、オレフィンおよび含酸素化合物が除去できることを見出し、本発明を完成した。
すなわち、本発明は、上記目的を達成するために、以下の水素化処理方法を提供する。
(1)フィッシャー・トロプシュ合成により生成され、炭素数が4〜100のノルマルパラフィンを50質量%以上、含酸素化合物を無水規準の酸素質量割合で0.01質量%以上、オレフィンを0.1質量%以上含む合成炭化水素油を、
無機酸化物、無機結晶性化合物および粘土鉱物から選ばれた1種類以上からなる担体に、ニッケル、マンガン、コバルト、銅、鉄、および白金族金属から選ばれた少なくとも1種を、触媒基準で、金属換算で、0.1〜80質量%含有してなる触媒を用いて、
水素分圧が0.1〜20MPa、温度が150〜300℃、液空間速度が0.1〜3h-1、水素/オイル比が50〜2000L/L、ガス化率が10質量%以下の条件下で、
オレフィンおよび含酸素化合物を除去することを特徴とする水素化処理方法。
As a result of repeated studies to achieve the above object, the inventors of the present invention, when hydrotreating a synthetic hydrocarbon oil produced by the FT method under specific reaction conditions using a certain type of catalyst, The present invention was completed by finding that the conversion rate was suppressed and olefins and oxygen-containing compounds could be removed.
That is, the present invention provides the following hydrotreating method in order to achieve the above object.
(1) 50% by mass or more of normal paraffin having 4 to 100 carbon atoms produced by Fischer-Tropsch synthesis, 0.01% by mass or more of oxygen-containing compound in terms of oxygen mass ratio of anhydrous standards, and 0.1% by mass of olefin Synthetic hydrocarbon oil containing at least
At least one selected from nickel, manganese, cobalt, copper, iron, and a platinum group metal on a catalyst consisting of one or more selected from inorganic oxides, inorganic crystalline compounds, and clay minerals, on a catalyst basis, Using a catalyst containing 0.1 to 80% by mass in terms of metal,
Conditions under which hydrogen partial pressure is 0.1 to 20 MPa, temperature is 150 to 300 ° C., liquid space velocity is 0.1 to 3 h −1 , hydrogen / oil ratio is 50 to 2000 L / L, and gasification rate is 10 mass% or less. Below,
A hydrotreating method comprising removing an olefin and an oxygen-containing compound.

(2)フィッシャー・トロプシュ合成により生成された合成炭化水素油を、
珪藻土、シリカ−マグネシア、および活性炭から選ばれた少なくとも1種を主成分とする担体に、ニッケル、白金およびパラジウムから選ばれた少なくとも1種を、触媒基準で、金属換算で、0.1〜80質量%含有してなる触媒を用いて、
水素分圧が0.1〜20MPa、温度が150〜300℃、液空間速度が0.1〜3h-1、水素/オイル比が50〜2000L/L、ガス化率が10質量%以下の条件下で、
オレフィンおよび含酸素化合物を除去することを特徴とする水素化処理方法。
(2) Synthetic hydrocarbon oil produced by Fischer-Tropsch synthesis
In a carrier based on at least one selected from diatomaceous earth, silica-magnesia, and activated carbon, at least one selected from nickel, platinum, and palladium is 0.1-80 in terms of metal on a catalyst basis. Using a catalyst containing mass%,
Conditions under which hydrogen partial pressure is 0.1 to 20 MPa, temperature is 150 to 300 ° C., liquid space velocity is 0.1 to 3 h −1 , hydrogen / oil ratio is 50 to 2000 L / L, and gasification rate is 10 mass% or less. Below,
A hydrotreating method comprising removing an olefin and an oxygen-containing compound.

本発明によれば、FT法により生成された合成炭化水素油から、ガス化率を抑えて、オレフィンおよび含酸素化合物を完全に除去することができ、効率良くディーゼル車用燃料として好適な液体燃料を得ることができる。   According to the present invention, from a synthetic hydrocarbon oil produced by the FT method, an olefin and an oxygen-containing compound can be completely removed while suppressing a gasification rate, and the liquid fuel is suitable as a fuel for a diesel vehicle efficiently. Can be obtained.

以下、本発明について詳細に説明する。
本発明では、上記のとおり、FT法によって生成された合成炭化水素油を、ある種の触媒を用いて、特定の反応条件下で水素化処理することを特徴とする。
本発明で用いる触媒としては、ニッケル、マンガン、コバルト、銅、鉄、および白金族金属から選ばれた少なくとも1種の金属と、無機酸化物、および無機結晶性化合物あるいは粘土鉱物から選ばれた1種類以上からなる担体とからなるものが挙げられる。
Hereinafter, the present invention will be described in detail.
In the present invention, as described above, the synthetic hydrocarbon oil produced by the FT method is hydrotreated under specific reaction conditions using a certain catalyst.
The catalyst used in the present invention is at least one metal selected from nickel, manganese, cobalt, copper, iron and platinum group metals, an inorganic oxide, and an inorganic crystalline compound or a clay mineral 1 The thing which consists of the support | carrier which consists of more than a kind is mentioned.

無機酸化物の担体としては種々のものが使用でき、例えば、シリカ、アルミナ、ボリア、マグネシア、チタニア、シリカ−アルミナ、シリカ−マグネシア、シリカ−ジルコニア、シリカ−トリア、シリカ−ベリリア、シリカ−チタニア、シリカ−ボリア、アルミナ−ジルコニア、アルミナ−チタニア、アルミナ−ボリア、アルミナ−クロミナ、チタニア−ジルコニア、シリカ−アルミナ−トリア、シリカ−アルミナ−ジルコニア、シリカ−アルミナ−マグネシア、シリカ−マグネシア−ジルコニアが挙げられ、中でもアルミナ、シリカ−アルミナ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニアが好ましく、特にアルミナのうちのγ−アルミナが好ましい。
また、無機結晶性化合物あるいは粘土鉱物の担体としても種々のものが使用でき、例えば、ゼオライト、珪藻土、活性炭、モレキュラーシーブ、その他の無機結晶性化合物や、モンモリロナイト、カオリン、ベントナイト、アダバルガイド、ボーキサイト、カオリナイト、ナクライト、アノーキサイト等の粘土鉱物が挙げられる。
上記各種担体は、単独で、あるいは2種以上を組み合せて用いることができる。また、上記各種担体の中でも特に、珪藻土、シリカ−マグネシアおよび活性炭が好ましい。
Various inorganic oxide carriers can be used, such as silica, alumina, boria, magnesia, titania, silica-alumina, silica-magnesia, silica-zirconia, silica-tria, silica-beryllia, silica-titania, Silica-boria, alumina-zirconia, alumina-titania, alumina-boria, alumina-chromina, titania-zirconia, silica-alumina-tria, silica-alumina-zirconia, silica-alumina-magnesia, silica-magnesia-zirconia Among these, alumina, silica-alumina, alumina-boria, alumina-titania, and alumina-zirconia are preferable, and γ-alumina among alumina is particularly preferable.
Various carriers can be used as inorganic crystalline compounds or clay mineral carriers, such as zeolite, diatomaceous earth, activated carbon, molecular sieve, other inorganic crystalline compounds, montmorillonite, kaolin, bentonite, Adaval guide, bauxite, kaori. Examples include clay minerals such as knight, nacrite, and anoxite.
The above-mentioned various carriers can be used alone or in combination of two or more. Of the various carriers, diatomaceous earth, silica-magnesia and activated carbon are particularly preferable.

また、上記各種担体の比表面積、細孔容積は、本発明では特に限定するものではないが、優れた水素化活性を有する触媒とするためには、比表面積は100m2/g以上が好ましく、細孔容積は0.1〜1.0mL/gが好ましい。 Further, the specific surface area and pore volume of the above-mentioned various carriers are not particularly limited in the present invention, but in order to obtain a catalyst having excellent hydrogenation activity, the specific surface area is preferably 100 m 2 / g or more, The pore volume is preferably 0.1 to 1.0 mL / g.

また、担体に含有させる活性成分としての金属は、ニッケル、マンガン、コバルト、銅、鉄、および白金族金属から選ばれた少なくとも1種であるが、好ましくはニッケル、白金、パラジウムである。これらの金属は、単独で、あるいは2種以上を組み合せて使用することができる。
本発明で用いる触媒におけるこれらの金属の含有量は、触媒基準で、金属換算で、0.1〜80質量%である。0.1質量%未満であると、活性が低下して、オレフィンや含酸素化合物の除去率が低下し、逆に80質量%を超えると、担体の比表面積や細孔容積が小さくなり、活性が低下してしまう。
これらの金属は、金属種によって触媒活性に相違があるので、金属種毎に含有量を上記含有量の範囲内で最適化することが好ましい。すなわち、触媒基準で、金属換算で、ニッケル、マンガン、コバルト、銅、鉄は10〜80質量%が好ましく、45〜75質量%がより好ましい。白金族金属は比較的低い含有量でも活性があるが、0.1〜10質量%が好ましい。0.1質量%未満では活性が低すぎる。また、白金族金属は高価なため、コスト上昇を抑えるためにも、10質量%以下が好ましい。
Further, the metal as the active ingredient to be contained in the carrier is at least one selected from nickel, manganese, cobalt, copper, iron, and platinum group metals, preferably nickel, platinum, and palladium. These metals can be used alone or in combination of two or more.
Content of these metals in the catalyst used by this invention is 0.1-80 mass% in conversion of a metal on a catalyst basis. If it is less than 0.1% by mass, the activity is reduced and the removal rate of olefins and oxygen-containing compounds is reduced. On the other hand, if it exceeds 80% by mass, the specific surface area and pore volume of the carrier are reduced, and the activity is reduced. Will fall.
Since these metals have different catalytic activities depending on the metal species, it is preferable to optimize the content for each metal species within the above-mentioned content range. That is, 10-80 mass% is preferable and 45-75 mass% is more preferable nickel, manganese, cobalt, copper, and iron on a catalyst basis in metal conversion. The platinum group metal is active even at a relatively low content, but is preferably 0.1 to 10% by mass. If it is less than 0.1% by mass, the activity is too low. Moreover, since a platinum group metal is expensive, 10 mass% or less is preferable also in order to suppress an increase in cost.

担体に、上記の活性金属を含有させる方法、すなわち本発明で使用する触媒の調製方法は、幾つかの公知の技術を用いて行うことができる。
その1つの方法としては、上記の担体に、上記の金属化合物を水、アルコール類、エーテル類、ケトン類等の溶媒に溶解させた溶液を、1回以上の含浸処理によって含有させる含浸法が挙げられる。含浸処理の後に乾燥・焼成が行われるが、含浸処理回数が複数にわたる場合、各含浸処理間に、乾燥・焼成を行ってもよい。
他の方法としては、上記の担体に、上記の金属化合物を溶解させた溶液を、噴霧する噴霧法、あるいは上記金属成分を化学的に蒸着させる化学蒸着法を挙げることができる。
さらに別の方法としては、成型前の上記の担体成分に、上記の金属成分の一部あるいは全部を含有させて成型する混練法、共沈法、アルコキシド法を挙げることができる。
The method for incorporating the above active metal into the support, that is, the method for preparing the catalyst used in the present invention, can be carried out using several known techniques.
As one of the methods, there is an impregnation method in which a solution in which the above metal compound is dissolved in a solvent such as water, alcohols, ethers, and ketones is contained in the above support by one or more impregnation treatments. It is done. Drying / firing is performed after the impregnation treatment. When the number of impregnation treatments is plural, drying / firing may be performed between the respective impregnation treatments.
Other methods include a spraying method in which a solution in which the above metal compound is dissolved in the above carrier is sprayed, or a chemical vapor deposition method in which the above metal component is chemically deposited.
Still other methods include a kneading method, a coprecipitation method, and an alkoxide method in which a part or all of the metal component is contained in the carrier component before molding.

以上のような種々の方法によって調製される本発明で使用する触媒の比表面積、細孔容積等の物理性状は、本発明では特に限定するものではないが、優れた水素化活性を有する触媒とするためには、比表面積が100m2/g以上、細孔容積が0.05〜1.2mL/gが好ましい。 The physical properties such as the specific surface area and pore volume of the catalyst used in the present invention prepared by various methods as described above are not particularly limited in the present invention, but the catalyst having excellent hydrogenation activity and For this purpose, the specific surface area is preferably 100 m 2 / g or more and the pore volume is preferably 0.05 to 1.2 mL / g.

本発明における水素化処理条件は、水素分圧が0.1〜20MPa、好ましくは0.2〜10MPa、温度が150〜300℃、好ましくは160℃〜240℃、液空間速度が0.1〜3h-1、好ましくは0.5〜2h-1、水素/オイル比が50〜2000L/L、好ましくは50〜1000L/Lである。
水素分圧が0.1MPa未満であると、水素化活性が低下しすぎ、20MPaを超えると、それだけの高圧に耐え得る高コストの設備を要し、不経済となる。温度が150℃未満であると、触媒活性が低下しすぎ、300℃を超えると原料油の分解が促進されてガス化率が多くなってしまう。液空間速度が0.1h-1未満であると、処理効率が低下してしまい、3h-1を超えると、触媒と原料油のとの接触時間が短くなりすぎて触媒活性が十分に発揮されない。
The hydrotreating conditions in the present invention are such that the hydrogen partial pressure is 0.1 to 20 MPa, preferably 0.2 to 10 MPa, the temperature is 150 to 300 ° C., preferably 160 ° C. to 240 ° C., and the liquid space velocity is 0.1 to 3h −1 , preferably 0.5 to 2h −1 and a hydrogen / oil ratio of 50 to 2000 L / L, preferably 50 to 1000 L / L.
If the hydrogen partial pressure is less than 0.1 MPa, the hydrogenation activity decreases too much, and if it exceeds 20 MPa, expensive equipment that can withstand such high pressure is required, which is uneconomical. If the temperature is less than 150 ° C, the catalytic activity is too low, and if it exceeds 300 ° C, the decomposition of the raw material oil is promoted and the gasification rate increases. When the liquid space velocity is less than 0.1 h −1 , the processing efficiency decreases, and when it exceeds 3 h −1 , the contact time between the catalyst and the raw material oil becomes too short, and the catalytic activity is not sufficiently exhibited. .

上記の水素化処理条件は、触媒の活性金属や担体の種類に応じて最適化することが好ましい。特に、温度については、触媒の活性金属や担体の種類に応じて、下記の範囲とすることが望ましい。
Ni・珪藻土触媒:150〜250℃、好ましくは180〜240℃、更に好ましくは200〜220℃。
Pt・アルミナ触媒:180〜240℃、好ましくは190〜230℃、更に好ましくは200〜220℃。
Pd・アルミナ触媒:180〜240℃、好ましくは190〜230℃、更に好ましくは200〜220℃。
Ni・シリカ−マグネシア触媒:150〜200℃、好ましくは150〜180℃、更に好ましくは150〜170℃。
Pd・活性炭触媒:180〜240℃、好ましくは190〜230℃、更に好ましくは200〜220℃。
The hydrotreating conditions are preferably optimized according to the active metal of the catalyst and the type of support. In particular, the temperature is preferably in the following range depending on the active metal of the catalyst and the type of the support.
Ni / diatomaceous earth catalyst: 150 to 250 ° C., preferably 180 to 240 ° C., more preferably 200 to 220 ° C.
Pt / alumina catalyst: 180 to 240 ° C, preferably 190 to 230 ° C, more preferably 200 to 220 ° C.
Pd / alumina catalyst: 180 to 240 ° C, preferably 190 to 230 ° C, more preferably 200 to 220 ° C.
Ni-silica-magnesia catalyst: 150 to 200 ° C, preferably 150 to 180 ° C, more preferably 150 to 170 ° C.
Pd / activated carbon catalyst: 180 to 240 ° C., preferably 190 to 230 ° C., more preferably 200 to 220 ° C.

また、本発明では、ガス化率を10質量%以下にする。ガス化率を10質量%以下にすることは、水素分圧、温度、液空間速度、水素/オイル比などの水素化処理条件を上記各範囲内で適宜調節、最適化することや、原料油とするFT法により生成された合成炭化水素油の組成を適宜調節することなどによって達成することができる。   Moreover, in this invention, a gasification rate shall be 10 mass% or less. Setting the gasification rate to 10% by mass or less means that the hydrogenation conditions such as hydrogen partial pressure, temperature, liquid space velocity, and hydrogen / oil ratio are adjusted and optimized as appropriate within the above ranges, This can be achieved by appropriately adjusting the composition of the synthetic hydrocarbon oil produced by the FT method.

本発明における処理対象油(原料油)は、含酸素化合物やオレフィンの除去を要する、FT合成により生成された合成炭化水素油である。
原料油としては、例えば、単一ロットで得られたもの単独で使用してもよいし、複数ロットで得られたものを複数混合して使用してもよい。また、一定の触媒、一定の反応条件で得られたものを単独で使用してもよいし、異なった触媒、異なった反応条件で得られた複数のものを複数混合して使用してもよい。
The oil to be treated (raw oil) in the present invention is a synthetic hydrocarbon oil produced by FT synthesis that requires removal of oxygen-containing compounds and olefins.
As the raw material oil, for example, one obtained in a single lot may be used alone, or a plurality of those obtained in a plurality of lots may be mixed and used. In addition, a catalyst obtained under a certain catalyst and a certain reaction condition may be used alone, or a plurality of catalysts obtained under a different catalyst and different reaction conditions may be used in combination. .

本発明の原料油としては、炭素数が好ましくは4以上、より好ましくは7以上のノルマルパラフィンを主成分とすることが、原料油の分解によるガス化率の上昇を抑制しやすく、水素化処理後の収率が上がるので、好ましい。
特に、本発明の原料油として、FT合成により生成された炭素数が7〜100のノルマルパラフィンを50質量%以上、含酸素化合物を無水規準の酸素質量割合で0.01質量%以上、オレフィンを0.1質量%以上含む合成炭化水素油は、好適である。原料油中のノルマルパラフィンの炭素数100以下とすることで、原料油の融点の上昇による原料供給のためのポンプやライン等が閉塞するのを防ぎやすい点で、好ましい。原料油中の炭素数100を超えるパラフィンは、ガスクロマトグラフなどで検出下限以下(約0.1質量%未満)であることが望ましい。
As the raw material oil of the present invention, it is preferable that the main component is a normal paraffin having 4 or more carbon atoms, more preferably 7 or more carbon atoms. This is preferable because the subsequent yield increases.
In particular, as the raw material oil of the present invention, 50% by mass or more of normal paraffins having 7 to 100 carbon atoms generated by FT synthesis, 0.01% by mass or more of oxygen-containing compounds in terms of oxygen mass ratio of anhydrous standards, and olefin A synthetic hydrocarbon oil containing 0.1% by mass or more is suitable. By setting the normal paraffin in the feedstock to have a carbon number of 100 or less, it is preferable in that it is easy to prevent clogging of pumps and lines for feeding the feed due to an increase in the melting point of the feedstock. The paraffin having more than 100 carbon atoms in the feedstock oil is desirably below the lower limit of detection (less than about 0.1% by mass) by gas chromatography or the like.

FT合成により生成された合成炭化水素油における含酸素化合物とオレフィンの含有量は、FT触媒により大きく異なり、Fe系触媒やRu系触媒では、含酸素化合物が酸素質量割合で3質量%以上、オレフィン含有量が50質量%以上になることもあるが、最も多く研究されているCo系触媒では、一般に、含酸素化合物が酸素質量割合で3質量%以下、オレフィンが10質量%以下である。本発明は、含酸素化合物とオレフィンをこの範囲内で含む原料油を用いると、本発明の効果が有効に発揮される。オレフィン含有量が50質量%以上であっても、本発明の効果は有効に発揮される。また、原料油中の含酸素化合物やオレフィンの割合が低いほど、生産効率を上げ、コスト上昇を抑えることができるので、予めこれらの化合物を原料油から一定程度除くなどして、含酸素化合物を酸素質量割合で2質量%以下、オレフィンを7質量%以下としておくことも好ましい。特にアルコール類の含有量は、一般に5質量%以下とあまり高くないことが望ましい。   The content of oxygen-containing compounds and olefins in the synthetic hydrocarbon oil produced by FT synthesis varies greatly depending on the FT catalyst. In the case of Fe-based catalysts and Ru-based catalysts, the oxygen-containing compounds are 3% by mass or more in terms of oxygen mass ratio. Although the content may be 50% by mass or more, the Co-based catalyst that has been most frequently studied generally has an oxygen-containing compound in an oxygen mass ratio of 3% by mass or less and an olefin of 10% by mass or less. In the present invention, when a raw material oil containing an oxygen-containing compound and an olefin within this range is used, the effects of the present invention are effectively exhibited. Even if the olefin content is 50% by mass or more, the effect of the present invention is effectively exhibited. In addition, the lower the proportion of oxygenated compounds and olefins in the feedstock, the higher the production efficiency and the lower the cost. Therefore, by removing these compounds from the feedstock to a certain extent, It is also preferable that the oxygen mass ratio is 2% by mass or less and the olefin is 7% by mass or less. In particular, the content of alcohols is generally not so high as 5% by mass or less.

本発明を商業規模で実施する場合には、触媒を適当な反応器において、固定床、移動床または流動床として使用し、この反応器に上記の原料油を導入し、上記の水素化処理条件で処理すればよい。最も一般的には、上記の触媒を固定床として維持し、原料油が該固定床を下方に通過するようにする。
商業規模の実施に当たり、単独の反応器を使用してもよいし、連続した2つ以上の反応器を使用することもできる。
単独の反応器を使用する場合、反応器内に2つ以上の異なった触媒を充填して反応させることもできる。この際、触媒は反応器内の分割して、異なった触媒を各層に分割して充填することもできるし、触媒を混合して充填することもできる。連続した2つ以上の反応器を使用する場合、それぞれの反応器に異なった触媒を使用することもできる。
また、反応器の下流側にオレフィンおよび含酸素化合物を検出する分析装置を設け、これらが検出された場合は反応器の上流側へ誘導して再度水素化処理を行うこともできる。
When the present invention is carried out on a commercial scale, the catalyst is used in a suitable reactor as a fixed bed, moving bed or fluidized bed, the above feed oil is introduced into this reactor, and the above hydrotreatment conditions are used. Can be processed. Most commonly, the catalyst is maintained as a fixed bed so that the feedstock passes down the fixed bed.
In commercial scale implementations, a single reactor may be used, or two or more reactors in series may be used.
When a single reactor is used, the reaction can be carried out by charging two or more different catalysts in the reactor. At this time, the catalyst can be divided in the reactor, and different catalysts can be divided into each layer and charged, or the catalyst can be mixed and charged. When using two or more reactors in succession, different catalysts can be used in each reactor.
In addition, an analyzer for detecting olefins and oxygen-containing compounds can be provided on the downstream side of the reactor, and when these are detected, the hydrogenation treatment can be performed again by guiding them to the upstream side of the reactor.

以下、実施例および比較例によりさらに具体的に本発明を説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to a following example.

(実施例1)
表1に示した珪藻土の担体に、触媒基準で、金属換算で、ニッケル50質量%を含有した触媒を、表2の条件で、表3に示した原料1を原料油として、反応温度200℃で水素化処理反応を実施し、活性評価を行った。評価結果を表4に示す。
ここで、活性評価は次のようにして行った。すなわち、原料油を直立した円筒状の固定床流通式反応装置にその頂部から下向きに供給した。反応装置のサイズは、内径12mm(内径3mm)で、触媒18mLを充填した。反応評価に先立って、水素流通下で反応装置に具備されているヒーターを使用して、200℃、2時間の前処理還元を施した。その際の水素流通量は50mL/min、水素分圧は3.0MPaである。反応はヒーターの設定で反応温度を、圧力調整弁で反応圧力を、マスフローコントローラーで水素/オイル比をそれぞれコントロールして行った。固定床流通式反応装置の下流には、反応生成物回収用のトラップが2段設けられており、1段目は常温に保っており、2段目は氷水で冷却しており、それぞれ重質留分および軽質留分を回収した。
(Example 1)
A catalyst containing 50% by mass of nickel in terms of metal on a diatomaceous earth carrier shown in Table 1 on a catalyst basis, using the raw material 1 shown in Table 3 as a raw material oil under the conditions shown in Table 2, a reaction temperature of 200 ° C. The hydrogenation reaction was carried out and the activity was evaluated. The evaluation results are shown in Table 4.
Here, activity evaluation was performed as follows. That is, the raw material oil was supplied downward from the top to a cylindrical fixed bed flow type reaction apparatus upright. The reactor had an inner diameter of 12 mm (inner diameter of 3 mm) and was filled with 18 mL of catalyst. Prior to reaction evaluation, pretreatment reduction was performed at 200 ° C. for 2 hours using a heater provided in the reaction apparatus under a hydrogen flow. In this case, the hydrogen flow rate is 50 mL / min, and the hydrogen partial pressure is 3.0 MPa. The reaction was carried out by controlling the reaction temperature with a heater setting, the reaction pressure with a pressure regulating valve, and the hydrogen / oil ratio with a mass flow controller. Downstream of the fixed-bed flow reactor, two stages of traps are provided to collect the reaction product. The first stage is kept at room temperature and the second stage is cooled with ice water. Fractions and light fractions were collected.

表4中のアルコール残率、アルデヒド残率、カルボン酸残率およびオレフィン残率は、次のようにして求めた。まず、ガスクロマトグラフで、アルコール類、アルデヒド類、カルボン酸類およびオレフィンの分布を定性的に調べ、それぞれ、最もピークの高い物質を選定し、各類を代表させた。ここで、アルコール類の代表としてC715OHを、アルデヒド類の代表としてC910CHOを、カルボン酸類の代表としてC919COOH、オレフィンの代表としてC714を選定した。次に、純度99.9%ノルマルヘキサンを赤外分光分析計で計測し、アルコール、アルデヒド、カルボン酸およびオレフィンが検出されないことを確認した。このノルマルヘキサンにそれぞれの代表物質を、1質量%、3質量%、5質量%、10質量%、30質量%、70質量%ずつ混合した試料を作製し、赤外分光分析計で分析し検量線を引いた。アルコール残率、アルデヒド残率、カルボン酸残率およびオレフィン残率は、活性評価で回収した生成物を赤外分光分析計で分析し、それぞれの検量線で換算した。
表4中のガス化率は、活性評価で投入した原料の質量に対する回収した生成物の質量%で定義した。
The alcohol residual ratio, aldehyde residual ratio, carboxylic acid residual ratio, and olefin residual ratio in Table 4 were determined as follows. First, the distribution of alcohols, aldehydes, carboxylic acids and olefins was qualitatively examined with a gas chromatograph, and the substances with the highest peaks were selected, respectively, to represent each class. Here, C 7 H 15 OH was selected as a representative of alcohols, C 9 H 10 CHO as a representative of aldehydes, C 9 H 19 COOH as a representative of carboxylic acids, and C 7 H 14 as a representative of olefins. Next, purity 99.9% normal hexane was measured with an infrared spectrometer, and it was confirmed that alcohol, aldehyde, carboxylic acid and olefin were not detected. Samples prepared by mixing 1% by mass, 3% by mass, 5% by mass, 10% by mass, 30% by mass, and 70% by mass of each representative substance in normal hexane are prepared, analyzed by an infrared spectrometer, and calibrated. Draw a line. The alcohol residual rate, aldehyde residual rate, carboxylic acid residual rate, and olefin residual rate were obtained by analyzing the product recovered in the activity evaluation with an infrared spectrophotometer and converting each of the calibration curves.
The gasification rate in Table 4 was defined as the mass% of the recovered product with respect to the mass of the raw material charged in the activity evaluation.

Figure 2005272731
Figure 2005272731

Figure 2005272731
Figure 2005272731

Figure 2005272731
Figure 2005272731

(実施例2)
反応温度を220℃とする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
(Example 2)
The activity was evaluated in the same manner as in Example 1 except that the reaction temperature was 220 ° C. The evaluation results are shown in Table 4.

(実施例3)
反応温度を180℃とする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
(Example 3)
The activity was evaluated in the same manner as in Example 1 except that the reaction temperature was 180 ° C. The evaluation results are shown in Table 4.

(実施例4)
反応圧力を2MPaとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
Example 4
Activity evaluation was performed in the same manner as in Example 1 except that the reaction pressure was 2 MPa. The evaluation results are shown in Table 4.

(実施例5)
反応圧力を1MPaとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
(Example 5)
The activity was evaluated in the same manner as in Example 1 except that the reaction pressure was 1 MPa. The evaluation results are shown in Table 4.

(実施例6)
反応圧力を0.5MPaとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
(Example 6)
The activity was evaluated in the same manner as in Example 1 except that the reaction pressure was 0.5 MPa. The evaluation results are shown in Table 4.

(実施例7)
反応圧力を0.2MPaとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
(Example 7)
Activity evaluation was performed in the same manner as in Example 1 except that the reaction pressure was 0.2 MPa. The evaluation results are shown in Table 4.

(実施例8)
液空間速度を2.0h-1、水素/オイル比を78L/Lとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
(Example 8)
Activity evaluation was performed in the same manner as in Example 1 except that the liquid space velocity was 2.0 h −1 and the hydrogen / oil ratio was 78 L / L. The evaluation results are shown in Table 4.

(実施例9)
反応温度を220℃とする以外は、実施例8と同様にして活性評価を行った。評価結果を表4に示す。
Example 9
The activity was evaluated in the same manner as in Example 8 except that the reaction temperature was 220 ° C. The evaluation results are shown in Table 4.

(実施例10)
反応温度を240℃とする以外は、実施例8と同様にして活性評価を行った。評価結果を表4に示す。
(Example 10)
The activity was evaluated in the same manner as in Example 8 except that the reaction temperature was 240 ° C. The evaluation results are shown in Table 4.

(実施例11)
液空間速度を0.5h-1、水素/オイル比を312L/Lとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
(Example 11)
Activity evaluation was performed in the same manner as in Example 1 except that the liquid space velocity was 0.5 h −1 and the hydrogen / oil ratio was 312 L / L. The evaluation results are shown in Table 4.

(実施例12)
反応温度を180℃とする以外は、実施例11と同様にして活性評価を行った。評価結果を表4に示す。
(Example 12)
The activity was evaluated in the same manner as in Example 11 except that the reaction temperature was 180 ° C. The evaluation results are shown in Table 4.

(実施例13)
原料油を表3に示す原料2とする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。
(Example 13)
The activity was evaluated in the same manner as in Example 1 except that the raw material oil was changed to the raw material 2 shown in Table 3. The evaluation results are shown in Table 4.

(実施例14)
表1に示したシリカ−マグネシアの担体に、触媒基準で、金属換算で、ニッケル70質量%を含有した触媒を、表2の条件で、表3に示した原料1を原料油として、反応温度200℃で水素化処理反応を実施し、活性評価を行った。評価結果を表4に示す。
(Example 14)
A catalyst containing 70% by mass of nickel in terms of metal on a silica-magnesia carrier shown in Table 1 on a catalyst basis, using the raw material 1 shown in Table 3 as a raw material oil under the conditions in Table 2, the reaction temperature The hydrogenation reaction was carried out at 200 ° C. and the activity was evaluated. The evaluation results are shown in Table 4.

(実施例15)
表1に示したアルミナの担体に、触媒基準で、金属換算で、パラジウム0.5質量%を含有した触媒を、反応圧力3MPa、液空間速度0.3h-1、水素/オイル比520L/Lで、表3に示した原料1を原料油として、反応温度200℃で水素化処理反応を実施し、活性評価を行った。評価結果を表4に示す。
(Example 15)
A catalyst containing 0.5% by mass of palladium in terms of metal on the basis of catalyst on an alumina carrier shown in Table 1 was reacted at a reaction pressure of 3 MPa, a liquid space velocity of 0.3 h −1 , and a hydrogen / oil ratio of 520 L / L. Then, using the raw material 1 shown in Table 3 as a raw material oil, a hydrogenation reaction was performed at a reaction temperature of 200 ° C., and activity evaluation was performed. The evaluation results are shown in Table 4.

(実施例16)
表1に示した活性炭の担体に、触媒基準で、金属換算で、パラジウム0.5質量%を含有した触媒を、反応圧力3MPa、液空間速度0.3h-1、水素/オイル比520L/Lで、表3に示した原料1を原料油として、反応温度200℃で水素化処理反応を実施し、活性評価を行った。評価結果を表4に示す。
(Example 16)
A catalyst containing 0.5% by mass of palladium in terms of metal on the basis of the catalyst on a support of activated carbon shown in Table 1 was reacted at a reaction pressure of 3 MPa, a liquid space velocity of 0.3 h −1 , and a hydrogen / oil ratio of 520 L / L. Then, using the raw material 1 shown in Table 3 as a raw material oil, a hydrogenation reaction was performed at a reaction temperature of 200 ° C., and activity evaluation was performed. The evaluation results are shown in Table 4.

(実施例17)
表1に示したアルミナの担体に、触媒基準で、金属換算で、白金0.5質量%を含有した触媒を、反応圧力3MPa、液空間速度0.3h-1、水素/オイル比520L/Lで、表3に示した原料1を原料油として、反応温度200℃で水素化処理反応を実施し、活性評価を行った。評価結果を表4に示す。
(Example 17)
A catalyst containing 0.5% by mass of platinum in terms of metal on the basis of catalyst on an alumina carrier shown in Table 1 was reacted at a reaction pressure of 3 MPa, a liquid space velocity of 0.3 h −1 , and a hydrogen / oil ratio of 520 L / L. Then, using the raw material 1 shown in Table 3 as a raw material oil, a hydrogenation reaction was performed at a reaction temperature of 200 ° C., and activity evaluation was performed. The evaluation results are shown in Table 4.

(比較例1)
反応温度を140℃とする以外は、実施例14と同様にして活性評価を行った。評価結果を表4に示す。この条件では、アルコールが2.5質量%、アルデヒドが0.1質量%残存してしまった。
(Comparative Example 1)
The activity was evaluated in the same manner as in Example 14 except that the reaction temperature was 140 ° C. The evaluation results are shown in Table 4. Under these conditions, 2.5% by mass of alcohol and 0.1% by mass of aldehyde remained.

(比較例2)
反応温度を240℃とする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。この条件では、含酸素化合物およびオレフィンは完全に除去できるものの、ガス化によるロス分が10質量%を超えてしまった。
(Comparative Example 2)
The activity was evaluated in the same manner as in Example 1 except that the reaction temperature was 240 ° C. The evaluation results are shown in Table 4. Under these conditions, the oxygen-containing compound and olefin could be completely removed, but the loss due to gasification exceeded 10% by mass.

(比較例3)
液空間速度を4.0h-1、水素/オイル比を39L/Lとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。この条件では、アルコールが0.7質量%残存してしまった。
(Comparative Example 3)
Activity evaluation was performed in the same manner as in Example 1 except that the liquid space velocity was 4.0 h −1 and the hydrogen / oil ratio was 39 L / L. The evaluation results are shown in Table 4. Under this condition, 0.7% by mass of alcohol remained.

(比較例4)
水素/オイル比を16L/Lとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。この条件では、アルコールが0.7質量%残存してしまった。
(Comparative Example 4)
Activity evaluation was performed in the same manner as in Example 1 except that the hydrogen / oil ratio was 16 L / L. The evaluation results are shown in Table 4. Under this condition, 0.7% by mass of alcohol remained.

(比較例5)
反応圧力を0.05MPaとする以外は、実施例1と同様にして活性評価を行った。評価結果を表4に示す。この条件では、アルコールが0.8質量%残存してしまった。
(Comparative Example 5)
The activity was evaluated in the same manner as in Example 1 except that the reaction pressure was 0.05 MPa. The evaluation results are shown in Table 4. Under this condition, 0.8% by mass of alcohol remained.

Figure 2005272731
Figure 2005272731

Claims (2)

フィッシャー・トロプシュ合成により生成され、炭素数が4〜100のノルマルパラフィンを50質量%以上、含酸素化合物を無水規準の酸素質量割合で0.01質量%以上、オレフィンを0.1質量%以上含む合成炭化水素油を、
無機酸化物、無機結晶性化合物および粘土鉱物から選ばれた1種類以上からなる担体に、ニッケル、マンガン、コバルト、銅、鉄、および白金族金属から選ばれた少なくとも1種を、触媒基準で、金属換算で、0.1〜80質量%含有してなる触媒を用いて、
水素分圧が0.1〜20MPa、温度が150〜300℃、液空間速度が0.1〜3h-1、水素/オイル比が50〜2000L/L、ガス化率が10質量%以下の条件下で、
オレフィンおよび含酸素化合物を除去することを特徴とする水素化処理方法。
50% by mass or more of normal paraffins having 4 to 100 carbon atoms produced by Fischer-Tropsch synthesis, oxygen-containing compounds in an anhydrous standard oxygen mass ratio of 0.01% by mass or more, and olefins of 0.1% by mass or more Synthetic hydrocarbon oil,
At least one selected from nickel, manganese, cobalt, copper, iron, and a platinum group metal on a catalyst consisting of one or more selected from inorganic oxides, inorganic crystalline compounds, and clay minerals, on a catalyst basis, Using a catalyst containing 0.1 to 80% by mass in terms of metal,
Conditions under which hydrogen partial pressure is 0.1 to 20 MPa, temperature is 150 to 300 ° C., liquid space velocity is 0.1 to 3 h −1 , hydrogen / oil ratio is 50 to 2000 L / L, and gasification rate is 10 mass% or less. Below,
A hydrotreating method comprising removing an olefin and an oxygen-containing compound.
フィッシャー・トロプシュ合成により生成された合成炭化水素油を、
珪藻土、シリカ−マグネシア、および活性炭から選ばれた少なくとも1種を主成分とする担体に、ニッケル、白金およびパラジウムから選ばれた少なくとも1種を、触媒基準で、金属換算で、0.1〜80質量%含有してなる触媒を用いて、
水素分圧が0.1〜20MPa、温度が150〜300℃、液空間速度が0.1〜3h-1、水素/オイル比が50〜2000L/L、ガス化率が10質量%以下の条件下で、
オレフィンおよび含酸素化合物を除去することを特徴とする水素化処理方法。
Synthetic hydrocarbon oil produced by Fischer-Tropsch synthesis
In a carrier based on at least one selected from diatomaceous earth, silica-magnesia, and activated carbon, at least one selected from nickel, platinum, and palladium is 0.1-80 in terms of metal on a catalyst basis. Using a catalyst containing mass%,
Conditions under which hydrogen partial pressure is 0.1 to 20 MPa, temperature is 150 to 300 ° C., liquid space velocity is 0.1 to 3 h −1 , hydrogen / oil ratio is 50 to 2000 L / L, and gasification rate is 10 mass% or less. Below,
A hydrotreating method comprising removing an olefin and an oxygen-containing compound.
JP2004090425A 2004-03-25 2004-03-25 Hydrotreating method Expired - Fee Related JP4219839B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004090425A JP4219839B2 (en) 2004-03-25 2004-03-25 Hydrotreating method
US11/631,794 US8158841B2 (en) 2004-03-25 2005-09-22 Hydrotreating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090425A JP4219839B2 (en) 2004-03-25 2004-03-25 Hydrotreating method

Publications (2)

Publication Number Publication Date
JP2005272731A true JP2005272731A (en) 2005-10-06
JP4219839B2 JP4219839B2 (en) 2009-02-04

Family

ID=35172735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090425A Expired - Fee Related JP4219839B2 (en) 2004-03-25 2004-03-25 Hydrotreating method

Country Status (1)

Country Link
JP (1) JP4219839B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034555A1 (en) * 2005-09-22 2007-03-29 Japan Oil, Gas And Metals National Corporation Hydrogenation method
JP2007269885A (en) * 2006-03-30 2007-10-18 Nippon Oil Corp Method for hydrogenation refining of fuel base
JP2008169355A (en) * 2007-01-15 2008-07-24 Nippon Oil Corp Method for producing liquid fuel
JP2011173987A (en) * 2010-02-24 2011-09-08 Japan Oil Gas & Metals National Corp Hydrocracking process
JP2012504664A (en) * 2008-08-08 2012-02-23 コミュニティ パワー コーポレイション Conversion of biomass feedstock to hydrocarbon liquid transportation fuel
US8158841B2 (en) 2004-03-25 2012-04-17 Japan Oil, Gas And Metals National Corporation Hydrotreating method
JP2013032551A (en) * 2007-09-28 2013-02-14 Japan Oil Gas & Metals National Corp Method for producing synthetic naphtha
WO2015115410A1 (en) 2014-01-28 2015-08-06 株式会社日本触媒 Hydrogenation reaction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526837A (en) 2003-06-03 2006-11-24 株式会社Access How to browse content using page save file

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158841B2 (en) 2004-03-25 2012-04-17 Japan Oil, Gas And Metals National Corporation Hydrotreating method
WO2007034555A1 (en) * 2005-09-22 2007-03-29 Japan Oil, Gas And Metals National Corporation Hydrogenation method
JP2007269885A (en) * 2006-03-30 2007-10-18 Nippon Oil Corp Method for hydrogenation refining of fuel base
WO2007119455A1 (en) * 2006-03-30 2007-10-25 Nippon Oil Corporation Process for hydrorefining fuel base material
AU2007239954B2 (en) * 2006-03-30 2011-09-29 Nippon Oil Corporation Process for hydrorefining fuel base material
JP2008169355A (en) * 2007-01-15 2008-07-24 Nippon Oil Corp Method for producing liquid fuel
JP2013032551A (en) * 2007-09-28 2013-02-14 Japan Oil Gas & Metals National Corp Method for producing synthetic naphtha
JP2012504664A (en) * 2008-08-08 2012-02-23 コミュニティ パワー コーポレイション Conversion of biomass feedstock to hydrocarbon liquid transportation fuel
JP2011173987A (en) * 2010-02-24 2011-09-08 Japan Oil Gas & Metals National Corp Hydrocracking process
WO2015115410A1 (en) 2014-01-28 2015-08-06 株式会社日本触媒 Hydrogenation reaction method
US10106488B2 (en) 2014-01-28 2018-10-23 Nippon Shokubai Co., Ltd. Hydrogenation reaction method

Also Published As

Publication number Publication date
JP4219839B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP5597638B2 (en) Hydrotreatment and dewaxing treatment to improve freezing point of jet fuel
US7150823B2 (en) Catalytic filtering of a Fischer-Tropsch derived hydrocarbon stream
EP3394213B1 (en) Base metal dewaxing catalyst
JP4834438B2 (en) Method for hydrotreating fuel substrate
EP0303525B1 (en) Process for reducing a refining catalyst before its use
JP2004517987A (en) Fischer-Tropsch Product High Quality Process
US9266099B2 (en) Regenerated hydrocracking catalyst and method for producing a hydrocarbon oil
KR20070059044A (en) Hydrogenation of aromatics and olefins using a mesoporous catalyst
WO2018204139A1 (en) Methods for regenerating and rejuvenating catalysts
KR20020047156A (en) Process for the reactivation of sulfur deactivated cobalt titania catalyst
JP4219839B2 (en) Hydrotreating method
US8158841B2 (en) Hydrotreating method
CN102137834B (en) Offgas cleanup in olefin hydroformylation
WO2007034555A1 (en) Hydrogenation method
JP4324865B2 (en) Method for producing hydrocarbon fuel oil
EP1927645A1 (en) Method for producing hydrocarbon fuel oil
AU2005334457B2 (en) Hydrotreating method
JP2002322484A (en) Hydrogenating process
JP4856837B2 (en) Production of low sulfur / low aromatic distillate
JP2007211097A (en) Method for hydrogenation treatment of wax
JP2007521376A (en) Distillation of Fischer-Tropsch derived hydrocarbon streams
US9353320B2 (en) Optimized method for producing middle distillates from a feedstock originating from the Fischer-Tropsch process containing a limited quantity of oxygenated compounds
JP4410034B2 (en) Process for producing low sulfur catalytic cracking gasoline
RU2656601C1 (en) Method of obtaining synthetic oil
AU2005335184B2 (en) Method for producing hydrocarbon fuel oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees