JP2005272689A - Methylhexamine condensed borate and novolak phenolic resin composition - Google Patents

Methylhexamine condensed borate and novolak phenolic resin composition Download PDF

Info

Publication number
JP2005272689A
JP2005272689A JP2004089044A JP2004089044A JP2005272689A JP 2005272689 A JP2005272689 A JP 2005272689A JP 2004089044 A JP2004089044 A JP 2004089044A JP 2004089044 A JP2004089044 A JP 2004089044A JP 2005272689 A JP2005272689 A JP 2005272689A
Authority
JP
Japan
Prior art keywords
borate
methylhexamine
hexamine
condensed borate
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004089044A
Other languages
Japanese (ja)
Inventor
Akira Obayashi
明 王林
Kazutoshi Haraguchi
和敏 原口
Hiroshi Maki
博志 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP2004089044A priority Critical patent/JP2005272689A/en
Publication of JP2005272689A publication Critical patent/JP2005272689A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a methylhexamine condensed borate useful in various industrial fields including a curing agent for a novolak phenolic resin. <P>SOLUTION: The methylhexamine condensed borate is expressed by formula (1). Preferably the borate is a crystalline hexamine condensed borate. Especially, the hexamine condensed borate is produced by reacting 1 mol of hexamine with 2-10 mol of an inorganic boric acid compound in terms of boron. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規なアミン縮合ホウ酸塩、それを含有するノボラック型フェノール樹脂組成物に関するものである。   The present invention relates to a novel amine-condensed borate and a novolac-type phenolic resin composition containing the same.

アミンホウ酸塩については古くから知られており、幾つかの報告例がある(例えば特許文献1および特許文献2参照)。これらの特許文献では、ホウ酸1モルに対してアミン化合物1〜3モルを用いて反応させて得られるアミンホウ酸塩水溶液をそのままラテックス凝固剤あるいはα-アルキルアクロレインの製造用触媒として用いられている。しかしながら、過剰なアミン化合物を用いることにより、生成したアミンホウ酸塩の収率が低く、特に縮合ホウ酸塩基を有するアミン縮合ホウ酸塩の形成には不利となる。当時はもちろん、今まで、ホウ酸が数個縮合してなる多核縮合ホウ酸塩基を有するアミン縮合ホウ酸塩は知られておらず、その有用性に関する研究が行われたことはなかった。
一方、ノボラック型フェノール樹脂の硬化剤としてヘキサミンが広く使用されている。しかし、得られたエポキシ樹脂硬化物のガラス転移温度が低いことや、アミン刺激臭のため、取扱上、安全性の問題を有するなどの課題があった。
これまで、ホウ酸を用いて変性したノボラック型フェノール樹脂が提案されている(例えば特許文献3参照)。しかしながら、1分子のホウ酸が3個の水酸基を持つため、フェノール樹脂の水酸基との反応により、三次元分子間橋かけが形成され、架橋密度が極めて高くなり、そのため得られたホウ素変性フェノール樹脂は脆くなり、機械強度が劣る問題点があった。
特公昭54−4377号公報 特開平4−338355号公報 特開昭63―156814号公報
The amine borate has been known for a long time, and there are several reports (see, for example, Patent Document 1 and Patent Document 2). In these patent documents, an amine borate aqueous solution obtained by reacting 1 to 3 mol of amine compound with 1 mol of boric acid is used as it is as a catalyst for producing a latex coagulant or α-alkylacrolein. . However, by using an excess amine compound, the yield of the produced amine borate is low, which is disadvantageous for the formation of an amine condensed borate having a condensed borate group. At that time, of course, until now, amine condensed borate having a polynuclear condensed borate group obtained by condensing several boric acids has not been known, and research on its usefulness has never been conducted.
On the other hand, hexamine is widely used as a curing agent for novolak-type phenolic resins. However, the obtained cured epoxy resin has a low glass transition temperature and has problems such as a safety problem in handling due to an amine-stimulated odor.
Until now, novolak-type phenol resins modified with boric acid have been proposed (see, for example, Patent Document 3). However, since one molecule of boric acid has three hydroxyl groups, a three-dimensional intermolecular bridge is formed by reaction with the hydroxyl group of the phenol resin, and the crosslink density becomes extremely high. Had the problem that it became brittle and the mechanical strength was inferior.
Japanese Patent Publication No.54-4377 JP-A-4-338355 JP-A 63-156814

本発明の目的は、ノボラック型フェノール樹脂用硬化剤を始めとする各種の産業分野で有用なメチルヘキサミン縮合ホウ酸塩を提供することにある。   An object of the present invention is to provide a methylhexamine condensed borate useful in various industrial fields including a curing agent for a novolac type phenol resin.

本発明者は、前記目的を達成すべく、鋭意検討を重ねた結果、ヘキサミンとホウ酸とを反応させることにより、多分野に有用な結晶性メチルヘキサミン縮合ホウ酸塩を合成すること及び構造を同定することに成功し、また、得られたメチルヘキサミン縮合ホウ酸塩がノボラック型フェノール樹脂用硬化剤として優れた耐熱性を付与するのに有効であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have synthesized crystalline methylhexamine condensed borate useful in many fields by reacting hexamine and boric acid and the structure. The present inventors have succeeded in identification and found that the obtained methylhexamine condensed borate is effective for imparting excellent heat resistance as a curing agent for novolak type phenolic resin, and completed the present invention. It was.

即ち、本発明は、下記化学式(1)で表されるメチルヘキサミン縮合ホウ酸塩に関する。   That is, the present invention relates to a methylhexamine condensed borate represented by the following chemical formula (1).

Figure 2005272689
また、本発明は、上記メチルヘキサミン縮合ホウ酸塩の硬化剤を含有するノボラック型フェノール樹脂組成物に関する。
Figure 2005272689
The present invention also relates to a novolak type phenolic resin composition containing a curing agent for the above methylhexamine condensed borate.

本発明のメチルヘキサミン縮合ホウ酸塩は、アミン刺激臭が殆どなく、水及びメタノールなどの有機溶媒によく溶ける性質を持ち、ノボラック型フェノール樹脂用硬化剤として有効に用いられる。メチルヘキサミン縮合ホウ酸塩は、ヘキサミンの硬化特性を維持したまま高いガラス転移温度のノボラック型フェノール樹脂硬化物を与える。また、ホウ酸系化合物を樹脂に直接添加した場合に比べてホウ素含有量を高くすることができ、そのため得られた硬化物の難燃性が向上する効果を有する。   The methylhexamine condensed borate of the present invention has almost no amine-stimulating odor, has a property of being well soluble in water and organic solvents such as methanol, and is effectively used as a curing agent for novolak type phenol resins. The methylhexamine condensed borate gives a novolac type phenolic resin cured product having a high glass transition temperature while maintaining the curing properties of hexamine. Moreover, compared with the case where a boric-acid type compound is directly added to resin, boron content can be made high and it has the effect that the flame retardance of the hardened | cured material obtained for that reason improves.

本発明のメチルヘキサミン縮合ホウ酸塩は、ヘキサミンと無機ホウ酸系化合物とを反応させて得られるものである。その無機ホウ酸系化合物としては、ホウ酸およびホウ酸エステル、ホウ酸エステルの部分重縮合物が用いられる。ホウ酸およびホウ酸エステルとしては、代表的なものとしては一般式(2)
B(OR)n(OH)3-n (2)
(式中、nは0〜3までの整数、RはCmH2m+1のアルキル基であり、mは1〜10の整数を表す。)で表わされる。
The methylhexamine condensed borate of the present invention is obtained by reacting hexamine with an inorganic boric acid compound. As the inorganic boric acid compound, boric acid, boric acid ester, and partial polycondensate of boric acid ester are used. As typical examples of boric acid and boric acid ester, general formula (2)
B (OR) n (OH) 3-n (2)
(Wherein n is an integer from 0 to 3, R is an alkyl group of CmH2m + 1, and m is an integer from 1 to 10).

ホウ酸の具体的なものとしては、例えばオルトホウ酸、メタホウ酸、四ホウ酸、およびそれらの混合物であり、また、ホウ酸エステルの具体的なものとしては、例えばホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル等が挙げられる。これらのホウ酸及びホウ酸エステルは、単独又は2種以上組み合わせて使用できる。また、それらの部分加水分解物や部分重縮合物も用いることができる。上記の中ではホウ酸が最も好ましく用いられる。
なお、前記の部分重縮合物は、一般式(2)で表されるホウ酸エステルを、水、溶媒、及び必要により酸又は塩基触媒と共に混合攪拌する方法によって得ることができる。
Specific examples of boric acid include, for example, orthoboric acid, metaboric acid, tetraboric acid, and mixtures thereof. Specific examples of boric acid esters include, for example, trimethyl borate, triethyl borate, Examples include tripropyl borate and tributyl borate. These boric acid and boric acid ester can be used alone or in combination of two or more. Moreover, those partial hydrolysates and partial polycondensates can also be used. Of these, boric acid is most preferably used.
The partial polycondensate can be obtained by a method in which the borate ester represented by the general formula (2) is mixed and stirred with water, a solvent, and, if necessary, an acid or a base catalyst.

本発明のメチルヘキサミン縮合ホウ酸塩を製造する場合、ヘキサミンと無機ホウ酸系化合物との反応から得た反応生成物を、引き続きエタノールと水との混合溶媒に溶解し、低温で静置することにより種々の大きさの結晶性粉末が得られる。無機ホウ酸系化合物としてホウ酸を用い、前記の方法で合成し単離した結晶性粉末のX線回折パターンを図1に示す。また、その中の大きな結晶粒を用いてX線構造解析及びホウ素含有率の測定を行った。X線構造解析の結果、図2に示すような結晶構造を有する式(1)で表される多核縮合ホウ酸塩の単結晶であることが明かとなった。また、得られた結晶構造を用いて粉末X線回折パターンのシミュレーションを行ったところ、その結果(図3)は前記結晶性粉末のX線回折パターン(図1)と良く一致し、前記結晶性粉末が図2、式(1)で表される多核縮合ホウ酸塩であることが示された。更に、前記結晶性粉末のホウ素含有率を測定した所、式(1)で表されるメチルヘキサミン縮合ホウ酸塩のホウ素含有率の理論値とほぼ一致した。これらのことから、前記の方法で合成し単離した結晶性粉末(単結晶を含む)が式(1)で表されるメチルヘキサミン縮合ホウ酸塩であると結論された。尚、図2に於いて、Cは炭素原子、Nは窒素原子、Bはホウ素原子、Oは酸素原子である。   When producing the methylhexamine condensed borate of the present invention, the reaction product obtained from the reaction of hexamine and an inorganic boric acid compound is subsequently dissolved in a mixed solvent of ethanol and water and allowed to stand at a low temperature. Thus, crystalline powders of various sizes can be obtained. FIG. 1 shows an X-ray diffraction pattern of the crystalline powder synthesized and isolated by the above method using boric acid as the inorganic boric acid compound. In addition, X-ray structural analysis and boron content were measured using large crystal grains. As a result of the X-ray structural analysis, it was revealed that it was a single crystal of a polynuclear condensed borate represented by the formula (1) having a crystal structure as shown in FIG. Further, when the simulation of the powder X-ray diffraction pattern was performed using the obtained crystal structure, the result (FIG. 3) well matched the X-ray diffraction pattern (FIG. 1) of the crystalline powder, and the crystallinity It was shown that the powder was a polynuclear condensed borate represented by the formula (1) in FIG. Furthermore, when the boron content of the crystalline powder was measured, it almost coincided with the theoretical value of the boron content of the methylhexamine condensed borate represented by the formula (1). From these facts, it was concluded that the crystalline powder (including single crystal) synthesized and isolated by the above method is a methylhexamine condensed borate represented by the formula (1). In FIG. 2, C is a carbon atom, N is a nitrogen atom, B is a boron atom, and O is an oxygen atom.

本発明におけるメチルヘキサミン縮合ホウ酸塩の合成及び単離は、例えば次のようにして行うことができる。即ち、水にホウ酸とヘキサミンを溶解し、加熱下、例えば40〜100℃で2〜10時間反応を行う。続いて、エパポレーターにより水を留去して得た反応生成物をN,N-ジメチルホルムアミド、アセトンの順で数回繰り返し洗浄した後、真空乾燥により得られた粉末を引き続き、水とエタノールとの混合溶媒(例えば、水:エタノール=70:30質量比)に溶解し、低温(-6℃)で静置することにより種々の大きさの単結晶を含む結晶を析出させる。続いて、濾過により析出した結晶を回収し、更に真空乾燥により白色の式(1)で表されるメチルヘキサミン縮合ホウ酸塩が得られる。   The synthesis and isolation of the methylhexamine condensed borate in the present invention can be performed, for example, as follows. That is, boric acid and hexamine are dissolved in water, and the reaction is performed under heating, for example, at 40 to 100 ° C. for 2 to 10 hours. Subsequently, the reaction product obtained by distilling off water with an evaporator was repeatedly washed several times in the order of N, N-dimethylformamide and acetone, and then the powder obtained by vacuum drying was continuously used with water and ethanol. Crystals containing single crystals of various sizes are precipitated by dissolving in a mixed solvent (for example, water: ethanol = 70: 30 mass ratio) and allowing to stand at a low temperature (−6 ° C.). Subsequently, the precipitated crystals are collected by filtration, and further dried in vacuum to obtain a white methylhexamine condensed borate represented by the formula (1).

本発明において、式(1)で表されるメチルヘキサミン縮合ホウ酸塩の合成条件として、ヘキサミンと無機ホウ酸系化合物とのモル比が極めて重要である。無機ホウ酸系化合物の比率を増やすことにより、多核縮合ホウ酸塩が形成しやすく、メチルヘキサミン縮合ホウ酸塩の収率が高くなることが明かとなった。具体的には、ヘキサミン1モルに対して、ホウ酸または無機ホウ酸系化合物のホウ素原子換算当たりのモル数として2〜10モルが好ましく、より好ましくは3〜8モル、特に好ましくは4〜6モルである。   In the present invention, as a synthesis condition of the methylhexamine condensed borate represented by the formula (1), the molar ratio of hexamine and the inorganic boric acid compound is extremely important. It has been clarified that increasing the ratio of the inorganic borate compound facilitates the formation of polynuclear condensed borate and increases the yield of methylhexamine condensed borate. Specifically, 2 to 10 mol is preferable, more preferably 3 to 8 mol, and particularly preferably 4 to 6 mol per mol of hexamine as boric acid or an inorganic boric acid compound per mol of boron atom. Is a mole.

本発明において、メチルヘキサミン縮合ホウ酸塩の合成溶媒としては、ホウ酸またはヘキサミンの少なくとも一種を溶解するようなものが必要である。例えば、メタノール、エタノール、イソプロパノールなどの低級アルコール、N,N-ジメチルホルムアミド、N-メチルピロリドン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、水などが挙げられ、これらは単独又は二種以上の混合で使用できる。この中では水が特に好ましく用いられる。溶媒の使用量は、ホウ酸系化合物およびヘキサミンの合計100質量部に対して溶媒が300〜1500質量部となるように用いることが好ましい。   In the present invention, as a synthesis solvent for methylhexamine condensed borate, a solvent capable of dissolving at least one of boric acid or hexamine is required. For example, lower alcohols such as methanol, ethanol and isopropanol, N, N-dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, dimethyl sulfoxide, water and the like can be mentioned, and these can be used alone or in combination of two or more. Can be used. Of these, water is particularly preferably used. The amount of the solvent used is preferably such that the solvent is 300 to 1500 parts by mass with respect to 100 parts by mass in total of the boric acid compound and hexamine.

本発明でのメチルヘキサミン縮合ホウ酸塩がヘキサミン特有の刺激臭が殆どない固形状白色粉末であり、水またはメタノールなどの有機溶剤によく溶ける性質を示した。また、ノボラック型フェノール樹脂の硬化剤として特に耐熱性を付与する目的で有効に用いられることが明かとなった。かかるメチルヘキサミン縮合ホウ酸塩(硬化剤)としては、ノボラック型フェノール樹脂100質量部に対して、好ましくは8〜80質量部、より好ましくは10〜60質量部、特に好ましくは15〜45質量部で用いられる。   The methylhexamine condensed borate in the present invention is a solid white powder having almost no irritating odor peculiar to hexamine, and shows a property of being well soluble in water or an organic solvent such as methanol. It has also been found that it can be used effectively as a curing agent for novolak-type phenolic resins, particularly for the purpose of imparting heat resistance. The methylhexamine condensed borate (curing agent) is preferably 8 to 80 parts by mass, more preferably 10 to 60 parts by mass, and particularly preferably 15 to 45 parts by mass with respect to 100 parts by mass of the novolac type phenol resin. Used in

ここでノボラック型フェノール樹脂としては、フェノール系化合物とアルデヒド化合物との反応で得られる通常のノボラック型フェノール樹脂が用いられ、具体的には、フェノール、ナフトール、ビスフェノールAなどの一価のフェノール性化合物、又はレゾルシン、キシレノールなどの二価のフェノール性化合物、又はピロガロール、ヒドロキシヒドロキノンなどの三価のフェノール性化合物、及びこれらフェノール性化合物のアルキル、カルボキシル、ハロゲン、アミンなどの誘導体の単独または二種以上の混合物からなるフェノール性化合物とホルムアルデヒド、アセトアルデヒドなどの脂肪族アルデヒドあるいはベンズアルデヒド、フルフラールなどの芳香族アルデヒドのアルデヒド化合物とを所定のモル比に配合し、塩酸、硫酸、蓚酸、燐酸などの酸性触媒下で反応して得られる公知のノボラック型フェノール樹脂である。   Here, as the novolak-type phenol resin, a normal novolak-type phenol resin obtained by a reaction between a phenol compound and an aldehyde compound is used. Specifically, a monovalent phenolic compound such as phenol, naphthol, or bisphenol A is used. Or divalent phenolic compounds such as resorcin and xylenol, or trivalent phenolic compounds such as pyrogallol and hydroxyhydroquinone, and derivatives of these phenolic compounds such as alkyl, carboxyl, halogen, and amine alone or in combination of two or more thereof A phenolic compound consisting of a mixture of the above and an aliphatic aldehyde such as formaldehyde and acetaldehyde, or an aldehyde compound of aromatic aldehyde such as benzaldehyde and furfural in a predetermined molar ratio, and hydrochloric acid, sulfuric acid, It is a known novolak type phenol resin obtained by reacting under an acidic catalyst such as acid or phosphoric acid.

本発明において、式(1)のメチルヘキサミン縮合ホウ酸塩を用いたノボラック型フェノール樹脂組成物の溶媒としては、ノボラック型フェノール樹脂及び該メチルヘキサミン縮合ホウ酸塩を均一に溶解できる有機溶媒が使用される。例えば、メタノール、エタノール、イソプロパノールなどの炭素数1〜6程度の低級アルコール、アセトン、メチルエチルケトン、シクロヘキサノン、クロロホルム、ベンゼン、トルエン、キシレンなどの有機溶剤の単独又はそれらの混合溶剤が挙げられる。   In the present invention, as the solvent for the novolac type phenolic resin composition using the methylhexamine condensed borate of the formula (1), a novolac type phenolic resin and an organic solvent capable of uniformly dissolving the methylhexamine condensed borate are used. Is done. Examples thereof include lower alcohols having about 1 to 6 carbon atoms such as methanol, ethanol and isopropanol, organic solvents such as acetone, methyl ethyl ketone, cyclohexanone, chloroform, benzene, toluene and xylene alone or a mixed solvent thereof.

本発明では、ノボラック型フェノール樹脂と式(1)のメチルヘキサミン縮合ホウ酸塩が低級アルコールを含む有機溶媒に均一に溶解した溶液から有機溶媒を除去し、得られる固形状物を粉砕することにより粉末状の熱硬化性ノボラック型フェノール樹脂組成物を製造することができる。
また、溶液状の熱硬化性ノボラック型フェノール樹脂組成物中の有機溶媒の除去は、熱風乾燥機、凍結乾燥機、真空乾燥機などを用いて慣用の方法で行うことができるが、溶液状の熱硬化性ノボラック型フェノール樹脂組成物を減圧下に、25℃〜80℃の温度範囲で加熱して有機溶媒を除去することが好ましい。粉砕は公知慣用の方法で行うことができ、好ましくは平均粒径300μm以下に粉砕し、得られた粉末を減圧下に25℃〜80℃の温度で更に乾燥させることが好ましい。
In the present invention, the organic solvent is removed from the solution in which the novolak-type phenol resin and the methylhexamine condensed borate of the formula (1) are uniformly dissolved in the organic solvent containing the lower alcohol, and the obtained solid is pulverized. A powdery thermosetting novolac-type phenol resin composition can be produced.
The removal of the organic solvent in the solution-like thermosetting novolak type phenolic resin composition can be performed by a conventional method using a hot air dryer, a freeze dryer, a vacuum dryer or the like. It is preferable to remove the organic solvent by heating the thermosetting novolac type phenolic resin composition in a temperature range of 25 ° C. to 80 ° C. under reduced pressure. The pulverization can be carried out by a known and commonly used method. Preferably, the pulverization is performed to an average particle size of 300 μm or less, and the obtained powder is further dried at a temperature of 25 to 80 ° C. under reduced pressure.

上述の粉末状の熱硬化性ノボラック型フェノール樹脂組成物を加熱下に圧縮成形して、場合によって更に熱処理することにより硬化させ、耐熱性の硬化物成形品が得られる。成形温度は通常80℃〜200℃である。   The above-mentioned powdery thermosetting novolak type phenolic resin composition is compression-molded under heating, and is optionally cured by further heat treatment to obtain a heat-resistant cured product. The molding temperature is usually 80 ° C to 200 ° C.

上記メチルヘキサミン縮合ホウ酸塩からなる硬化剤とノボラック型フェノール樹脂との組成物には、他のアミンホウ酸塩、ヘキサミンなどの他の硬化剤、硬化助剤、無機充填材、繊維強化材、骨材、着色剤などを添加することができる。   The composition of the above-mentioned curing agent composed of methylhexamine condensed borate and novolak type phenol resin includes other curing agents such as amine borate and hexamine, curing aid, inorganic filler, fiber reinforcement, bone Materials, colorants and the like can be added.

本発明のメチルヘキサミン縮合ホウ酸塩は、特にノボラック型フェノール樹脂の硬化剤として有用である。   The methylhexamine condensed borate of the present invention is particularly useful as a curing agent for novolak type phenolic resins.

次いで、実施例を挙げて、本発明を具体的に説明する。
また、以下の実施例において、核磁気共鳴スペクトル(NMR)の測定は日本電子(株)製 JNM-LA-300を用いた。11B-NMRスペクトルは重水中のホウ酸ピークを基準とした。
フーリェ変換赤外吸収スペクトル(FT-IR)は日本分光工業(株)製 FT/IR-550を用い、4000cm-1〜400cm-1の範囲で測定を行った。
単結晶の結晶構造解析は理学電機(株)製単結晶構造解析装置RASA-5Rを用いた。
粉末X線回折の測定は理学電機(株)製X線回折装置 RINT ULTIMA+ を使用した。
ホウ素含有量はPerkn Elmer社製 Optima 3300DVを用いて、ICPの測定を行い、予めホウ酸を用いて作成しておいた検量線により定量した。
なお、本発明の実施例について次の試薬を使用した。
(1) ヘキサミン:和光純薬工業株式会社製、試薬特級
(2) ホウ酸:和光純薬工業株式会社製、試薬特級
(3) ノボラック型フェノール樹脂
IH1225:大日本インキ化学工業株式会社製
(4) 溶剤
N,N-ジメチルホルムアミド(DMF):和光純薬工業株式会社製、試薬特級
アセトン:和光純薬工業株式会社製、試薬1級
ヘキサン:和光純薬工業株式会社製、試薬1級
メタノール:和光純薬工業株式会社製、試薬特級
エタノール:和光純薬工業株式会社製、試薬特級
クロロホルム:和光純薬工業株式会社製、試薬特級
Next, the present invention will be specifically described with reference to examples.
In the following examples, JNM-LA-300 manufactured by JEOL Ltd. was used for nuclear magnetic resonance spectrum (NMR) measurement. 11 B-NMR spectrum was based on boric acid peak in heavy water.
Fourier transform infrared absorption spectrum (FT-IR) is used JASCO Corp. FT / IR-550, was measured in a range of 4000cm -1 ~400cm -1.
The single crystal structure analyzer RASA-5R manufactured by Rigaku Corporation was used for the crystal structure analysis of the single crystal.
The X-ray diffraction apparatus RINT ULTIMA + manufactured by Rigaku Corporation was used for the measurement of powder X-ray diffraction.
The boron content was measured by ICP using an Optima 3300DV manufactured by Perkn Elmer, and quantified by a calibration curve prepared in advance using boric acid.
The following reagents were used for the examples of the present invention.
(1) Hexamine: Wako Pure Chemical Industries, Ltd., reagent grade
(2) Boric acid: Wako Pure Chemical Industries, Ltd., reagent grade
(3) Novolac type phenolic resin
IH1225: Dainippon Ink & Chemicals, Inc.
(4) Solvent
N, N-dimethylformamide (DMF): Wako Pure Chemical Industries, reagent grade Acetone: Wako Pure Chemical Industries, reagent grade 1 Hexane: Wako Pure Chemical Industries, reagent grade 1 Methanol: Wako Pure Yakuhin Kogyo Co., Ltd., reagent special grade Ethanol: Wako Pure Chemical Industries, Ltd., reagent special grade Chloroform: Wako Pure Chemical Industries, Ltd., reagent special grade

(実施例1)
ホウ酸60g(0.971mol)を蒸留水300gに溶かした溶液にヘキサミン17g(0.121mol)を加えて、攪拌、溶解させた後、100℃で4時間反応を行った(モル比:ホウ酸/ヘキサミン=8)。続いて、エパポレーターで水を留去し、濃縮された溶液にDMFを加え、沈殿物を析出させた。濾過により回収した白色固体をアセトンで洗った後、50℃、2時間真空乾燥により粉末を40.6g得た。
上記粉末 10gを、水69gとエタノール26.5gとの混合溶液に溶解した均一透明溶液を-6℃の低温で二日間静置することにより結晶を析出させた。得られた結晶を濾過により回収し、70℃、5時間真空乾燥して大きな結晶粒を含む結晶性粉末(1a) 4.6gを得た。結晶性粉末(1a)のX線回折パターンを図1に示す。また、得られた大きな結晶粒のX線構造解析の結果、前記化学構造式(1)で表されるメチルヘキサミン縮合ホウ酸塩の構造(図2)と一致する結果が得られた。また、得られた結晶構造を用いてX線回折パターンのシミュレーションを行ったところ、その結果(図3)は(1a)の粉末X線回折パターン(図1)と一致した。更に(1a)のホウ素含有率が式(1)で表されるメチルヘキサミン縮合ホウ酸塩のホウ素含有率の理論値とほぼ一致した。これらのことより、得られた結晶性粉末(1a)は式(1)で表される多核縮合ホウ酸塩(メチルヘキサミン縮合ホウ酸塩)であると結論された。該メチルヘキサミン縮合ホウ酸塩(1a)の分析結果及びFT-IRスペクトルを表1,表2,図4に示す。
(Example 1)
Hexamine 17 g (0.121 mol) was added to a solution of boric acid 60 g (0.971 mol) in distilled water 300 g, stirred and dissolved, and then reacted at 100 ° C. for 4 hours (molar ratio: boric acid / hexamine). = 8). Subsequently, water was distilled off with an evaporator, and DMF was added to the concentrated solution to precipitate a precipitate. The white solid recovered by filtration was washed with acetone and then vacuum dried at 50 ° C. for 2 hours to obtain 40.6 g of a powder.
Crystals were precipitated by allowing a uniform transparent solution prepared by dissolving 10 g of the above powder in a mixed solution of 69 g of water and 26.5 g of ethanol to stand at a low temperature of −6 ° C. for 2 days. The obtained crystals were collected by filtration and vacuum dried at 70 ° C. for 5 hours to obtain 4.6 g of crystalline powder (1a) containing large crystal grains. The X-ray diffraction pattern of the crystalline powder (1a) is shown in FIG. Further, as a result of X-ray structural analysis of the obtained large crystal grains, results consistent with the structure of the methylhexamine condensed borate represented by the chemical structural formula (1) (FIG. 2) were obtained. Further, when an X-ray diffraction pattern was simulated using the obtained crystal structure, the result (FIG. 3) coincided with the powder X-ray diffraction pattern (FIG. 1) of (1a). Further, the boron content of (1a) almost coincided with the theoretical value of the boron content of methylhexamine condensed borate represented by the formula (1). From these results, it was concluded that the obtained crystalline powder (1a) was a polynuclear condensed borate (methylhexamine condensed borate) represented by the formula (1). The analysis results and FT-IR spectrum of the methylhexamine condensed borate (1a) are shown in Table 1, Table 2, and FIG.

(実施例2)
ホウ酸30g(0.485mol)を蒸留水300gに溶かした溶液にヘキサミン34g(0.242mol)を加えて、攪拌、溶解させた後、100℃で4時間反応を行った(モル比:ホウ酸/ヘキサミン=2)。続いて、エパポレーターで水を留去し、得られた白色固体をDMF、クロロホルム、アセトンの順で洗浄した。更に50℃、2時間真空乾燥により粉末を24.2g得た。続いて、得られた粉末10gを、水94.3gとエタノール30gとの混合溶液に溶解し、-6℃の低温で静置する。析出した粉末を除去した上澄み溶液を更に-30℃の低温で二日間静置することにより結晶を析出させた。得られた結晶を濾過により回収し、70℃、5時間真空乾燥して結晶性粉末(2a)を1.9g得た。(2a)もX線構造解析、ホウ素含有率測定より(1a)と同じメチルヘキサミン縮合ホウ酸塩であることが示された。
(Example 2)
After adding 34 g (0.242 mol) of hexamine to a solution of 30 g (0.485 mol) of boric acid in 300 g of distilled water, stirring and dissolving, the mixture was reacted at 100 ° C. for 4 hours (molar ratio: boric acid / hexamine). = 2). Subsequently, water was distilled off with an evaporator, and the obtained white solid was washed with DMF, chloroform, and acetone in this order. Further, 24.2 g of powder was obtained by vacuum drying at 50 ° C. for 2 hours. Subsequently, 10 g of the obtained powder is dissolved in a mixed solution of 94.3 g of water and 30 g of ethanol and allowed to stand at a low temperature of −6 ° C. The supernatant solution from which the precipitated powder had been removed was further allowed to stand at a low temperature of −30 ° C. for 2 days to precipitate crystals. The obtained crystals were collected by filtration and vacuum dried at 70 ° C. for 5 hours to obtain 1.9 g of crystalline powder (2a). X-ray structural analysis and boron content measurement showed that (2a) was the same methylhexamine condensed borate as (1a).

Figure 2005272689
Figure 2005272689

Figure 2005272689
Figure 2005272689

以下の実施例および比較例においてガラス転移温度(Tg)及び貯蔵弾性率(E')は、固体動的粘弾性測定装置(セイコー電子工業株式会社製DMA-200)を用い、測定周波数1Hz、昇温速度2℃/分で測定した。なお、ガラス転移温度はtanδピーク温度(tanδmax)とした。   In the following examples and comparative examples, the glass transition temperature (Tg) and the storage elastic modulus (E ′) were measured using a solid dynamic viscoelasticity measuring device (DMA-200 manufactured by Seiko Electronics Co., Ltd.), with a measurement frequency of 1 Hz, The temperature was measured at 2 ° C / min. The glass transition temperature was tan δ peak temperature (tan δ max).

(実施例3及び比較例1)
実施例1で得られたメチルヘキサミン縮合ホウ酸塩(1a) 28gをメタノール300gに溶かした溶液を攪拌しながら、IH1225 100gを徐々に加えて溶解させた。得られた均一透明溶液をトレーに流し込み、25℃、大気中にて8時間溶媒キャストを行った。引き続き、25℃、12時間真空乾燥した後、試料を180μm以下の大きさに粉砕して、熱硬化性ノボラック型フェノール樹脂組成物粉末を得た。
次に、上記の粉末状の硬化性ノボラック型フェノール樹脂組成物を150℃で熱プレスすることによりフィルム状または板状のフェノール樹脂組成物の硬化物を作製した。プレスサンプルを引き続き150℃で1時間、180℃で1時間熱処理した。得られた硬化物は透明であった。また、クラックやしわなどもなく、良好な表面形態を示した。
幅10mm、厚み1mmの硬化物実験片を用いて、動的粘弾性測定(周波数=1Hz)を行った。得られた比較例1の貯蔵弾性率(E')が145.2℃に急激に低下するのに対し、実施例3のフェノール樹脂硬化物のE'では300℃まで殆ど低下しなかった。また、実施例3で得られた硬化物のガラス転移温度も比較例1より格段に高い。メチルヘキサミン縮合ホウ酸塩を硬化剤としたノボラック型フェノール樹脂硬化物の耐熱性が大きく向上していることがわかる。それらの結果を表3に示す。
(Example 3 and Comparative Example 1)
While stirring a solution of 28 g of methylhexamine condensed borate (1a) obtained in Example 1 in 300 g of methanol, 100 g of IH1225 was gradually added and dissolved. The obtained uniform transparent solution was poured into a tray, and solvent casting was performed at 25 ° C. in the air for 8 hours. Subsequently, after vacuum drying at 25 ° C. for 12 hours, the sample was pulverized to a size of 180 μm or less to obtain a thermosetting novolac-type phenol resin composition powder.
Next, a cured product of a film-like or plate-like phenolic resin composition was produced by hot pressing the powdery curable novolak-type phenolic resin composition at 150 ° C. The press sample was subsequently heat treated at 150 ° C. for 1 hour and 180 ° C. for 1 hour. The obtained cured product was transparent. Moreover, there was no crack or wrinkle, and a good surface morphology was shown.
Dynamic viscoelasticity measurement (frequency = 1 Hz) was performed using a cured product test piece having a width of 10 mm and a thickness of 1 mm. The storage elastic modulus (E ′) of the obtained Comparative Example 1 rapidly decreased to 145.2 ° C., whereas E ′ of the cured phenol resin of Example 3 hardly decreased to 300 ° C. Further, the glass transition temperature of the cured product obtained in Example 3 is much higher than that of Comparative Example 1. It can be seen that the heat resistance of the novolak-type phenol resin cured product using methylhexamine condensed borate as a curing agent is greatly improved. The results are shown in Table 3.

Figure 2005272689
Figure 2005272689

実施例1で得た結晶性粉末(1a)の粉末X線回折パターン図。1 is a powder X-ray diffraction pattern diagram of the crystalline powder (1a) obtained in Example 1. FIG. メチルヘキサミン縮合ホウ酸塩(1a)の結晶構造。Crystal structure of methylhexamine condensed borate (1a). メチルヘキサミン縮合ホウ酸塩の結晶構造からの粉末X線回折パターンのシミュレーション図。The simulation figure of the powder X-ray diffraction pattern from the crystal structure of methylhexamine condensed borate. メチルヘキサミン縮合ホウ酸塩(1a)のFT-IRスペクトル。FT-IR spectrum of methylhexamine condensed borate (1a).

Claims (6)

下記化学式(1)で表されるヘキサミン縮合ホウ酸塩。
Figure 2005272689
Hexamine condensed borate represented by the following chemical formula (1).
Figure 2005272689
結晶性である請求項1に記載のヘキサミン縮合ホウ酸塩。 2. The hexamine condensed borate according to claim 1, which is crystalline. ヘキサミン1モルに対して無機ホウ酸系化合物をホウ素換算で2〜10モル反応させることにより得られる請求項1又は2に記載のヘキサミン縮合ホウ酸塩。 3. The hexamine condensed borate according to claim 1, which is obtained by reacting 2 to 10 mol of an inorganic boric acid compound in terms of boron with respect to 1 mol of hexamine. 前記無機ホウ酸系化合物がホウ酸又は/及びホウ酸エステルである請求項3に記載のヘキサミン縮合ホウ酸塩。 4. The hexamine condensed borate according to claim 3, wherein the inorganic boric acid compound is boric acid or / and a borate ester. 請求項1〜4のいずれか一つに記載のヘキサミン縮合ホウ酸塩からなるノボラック型フェノール樹脂用硬化剤。 The hardening | curing agent for novolak-type phenol resins which consists of a hexamine condensed borate as described in any one of Claims 1-4. ノボラック型フェノール樹脂と請求項5の硬化剤とからなるノボラック型フェノール樹脂組成物。
A novolac phenolic resin composition comprising a novolac phenolic resin and the curing agent according to claim 5.
JP2004089044A 2004-03-25 2004-03-25 Methylhexamine condensed borate and novolak phenolic resin composition Pending JP2005272689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089044A JP2005272689A (en) 2004-03-25 2004-03-25 Methylhexamine condensed borate and novolak phenolic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089044A JP2005272689A (en) 2004-03-25 2004-03-25 Methylhexamine condensed borate and novolak phenolic resin composition

Publications (1)

Publication Number Publication Date
JP2005272689A true JP2005272689A (en) 2005-10-06

Family

ID=35172699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089044A Pending JP2005272689A (en) 2004-03-25 2004-03-25 Methylhexamine condensed borate and novolak phenolic resin composition

Country Status (1)

Country Link
JP (1) JP2005272689A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283793A (en) * 1988-12-23 1990-11-21 Matec Holding Ag Flameproof product
JP2000017145A (en) * 1998-06-30 2000-01-18 Sumitomo Bakelite Co Ltd Thermosetting resin composition and molding material using the same
JP2005068417A (en) * 2003-08-05 2005-03-17 Kawamura Inst Of Chem Res Thermosetting resin composition and its production process, and process for producing molded product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283793A (en) * 1988-12-23 1990-11-21 Matec Holding Ag Flameproof product
JP2000017145A (en) * 1998-06-30 2000-01-18 Sumitomo Bakelite Co Ltd Thermosetting resin composition and molding material using the same
JP2005068417A (en) * 2003-08-05 2005-03-17 Kawamura Inst Of Chem Res Thermosetting resin composition and its production process, and process for producing molded product

Similar Documents

Publication Publication Date Title
Hu et al. Heteronucleobase-functionalized benzoxazine: synthesis, thermal properties, and self-assembled structure formed through multiple hydrogen bonding interactions
US5032642A (en) Phenolic resin compositions
CN106699748B (en) A kind of norbornene end-sealed type benzoxazine oligomer and preparation method thereof
CN105254878A (en) Polybenzoxazine connected bisphthalonitrile monomer as well as preparation method and application thereof
Ma et al. Synthesis of branched benzoxazine monomers with high molecular mass, wide processing window, and properties of corresponding polybenzoxazines
Chandramohan et al. Synthesis and characterization of 1, 1-bis (3-methyl-4-epoxyphenyl) cyclohexane-toughened DGEBA and TGDDM organo clay hybrid nanocomposites
JPH1025343A (en) Thermosetting resin composition
CN102470423B (en) Method for producing a body made from a granular mixture
JP4895487B2 (en) Thermosetting resin composition, method for producing the same, and method for producing molded product
CN109942767B (en) Boron hybridized phthalonitrile phenolic resin and preparation method and application thereof
JP2005272689A (en) Methylhexamine condensed borate and novolak phenolic resin composition
JPH1160664A (en) Production on pressure/heat-sensitive self-curing spherical phenolic resin
JPH11116648A (en) Production of spherical phenol resin
TWI537294B (en) A narrowly dispersed phenol novolak resin and its manufacturing method
JP2006257136A (en) Method for producing novolak type phenol resin
KR101159549B1 (en) Epoxy resin composition and method for producing heat-resistant laminate sheet
JP4233987B2 (en) Method for producing boron-modified resol-type phenolic resin and composition thereof
JP4403509B2 (en) Amino group-containing triazine-modified novolak resin borate, method for producing the same, and flame-retardant resin composition
JP3814979B2 (en) Method for producing phenolic resin-based self-curing resin
JP2006089551A (en) Method for producing boron-modified resol phenolic resin composition
JP2001122663A (en) Radiating molding
JPS62220509A (en) Separation of high molecular weight component from phenol polymer
JP2001234029A (en) Thermosetting resin composition
JPH06128361A (en) Epoxy resin curative and its production
JP2005089317A (en) Piperidine condensed borate, epoxy resin curing agent and epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Effective date: 20091203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A02