JP2005272668A - Method for modifying surface of resin molded product and surface-modified resin molded product - Google Patents

Method for modifying surface of resin molded product and surface-modified resin molded product Download PDF

Info

Publication number
JP2005272668A
JP2005272668A JP2004088727A JP2004088727A JP2005272668A JP 2005272668 A JP2005272668 A JP 2005272668A JP 2004088727 A JP2004088727 A JP 2004088727A JP 2004088727 A JP2004088727 A JP 2004088727A JP 2005272668 A JP2005272668 A JP 2005272668A
Authority
JP
Japan
Prior art keywords
resin
molded body
thermoplastic resin
resin molded
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088727A
Other languages
Japanese (ja)
Inventor
Masahiro Oshima
正裕 大嶋
Shinichi Kihara
伸一 木原
Hideaki Mizutani
英章 水谷
Haruo Shiguma
治雄 志熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIGAKEN SANGYO SHIEN PLAZA
Japan Science and Technology Agency
Original Assignee
SHIGAKEN SANGYO SHIEN PLAZA
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIGAKEN SANGYO SHIEN PLAZA, Japan Science and Technology Agency filed Critical SHIGAKEN SANGYO SHIEN PLAZA
Priority to JP2004088727A priority Critical patent/JP2005272668A/en
Publication of JP2005272668A publication Critical patent/JP2005272668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for modifying the surface of a resin molded product in which sufficient modifying effect can be imparted to the surface layer part of the resin molded product, and the surface-modified resin molded product. <P>SOLUTION: The method for modifying the surface of the resin molded product comprises sorbing the melt of a low-molecular weight polymer having solubility and diffusion coefficient to carbon dioxide which are higher than those of a thermoplastic resin and being not compatible with the thermoplastic resin to the resin molded product composed of the thermoplastic resin at a temperature lower than the heat distortion temperature of the thermoplastic resin or a temperature not higher than [glass transition temperature of the thermoplastic resin + 30°C] in the presence of carbon dioxide. The surface-modified resin molded product is obtained by this method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂成形体表面の改質方法に関し、さらに詳しくは、樹脂成形品の表層部に十分な改質効果を付与することのできる樹脂成形体表面の改質方法、及び表面の改質された樹脂成形体に関するものである。   The present invention relates to a method for modifying a surface of a resin molded body, and more specifically, a method for modifying a surface of a resin molded body capable of imparting a sufficient modification effect to a surface layer portion of a resin molded product, and surface modification. It is related with the resin molded object made.

プラスチック成形品は、一般にそのままで製品となるが、用途によってはプラスチック成形品表面の加工性を高める必要があり、そのために樹脂成形品の表面を活性化させるための表面改質が行われている。
従来、プラスチック成形品を表面改質する方法としては、溶剤により表面を洗浄する方法、極性基を有するポリマー等を吹付ける方法、及びコロナ放電、プラズマ処理等によって電気的に処理する方法等が知られている。しかし、溶剤による表面洗浄法や極性基を有するポリマー等の吹付け法は、環境や人体に有害であり、溶媒等の回収設備が必要である等の問題がある。また、電気的処理法は、高価な設備を必要とし、また発生するオゾン、窒素酸化物等の有害物質の対策が必要となる。
Plastic molded products generally become products as they are, but depending on the application, it is necessary to improve the workability of the surface of the plastic molded product, and therefore surface modification is performed to activate the surface of the resin molded product. .
Conventionally, as a method for modifying the surface of a plastic molded product, there are known a method of cleaning a surface with a solvent, a method of spraying a polymer having a polar group, and a method of electrically treating by corona discharge, plasma treatment, etc. It has been. However, the surface cleaning method using a solvent and the method of spraying a polymer having a polar group are harmful to the environment and the human body, and there are problems such as the need for a recovery facility for the solvent and the like. In addition, the electrical treatment method requires expensive equipment, and measures against harmful substances such as ozone and nitrogen oxide are required.

そこで、環境や人体に無害な超臨界流体を用いて、プラスチック成形品の表面処理を行う試みが展開されている。例えば、超臨界二酸化炭素中で、ポリマー表面部に有機金属化合物を浸透させ、浸透した有機金属化合物を分解して有機−無機ナノコンポジットを形成させることにより、ポリマーの表面を改質する方法(特許文献1参照)、及びプラスチック成形品を、そのガラス転移温度未満の温度下で超臨界炭酸ガス中に浸漬して、プラスチック成形品の表面を改質する方法(特許文献2参照)が提案されている。
しかしながら、特許文献1及び2の方法は、超臨界二酸化炭素を使用しているが、プラスチック成形品の表面をガス状の吸着で改質させる方法であるので、改質がプラスチック成形品の表面に留まり、表層部の十分な改質効果が得られないという問題がある。
Therefore, attempts have been made to surface-treat plastic molded articles using a supercritical fluid that is harmless to the environment and the human body. For example, a method of modifying the surface of a polymer by infiltrating an organometallic compound into the polymer surface in supercritical carbon dioxide and decomposing the infiltrated organometallic compound to form an organic-inorganic nanocomposite (patented) Document 1) and a method of modifying the surface of a plastic molded article by immersing the plastic molded article in supercritical carbon dioxide at a temperature lower than its glass transition temperature (see Patent Document 2). Yes.
However, although the methods of Patent Documents 1 and 2 use supercritical carbon dioxide, since the surface of the plastic molded product is modified by gaseous adsorption, the modification is applied to the surface of the plastic molded product. There is a problem that a sufficient reforming effect of the surface layer portion cannot be obtained.

特開2003−2994号公報JP 2003-2994 A 特開2001−158827号公報JP 2001-158827 A

本発明は、かかる状況下で、有害な有機溶剤を使用せず、かつ樹脂成形品の表層部に十分な改質効果を付与することのできる樹脂成形体表面の改質方法を提供することを目的とする。   Under such circumstances, the present invention provides a method for modifying the surface of a resin molded body that does not use a harmful organic solvent and can impart a sufficient modification effect to the surface layer portion of the resin molded product. Objective.

本発明者らは、上記目的を達成するため鋭意検討した結果、樹脂成形品表面を単に二酸化炭素で改質するのではなく、二酸化炭素の存在下で、特定のポリマー融液を、比較的低温で収着させて改質することにより、上記目的を達成しうることを見出した。
すなわち、本発明は、
(1)熱可塑性樹脂からなる成形体に対し、二酸化炭素の存在下で、該熱可塑性樹脂よりも二酸化炭素の溶解度及び拡散係数が高く、かつ該熱可塑性樹脂と非相溶の低分子ポリマー融液を、該熱可塑性樹脂の熱変形温度より低い温度、又は[該熱可塑性樹脂のガラス転位温度+30℃]以下の温度で、収着させることを特徴とする樹脂成形体表面の改質方法、及び
(2)前記(1)に記載の方法により得られた表面の改質された樹脂成形体、
を提供するものである。
As a result of intensive studies to achieve the above-mentioned object, the present inventors have not modified the surface of a resin molded product with carbon dioxide, but in the presence of carbon dioxide, a specific polymer melt is relatively low temperature. It was found that the above-mentioned purpose can be achieved by sorption and modification.
That is, the present invention
(1) A molded body made of a thermoplastic resin, in the presence of carbon dioxide, has a higher solubility and diffusion coefficient of carbon dioxide than that of the thermoplastic resin, and a low molecular weight polymer melt that is incompatible with the thermoplastic resin. A method of modifying the surface of a resin molded article, wherein the liquid is sorbed at a temperature lower than a heat deformation temperature of the thermoplastic resin or a temperature equal to or lower than a glass transition temperature of the thermoplastic resin + 30 ° C .; And (2) a surface-modified resin molded product obtained by the method described in (1) above,
Is to provide.

本発明の改質方法によれば、二酸化炭素の存在下で、予め製造された樹脂成形体に特定の低分子ポリマー融液を比較的低温で、樹脂成形体の表面層に収着させる。このため、低分子ポリマー融液が成形体の表層部に多量に取込まれるため、樹脂成形体の表層部を十分に改質することができる。
したがって、本発明の改質方法によって、例えば、樹脂成形体表面に親水性や極性基を付与して、樹脂成形体表面の濡れ性を向上すれば、塗料や他樹脂との接着強度が著しく向上し、その効果が長期間持続する。
また、本発明の樹脂成形体表面の改質方法は、マイクロタス(医療チップ)への応用やマイクロチャンネルの改質など、機能材料の製造などにも適用できる。
According to the modification method of the present invention, in the presence of carbon dioxide, a specific low molecular weight polymer melt is adsorbed on a surface layer of a resin molded body at a relatively low temperature in a previously produced resin molded body. For this reason, since the low molecular weight polymer melt is taken in a large amount into the surface layer portion of the molded body, the surface layer portion of the resin molded body can be sufficiently modified.
Therefore, if the modification method of the present invention, for example, imparts hydrophilicity or polar groups to the surface of the resin molded body to improve the wettability of the surface of the resin molded body, the adhesive strength with paints and other resins is significantly improved. And the effect lasts for a long time.
The method for modifying the surface of the resin molded body of the present invention can also be applied to the production of functional materials such as application to microtus (medical chip) and modification of microchannels.

本発明の樹脂成形体表面の改質方法は、熱可塑性樹脂からなる成形体に対し、二酸化炭素の存在下で、該熱可塑性樹脂よりも二酸化炭素の溶解度及び拡散係数が高く、かつ該熱可塑性樹脂と非相溶の低分子ポリマー融液を、該熱可塑性樹脂の熱変形温度より低い温度、又は[該熱可塑性樹脂のガラス転位温度+30℃]以下の温度で、収着させることが特徴である。
熱可塑性樹脂成形体を構成する熱可塑性樹脂としては、二酸化炭素の処理によって膨潤する樹脂であれば、特に制限はなく、非晶性熱可塑性樹脂、結晶性熱可塑性樹脂のいずれも使用することができる。
The method for modifying the surface of a resin molded body according to the present invention has a higher solubility and diffusion coefficient of carbon dioxide than that of the thermoplastic resin in the presence of carbon dioxide, and the thermoplastic resin. The low molecular weight polymer melt incompatible with the resin is sorbed at a temperature lower than the thermal deformation temperature of the thermoplastic resin or at a temperature not higher than [glass transition temperature of the thermoplastic resin + 30 ° C.]. is there.
The thermoplastic resin constituting the thermoplastic resin molded body is not particularly limited as long as it is a resin that swells by the treatment of carbon dioxide, and either an amorphous thermoplastic resin or a crystalline thermoplastic resin may be used. it can.

非晶性熱可塑性樹脂としては、ポリスチレン系樹脂、ポリカーボネート系樹脂、メタクリル系樹脂、塩化ビニル系樹脂、熱可塑性エラストマー等が挙げられる。
ポリスチレン系樹脂としては、汎用ポリスチレン(GPPS)、ゴム強化ポリスチレン(HIPS)、アクリロニトリル・スチレン共重合体(AS系樹脂)アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)、スチレン−メチルメタクリレート共重合体、スチレン−メチルメタクリレート−ブタジエン共重合体等が挙げられる。ポリスチレン系樹脂の重量平均分子量(Mw)は50,000〜400,000が好ましい。
ポリカーボネート系樹脂としては、ビス(4−ヒドロキシフェニル)、ビス(3,5−ジアルキル−4−ヒドロキシフェニル)、又はビス(3,5−ジハロ−4−ヒドロキシフェニル)置換を有する炭化水素誘導体を有するポリカーボネートが好ましく、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)を有するポリカーボネートが特に好ましい。ポリカーボネート系樹脂の重量平均分子量(Mw)は10,000〜50,000が好ましい。
メタクリル系樹脂としては、ポリメチルアクリレート、ポリメチルメタクリレート(PMMA)、メチルメタクリレート−スチレン共重合体等が挙げられる。メタクリル系樹脂の重量平均分子量(Mw)は50,000〜600,000が好ましい。
Examples of the amorphous thermoplastic resin include polystyrene resin, polycarbonate resin, methacrylic resin, vinyl chloride resin, and thermoplastic elastomer.
Polystyrene resins include general-purpose polystyrene (GPPS), rubber-reinforced polystyrene (HIPS), acrylonitrile / styrene copolymer (AS resin), acrylonitrile / butadiene / styrene copolymer (ABS resin), and styrene-methyl methacrylate copolymer. And styrene-methyl methacrylate-butadiene copolymer. The weight average molecular weight (Mw) of the polystyrene resin is preferably 50,000 to 400,000.
Polycarbonate resins include bis (4-hydroxyphenyl), bis (3,5-dialkyl-4-hydroxyphenyl), or hydrocarbon derivatives having bis (3,5-dihalo-4-hydroxyphenyl) substitution. Polycarbonate is preferred, and polycarbonate having 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is particularly preferred. The weight-average molecular weight (Mw) of the polycarbonate resin is preferably 10,000 to 50,000.
Examples of the methacrylic resin include polymethyl acrylate, polymethyl methacrylate (PMMA), and a methyl methacrylate-styrene copolymer. The weight average molecular weight (Mw) of the methacrylic resin is preferably 50,000 to 600,000.

塩化ビニル系樹脂としては、ポリ塩化ビニル、塩化ビニル−エチレン共重合体、塩化ビニル−酢酸ビニル共重合体等が挙げられる。塩化ビニル系樹脂の重量平均分子量(Mw)は40,000〜200,000が好ましい。
熱可塑性エラストマーとしては、アクリロニトリルーブタジエンースチレン(ABS)、スチレンーイソプレンースチレン(SIS)、スチレンーエチレン/ブチレンースチレンブロックコ熱可塑性樹脂(SEBS)等のスチレン系ブロック共重合体の他、ポリブタジエン、ポリイソプレン、ポリクロロプレン、スチレンーブタジエンゴム(SBR)、エチレンープロピレンージエンモノマーゴム、エチレンプロピレンゴム、ポリエチレンーテレフタレート(PETG)等が挙げられる。
Examples of the vinyl chloride resin include polyvinyl chloride, vinyl chloride-ethylene copolymer, vinyl chloride-vinyl acetate copolymer, and the like. The vinyl chloride resin preferably has a weight average molecular weight (Mw) of 40,000 to 200,000.
Thermoplastic elastomers include styrene block copolymers such as acrylonitrile-butadiene-styrene (ABS), styrene-isoprene-styrene (SIS), styrene-ethylene / butylene-styrene block co-thermoplastic resin (SEBS), Examples include polybutadiene, polyisoprene, polychloroprene, styrene-butadiene rubber (SBR), ethylene-propylene-diene monomer rubber, ethylene-propylene rubber, and polyethylene-terephthalate (PETG).

その他の非晶性熱可塑性樹脂の具体的としては、環状オレフィン系樹脂(日本ゼオン株式会社:シクロオレフィンポリマー「ZEONOR」、三井化学株式会社:エチレン・テトラシクロドデセン共重合体「アペル」等)、ポリスルホン、ポリエーテルスルホン(PES)、ポリフェニレンオキサイド(PPO)、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリアリレート、ポリフェニレンオキシド、ポリテトラフルオロエチレン、ポリ四フッ化エチレン、ポリビニルアセテート、ポリ塩化ビニリデン、液晶熱可塑性樹脂、及び生分解性樹脂等を挙げることができる。   Specific examples of other amorphous thermoplastic resins include cyclic olefin resins (Nippon ZEON Co., Ltd .: cycloolefin polymer “ZEONOR”, Mitsui Chemicals, Inc .: ethylene tetracyclododecene copolymer “APEL”, etc.) , Polysulfone, polyethersulfone (PES), polyphenylene oxide (PPO), polyimide, polyetherimide, polyamideimide, polyarylate, polyphenylene oxide, polytetrafluoroethylene, polytetrafluoroethylene, polyvinyl acetate, polyvinylidene chloride, liquid crystal A thermoplastic resin, a biodegradable resin, etc. can be mentioned.

生分解性樹脂は、生分解性を有する樹脂であればよく、化学合成系樹脂、微生物系樹脂、天然物利用系樹脂等を挙げることができる。例えば、脂肪族ポリエステル、ポリビニールアルコール、セルロース誘導体等を挙げることができる。
より具体的には、脂肪族ポリエステルとしては、ポリ乳酸(PLA)樹脂及びその誘導体、ポリヒドロキシブチレート(PHB)及びその誘導体、ポリカプロラクトン(PCL)、ポリエチレンアジペート(PEA)、ポリテトラメチレンアジペート、ポリグリコール酸(PGA)、ジオールとジカルボン酸の縮合物等、セルロース類としてはアセチルセルロース、メチルセルロース、エチルセルロース等を挙げることができる。これらの中では、ポリ乳酸樹脂が好ましい。
ポリ乳酸樹脂は、乳酸又はラクチドの重縮合物である。ポリ乳酸樹脂にはD体、L体、DL体の光学異性体があるが、それらの単独物又は混合物を含む。ポリ乳酸樹脂の重量平均分子量(Mw)は100,000〜400,000が好ましい。
The biodegradable resin may be any resin having biodegradability, and examples thereof include chemically synthesized resins, microbial resins, and natural product-based resins. For example, aliphatic polyester, polyvinyl alcohol, cellulose derivatives and the like can be mentioned.
More specifically, the aliphatic polyester includes polylactic acid (PLA) resin and derivatives thereof, polyhydroxybutyrate (PHB) and derivatives thereof, polycaprolactone (PCL), polyethylene adipate (PEA), polytetramethylene adipate, Examples of celluloses such as polyglycolic acid (PGA), condensates of diol and dicarboxylic acid, and the like include acetyl cellulose, methyl cellulose, ethyl cellulose and the like. Of these, polylactic acid resin is preferred.
The polylactic acid resin is a polycondensate of lactic acid or lactide. The polylactic acid resin includes optical isomers of D-form, L-form, and DL-form, and includes a single substance or a mixture thereof. The weight average molecular weight (Mw) of the polylactic acid resin is preferably 100,000 to 400,000.

一方、結晶性熱可塑性樹脂としては、ポリオレフィン樹脂、特殊ポリスチレン系樹脂、ポリアミド系樹脂、飽和ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド(PPS)、ポリフェニレンエーテル(PPE)、PPEを他樹脂(ポリプロピレン、ナイロン、ABS等)とブレンド又はグラフト重合させて変性させた変性PPE系樹脂、等が挙げられる。   On the other hand, as crystalline thermoplastic resins, polyolefin resins, special polystyrene resins, polyamide resins, saturated polyester resins, polyacetal resins, polyphenylene sulfide (PPS), polyphenylene ether (PPE), PPE and other resins (polypropylene, nylon, And modified PPE resin modified by blending or graft polymerization with ABS or the like.

ポリオレフィン樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−α−オレフィン共重合体、エチレン−エチルアクリレート共重合体、エチレン−メタクリレート共重合体等のポリエチレン系樹脂、ポリプロピレン、プロピレン−エチレン共重合体等のポリプロピレン樹脂、アイオノマー、ポリブテン、及び特殊ポリオレフィン樹脂等が挙げられる。
特殊ポリオレフィン樹脂としては、超高分子量ポリエチレン、超高分子量ポリプロピレン、シンジオタクチックポリプロピレン(ポリプロピレン単独重合体、プロピレン−エチレン共重合体、プロピレン−1−ブテン共重合体等)、ポリ4−メチル−ペンテン−1、環状ポリオレフィン系樹脂等が挙げられる。
これらの中では、特に、重量平均分子量(Mw)が30,000〜600,000のポリプロピレン樹脂、及びシンジオタティシティーが70%以上、特に80%以上のシンジオタクチックポリプロピレンが好ましい。
Polyolefin resins include high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ethylene-α-olefin copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylate copolymer, and other polyethylene. Examples thereof include polypropylene resins such as polypropylene resins, polypropylene, and propylene-ethylene copolymers, ionomers, polybutenes, and special polyolefin resins.
Special polyolefin resins include ultra high molecular weight polyethylene, ultra high molecular weight polypropylene, syndiotactic polypropylene (polypropylene homopolymer, propylene-ethylene copolymer, propylene-1-butene copolymer, etc.), poly-4-methyl-pentene. -1, cyclic polyolefin resin and the like.
Among these, a polypropylene resin having a weight average molecular weight (Mw) of 30,000 to 600,000 and a syndiotactic polypropylene having a syndiotacticity of 70% or more, particularly 80% or more are preferable.

特殊ポリスチレン系樹脂としては、シンジオタクチックポリスチレン(SPS)、α−メチルスチレン共重合体等が挙げられる。
ポリアミド系樹脂としては、ナイロン6、ナイロン66、芳香族ポリアミド、芳香族・脂肪族ポリアミド共重合体等が挙げられる。
飽和ポリエステル樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。
ポリアセタール樹脂としては、ホモポリオキシメチレン、ポリオキシメチレン共重合体等が挙げられる。
Examples of the special polystyrene resin include syndiotactic polystyrene (SPS) and α-methylstyrene copolymer.
Examples of the polyamide-based resin include nylon 6, nylon 66, aromatic polyamide, and aromatic / aliphatic polyamide copolymer.
Examples of the saturated polyester resin include polyethylene terephthalate and polybutylene terephthalate.
Examples of the polyacetal resin include homopolyoxymethylene and polyoxymethylene copolymers.

その他の結晶性熱可塑性樹脂としては、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルニトリル、サーモトロピック液晶性樹脂(主鎖骨格中にパラオキシ安息香酸、芳香族ジオール、芳香族ジカルボン酸、ナフタレン環等の分子構造を含有するもの)等が挙げられる。   Other crystalline thermoplastic resins include polyketone, polyetherketone, polyetheretherketone, polyethernitrile, thermotropic liquid crystalline resin (paraoxybenzoic acid, aromatic diol, aromatic dicarboxylic acid, naphthalene in the main chain skeleton) And those containing a molecular structure such as a ring).

上記の樹脂の中では、非晶性樹脂としては、特に、ポリスチレン系樹脂、ポリカーボネート系樹脂、メタクリル系樹脂、環状オレフィン系樹脂、ポリエーテルスルホン、ポリスルホン、及びポリ乳酸樹脂が好ましい。また、結晶性樹脂の中では、特に、ポリプロピレン樹脂、シンジオタクチックポリプロピレン等のポリオレフィン樹脂、ポリアミド系樹脂、及び飽和ポリエステル樹脂が好ましい。
上記の熱可塑性樹脂は、一種単独で又は二種以上を混合して使用することができる。また、上記の熱可塑性樹脂には、強度の付与、寸法精度の向上等を目的として、無機系または有機系の充填剤を添加することができる。
Among the above resins, the amorphous resin is particularly preferably a polystyrene resin, a polycarbonate resin, a methacrylic resin, a cyclic olefin resin, a polyethersulfone, a polysulfone, and a polylactic acid resin. Among the crystalline resins, particularly preferred are polyolefin resins such as polypropylene resin and syndiotactic polypropylene, polyamide resins, and saturated polyester resins.
Said thermoplastic resin can be used individually by 1 type or in mixture of 2 or more types. In addition, an inorganic or organic filler can be added to the thermoplastic resin for the purpose of imparting strength, improving dimensional accuracy, and the like.

上記の樹脂又は上記の樹脂からなる組成物を、必要に応じて添加する各種添加剤と混合した後、十分な混練能力のある一軸又は多軸の押出機、ニーダー、混合ロール等を用いて溶融混練した後、常法により成形して樹脂成形体とすることができる。ここで成形体とは、立体構造を有する構造体だけでなく、シート又はフィルムなどの平面的な形状をした構造体も包含する。かかる成形法としては、特に制限はなく、射出成形、押出成形、ブロー成形、カレンダ成形、圧縮成形、トランスファ成形、積層成形、注型成形、インフレーション成形などの公知の成形法を採用することができる。また、成形品の形状も特に限定されず、複雑な形状であってもよい。   After mixing the above resin or a composition comprising the above resin with various additives to be added as necessary, it is melted using a uniaxial or multiaxial extruder, kneader, mixing roll, etc. having sufficient kneading ability. After kneading, it can be molded into a resin molded body by a conventional method. Here, the molded body includes not only a structure having a three-dimensional structure but also a structure having a planar shape such as a sheet or a film. The molding method is not particularly limited, and a known molding method such as injection molding, extrusion molding, blow molding, calendar molding, compression molding, transfer molding, laminate molding, cast molding, inflation molding, or the like can be employed. . Further, the shape of the molded product is not particularly limited, and may be a complicated shape.

次に、熱可塑性樹脂成形体を二酸化炭素の存在下で、該熱可塑性樹脂よりも二酸化炭素の溶解度及び拡散係数が高く、かつ該熱可塑性樹脂と非相溶の低分子ポリマー融液(以下、単にポリマー融液ということがある)を収着させる。
ここで、二酸化炭素の溶解度とは、樹脂に対する二酸化炭素の溶解量を示し、二酸化炭素の拡散係数とは、樹脂に対する二酸化炭素の拡散速度を示す。
一般にポリマーに対する二酸化炭素の溶解度は、温度の上昇と共に自由体積が増加し、分子の易動度が増大するため、溶解度は低下する。一方、ポリマーに対する二酸化炭素の拡散係数は、温度の上昇と共に増大する。
二酸化炭素の溶解度の値は、室温から樹脂の溶融温度において、ポリマー融液の方が熱可塑性樹脂よりも1.1倍以上高いことが好ましく、1.5倍以上高いことがさらに好ましい。また、二酸化炭素の拡散係数の値は、室温から樹脂の溶融温度において、ポリマー融液の方が、熱可塑性樹脂よりも1.1倍以上高いことが好ましく、1.3倍以上高いことがさらに好ましい。
Next, in the presence of carbon dioxide, the thermoplastic resin molded body is a low molecular polymer melt (hereinafter referred to as “high molecular weight carbon dioxide”) having higher solubility and diffusion coefficient of carbon dioxide than that of the thermoplastic resin and incompatible with the thermoplastic resin. (Sometimes simply referred to as polymer melt).
Here, the solubility of carbon dioxide indicates the amount of carbon dioxide dissolved in the resin, and the diffusion coefficient of carbon dioxide indicates the diffusion rate of carbon dioxide in the resin.
In general, the solubility of carbon dioxide in a polymer decreases as the free volume increases with increasing temperature and the mobility of molecules increases. On the other hand, the diffusion coefficient of carbon dioxide relative to the polymer increases with increasing temperature.
From the room temperature to the melting temperature of the resin, the solubility of carbon dioxide is preferably 1.1 times or more higher than the thermoplastic resin, more preferably 1.5 times or more higher than the thermoplastic resin. Further, the value of the diffusion coefficient of carbon dioxide is preferably 1.1 times or more higher than the thermoplastic resin, more preferably 1.3 times or more higher than that of the thermoplastic resin from room temperature to the melting temperature of the resin. preferable.

熱可塑性樹脂の場合は、二酸化炭素の溶解度及び拡散係数は、成形機(例えば、井元製作所、卓上型成型プレス)を使用して、所定温度(例えば70℃〜330℃)で、加圧、脱圧して気泡のない試験片(例えば、20mmφ、厚み1mm〜3mm)を作成し、磁気浮遊天秤測定装置(ドイツ国、RUBOTHERM社製、BEL P/O 152)を用いて、1MPa〜20MPaの圧力範囲の二酸化炭素雰囲気下で、試料に二酸化炭素が含有される際の重量変化を測定することにより求めることができる。
ポリマー融液の場合は、二酸化炭素の溶解度及び拡散係数は、磁気浮遊天秤測定装置に附属する金属バスケット容器内に、プレス試料に変えて液体試料を注入(又は挿入)した後、二酸化炭素雰囲気下で、試料に二酸化炭素が含有される際の重量変化を測定することにより求めることができる。
代表的な熱可塑性樹脂の、所定温度(℃)、所定圧力(MPa)における二酸化炭素の溶解度(g−gas/g−polymer)及び拡散係数(m2/s)は次のとおりである。
In the case of a thermoplastic resin, the solubility and diffusion coefficient of carbon dioxide are determined by applying pressure and desorption at a predetermined temperature (for example, 70 ° C. to 330 ° C.) using a molding machine (for example, Imoto Seisakusho, desktop molding press). Pressure-free test pieces (for example, 20 mmφ, thickness 1 mm to 3 mm) are prepared, and a pressure range of 1 MPa to 20 MPa using a magnetic levitation balance measuring apparatus (BEL P / O 152, manufactured by RUBOTHERM, Germany) It can obtain | require by measuring the weight change at the time of containing a carbon dioxide in a sample in carbon dioxide atmosphere.
In the case of a polymer melt, the solubility and diffusion coefficient of carbon dioxide are measured in a carbon basket atmosphere after injecting (or inserting) a liquid sample into a metal basket container attached to a magnetic levitation balance measuring device instead of a press sample. Thus, it can be obtained by measuring a change in weight when carbon dioxide is contained in the sample.
The solubility (g-gas / g-polymer) and diffusion coefficient (m 2 / s) of carbon dioxide at a predetermined temperature (° C.) and a predetermined pressure (MPa) of a typical thermoplastic resin are as follows.

ポリスチレン(出光石油化学社株式会社、HH32、Mw:321,000)
温度(℃)圧力(MPa) 溶解度 拡散係数
110 10.0 0.0576 1.77×10-9
200 11.0 0.0426 2.9×10-9
Polystyrene (Idemitsu Petrochemical Co., Ltd., HH32, Mw: 321,000)
Temperature (° C) Pressure (MPa) Solubility Diffusion coefficient
110 10.0 0.0576 1.77 × 10 -9
200 11.0 0.0426 2.9 × 10 -9

ポリプロピレン(出光石油化学株式会社F−704NP、Mw:294,000)
温度(℃)圧力(MPa) 溶解度 拡散係数
200 11.0 0.0833 8.07×10-9
Polypropylene (Idemitsu Petrochemical Co., Ltd. F-704NP, Mw: 294,000)
Temperature (° C) Pressure (MPa) Solubility Diffusion coefficient
200 11.0 0.0833 8.07 × 10 -9

ポリカーボネート(出光石油化学社株式会社A2200、Mw:27,100)
温度(℃)圧力(MPa) 溶解度 拡散係数
260 9.0 0.0259 5.66×10-9
Polycarbonate (Idemitsu Petrochemical Co., Ltd. A2200, Mw: 27,100)
Temperature (° C) Pressure (MPa) Solubility Diffusion coefficient
260 9.0 0.0259 5.66 × 10 −9

ポリ乳酸(カーギル・ダウ社、PLA−D、Mw:196,000)
200 6.0 0.0325 3.29×10-9
200 11.0 0.0581 4.32×10-9
Polylactic acid (Cargill Dow, PLA-D, Mw: 196,000)
200 6.0 0.0325 3.29 × 10 -9
200 11.0 0.0581 4.32 × 10 -9

ポリエチレングリコール(和光純薬工業株式会社)
温度(℃)圧力(MPa) 溶解度 拡散係数
Mw= 2,000 100 11.1 0.1271 2.35×10-9
Mw= 400万 110 10.0 0.0859 1.49×10-8
Mw= 400万 200 11.0 0.0656 2.35×10-8
Polyethylene glycol (Wako Pure Chemical Industries, Ltd.)
Temperature (° C.) Pressure (MPa) Solubility Diffusion coefficient Mw = 2,000 100 11.1 0.1271 2.35 × 10 −9
Mw = 4 million 110 10.0 0.0859 1.49 × 10 −8
Mw = 4 million 200 11.0 0.0656 2.35 × 10 −8

次に、低分子ポリマー融液とは、成形体を構成する熱可塑性樹脂の熱変形温度より低い温度、又は[該熱可塑性樹脂のガラス転位温度+30℃]以下の温度で、液状であるものをいう。好ましい低分子ポリマー融液は、分子量10,000以下で親水基を有する低分子ポリマーの融液であり、上記熱可塑性樹脂と非相溶のものである。
より具体的には、ポリエチレングリコール(PEG)、ポリエチレンオキサイド、ポリビニルアルコール、ポリビニルエーテル、ポリ乳酸樹脂、ポリブチルサクシネート(PBS)等が挙げられる。これらの中では、重量平均分子量(Mw)が200〜4,000,000のポリエチレングリコール、重量平均分子量(Mw)が100,000〜400,000のポリ乳酸樹脂が好ましい。
上記のポリマー融液は、一種単独で又は二種以上を混合して使用することができる。
Next, the low molecular weight polymer melt is a liquid at a temperature lower than the thermal deformation temperature of the thermoplastic resin constituting the molded body or a temperature equal to or lower than the [glass transition temperature of the thermoplastic resin + 30 ° C.]. Say. A preferred low molecular weight polymer melt is a low molecular weight polymer melt having a molecular weight of 10,000 or less and having a hydrophilic group, and is incompatible with the thermoplastic resin.
More specifically, polyethylene glycol (PEG), polyethylene oxide, polyvinyl alcohol, polyvinyl ether, polylactic acid resin, polybutyl succinate (PBS) and the like can be mentioned. Among these, polyethylene glycol having a weight average molecular weight (Mw) of 200 to 4,000,000 and polylactic acid resin having a weight average molecular weight (Mw) of 100,000 to 400,000 are preferable.
Said polymer melt can be used individually by 1 type or in mixture of 2 or more types.

二酸化炭素の存在下で、ポリマー融液を収着させる場合、温度は、成形体を構成する熱可塑性樹脂の熱変形温度より低い温度、又は[該熱可塑性樹脂のガラス転位温度+30℃]以下の温度とする。
本発明においては、樹脂成形体の表層部にポリマー融液を十分に収着させる必要がある。そのために、かかる温度で、成形体をポリマー融液の液相に曝し、二酸化炭素でそのポリマー融液の液相を加圧して、ポリマー融液の液相に二酸化炭素を溶解しさらに、熱可塑性樹脂に溶解させることにより、熱可塑性樹脂を膨潤させ、ポリマー融液を熱可塑性樹脂内部にまで収着させ、改質する。
要は、樹脂成形体の表面に収着させたポリマー融液の液相を作り、そこに二酸化炭素を溶解させることが重要である。こうすることにより、成形体内へ二酸化炭素が溶解することによる樹脂の膨潤と共に、周囲に存在するポリマー融液が成形体表層部に多量に収着される。この結果、単に基材に処理剤を塗布する従来の表面処理法やモノマー等を二酸化炭素に溶解させてガス状の吸着をさせる方法に比べて、十分な改質効果を得ることができる。
When the polymer melt is sorbed in the presence of carbon dioxide, the temperature is lower than the thermal deformation temperature of the thermoplastic resin constituting the molded body, or [glass transition temperature of the thermoplastic resin + 30 ° C.] or lower. Let it be temperature.
In the present invention, it is necessary to sufficiently sorb the polymer melt on the surface layer portion of the resin molded body. Therefore, at such a temperature, the molded body is exposed to the liquid phase of the polymer melt, and the liquid phase of the polymer melt is pressurized with carbon dioxide, so that the carbon dioxide is dissolved in the liquid phase of the polymer melt and further thermoplastic. By dissolving in the resin, the thermoplastic resin is swollen, and the polymer melt is sorbed into the thermoplastic resin to be modified.
In short, it is important to create a liquid phase of the polymer melt sorbed on the surface of the resin molded body and dissolve carbon dioxide therein. By doing so, along with the swelling of the resin due to the dissolution of carbon dioxide into the molded body, a large amount of the polymer melt present around is sorbed on the surface layer of the molded body. As a result, a sufficient modification effect can be obtained as compared with a conventional surface treatment method in which a treatment agent is simply applied to a base material or a method in which a monomer or the like is dissolved in carbon dioxide to cause gaseous adsorption.

ポリマー融液を熱可塑性樹脂に収着させる場合は、成形体を構成する熱可塑性樹脂とポリマー融液との関係によるが、通常は、温度−10〜200℃、圧力1〜50MPaで、1分間〜100時間、ポリマー融液と熱可塑性樹脂とを接触させる。
二酸化炭素の存在下でポリマー融液を収着させる方法としては、特に制限はなく、例えば、耐圧容器内にポリマー融液を入れた容器を設置し、その中に樹脂成形体を浸漬し、二酸化炭素を導入して超臨界状態にしてバッチ式に処理する方法や、樹脂成形体を二酸化炭素の処理帯域に導入して連続的に処理する方法などを利用できる。また、例えば、ポリマー融液を樹脂成形体の表面に塗布した後、その樹脂成形体を耐圧容器内に置き、二酸化炭素を導入して超臨界状態にしてバッチ式に処理する方法や、その樹脂成形体を二酸化炭素の処理帯域に導入して連続的に処理する方法などを採用できる。
When the polymer melt is sorbed onto the thermoplastic resin, depending on the relationship between the thermoplastic resin constituting the molded body and the polymer melt, it is usually 1 minute at a temperature of 10 to 200 ° C. and a pressure of 1 to 50 MPa. The polymer melt is contacted with the thermoplastic resin for ˜100 hours.
The method for sorbing the polymer melt in the presence of carbon dioxide is not particularly limited. For example, a container containing the polymer melt is placed in a pressure resistant container, and the resin molded body is immersed in the container. A method of introducing carbon into a supercritical state and processing it in a batch manner, a method of introducing a resin molding into a carbon dioxide processing zone and continuously processing it, and the like can be used. Also, for example, after applying a polymer melt to the surface of a resin molded body, the resin molded body is placed in a pressure vessel, carbon dioxide is introduced into a supercritical state, and batch processing is performed, or the resin For example, a method of continuously treating the molded body by introducing it into the carbon dioxide treatment zone can be employed.

ポリマー融液の収着を効率的に行う観点からは、温度10〜200℃、好ましくは25〜180℃、さらに好ましくは50〜150℃、圧力2〜50MPa、好ましくは2〜30MPa、接触時間5分間〜30時間、好ましくは10分間〜20時間とする。特に、二酸化炭素を亜臨界状態又は超臨界状態とすることが好ましい。亜臨界状態とは、二酸化炭素の臨界温度(31℃)未満(例えば、27〜31℃)でかつ臨界圧力(7.38MPa)以上の状態をいい、超臨界状態とは、二酸化炭素の臨界温度(31℃)以上でかつ臨界圧力以上の状態をいう。
なお、二酸化炭素に代えて窒素の使用も考えられるが、窒素よりも二酸化炭素の方が樹脂に対する溶解量が多く、成形体を構成する熱可塑性樹脂の膨潤も多いため好ましい。
From the viewpoint of efficiently performing the sorption of the polymer melt, the temperature is 10 to 200 ° C., preferably 25 to 180 ° C., more preferably 50 to 150 ° C., the pressure 2 to 50 MPa, preferably 2 to 30 MPa, and the contact time 5 Minutes to 30 hours, preferably 10 minutes to 20 hours. In particular, it is preferable to set carbon dioxide to a subcritical state or a supercritical state. The subcritical state refers to a state below the critical temperature (31 ° C.) of carbon dioxide (for example, 27 to 31 ° C.) and equal to or higher than the critical pressure (7.38 MPa), and the supercritical state refers to the critical temperature of carbon dioxide. It means a state of (31 ° C.) or more and a critical pressure or more.
Although nitrogen can be used instead of carbon dioxide, carbon dioxide is more preferable than nitrogen because it has a larger amount of dissolution in the resin and more swelling of the thermoplastic resin constituting the molded body.

なお、本発明方法によれば、ポリマー融液が成形体の表層部に多量に取込まれるため、樹脂成形体の表層部を十分に改質することができる。通常、樹脂成形体の表層部の改質で十分であるが、必要に応じて、成形体(例えば、フィルム)の厚みや二酸化炭素の処理条件を変えることにより、ポリマー融液を成形体の内部にまで含浸させ、改質することができる。そのように成形体の内部まで改質すると、成形体に改質効果の漸減による濃度分布(傾斜)ができる。このような傾斜型の濃度分布を形成すれば、例えば、種々の添加剤の時間効果や他の材料系(導電性ポリマーや電気・力・光刺激応答ゲル等)も導入できるため、各種用途に展開できる。   According to the method of the present invention, since the polymer melt is taken in a large amount into the surface layer portion of the molded body, the surface layer portion of the resin molded body can be sufficiently modified. Usually, modification of the surface layer of the resin molded body is sufficient, but if necessary, the polymer melt can be removed from the interior of the molded body by changing the thickness of the molded body (for example, film) and the carbon dioxide treatment conditions. It can be impregnated and modified. When the inside of the molded body is reformed in such a manner, a density distribution (inclination) due to the gradual reduction of the reforming effect can be formed in the molded body. If such a gradient type concentration distribution is formed, for example, the time effect of various additives and other material systems (such as conductive polymers, electricity / force / photostimulation response gels) can be introduced. Can be deployed.

次に、本発明を実施例によってさらに詳細に説明するが、本発明はこれによりなんら限定されるものではない。
実施例1
ポリスチレン(以下、PSという)(出光石油化学株式会社、HH32、Mw:321,000、Mw/Mn:2.3)を卓上型プレス成型器(井元製作所製)を用い、220℃で10分間加熱、加圧して円筒状成形体(20mmφ、厚み2mm)を成形した。この円筒状成形体とポリエチレングリコール(以下、PEGという)(和光純薬工業株式会社、PEG200、Mw:200)を、内容積50mLのオートクレーブに入れ、円筒状成形体がPEG中に浸漬された状態で、系内を二酸化炭素でパージした後、二酸化炭素を導入するするとともに圧力15MPa及び温度80℃になるまで昇温、昇圧して超臨界状態とした。その状態で1.5時間保持して、PS円筒状成形体にPEGを含浸させた。ここではPEG液相にポリマーを曝し、二酸化炭素でその液相を加圧して、液相に二酸化炭素を溶解し、さらにポリマーに溶解させることによりポリマーを膨潤させて、PEG(低分子)をポリマー表面に吸着させるという操作を行う。圧力を保った状態で温度を40℃まで下げ、その後ゆっくりと脱圧して、PS円筒状成形体表面の発泡を防いだ。減圧後、オートクレーブから、表層部にPEGが含浸され改質された円筒状成形体を取り出した。表面を水洗し、乾燥した後、50℃で一日乾燥させた後、質量変化を測定した。質量変化率(%)の結果を第1表に示す。
なお、質量変化率(%)=[(処理後のサンプル質量−処理前のサンプル質量)/処理前のサンプル質量]である。
比較例1
実施例1において、PS円筒状成形体をPEG液相と接触させないように架台上に載置して、オートクレーブに設置したこと以外は、実施例1と同様にして、表面部がPEGで改質された円筒状成形体を得た。質量変化率(%)の結果を第1表に示す。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this.
Example 1
Polystyrene (hereinafter referred to as PS) (Idemitsu Petrochemical Co., Ltd., HH32, Mw: 321,000, Mw / Mn: 2.3) is heated at 220 ° C. for 10 minutes using a desktop press molding machine (manufactured by Imoto Seisakusho). To form a cylindrical shaped body (20 mmφ, thickness 2 mm). The cylindrical molded body and polyethylene glycol (hereinafter referred to as PEG) (Wako Pure Chemical Industries, Ltd., PEG200, Mw: 200) are placed in an autoclave having an internal volume of 50 mL, and the cylindrical molded body is immersed in PEG. Then, after purging the system with carbon dioxide, carbon dioxide was introduced, and the temperature was raised and increased to a pressure of 15 MPa and a temperature of 80 ° C. to obtain a supercritical state. This state was maintained for 1.5 hours, and the PS cylindrical molded body was impregnated with PEG. Here, the polymer is exposed to a PEG liquid phase, the liquid phase is pressurized with carbon dioxide, carbon dioxide is dissolved in the liquid phase, and further the polymer is swollen by dissolving it in the polymer, so that PEG (low molecule) is polymerized. The operation of adsorbing to the surface is performed. While maintaining the pressure, the temperature was lowered to 40 ° C., and then slowly depressurized to prevent foaming of the PS cylindrical molded body surface. After decompression, the cylindrical molded body whose surface layer portion was modified by impregnation with PEG was taken out from the autoclave. The surface was washed with water, dried, and then dried at 50 ° C. for one day, and then the mass change was measured. The results of mass change rate (%) are shown in Table 1.
The mass change rate (%) = [(sample mass after treatment−sample mass before treatment) / sample mass before treatment].
Comparative Example 1
In Example 1, the surface cylindrical portion was modified with PEG in the same manner as in Example 1 except that the PS cylindrical molded body was placed on a pedestal so as not to come into contact with the PEG liquid phase and placed in an autoclave. A cylindrical molded body was obtained. The results of mass change rate (%) are shown in Table 1.

実施例2
実施例1において、PS円筒状成形体にPEGを含浸させる温度を80℃から100℃に変更した以外は、実施例1と同様にして、表層部が改質された円筒状成形体を得た。質量変化率(%)の結果を第1表に示す。
得られた円筒状成形体の表面を水で洗浄し、乾燥した後、フーリエ変換赤外分光光度計(FT−IR)(日本データム株式会社、JEOL:SPX60)を用いて吸収スペクトルを測定した。その結果、PSの吸収スペクトルからは見られない−OH基の伸縮振動によるピークが3500cm-1付近に観測された。このことから、PEGはPS成形体に単に吸着しているだけではなく、内部(深部)まで拡散していることが分かった。
比較例2
実施例2において、PS円筒状成形体をPEG液相と接触させないように架台上に載置して、オートクレーブに設置したこと以外は、実施例2と同様にして、表面部がPEGで改質された円筒状成形体を得た。質量変化率(%)の結果を第1表に示す。
Example 2
In Example 1, except that the temperature at which the PS cylindrical molded body was impregnated with PEG was changed from 80 ° C. to 100 ° C., a cylindrical molded body having a modified surface layer portion was obtained in the same manner as in Example 1. . The results of mass change rate (%) are shown in Table 1.
The surface of the obtained cylindrical molded body was washed with water and dried, and then the absorption spectrum was measured using a Fourier transform infrared spectrophotometer (FT-IR) (Japan Datum Co., Ltd., JEOL: SPX60). As a result, a peak due to stretching vibration of —OH group, which was not observed from the PS absorption spectrum, was observed in the vicinity of 3500 cm −1 . From this, it was found that PEG was not only adsorbed to the PS molded body but also diffused to the inside (deep part).
Comparative Example 2
In Example 2, the surface cylindrical portion was modified with PEG in the same manner as in Example 2 except that the PS cylindrical molded body was placed on a pedestal so as not to come into contact with the PEG liquid phase and placed in an autoclave. A cylindrical molded body was obtained. The results of mass change rate (%) are shown in Table 1.

実施例3
実施例1において、PS円筒状成形体にPEGを含浸させる温度を80℃から120℃に変更した以外は、実施例1と同様にして、表層部が改質された円筒状成形体を得た。質量変化率(%)の結果を第1表に示す。
比較例3
実施例3において、PS円筒状成形体をPEG液相と接触させないように架台上に載置して、オートクレーブに設置したこと以外は、実施例3と同様にして、表面部がPEGで改質された円筒状成形体を得た。質量変化率(%)の結果を第1表に示す。
Example 3
In Example 1, except that the temperature for impregnating the PEG into the PS cylindrical molded body was changed from 80 ° C. to 120 ° C., a cylindrical molded body having a modified surface layer portion was obtained in the same manner as in Example 1. . The results of mass change rate (%) are shown in Table 1.
Comparative Example 3
In Example 3, the surface cylindrical portion was modified with PEG in the same manner as in Example 3 except that the PS cylindrical molded body was placed on a pedestal so as not to come into contact with the PEG liquid phase and placed in an autoclave. A cylindrical molded body was obtained. The results of mass change rate (%) are shown in Table 1.

Figure 2005272668
Figure 2005272668

第1表から明らかなとおり、二酸化炭素存在下におけるPEG含浸の処理温度が高くなるにつれ質量変化率(%)が増加している。特に、PSのガラス転位点(100℃)+20℃付近で質量変化率の増加が顕著となる。これは収着されるPEG(低分子物質)がPS(高分子化合物)の分子の易動度に依存し、ガラス転移近傍では自由体積の増加とともに分子鎖の運動性が向上するためと考えられる。また、実施例では、PS成形体をPEG中に浸漬したことによって、PS周囲に存在するPEGの密度が大きくなり、また分圧も高くなるために、二酸化炭素と共にPS中に収着されるPEGの量が大きい。これに対して、比較例は質量変化が小さいことが分かる。   As is apparent from Table 1, the mass change rate (%) increases as the treatment temperature for PEG impregnation in the presence of carbon dioxide increases. In particular, the increase in the mass change rate becomes remarkable around the glass transition point of PS (100 ° C.) + 20 ° C. This is thought to be because PEG (low molecular weight material) that is sorbed depends on the molecular mobility of PS (polymer compound), and the mobility of the molecular chain improves as the free volume increases near the glass transition. . Further, in the examples, since the PS molded body is immersed in PEG, the density of PEG existing around the PS is increased and the partial pressure is also increased. The amount of is large. On the other hand, it can be seen that the comparative example has a small mass change.

実施例4
実施例1において、PEGとして、Mw1000のPEG(和光純薬工業株式会社、PEG1000、)を用い、含浸条件を120℃、圧力20MPaとした以外は、実施例1と同様にして、表層部が改質された円筒状成形体を得た。
円筒状成形体の質量は、PEG含浸前は0.6150gであったが、PEG含浸後は0.6300gとなり、2.4%質量が増加した。このことから、PEGの分子量が増大しても、PEGが二酸化炭素中に分散し、二酸化炭素存在下でPEGの融液を収着させる方法は効果的であることが分かる。
比較例4
実施例4において、PS円筒状成形体をPEGと接触させないように架台上に載置して、オートクレーブに設置したこと以外は、実施例4と同様にして、表面部がPEGで改質された円筒状成形体を得た。
円筒状成形体の質量は、PEG含浸前は0.6087gであり、PEG含浸後は0.6120gとなったが、質量変化は殆どなかった(質量変化0.5%)。このことから、PEGの分子量が増大すると、PEGは二酸化炭素中にほとんど分散せず、表面改質効果を発現しないことが分かる。
Example 4
In Example 1, the surface layer was modified in the same manner as in Example 1 except that Mw 1000 PEG (Wako Pure Chemical Industries, Ltd., PEG 1000) was used as the PEG, and the impregnation conditions were 120 ° C. and the pressure was 20 MPa. A quality cylindrical shaped body was obtained.
The mass of the cylindrical molded body was 0.6150 g before PEG impregnation, but became 0.6300 g after PEG impregnation, and the mass increased by 2.4%. This shows that even if the molecular weight of PEG increases, a method in which PEG is dispersed in carbon dioxide and the PEG melt is sorbed in the presence of carbon dioxide is effective.
Comparative Example 4
In Example 4, the surface portion was modified with PEG in the same manner as in Example 4 except that the PS cylindrical molded body was placed on a pedestal so as not to come into contact with PEG and placed in an autoclave. A cylindrical molded body was obtained.
The mass of the cylindrical molded body was 0.6087 g before PEG impregnation and 0.6120 g after PEG impregnation, but there was almost no mass change (mass change 0.5%). From this, it can be seen that when the molecular weight of PEG increases, PEG hardly disperses in carbon dioxide and exhibits no surface modification effect.

実施例5
ポリ乳酸(カーギル・ダウ社、D体、Mw:196,000)を卓上プレス成型器を用いて、180℃、10分間加熱、加圧して、円筒状成形体(20mmφ、厚み0.5mm)を成形した。この円筒状成形体を用いて、含浸条件を25℃、圧力15MPaで、1.5時間とした以外は、実施例1と同様にして、表層部及び内部の一部が改質された円筒状成形体を得た。
この円筒状成形体の質量は、PEG含浸前は0.2242gであったが、PEG含浸後は0.2553gとなり、13.9%質量が増加した。
実施例6
実施例5において、含浸温度を25℃から70℃に変更した以外は、実施例5と同様にして、表層部及び内部の一部が改質された円筒状成形体を得た。この円筒状成形体の質量は、PEG含浸前は0.2057gであったが、PEG含浸後は0.2641gとなり、28.4%質量が増加した。
実施例7
実施例5において、含浸温度を25℃から100℃に変更した以外は、実施例5と同様にして、表層部及び内部の一部が改質された円筒状成形体を得た。この円筒状成形体の質量は、PEG含浸前は0.2162gであったが、PEG含浸後は0.2644gとなり、22.3%質量が増加した。
Example 5
Polylactic acid (Cargill Dow, D body, Mw: 196,000) is heated and pressurized at 180 ° C. for 10 minutes using a desktop press molding machine to form a cylindrical molded body (20 mmφ, thickness 0.5 mm). Molded. Using this cylindrical molded body, the surface layer part and a part of the interior were modified in the same manner as in Example 1 except that the impregnation conditions were 25 ° C., the pressure was 15 MPa, and the pressure was 1.5 hours. A molded body was obtained.
The mass of this cylindrical molded body was 0.2242 g before PEG impregnation, but became 0.2553 g after PEG impregnation, and the mass increased by 13.9%.
Example 6
In Example 5, except that the impregnation temperature was changed from 25 ° C. to 70 ° C., a cylindrical molded body in which the surface layer portion and a part of the inside thereof were modified was obtained in the same manner as in Example 5. The mass of this cylindrical molded body was 0.2057 g before PEG impregnation, but became 0.2641 g after PEG impregnation, and the mass increased by 28.4%.
Example 7
In Example 5, except that the impregnation temperature was changed from 25 ° C. to 100 ° C., a cylindrical molded body in which the surface layer portion and a part of the inside thereof were modified was obtained in the same manner as in Example 5. The mass of this cylindrical molded body was 0.2162 g before PEG impregnation, but was 0.2644 g after PEG impregnation, and the mass increased by 22.3%.

実施例5〜7では、実施例1〜4で用いたPSよりも溶解度及び拡散係数が大きいポリ乳酸を用いたことから、基材(ポリ乳酸)内部までPEG(低分子)が収着される。この結果、実施例5〜7(ポリ乳酸)では、実施例1〜4(PS)よりも、PEGが収着される量が多くなったといえる。すなわち、成形体の厚みの影響の他に、基材として用いる樹脂と低分子ポリマー融液の溶解度及び拡散係数の違いにより、低分子ポリマーの溶解と熱可塑性樹脂の膨潤が促進され、表層部の改質効果に差が出ることが分かる。   In Examples 5 to 7, since polylactic acid having a higher solubility and diffusion coefficient than PS used in Examples 1 to 4 was used, PEG (low molecular weight) was sorbed to the inside of the base material (polylactic acid). . As a result, in Examples 5 to 7 (polylactic acid), it can be said that the amount of PEG absorbed was larger than those in Examples 1 to 4 (PS). That is, in addition to the influence of the thickness of the molded body, the solubility of the low molecular weight polymer and the swelling of the thermoplastic resin are promoted by the difference in solubility and diffusion coefficient between the resin used as the base material and the low molecular weight polymer melt. It can be seen that there is a difference in the reforming effect.

本発明の樹脂成形体表面の改質方法によれば、有害な有機溶剤を使用せず、かつ樹脂成形品の表層部に十分な改質効果を付与することができる。したがって、例えば、樹脂成形体表面に親水性や極性基を付与して、樹脂成形体表面の濡れ性を向上することができるため、塗料、塗装分野において有用である。また、マイクロチャンネルの改質などにも利用でき、例えば、マイクロタス(医療チップ)への応用も可能である。   According to the method for modifying the surface of the resin molded body of the present invention, a harmful organic solvent is not used, and a sufficient modification effect can be imparted to the surface layer portion of the resin molded product. Therefore, for example, hydrophilicity and polar groups can be imparted to the surface of the resin molded body to improve the wettability of the surface of the resin molded body, which is useful in the paint and coating fields. Further, it can be used for modification of microchannels, and can be applied to, for example, microtass (medical chips).

Claims (6)

熱可塑性樹脂からなる成形体に対し、二酸化炭素の存在下で、該熱可塑性樹脂よりも二酸化炭素の溶解度及び拡散係数が高く、かつ該熱可塑性樹脂と非相溶の低分子ポリマー融液を、該熱可塑性樹脂の熱変形温度より低い温度、又は[該熱可塑性樹脂のガラス転位温度+30℃]以下の温度で、収着させることを特徴とする樹脂成形体表面の改質方法。   A low molecular weight polymer melt having a higher solubility and diffusion coefficient of carbon dioxide than that of the thermoplastic resin and incompatible with the thermoplastic resin in the presence of carbon dioxide with respect to a molded body made of the thermoplastic resin, A method for modifying the surface of a resin molded body, characterized by sorption at a temperature lower than a heat distortion temperature of the thermoplastic resin or a temperature not higher than [glass transition temperature of the thermoplastic resin + 30 ° C.]. 低分子ポリマー融液が、分子量10,000以下で親水基を有するものである請求項1に記載の樹脂成形体表面の改質方法。   The method for modifying the surface of a resin molded article according to claim 1, wherein the low molecular weight polymer melt has a molecular weight of 10,000 or less and a hydrophilic group. 低分子ポリマー融液が、ポリエチレングリコール、ポリエチレンオキサイド、及びポリビニルエーテルから選ばれる一種又は二種以上のものである請求項1又は2に記載の樹脂成形体表面の改質方法。   The method for modifying the surface of a resin molded article according to claim 1 or 2, wherein the low molecular weight polymer melt is one or more selected from polyethylene glycol, polyethylene oxide, and polyvinyl ether. 熱可塑性樹脂成形体を、低分子ポリマー融液に、温度20〜200℃、圧力1〜40MPaで、1分間〜100時間浸漬する請求項1〜3のいずれかに記載の樹脂成形体表面の改質方法。   The modification of the surface of the resin molded body according to any one of claims 1 to 3, wherein the thermoplastic resin molded body is immersed in a low-molecular polymer melt at a temperature of 20 to 200 ° C and a pressure of 1 to 40 MPa for 1 minute to 100 hours. Quality method. 熱可塑性樹脂が、ポリスチレン系樹脂、ポリカーボネート系樹脂、メタクリル系樹脂、環状オレフィン系樹脂、ポリエーテルスルホン、ポリ乳酸樹脂、ポリオレフィン樹脂、ポリアミド系樹脂、及び飽和ポリエステル樹脂から選ばれる一種又は二種以上のものからなる成形体である請求項1〜4のいずれかに記載の樹脂成形体表面の改質方法。   The thermoplastic resin is one or two or more selected from polystyrene resin, polycarbonate resin, methacrylic resin, cyclic olefin resin, polyethersulfone, polylactic acid resin, polyolefin resin, polyamide resin, and saturated polyester resin. The method for modifying a surface of a resin molded body according to any one of claims 1 to 4, wherein the molded body is made of a material. 請求項1に記載の方法により得られた表面の改質された樹脂成形体。

A resin molded body having a modified surface obtained by the method according to claim 1.

JP2004088727A 2004-03-25 2004-03-25 Method for modifying surface of resin molded product and surface-modified resin molded product Pending JP2005272668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088727A JP2005272668A (en) 2004-03-25 2004-03-25 Method for modifying surface of resin molded product and surface-modified resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088727A JP2005272668A (en) 2004-03-25 2004-03-25 Method for modifying surface of resin molded product and surface-modified resin molded product

Publications (1)

Publication Number Publication Date
JP2005272668A true JP2005272668A (en) 2005-10-06

Family

ID=35172680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088727A Pending JP2005272668A (en) 2004-03-25 2004-03-25 Method for modifying surface of resin molded product and surface-modified resin molded product

Country Status (1)

Country Link
JP (1) JP2005272668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193422A (en) * 2017-05-12 2018-12-06 住友ゴム工業株式会社 Method for producing polymer-impregnated base material resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11255925A (en) * 1998-03-10 1999-09-21 Asahi Chem Ind Co Ltd Modification of medical polymer and polymer base material for medical purpose
JP2005179403A (en) * 2003-12-16 2005-07-07 Terumo Corp Polymeric material and medical equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11255925A (en) * 1998-03-10 1999-09-21 Asahi Chem Ind Co Ltd Modification of medical polymer and polymer base material for medical purpose
JP2005179403A (en) * 2003-12-16 2005-07-07 Terumo Corp Polymeric material and medical equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193422A (en) * 2017-05-12 2018-12-06 住友ゴム工業株式会社 Method for producing polymer-impregnated base material resin
JP7011237B2 (en) 2017-05-12 2022-01-26 住友ゴム工業株式会社 Method for manufacturing polymer-impregnated base resin

Similar Documents

Publication Publication Date Title
Ismail et al. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane
Moosavi et al. Modifications of protein-based films using cold plasma
George et al. Transport phenomena through polymeric systems
Sanaeepur et al. A novel acrylonitrile–butadiene–styrene/poly (ethylene glycol) membrane: preparation, characterization, and gas permeation study
JP4620374B2 (en) Method for producing resin foam molded body and resin foam molded body
Yuan et al. Enhanced blood compatibility of polyurethane functionalized with sulfobetaine
Zekriardehani et al. Effect of dimethyl terephthalate and dimethyl isophthalate on the free volume and barrier properties of poly (ethylene terephthalate)(PET): amorphous PET
JP5050285B2 (en) Anion exchange membrane for salt production and method for producing the same
Zhuang et al. Feasibility of using waste polystyrene as a membrane material for gas separation
JP6692182B2 (en) Method for producing functional film
Phillip Jr et al. Ethylene oxide's role as a reactive agent during sterilization: effects of polymer composition and device architecture
Kovačič et al. Macroporous polyolefin membranes from dicyclopentadiene high internal phase emulsions: preparation and morphology tuning
Liu et al. A novel method to prepare microcellular poly (vinyl alcohol) foam based on thermal processing and supercritical fluid
Vudjung et al. Synthesis and properties of biodegradable hydrogels based on cross-linked natural rubber and cassava starch
Rydzek et al. pH-responsive saloplastics based on weak polyelectrolytes: from molecular processes to material scale properties
Javanbakht et al. Polyethylene glycol and poly (vinyl alcohol) hydrogels treated with photo-initiated chemical vapor deposition
KR102629981B1 (en) Chemically resistant isophoric cross-linked block copolymer structure
JP2005272668A (en) Method for modifying surface of resin molded product and surface-modified resin molded product
Ma et al. Microcellular foams of glass–fiber reinforced poly (phenylene sulfide) composites generated using supercritical carbon dioxide
EP3135311B1 (en) Surface modification method and surface-modified elastic body
JP4630011B2 (en) Method for producing conductive resin molded body and conductive resin molded body
Kato et al. Freestanding tough glassy membranes produced by simple solvent casting of polyrotaxane derivatives
JP4242924B2 (en) Injection molding system
Chaudhari et al. Radiation induced grafting of glycidyl methacrylate on teflon scrap for synthesis of dual type adsorbent: Process parameter standardisation
JP2005272669A (en) Method for producing structure having continuous pore and resin structure having continuous pore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116