JP2005272666A - Polyimide resin and method for producing the same - Google Patents

Polyimide resin and method for producing the same Download PDF

Info

Publication number
JP2005272666A
JP2005272666A JP2004088682A JP2004088682A JP2005272666A JP 2005272666 A JP2005272666 A JP 2005272666A JP 2004088682 A JP2004088682 A JP 2004088682A JP 2004088682 A JP2004088682 A JP 2004088682A JP 2005272666 A JP2005272666 A JP 2005272666A
Authority
JP
Japan
Prior art keywords
ntda
polymer
polyimide resin
mol
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088682A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Kawakami
浩良 川上
Yasusuke Okuyama
庸介 奥山
Takahiko Nakano
隆彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004088682A priority Critical patent/JP2005272666A/en
Publication of JP2005272666A publication Critical patent/JP2005272666A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new polyimide polymer having a high proton conductivity and being excellent in mechanical strength and chemical stability and to provide a solid polyelectrolyte membrane using the same. <P>SOLUTION: The polyelectrolyte material comprising a block copolymer composed of alternating units 1 and 2 is prepared by separately polymerizing an oligomer or polymer 1 of sulfo-containing units 1 and an oligomer or polymer 2 of hydrophobic-group-containing units 2 and polycondensing the oligomer or polymer 1 with the oligomer or polymer 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解質膜として使用できるポリイミド樹脂およびその製造方法に関する。   The present invention relates to a polyimide resin that can be used as an electrolyte membrane and a method for producing the same.

固体高分子型燃料電池はクリーンで再生可能なエネルギーとして携帯用電源、家庭用電源、自動車用途として期待されている。ナフィオンは固体高分子型燃料電池用材料の代表的な高分子として広く検討されてきた。しかし、ナフィオンはあまりに高価であるため実用化にはそのコストが問題となり、またイオン交換容量をこれ以上高くすることができずプロトン伝導性にも限界があった。さらにガラス転移温度が約120℃と低く、自動車用燃料電池等の100℃前後での使用ではプロトン伝導性が低下するといった問題もあった。   Solid polymer fuel cells are expected as clean and renewable energy for portable power sources, household power sources, and automobiles. Nafion has been widely studied as a representative polymer of solid polymer fuel cell materials. However, since Nafion is too expensive, its cost becomes a problem for practical use, and the ion exchange capacity cannot be increased any more, and proton conductivity is limited. Further, the glass transition temperature is as low as about 120 ° C., and there is a problem that proton conductivity is lowered when used at about 100 ° C. for an automobile fuel cell or the like.

一方、低コスト化等の問題から炭化水素系材料に関しても広く検討が行なわれてきた。ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリベンズイミダゾール、ポリエーテルエーテルケトン、ポリフェニレン等の耐熱性高分子材料中心に様々な材料が提案されてきた(特許文献1〜5などを参照)。しかしながら、プロトン伝導性が必ずしもナフィオンを超えない、あるいはプロトン伝導性を高めるためイオン交換容量を高くした結果、機械的強度、化学的安定性が低下するといった問題があった。   On the other hand, hydrocarbon materials have been widely studied due to problems such as cost reduction. Various materials have been proposed mainly in heat-resistant polymer materials such as polyimide, polysulfone, polyethersulfone, polybenzimidazole, polyetheretherketone, and polyphenylene (see Patent Documents 1 to 5, etc.). However, the proton conductivity does not necessarily exceed Nafion, or as a result of increasing the ion exchange capacity to increase the proton conductivity, there is a problem that the mechanical strength and the chemical stability are lowered.

特開2003−277501号公報JP 2003-277501 A 特開2002−105199号公報JP 2002-105199 A 特開2003−272672号公報JP 2003-272672 A 特開2003−263998号公報JP 2003-263998 A 特開2003−257453号公報JP 2003-257453 A

本発明は、高プロトン伝導性を有し、機械的強度、化学的安定性に優れた新規ポリイミド系高分子、及びそれを用いた固体電解質膜を提供することを解決すべき課題とした。   An object of the present invention is to provide a novel polyimide polymer having high proton conductivity, excellent mechanical strength and chemical stability, and a solid electrolyte membrane using the same.

従来の炭化水素系材料からなる高分子電解質材料はスルホン酸基を有するユニットと疎水性基を有するユニットを不規則に組み合わせたランダム共重合体からなる高分子構造を有しているが、新規に合成した高分子電解質は先ずスルホン酸基を有するユニット1のオリゴマー1あるいはポリマー1と疎水性基を有するユニット2のオリゴマー2あるいはポリマー2をそれぞれ重合し、さらにオリゴマー1あるいはポリマー1とオリゴマー2あるいはポリマー2とを縮重合させることにより、ユニット1とユニット2が交互に組み込まれたブロック共重合体からなる高分子電解質材料を合成した。得られたブロック共重合体はプロトン輸送経路(スルホン酸基を有するユニット1がプロトン輸送経路となる)をナノあるいはマイクロレベルで制御できるため、イオン交換容量を高めることなく高いプロトン伝導性を可能にする。また、イオン交換容量を抑制できれば機械的強度、化学的安定性の向上にも繋がる。また、疎水性ユニットの機械的強度、化学的安定性を高めるため、フッ素基を導入したポリイミド系高分子固体電解質膜も作製した。この膜はランダム共重合体においても高いプロトン伝導性を示し、また機械的強度、化学的安定性にも優れていた。本発明はこれらの知見に基づいて完成したものである。   Conventional polyelectrolyte materials composed of hydrocarbon-based materials have a polymer structure composed of random copolymers in which units having sulfonic acid groups and units having hydrophobic groups are randomly combined. The synthesized polyelectrolyte first polymerizes oligomer 1 or polymer 1 of unit 1 having a sulfonic acid group and oligomer 2 or polymer 2 of unit 2 having a hydrophobic group, respectively, and further oligomer 1 or polymer 1 and oligomer 2 or polymer 2 respectively. 2 was subjected to polycondensation to synthesize a polymer electrolyte material composed of a block copolymer in which units 1 and 2 were alternately incorporated. The resulting block copolymer can control the proton transport path (unit 1 having a sulfonic acid group becomes the proton transport path) at the nano or micro level, enabling high proton conductivity without increasing the ion exchange capacity. To do. Moreover, if ion exchange capacity can be suppressed, it will also lead to the improvement of mechanical strength and chemical stability. In addition, in order to increase the mechanical strength and chemical stability of the hydrophobic unit, a polyimide polymer solid electrolyte membrane into which a fluorine group was introduced was also produced. This membrane also showed high proton conductivity even in random copolymers, and was excellent in mechanical strength and chemical stability. The present invention has been completed based on these findings.

即ち、本発明によれば、以下の構造式(1)を構造単位として有するポリイミド樹脂が提供される。
(式中、X及びYは0〜100の整数を示し、x/yは95/5から20/80の範囲内である)
That is, according to the present invention, a polyimide resin having the following structural formula (1) as a structural unit is provided.
(Wherein X and Y represent integers of 0 to 100, and x / y is in the range of 95/5 to 20/80)

本発明の別の側面によれば、以下の構造式(2)を構造単位として有するブロック共重合体から成るポリイミド樹脂が提供される。
(式中、m及びnは0〜100の整数を示し、m/nは95/5から20/80の範囲内であり、sは1〜150の整数を示す。Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)
According to another aspect of the present invention, there is provided a polyimide resin comprising a block copolymer having the following structural formula (2) as a structural unit.
(In the formula, m and n represent an integer of 0 to 100, m / n is within a range of 95/5 to 20/80, and s represents an integer of 1 to 150. Ar represents at least one A group having 6 to 30 carbon atoms having an aromatic ring)

好ましくは、構造式(2)は下記構造である。
(式中、m、n及びsは前記と同義である)
Preferably, the structural formula (2) has the following structure.
(Wherein m, n and s are as defined above)

好ましくは、構造式(2)は下記構造である。
(式中、m、n及びsは前記と同義である)
Preferably, the structural formula (2) has the following structure.
(Wherein m, n and s are as defined above)

本発明のさらに別の側面によれば、(i)2,2’-ベンジジンジスルホン酸と1,4,5,8−ナフタレンテトラカルボン酸二無水物とを反応させて重合体を合成する工程、(ii)NH2−Ar−NH2(式中、Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)で表される化合物と1,4,5,8−ナフタレンテトラカルボン酸二無水物とを重合させて重合体を合成する工程、及び(iii)上記工程(i)で合成した重合体と上記工程(ii)で合成した重合体とを縮重合させることにより、以下の構造式を構造単位として有するブロック共重合体を合成する工程を含む、上記構造式(2)を構造単位として有するブロック共重合体から成るポリイミド樹脂の製造方法が提供される。
(式中、m及びnは0〜100の整数を示し、m/nは95/5から20/80の範囲内であり、sは1〜150の整数を示す。Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)
According to still another aspect of the present invention, (i) a step of synthesizing a polymer by reacting 2,2′-benzidinedisulfonic acid with 1,4,5,8-naphthalenetetracarboxylic dianhydride, (Ii) a compound represented by NH 2 —Ar—NH 2 (wherein Ar represents a group having 6 to 30 carbon atoms having at least one aromatic ring) and 1,4,5,8-naphthalene; A step of polymerizing a tetracarboxylic dianhydride to synthesize a polymer, and (iii) a polycondensation of the polymer synthesized in the step (i) and the polymer synthesized in the step (ii). There is provided a method for producing a polyimide resin comprising a block copolymer having the above structural formula (2) as a structural unit, comprising a step of synthesizing a block copolymer having the following structural formula as a structural unit.
(In the formula, m and n represent an integer of 0 to 100, m / n is within a range of 95/5 to 20/80, and s represents an integer of 1 to 150. Ar represents at least one A group having 6 to 30 carbon atoms having an aromatic ring)

本発明のさらに別の側面によれば、上記方法により製造される、上記構造式(2)を構造単位として有するブロック共重合体から成るポリイミド樹脂が提供される。   According to still another aspect of the present invention, there is provided a polyimide resin comprising a block copolymer having the structural formula (2) as a structural unit, which is produced by the above method.

本発明のさらに別の側面によれば、上記の何れかに記載のポリイミド樹脂を製膜して得られる電解質膜が提供される。
本発明のさらに別の側面によれば、上記の電解質膜を使用した高分子固体電解質型燃料電池が提供される。
According to still another aspect of the present invention, there is provided an electrolyte membrane obtained by forming the polyimide resin according to any one of the above.
According to still another aspect of the present invention, there is provided a solid polymer electrolyte fuel cell using the above electrolyte membrane.

本発明によれば、高プロトン伝導性を有し、機械的強度、化学的安定性に優れた新規ポリイミド系高分子、及びそれを用いた固体電解質膜を提供することが可能になった。即ち、本発明のポリイミド樹脂のプロトン伝導度はナフィオンと同程度であり、実用上問題となる100℃以上の高温ではナフィオンを超える伝導度が期待できる。また、ブロック共重合体からなるためプロトン輸送経路の制御が可能となった結果、高いプロトン伝導度の実現と膜内での水保持の向上が期待できる。   According to the present invention, it has become possible to provide a novel polyimide polymer having high proton conductivity and excellent mechanical strength and chemical stability, and a solid electrolyte membrane using the same. That is, the proton conductivity of the polyimide resin of the present invention is about the same as that of Nafion, and a conductivity exceeding Nafion can be expected at a high temperature of 100 ° C. or more, which is a practical problem. In addition, since it is made of a block copolymer, it is possible to control the proton transport route, and as a result, high proton conductivity and improvement of water retention in the membrane can be expected.

以下、本発明の実施の形態について説明する。
機械的強度、化学的安定性を高めるためにはイオン交換容量を抑制し、かつ高いプロトン伝導性を有する高分子固体電解質材料が求められているが、そのためにはプロトン輸送の経路となるスルホン酸基を有するユニット部の制御が重要となる。そのため、本発明においては、ナノあるいはマイクロオーダーでスルホン酸基を有するユニット部の制御を行なえるスルホン酸基含有ポリイミドブロック共重合体を合成した。また、疎水性基を有するユニットの構造も重要であり、本発明においては、より疎水性が高くかつ物理的化学的安定性の高い含フッ素ポリイミドを共重合体の一部に組み込むことにより機械的強度、化学的安定性の向上とプロトン伝導性の向上を同時に実現することができた。
Embodiments of the present invention will be described below.
In order to increase the mechanical strength and chemical stability, a polymer solid electrolyte material that suppresses ion exchange capacity and has high proton conductivity is required. For this purpose, sulfonic acid that serves as a proton transport route is required. Control of the unit part having the base is important. Therefore, in the present invention, a sulfonic acid group-containing polyimide block copolymer capable of controlling the unit part having a sulfonic acid group in nano or micro order was synthesized. In addition, the structure of the unit having a hydrophobic group is also important, and in the present invention, a mechanical property is obtained by incorporating a fluorine-containing polyimide having higher hydrophobicity and higher physical and chemical stability into a part of the copolymer. Improvements in strength and chemical stability and proton conductivity were achieved at the same time.

本発明のポリイミド樹脂は、テトラカルボン酸二無水物とスルホン酸基を持つジアミン化合物とスルホン酸基を持たないジアミン化合物を用いて公知の重合法により調製することができる。例えば、テトラカルボン酸二無水物とスルホン酸基を持つジアミン化合物を極性溶媒中で80℃〜180℃で攪拌し、スルホン酸基を持たないジアミン化合物を添加することができる。2種類のジアミン化合物とテトラカルボン酸二無水物をほぼ等モル量用い、ポリアミック酸を重合する。2種類のジアミン化合物の割合を変えることで、容易にスルホン酸基の含有量を制御することができる。ここで用いられる極性溶媒は、テトラカルボン酸二無水物と2種類のジアミン化合物が溶解さえすれば特に限定されないが、m-クレゾールが好適に用いられる。   The polyimide resin of the present invention can be prepared by a known polymerization method using a tetracarboxylic dianhydride, a diamine compound having a sulfonic acid group and a diamine compound having no sulfonic acid group. For example, a diamine compound having a tetracarboxylic dianhydride and a sulfonic acid group can be stirred in a polar solvent at 80 ° C. to 180 ° C., and a diamine compound having no sulfonic acid group can be added. Two types of diamine compounds and tetracarboxylic dianhydride are used in approximately equimolar amounts to polymerize polyamic acid. By changing the ratio of the two kinds of diamine compounds, the content of the sulfonic acid group can be easily controlled. The polar solvent used here is not particularly limited as long as tetracarboxylic dianhydride and two kinds of diamine compounds are dissolved, but m-cresol is preferably used.

得られたポリアミック酸の極性溶媒溶液に、トリメチルアミン、トリエチルアミン、ピリジン等の第3級アミン化合物、無水酢酸、安息香酸などのイミド化促進剤を添加し、120〜180℃の温度で攪拌し、イミド化することができる。   To the obtained polar solvent solution of polyamic acid, a tertiary amine compound such as trimethylamine, triethylamine or pyridine, an imidization accelerator such as acetic anhydride or benzoic acid is added and stirred at a temperature of 120 to 180 ° C. Can be

イミド化反応後、重合時の極性溶媒や第3級アミン以外のイミド化促進剤を除去するために、多量の酢酸エチルなどの溶液に滴下し精製することにより、膜材料として好適なポリイミド樹脂が得られる。   After the imidization reaction, in order to remove the imidization accelerator other than the polar solvent and tertiary amine during polymerization, a polyimide resin suitable as a film material can be obtained by purifying it by dripping into a large amount of a solution such as ethyl acetate. can get.

本発明の第一の態様のポリイミド樹脂は、以下の構造式(1)を構造単位として有するポリイミド樹脂である。
(式中、X及びYは0〜100の整数を示し、x/yは95/5から20/80の範囲内である)
The polyimide resin of the first aspect of the present invention is a polyimide resin having the following structural formula (1) as a structural unit.
(Wherein X and Y represent integers of 0 to 100, and x / y is in the range of 95/5 to 20/80)

上記ポリイミド樹脂はランダムコポリマーであり、例えば、本願明細書の実施例1に記載の方法に準じて合成することができる。具体的には、重合溶媒として例えばm-クレゾールなどを用い、2,2'-ジアミノジフェニルヘキサフルオロプロパン(6FAP)、2,2'-ベンジジンジスルホン酸(BDSA)、トリエチルアミンを混合・攪拌してm-クレゾールへ溶解させる。溶解後、1,4,5,8-テトラカルボン酸二無水物(NTDA)を加えて攪拌することによりポリアミック酸を得ることができる。安息香酸とトリエチルアミンを加え、化学イミド化反応を行うことにより目的とする、上記構造を有するスルホン酸基含有ポリイミド(NTDA-BDSA-r-6FAP)を合成することができる。   The polyimide resin is a random copolymer and can be synthesized, for example, according to the method described in Example 1 of the present specification. Specifically, for example, m-cresol is used as a polymerization solvent, and 2,2'-diaminodiphenylhexafluoropropane (6FAP), 2,2'-benzidine disulfonic acid (BDSA), triethylamine is mixed and stirred to m. -Dissolve in cresol. After dissolution, 1,4,5,8-tetracarboxylic dianhydride (NTDA) is added and stirred to obtain a polyamic acid. A target sulfonic acid group-containing polyimide (NTDA-BDSA-r-6FAP) having the above structure can be synthesized by adding benzoic acid and triethylamine and performing a chemical imidation reaction.

本発明の第二の態様のポリイミド樹脂は、以下の構造式(2)を構造単位として有するブロック共重合体から成るポリイミド樹脂である。
(式中、m及びnは0〜100の整数を示し、m/nは95/5から20/80の範囲内であり、sは1〜150の整数を示す。Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)
The polyimide resin of the second aspect of the present invention is a polyimide resin composed of a block copolymer having the following structural formula (2) as a structural unit.
(In the formula, m and n represent an integer of 0 to 100, m / n is within a range of 95/5 to 20/80, and s represents an integer of 1 to 150. Ar represents at least one A group having 6 to 30 carbon atoms having an aromatic ring)

上記構造式(2)を構造単位として有するブロック共重合体から成るポリイミド樹脂は、(i)2,2’-ベンジジンジスルホン酸と1,4,5,8−ナフタレンテトラカルボン酸二無水物とを反応させて重合体を合成する工程、(ii)NH2−Ar−NH2(式中、Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)で表される化合物と1,4,5,8−ナフタレンテトラカルボン酸二無水物とを重合させて重合体を合成する工程、及び(iii)上記工程(i)で合成した重合体と上記工程(ii)で合成した重合体とを縮重合させることにより、以下の構造式を構造単位として有するブロック共重合体を合成する工程によって製造することができる。 A polyimide resin comprising a block copolymer having the structural formula (2) as a structural unit comprises (i) 2,2′-benzidinedisulfonic acid and 1,4,5,8-naphthalenetetracarboxylic dianhydride. A step of synthesizing a polymer by reaction, (ii) a compound represented by NH 2 —Ar—NH 2 (wherein Ar represents a group having 6 to 30 carbon atoms having at least one aromatic ring); And a step of polymerizing 1,4,5,8-naphthalenetetracarboxylic dianhydride to synthesize a polymer, and (iii) a polymer synthesized in step (i) above and a step synthesized in step (ii) above. It can be manufactured by a step of synthesizing a block copolymer having the following structural formula as a structural unit by subjecting the polymer to condensation polymerization.

上記構造式(2)の具体例としては、下記のものが挙げられる。
Specific examples of the structural formula (2) include the following.

上記ポリイミド樹脂はそれぞれ、本願明細書の実施例2〜4、及び実施例5〜7に記載の方法に準じて合成することができる。   Each of the polyimide resins can be synthesized according to the methods described in Examples 2 to 4 and Examples 5 to 7 of the present specification.

具体的には、重合溶媒にはm-クレゾールを用い、2,2’-ベンジジンジスルホン酸(BDSA)、トリエチルアミンをm-クレゾールへ溶解させる。モノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物を加え反応させることによりオリゴマーを得る。これと同時に2,2-ジアミノジフェニルヘキサフルオロプロパン(6FAP)とトリエチルアミンを攪拌混合し、m-クレゾールへ溶解させる。モノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)を加えて反応させることによりオリゴマーを得る。次いで、上記の両オリゴマーを混合して反応させることによりポリアミック酸を得る。安息香酸とトリエチルアミンを加え、化学イミド化反応を行い、目的とするスルホン酸基含有ポリイミド(NTDA-BDSA-b-6FAP)を合成することができる。   Specifically, m-cresol is used as a polymerization solvent, and 2,2′-benzidine disulfonic acid (BDSA) and triethylamine are dissolved in m-cresol. After the monomer is completely dissolved, 1,4,5,8-naphthalenetetracarboxylic dianhydride is added and reacted to obtain an oligomer. At the same time, 2,2-diaminodiphenylhexafluoropropane (6FAP) and triethylamine are mixed with stirring and dissolved in m-cresol. After the monomer is completely dissolved, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) is added and reacted to obtain an oligomer. Next, a polyamic acid is obtained by mixing and reacting the above two oligomers. Benzoic acid and triethylamine are added and a chemical imidation reaction is performed to synthesize the target sulfonic acid group-containing polyimide (NTDA-BDSA-b-6FAP).

同様に、重合溶媒にはm-クレゾールを用い、2,2’-ベンジジンジスルホン酸(BDSA)、トリエチルアミンをm-クレゾールへ溶解させる。モノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物を加え反応させることによりオリゴマーを得る。これと同時に9,9-ビス(4-アミノフェニル)フルオレン(FDA)とトリエチルアミンを攪拌混合し、m-クレゾールへ溶解させる。モノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)を加えて反応させることによりオリゴマーを得る。次いで、上記の両オリゴマーを混合して反応させることによりポリアミック酸を得る。安息香酸とトリエチルアミンを加え、化学イミド化反応を行い、目的とするスルホン酸基含有ポリイミド(NTDA-BDSA-b-FDA)を合成することができる。   Similarly, m-cresol is used as a polymerization solvent, and 2,2′-benzidine disulfonic acid (BDSA) and triethylamine are dissolved in m-cresol. After the monomer is completely dissolved, 1,4,5,8-naphthalenetetracarboxylic dianhydride is added and reacted to obtain an oligomer. At the same time, 9,9-bis (4-aminophenyl) fluorene (FDA) and triethylamine are mixed with stirring and dissolved in m-cresol. After the monomer is completely dissolved, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) is added and reacted to obtain an oligomer. Next, a polyamic acid is obtained by mixing and reacting the above two oligomers. Benzoic acid and triethylamine are added, and a chemical imidation reaction is performed to synthesize a target sulfonic acid group-containing polyimide (NTDA-BDSA-b-FDA).

本発明のポリイミド樹脂は製膜することにより電解質膜とすることができる。製膜液のポリイミド溶液濃度は好ましくは1〜40重量%であり、より好ましくは25〜35重量%である。製膜液はシャーレ等を利用して流延することができる。   The polyimide resin of the present invention can be made into an electrolyte membrane by forming a film. The concentration of the polyimide solution in the film-forming solution is preferably 1 to 40% by weight, more preferably 25 to 35% by weight. The film-forming solution can be cast using a petri dish or the like.

本発明の電解質膜は、表面から内部まで、無欠陥である緻密構造であることが望ましい。緻密構造とは、膜表面と内部構造、裏面と全て緻密で均一な構造になっている膜を意味し、この概念は当業界では周知である。緻密構造膜の製造方法は、例えば、高分子材料を溶媒へ溶解して得られた溶液を支持体上にキャストし、表面から完全に溶媒を蒸発させることで形成することができる。   The electrolyte membrane of the present invention preferably has a dense structure that is defect-free from the surface to the inside. The dense structure means a film having a dense and uniform structure on the film surface and internal structure and on the back surface, and this concept is well known in the art. The method for producing a dense structure film can be formed, for example, by casting a solution obtained by dissolving a polymer material in a solvent on a support and completely evaporating the solvent from the surface.

溶媒は、高分子材料が溶解さえすれば特に限定されないが、ジメチルスルホキシド、m-クレゾールなどが好適に用いられる。   The solvent is not particularly limited as long as the polymer material is dissolved, but dimethyl sulfoxide, m-cresol, and the like are preferably used.

高分子材料の濃度を10〜40重量%、溶媒は60〜90重量%とし、シャーレ上に高分子材料をキャストし、減圧、加熱により、6〜24時間で溶媒を蒸発させる。加熱温度は特に限定されないが、溶媒の沸点以下であることが好ましい。   The concentration of the polymer material is 10 to 40% by weight, the solvent is 60 to 90% by weight, the polymer material is cast on a petri dish, and the solvent is evaporated in 6 to 24 hours by decompression and heating. Although heating temperature is not specifically limited, It is preferable that it is below the boiling point of a solvent.

作製された膜は、緻密で均一な構造を形成し、高分子材料の濃度、キャスト面積などの作製条件を変えることにより、膜厚は数μm〜数百μmまで容易に制御することができる。   The manufactured film forms a dense and uniform structure, and the film thickness can be easily controlled from several μm to several hundred μm by changing the manufacturing conditions such as the concentration of the polymer material and the cast area.

本発明のポリイミド樹脂の膜厚については、膜の用途に応じて適宜選択されるが、高分子固体電解質型燃料電池用の電解質膜として使用する場合には、10〜500μmが好ましく、10μ〜100μmがより好ましい。膜厚が500μmを越えると、膜の抵抗性が増大し、また、10μm未満では、膜の機械強度が不充分であるので何れも好ましくない。   The film thickness of the polyimide resin of the present invention is appropriately selected according to the use of the membrane, but is preferably 10 to 500 μm when used as an electrolyte membrane for a solid polymer electrolyte fuel cell, and 10 to 100 μm. Is more preferable. If the film thickness exceeds 500 μm, the resistance of the film increases, and if it is less than 10 μm, the mechanical strength of the film is insufficient.

このようにして作製された緻密構造膜は、第3級アミンと塩を形成している。強酸溶液に浸漬することで、第3級アミンを除去することができる。ここで用いられる強酸溶液は特に限定されないが、硝酸、硫酸、塩酸などが好適に用いられる。このようにして緻密な構造を有する電解質膜が作製できる。   The dense structure film thus produced forms a salt with a tertiary amine. The tertiary amine can be removed by dipping in a strong acid solution. The strong acid solution used here is not particularly limited, but nitric acid, sulfuric acid, hydrochloric acid and the like are preferably used. In this way, an electrolyte membrane having a dense structure can be produced.

上記のようにして作製した本発明の電解質膜を使用した高分子固体電解質型燃料電池も本発明の範囲内に含まれる。   A solid polymer electrolyte fuel cell using the electrolyte membrane of the present invention produced as described above is also included in the scope of the present invention.

本発明の燃料電池は、本発明の電解質膜と電極との接合体、セパレーター、及びセパレーターにより形成される燃料ガスまたは液体、並びに、酸化剤を送り込むための流路とから構成される。   The fuel cell of the present invention comprises a joined body of the electrolyte membrane and electrode of the present invention, a separator, a fuel gas or liquid formed by the separator, and a flow path for feeding an oxidant.

電極を調製するのに使用する材料としては、(1)触媒(燃料の酸化反応および酸素の還元反応を促進するための白金又はルテニウムなどの金属又はそれらの合金)、(2)導電材(例えば、微粒子の炭素材料などの導電性物質)、(3)接着剤(例えば、撥水性を有する含フッ素樹脂)などが挙げられる。   Materials used to prepare the electrode include (1) a catalyst (a metal such as platinum or ruthenium or an alloy thereof for promoting a fuel oxidation reaction and an oxygen reduction reaction), and (2) a conductive material (for example, , Conductive materials such as fine carbon materials), (3) adhesives (for example, fluorine-containing resins having water repellency), and the like.

本発明の電解質膜と電極との接合体を、燃料ガスまたは液体、並びに、酸化剤を送り込むための流路が形成された一対のグラファイト製などのガスセパレーターなどの間に挿入することにより、本発明の高分子固体電解質型燃料電池を製造することができる。この燃料電池に、燃料ガスまたは液体として、水素を主たる成分とするガスや、メタノールを主たる成分とするガスまたは液体を、酸化剤として、酸素を含むガス(酸素あるいは空気)を、それぞれ別個の流路より、電解質膜電極接合体に供給することにより、燃料電池は作動する。   By inserting the assembly of the electrolyte membrane and the electrode of the present invention between a pair of gas separators made of graphite or the like in which a flow path for feeding the fuel gas or liquid and the oxidant is formed, the present The solid polymer electrolyte fuel cell of the invention can be produced. A gas containing hydrogen as a main component, a gas or liquid mainly containing methanol as a fuel gas or liquid, and a gas containing oxygen (oxygen or air) as an oxidant are separately supplied to the fuel cell. The fuel cell operates by supplying the electrolyte membrane electrode assembly from the path.

また、本発明の高分子固体電解質型燃料電池は、単独で使用することもよいし、あるいはこれを複数積層して、スタックを形成して使用してもよく、またそれらを組み込んだ燃料電池システムとして使用してもよい。
以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
The solid polymer electrolyte fuel cell of the present invention may be used alone, or may be used by stacking a plurality of these to form a stack, or a fuel cell system incorporating them. May be used as
The following examples further illustrate the present invention, but the present invention is not limited to the examples.

実施例1:スルホン酸基含有ポリイミドの合成1(図1)
重合溶媒にはm-クレゾールを用い、2,2'-ジアミノジフェニルヘキサフルオロプロパン(6FAP) 1.122g (0.003356mol)と2,2'-ベンジジンジスルホン酸(BDSA) 2.697g (0.00783mol)、トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間で完全に両モノマーを溶解させた後、1,4,5,8-テトラカルボン酸二無水物(NTDA) 3g (0.01187mol)を加え、120℃で24時間攪拌し、ポリアミック酸を得た。安息香酸(NTDAの1.12倍モル)とトリエチルアミン(先に加えた量と合わせて2.4倍モル)を加え、化学イミド化反応を24時間行い、目的とするスルホン酸基含有ポリイミド(NTDA-BDSA-r-6FAP)を合成した。
Example 1: Synthesis of sulfonic acid group-containing polyimide 1 (FIG. 1)
M-Cresol was used as the polymerization solvent, and 2,2'-diaminodiphenylhexafluoropropane (6FAP) 1.122 g (0.003356 mol), 2,2'-benzidine disulfonic acid (BDSA) 2.697 g (0.00783 mol), triethylamine The mixture was stirred at 80 ° C. in a nitrogen atmosphere and dissolved in m-cresol (28 times mol of NTDA). After dissolving both monomers completely in 4 hours, add 3 g (0.01187 mol) of 1,4,5,8-tetracarboxylic dianhydride (NTDA) and stir at 120 ° C for 24 hours to obtain polyamic acid. It was. Add benzoic acid (1.12 mol of NTDA) and triethylamine (2.4 mol in total with the amount added previously), perform chemical imidization reaction for 24 hours, and target sulfonic acid group-containing polyimide (NTDA-BDSA-r -6FAP) was synthesized.

実施例2:ブロックコポリイミドの合成1(図2)
重合溶媒にはm-クレゾールを用い、2,2‘-ベンジジンジスルホン酸(BDSA)3.68g(0.0106mol)、トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)3.00g(0.0111mol)を加え120℃で24時間攪拌しオリゴマーを得た。これと同時に2,2-ジアミノジフェニルヘキサフルオロプロパン(6FAP)1.53g(0.0046mol)トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)1.09g(0.0041mol)を加え120℃で24時間攪拌しオリゴマーを得た。両オリゴマーを混合して120℃で24時間攪拌し、ポリアミック酸を得た。安息香酸(NTDAの1.12倍mol)トリエチルアミン(先に加えた量と合わせて2.4倍mol)を加え、化学イミド化反応を24時間行い、目的とするスルホン酸基含有ポリイミド(NTDA-BDSA-b-6FAPm/n=21/9)を合成した。
Example 2: Synthesis of block copolyimide 1 (FIG. 2)
M-Cresol is used as the polymerization solvent, 3.68 g (0.0106 mol) of 2,2'-benzidinedisulfonic acid (BDSA), triethylamine is stirred at 80 ° C in a nitrogen atmosphere, to m-cresol (28 times mol of NTDA) Dissolved. After the monomer was completely dissolved in 4 hours, 3.00 g (0.0111 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. At the same time, 2,2-diaminodiphenylhexafluoropropane (6FAP) 1.53 g (0.0046 mol) triethylamine was stirred at 80 ° C. in a nitrogen atmosphere and dissolved in m-cresol (28 times mol of NTDA). After the monomer was completely dissolved in 4 hours, 1.09 g (0.0041 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. Both oligomers were mixed and stirred at 120 ° C. for 24 hours to obtain a polyamic acid. Add benzoic acid (1.12 times mol of NTDA) triethylamine (2.4 times mol in combination with the amount previously added), perform chemical imidization reaction for 24 hours, and target sulfonic acid group-containing polyimide (NTDA-BDSA-b- 6FAPm / n = 21/9) was synthesized.

実施例3:ブロックコポリイミドの合成2(図2)
重合溶媒にはm-クレゾールを用い、2,2‘-ベンジジンジスルホン酸(BDSA)3.75g(0.0108mol)、トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)3.00g(0.0111mol)を加え120℃で24時間攪拌しオリゴマーを得た。これと同時に2,2-ジアミノジフェニルヘキサフルオロプロパン(6FAP)1.55g(0.0047mol)トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)1.17g(0.0044mol)を加え120℃で24時間攪拌しオリゴマーを得た。両オリゴマーを混合して120℃で24時間攪拌し、ポリアミック酸を得た。安息香酸(NTDAの1.12倍mol)トリエチルアミン(先に加えた量と合わせて2.4倍mol)を加え、化学イミド化反応を24時間行い、目的とするスルホン酸基含有ポリイミド(NTDA-BDSA-b-6FAPm/n=35/15)を合成した。
Example 3: Synthesis of block copolyimide 2 (FIG. 2)
M-Cresol is used as the polymerization solvent, 2.75 g (0.0108 mol) of 2,2′-benzidinedisulfonic acid (BDSA), triethylamine is stirred at 80 ° C. in a nitrogen atmosphere to m-cresol (28 times mol of NTDA) Dissolved. After the monomer was completely dissolved in 4 hours, 3.00 g (0.0111 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. At the same time, 2,2-diaminodiphenylhexafluoropropane (6FAP) 1.55 g (0.0047 mol) triethylamine was stirred at 80 ° C. in a nitrogen atmosphere and dissolved in m-cresol (28 times mol of NTDA). After the monomer was completely dissolved in 4 hours, 1.17 g (0.0044 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. Both oligomers were mixed and stirred at 120 ° C. for 24 hours to obtain a polyamic acid. Add benzoic acid (1.12 times mol of NTDA) triethylamine (2.4 times mol in combination with the amount previously added), perform chemical imidization reaction for 24 hours, and target sulfonic acid group-containing polyimide (NTDA-BDSA-b- 6FAPm / n = 35/15) was synthesized.

実施例4:ブロックコポリイミドの合成3(図2)
重合溶媒にはm-クレゾールを用い、2,2‘-ベンジジンジスルホン酸(BDSA)3.78g(0.0109mol)、トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)3.00g(0.0111mol)を加え120℃で24時間攪拌しオリゴマーを得た。これと同時に2,2-ジアミノジフェニルヘキサフルオロプロパン(6FAP)1.58g(0.0047mol)トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)1.2g(0.0045mol)を加え120℃で24時間攪拌しオリゴマーを得た。両オリゴマーを混合して120℃で24時間攪拌し、ポリアミック酸を得た。安息香酸(NTDAの1.12倍mol)トリエチルアミン(先に加えた量と合わせて2.4倍mol)を加え、化学イミド化反応を24時間行い、目的とするスルホン酸基含有ポリイミド(NTDA-BDSA-b-6FAPm/n=49/21)を合成した。
Example 4: Synthesis of block copolyimide 3 (FIG. 2)
M-Cresol is used as a polymerization solvent, 3.78 g (0.0109 mol) of 2,2′-benzidinedisulfonic acid (BDSA), triethylamine is stirred at 80 ° C. in a nitrogen atmosphere to m-cresol (28 times mol of NTDA) Dissolved. After the monomer was completely dissolved in 4 hours, 3.00 g (0.0111 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. At the same time, 1.58 g (0.0047 mol) of triethylamine in 2,2-diaminodiphenylhexafluoropropane (6FAP) was stirred at 80 ° C. in a nitrogen atmosphere and dissolved in m-cresol (28 times mol of NTDA). After the monomer was completely dissolved in 4 hours, 1.2 g (0.0045 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. Both oligomers were mixed and stirred at 120 ° C. for 24 hours to obtain a polyamic acid. Add benzoic acid (1.12 times mol of NTDA) triethylamine (2.4 times mol in combination with the amount previously added), perform chemical imidization reaction for 24 hours, and target sulfonic acid group-containing polyimide (NTDA-BDSA-b- 6FAPm / n = 49/21) was synthesized.

実施例5:ブロックコポリイミドの合成4(図3)
重合溶媒にはm-クレゾールを用い、2,2‘-ベンジジンジスルホン酸(BDSA)3.68g(0.0107mol)、トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)3.00g(0.0111mol)を加え120℃で24時間攪拌しオリゴマーを得た。これと同時に9,9-ビス(4-アミノフェニル)フルオレン(FDA)1.59g(0.0046mol)トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)1.09g(0.0041mol)を加え120℃で24時間攪拌しオリゴマーを得た。両オリゴマーを混合して120℃で24時間攪拌し、ポリアミック酸を得た。安息香酸(NTDAの1.12倍mol)トリエチルアミン(先に加えた量と合わせて2.4倍mol)を加え、化学イミド化反応を24時間行い、目的とするスルホン酸基含有ポリイミド(NTDA-BDSA-b-FDA m/n=21/9)を合成した。
Example 5: Synthesis of block copolyimide 4 (FIG. 3)
M-Cresol is used as the polymerization solvent, 2.68 '(0.0107 mol) of 2,2'-benzidinedisulfonic acid (BDSA), triethylamine is stirred at 80 ° C in a nitrogen atmosphere, to m-cresol (28 times mol of NTDA) Dissolved. After the monomer was completely dissolved in 4 hours, 3.00 g (0.0111 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. At the same time, 1.59 g (0.0046 mol) of 9,9-bis (4-aminophenyl) fluorene (FDA) triethylamine was stirred at 80 ° C. in a nitrogen atmosphere and dissolved in m-cresol (28 times mol of NTDA). After the monomer was completely dissolved in 4 hours, 1.09 g (0.0041 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. Both oligomers were mixed and stirred at 120 ° C. for 24 hours to obtain a polyamic acid. Add benzoic acid (1.12 times mol of NTDA) triethylamine (2.4 times mol in combination with the amount previously added), perform chemical imidization reaction for 24 hours, and target sulfonic acid group-containing polyimide (NTDA-BDSA-b- FDA m / n = 21/9) was synthesized.

実施例6:ブロックコポリイミドの合成5(図3)
重合溶媒にはm-クレゾールを用い、2,2’-ベンジジンジスルホン酸(BDSA)2.41g(0.0070mol)、トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)2.00g(0.0075mol)を加え120℃で24時間攪拌しオリゴマーを得た。これと同時に9,9-ビス(4-アミノフェニル)フルオレン(FDA)2.44g(0.0070mol)トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)1.75g(0.0065mol)を加え120℃で24時間攪拌しオリゴマーを得た。両オリゴマーを混合して120℃で24時間攪拌し、ポリアミック酸を得た。安息香酸(NTDAの1.12倍mol)トリエチルアミン(先に加えた量と合わせて2.4倍mol)を加え、化学イミド化反応を24時間行い、目的とするスルホン酸基含有ポリイミドNTDA-BDSA-b-FDA (m/n=15/15)を合成した。
Example 6: Synthesis of block copolyimide 5 (FIG. 3)
M-cresol is used as a polymerization solvent, 2.41 g (0.0070 mol) of 2,2'-benzidinedisulfonic acid (BDSA), triethylamine is stirred at 80 ° C in a nitrogen atmosphere to m-cresol (28 times mol of NTDA) Dissolved. After the monomer was completely dissolved in 4 hours, 2.00 g (0.0075 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. At the same time, 9,9-bis (4-aminophenyl) fluorene (FDA) 2.44 g (0.0070 mol) triethylamine was stirred at 80 ° C. in a nitrogen atmosphere and dissolved in m-cresol (28 times mol of NTDA). After the monomer was completely dissolved in 4 hours, 1.75 g (0.0065 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. Both oligomers were mixed and stirred at 120 ° C. for 24 hours to obtain a polyamic acid. Add benzoic acid (1.12 times mol of NTDA) triethylamine (2.4 times mol in combination with the amount previously added), perform chemical imidization reaction for 24 hours, and target sulfonic acid group-containing polyimide NTDA-BDSA-b-FDA (m / n = 15/15) was synthesized.

実施例7:ブロックコポリイミドの合成6(図3)
重合溶媒にはm-クレゾールを用い、2,2‘-ベンジジンジスルホン酸(BDSA)1.73g(0.005mol)、トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)1.50g(0.0056mol)を加え120℃で24時間攪拌しオリゴマーを得た。これと同時に9,9-ビス(4-アミノフェニル)フルオレン(FDA)4.09g(0.0117mol)トリエチルアミンを窒素雰囲気下、80℃で攪拌、m-クレゾール(NTDAの28倍モル)へ溶解させた。4時間でモノマーを完全に溶解させた後、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)3.00g(0.0111mol)を加え120℃で24時間攪拌しオリゴマーを得た。両オリゴマーを混合して120℃で24時間攪拌し、ポリアミック酸を得た。安息香酸(NTDAの1.12倍mol)トリエチルアミン(先に加えた量と合わせて2.4倍mol)を加え、化学イミド化反応を24時間行い、目的とするスルホン酸基含有ポリイミドNTDA-BDSA-b-FDA (m/n=9/21)を合成した。
Example 7: Synthesis of block copolyimide 6 (FIG. 3)
M-Cresol is used as the polymerization solvent, 1.73 g (0.005 mol) of 2,2'-benzidinedisulfonic acid (BDSA), and triethylamine is stirred at 80 ° C. in a nitrogen atmosphere to m-cresol (28 times mol of NTDA). Dissolved. After the monomer was completely dissolved in 4 hours, 1.50 g (0.0056 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. At the same time, 9,9-bis (4-aminophenyl) fluorene (FDA) 4.09 g (0.0117 mol) triethylamine was stirred in a nitrogen atmosphere at 80 ° C. and dissolved in m-cresol (28 times mol of NTDA). After the monomer was completely dissolved in 4 hours, 3.00 g (0.0111 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) was added and stirred at 120 ° C. for 24 hours to obtain an oligomer. Both oligomers were mixed and stirred at 120 ° C. for 24 hours to obtain a polyamic acid. Add benzoic acid (1.12 times mol of NTDA) triethylamine (2.4 times mol in combination with the amount previously added), perform chemical imidization reaction for 24 hours, and target sulfonic acid group-containing polyimide NTDA-BDSA-b-FDA (m / n = 9/21) was synthesized.

実施例8:1H NMR分光法によるスルホン酸基含有ポリイミドの分子構造解析(図4,5,6)
日本電子データム株式会社製核磁気共鳴装置を用いて、スルホン酸基含有ポリイミドの分子構造解析を行った。組成の異なるNTDA-BDSA-b-FDA、鎖長の異なるNTDA-BDSA-b-6FAPともに同様のピークを示した。結果を図4〜図6に示す。ポリイミドはトリエチルアミン塩を形成しており、トリエチルアミン塩のピークが1ppm、2.5ppmに確認され、7〜9ppmには芳香族プロトンのピークを確認した。積分比と仕込み比が同程度であったため、スルホン酸基の導入量は仕込み比通りであり、またアミドやカルボン酸のピークが存在しないことから反応が進行していることを確認した。
Example 8: Molecular structure analysis of sulfonic acid group-containing polyimide by 1 H NMR spectroscopy (FIGS. 4, 5, and 6)
The molecular structure analysis of the sulfonic acid group-containing polyimide was performed using a nuclear magnetic resonance apparatus manufactured by JEOL Datum. Both NTDA-BDSA-b-FDA with different compositions and NTDA-BDSA-b-6FAP with different chain lengths showed similar peaks. The results are shown in FIGS. The polyimide formed a triethylamine salt. The triethylamine salt peak was confirmed at 1 ppm and 2.5 ppm, and the aromatic proton peak was confirmed at 7-9 ppm. Since the integration ratio and the charging ratio were about the same, the introduction amount of the sulfonic acid group was the same as the charging ratio, and it was confirmed that the reaction was proceeding since there was no amide or carboxylic acid peak.

実施例9:赤外吸収分光法によるスルホン酸基含有ポリイミドの分子構造解析(図7,8,9)
日本分光株式会社製赤外吸収分光装置を用いてスルホン酸基含有ポリイミドの分子構造解析を行った。組成の異なるNTDA-BDSA-b-FDA、鎖長の異なるNTDA-BDSA-b-6FAPともに同様のピークを示した。結果を図7〜9に示す。S=Oのピークが1300cm-1前後に観察され、方向族イミド特有のピークが1350、1600cm-1前後に観察された。
Example 9: Molecular structure analysis of sulfonic acid group-containing polyimide by infrared absorption spectroscopy (FIGS. 7, 8, and 9)
The molecular structure analysis of the sulfonic acid group-containing polyimide was performed using an infrared absorption spectrometer manufactured by JASCO Corporation. Both NTDA-BDSA-b-FDA with different compositions and NTDA-BDSA-b-6FAP with different chain lengths showed similar peaks. The results are shown in FIGS. A peak of S = O was observed around 1300 cm −1 , and peaks specific to the direction group imide were observed around 1350 and 1600 cm −1 .

実施例10:スルホン酸基含有ポリイミド電解質膜の作製(表1)
スルホン酸基含有ポリイミド(10重量%)を、ジメチルスルホキシド(90重量%)に溶解した。得られたスルホン酸基含有ポリイミド溶液をガラスシャーレ(64cm2)上にキャストし、110℃、減圧下で溶媒を蒸発させた。作製された膜は緻密で均一な構造を形成しており、膜厚50μm程度であった。これを1Nの塩酸に浸漬させることで、目的の電解質膜を作製した。
Example 10: Preparation of sulfonic acid group-containing polyimide electrolyte membrane (Table 1)
A sulfonic acid group-containing polyimide (10% by weight) was dissolved in dimethyl sulfoxide (90% by weight). The obtained sulfonic acid group-containing polyimide solution was cast on a glass petri dish (64 cm 2 ), and the solvent was evaporated at 110 ° C. under reduced pressure. The produced film had a dense and uniform structure, and the film thickness was about 50 μm. This was immersed in 1N hydrochloric acid to produce the target electrolyte membrane.

実施例11:スルホン酸基含有ポリイミド電解質膜の示差熱分析(表1)
セイコー電子工業社製示差熱分析装置を用いてスルホン酸基含有ポリイミド電解質膜の分解温度測定を行った。測定温度25〜650℃、昇温速度5℃/min、窒素流量200ml/minとした。5重量%分解する温度を意味するTd5%はおよそ300℃であった。結果を表1に示す。
Example 11: Differential thermal analysis of sulfonic acid group-containing polyimide electrolyte membrane (Table 1)
The decomposition temperature of the sulfonic acid group-containing polyimide electrolyte membrane was measured using a differential thermal analyzer manufactured by Seiko Denshi Kogyo. The measurement temperature was 25 to 650 ° C., the heating rate was 5 ° C./min, and the nitrogen flow rate was 200 ml / min. Td 5 %, meaning the temperature at which 5 % by weight decomposes, was approximately 300 ° C. The results are shown in Table 1.

実施例12:スルホン酸基含有ポリイミド電解質膜の示差走査熱量分析(表1)
セイコー電子工業社製示差走査熱量分析装置を用いてスルホン酸基含有ポリイミド電解質膜の熱量変化を測定した。測定温度25〜450℃、昇温速度10℃/min、窒素流量40ml/minとした。高分子主鎖のミクロブラウン運動が開始する温度を意味するTgは、450℃までは観察されなかった。結果を表1に示す。
Example 12: Differential scanning calorimetry of sulfonic acid group-containing polyimide electrolyte membrane (Table 1)
The change in the calorific value of the sulfonic acid group-containing polyimide electrolyte membrane was measured using a differential scanning calorimeter manufactured by Seiko Denshi Kogyo. The measurement temperature was 25 to 450 ° C., the heating rate was 10 ° C./min, and the nitrogen flow rate was 40 ml / min. Tg, which means the temperature at which the microbrown motion of the polymer main chain begins, was not observed up to 450 ° C. The results are shown in Table 1.

実施例13:スルホン酸基含有ポリイミドのイオン交換容量測定(表1)
重量を測定したスルホン酸基含有ポリイミド電解質膜を0.1N NaOHに溶解し、この溶液を1N HClで滴定し滴定曲線からイオン交換容量(IEC)を算出した。求められたIEC値はNTDA-BDSA-r-6FAP、NTDA-BDSA-b-FDA、NTDA-BDSA-b-6FAPともに理論値とほぼ等しい値となった。
Example 13: Measurement of ion exchange capacity of sulfonic acid group-containing polyimide (Table 1)
The weight-measured sulfonic acid group-containing polyimide electrolyte membrane was dissolved in 0.1N NaOH, this solution was titrated with 1N HCl, and the ion exchange capacity (IEC) was calculated from the titration curve. The obtained IEC values were almost equal to the theoretical values for NTDA-BDSA-r-6FAP, NTDA-BDSA-b-FDA, and NTDA-BDSA-b-6FAP.

実施例14:スルホン酸基含有ポリイミド緻密膜のプロトン伝導度測定
プロトン伝導度測定はESPEC社製恒温恒湿器を用いて温度と湿度を保ち、日置社製インピーダンスアナライザーを用いて、電解質抵抗を測定した。具体的にはインピーダンスアナライザーにより50kHz〜5MHzまでの周波数応答性を測定し、プロトン伝導度を算出した。測定湿度は100% (相対湿度)、測定温度は80℃とした。結果を表2に示す。
Example 14: Proton conductivity measurement of sulfonic acid group-containing polyimide dense membrane Proton conductivity measurement was performed by maintaining temperature and humidity using a constant temperature and humidity chamber manufactured by ESPEC, and measuring electrolyte resistance using an impedance analyzer manufactured by Hioki. did. Specifically, the frequency response from 50 kHz to 5 MHz was measured with an impedance analyzer, and the proton conductivity was calculated. The measurement humidity was 100% (relative humidity), and the measurement temperature was 80 ° C. The results are shown in Table 2.

表2において、コントロールとは市販品の電解質膜であるNafionR117膜である。表2に示す結果より、本発明の電解質膜はNafionR117膜に匹敵する高いプロトン伝導性を有していることがわかる。また、ランダムコポリイミド膜よりブロックコポリイミド膜において高いプロトン伝導性が示された。 In Table 2, the control is a Nafion R 117 membrane which is a commercially available electrolyte membrane. From the results shown in Table 2, it can be seen that the electrolyte membrane of the present invention has high proton conductivity comparable to that of the Nafion R 117 membrane. Further, the proton conductivity of the block copolyimide membrane was higher than that of the random copolyimide membrane.

図1は、NTDA-BDSA-r-6FAPの反応スキームを示す。FIG. 1 shows the reaction scheme of NTDA-BDSA-r-6FAP. 図2は、NTDA-BDSA-b-6FAPの反応スキームを示す。FIG. 2 shows the reaction scheme of NTDA-BDSA-b-6FAP. 図3は、NTDA-BDSA-b-FDAの反応スキームを示す。FIG. 3 shows the reaction scheme of NTDA-BDSA-b-FDA. 図4は、NTDA-BDSA-r-6FAP の1H-NMRスペクトルを示す。FIG. 4 shows the 1H-NMR spectrum of NTDA-BDSA-r-6FAP. 図5は、NTDA-BDSA-b-6FAP の1H-NMRスペクトルを示す。FIG. 5 shows the 1H-NMR spectrum of NTDA-BDSA-b-6FAP. 図6は、NTDA-BDSA-b-FDA の1H-NMRスペクトルを示す。FIG. 6 shows the 1H-NMR spectrum of NTDA-BDSA-b-FDA. 図7は、NTDA-BDSA-r-6FAP のIRスペクトルを示す。FIG. 7 shows the IR spectrum of NTDA-BDSA-r-6FAP. 図8は、NTDA-BDSA-b-FDA のIRスペクトルを示す。FIG. 8 shows the IR spectrum of NTDA-BDSA-b-FDA. 図9は、NTDA-BDSA-b-6FAP のIRスペクトルを示す。FIG. 9 shows the IR spectrum of NTDA-BDSA-b-6FAP.

Claims (8)

以下の構造式(1)を構造単位として有するポリイミド樹脂。
(式中、X及びYは0〜100の整数を示し、x/yは95/5から20/80の範囲内である)
A polyimide resin having the following structural formula (1) as a structural unit.
(Wherein X and Y represent integers of 0 to 100, and x / y is in the range of 95/5 to 20/80)
以下の構造式(2)を構造単位として有するブロック共重合体から成るポリイミド樹脂。
(式中、m及びnは0〜100の整数を示し、m/nは95/5から20/80の範囲内であり、sは1〜150の整数を示す。Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)
A polyimide resin comprising a block copolymer having the following structural formula (2) as a structural unit.
(In the formula, m and n represent an integer of 0 to 100, m / n is within a range of 95/5 to 20/80, and s represents an integer of 1 to 150. Ar represents at least one A group having 6 to 30 carbon atoms having an aromatic ring)
構造式(2)が下記構造である、請求項2に記載のポリイミド樹脂。
(式中、m、n及びsは請求項2と同義である)
The polyimide resin of Claim 2 whose structural formula (2) is the following structure.
(Wherein m, n and s are as defined in claim 2).
構造式(2)が下記構造である、請求項2に記載のポリイミド樹脂。
(式中、m、n及びsは請求項2と同義である)
The polyimide resin of Claim 2 whose structural formula (2) is the following structure.
(Wherein m, n and s are as defined in claim 2).
(i)2,2’-ベンジジンジスルホン酸と1,4,5,8−ナフタレンテトラカルボン酸二無水物とを反応させて重合体を合成する工程、(ii)NH2−Ar−NH2(式中、Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)で表される化合物と1,4,5,8−ナフタレンテトラカルボン酸二無水物とを重合させて重合体を合成する工程、及び(iii)上記工程(i)で合成した重合体と上記工程(ii)で合成した重合体とを縮重合させることにより、以下の構造式を構造単位として有するブロック共重合体を合成する工程を含む、請求項2から4の何れかに記載のポリイミド樹脂の製造方法。
(式中、m及びnは0〜100の整数を示し、m/nは95/5から20/80の範囲内であり、sは1〜150の整数を示す。Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)
(I) a step of reacting 2,2′-benzidinedisulfonic acid and 1,4,5,8-naphthalenetetracarboxylic dianhydride to synthesize a polymer; (ii) NH 2 —Ar—NH 2 ( In the formula, Ar represents a group having 6 to 30 carbon atoms having at least one aromatic ring) and 1,4,5,8-naphthalenetetracarboxylic dianhydride is polymerized. A step of synthesizing a polymer, and (iii) a block having the following structural formula as a structural unit by polycondensing the polymer synthesized in the step (i) and the polymer synthesized in the step (ii) The manufacturing method of the polyimide resin in any one of Claim 2 to 4 including the process of synthesize | combining a copolymer.
(In the formula, m and n represent an integer of 0 to 100, m / n is within a range of 95/5 to 20/80, and s represents an integer of 1 to 150. Ar represents at least one A group having 6 to 30 carbon atoms having an aromatic ring)
請求項5に記載の方法により製造される、請求項2から4の何れかに記載のポリイミド樹脂。 The polyimide resin according to claim 2, which is produced by the method according to claim 5. 請求項1から4又は請求項6の何れかに記載のポリイミド樹脂を製膜して得られる電解質膜。 An electrolyte membrane obtained by forming the polyimide resin according to any one of claims 1 to 4 or 6. 請求項7に記載の電解質膜を使用した高分子固体電解質型燃料電池。 A solid polymer electrolyte fuel cell using the electrolyte membrane according to claim 7.
JP2004088682A 2004-03-25 2004-03-25 Polyimide resin and method for producing the same Pending JP2005272666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088682A JP2005272666A (en) 2004-03-25 2004-03-25 Polyimide resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088682A JP2005272666A (en) 2004-03-25 2004-03-25 Polyimide resin and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005272666A true JP2005272666A (en) 2005-10-06

Family

ID=35172678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088682A Pending JP2005272666A (en) 2004-03-25 2004-03-25 Polyimide resin and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005272666A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108118A1 (en) * 2006-03-23 2007-09-27 Fujitsu Limited Electrolyte composition, solid electrolyte membrane and solid polymer fuel cell
JP2009243031A (en) * 2008-03-11 2009-10-22 Tokyo Metropolitan Univ Nanofiber, electrolyte membrane, membrane electrode assembly, and fuel cell
JP5018769B2 (en) * 2006-03-23 2012-09-05 富士通株式会社 Electrolyte composition, solid electrolyte membrane and polymer electrolyte fuel cell
JP2014175111A (en) * 2013-03-07 2014-09-22 Japan Advanced Institute Of Science & Technology Hokuriku Polymer electrolyte, proton conducting membrane and fuel cell
WO2018038049A1 (en) 2016-08-23 2018-03-01 公立大学法人首都大学東京 Surface-modified nanofibers, electrolyte membrane, method for producing electrolyte membrane, membrane electrode assembly and solid polymer fuel cell
CN108043232A (en) * 2017-12-06 2018-05-18 上海交通大学 A kind of hexatomic ring polyimide copolymer seperation film and its preparation method and application
WO2023067835A1 (en) * 2021-10-21 2023-04-27 日東電工株式会社 Gas separation membrane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108118A1 (en) * 2006-03-23 2007-09-27 Fujitsu Limited Electrolyte composition, solid electrolyte membrane and solid polymer fuel cell
WO2007108143A1 (en) * 2006-03-23 2007-09-27 Fujitsu Limited Electrolyte composition, solid electrolyte membrane and solid polymer fuel cell
JP5018769B2 (en) * 2006-03-23 2012-09-05 富士通株式会社 Electrolyte composition, solid electrolyte membrane and polymer electrolyte fuel cell
JP2009243031A (en) * 2008-03-11 2009-10-22 Tokyo Metropolitan Univ Nanofiber, electrolyte membrane, membrane electrode assembly, and fuel cell
JP2014175111A (en) * 2013-03-07 2014-09-22 Japan Advanced Institute Of Science & Technology Hokuriku Polymer electrolyte, proton conducting membrane and fuel cell
WO2018038049A1 (en) 2016-08-23 2018-03-01 公立大学法人首都大学東京 Surface-modified nanofibers, electrolyte membrane, method for producing electrolyte membrane, membrane electrode assembly and solid polymer fuel cell
CN108043232A (en) * 2017-12-06 2018-05-18 上海交通大学 A kind of hexatomic ring polyimide copolymer seperation film and its preparation method and application
CN108043232B (en) * 2017-12-06 2021-02-09 上海交通大学 Six-membered ring polyimide copolymer separation membrane and preparation method and application thereof
WO2023067835A1 (en) * 2021-10-21 2023-04-27 日東電工株式会社 Gas separation membrane

Similar Documents

Publication Publication Date Title
JP5881194B2 (en) Phosphate-doped electrolyte membrane, method for producing the same, and fuel cell including the same
CN101024724B (en) Polymer electrolyte membrane, method of manufacturing the same and fuel cell including the same
JP5493138B2 (en) Polyimide resin and electrolyte membrane
JP4210659B2 (en) Polyimide having sulfonic acid group at the end of side chain, polymer electrolyte and fuel cell employing the same
Chen et al. Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel
WO2003097718A1 (en) Rod-coil block polyimide copolymers
WO2003018669A1 (en) Crosslinked sulfonated plymide films
JP3703016B2 (en) POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP2005272666A (en) Polyimide resin and method for producing the same
JP2002367627A (en) Sulfonated polyimide polymer electrolyte film and manufacturing method of the same
US7560184B2 (en) Proton-conducting electrolyte and fuel cell using the same
KR100449788B1 (en) Synthesis of Sulfonated Polyimides and Preparation of Membranes for PEMFC
Xu et al. Synthesis and properties of hyperbranched polybenzimidazoles via A2+ B3 approach
JPH05230211A (en) Polyimide resin
WO2007094561A1 (en) High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
Cakir et al. Phosphorus‐Containing Sulfonated Polyimides for Proton Exchange Membranes
Liu et al. Synthesis of new sulfonated polyimide and its photo-crosslinking for polymer electrolyte membrane fuel cells
JP2005251523A (en) Proton conductive electrolyte and fuel cell
JP2007126610A (en) Sulfonated aromatic polyimide and electrolyte film comprising the same
CN114437347B (en) Block sulfonated polyimide with micropores and preparation method and application thereof
JP2003338298A (en) Polyamide precursor varnish containing protonic acid group and cross-linked polyamide containing protonic acid group
KR100193384B1 (en) New soluble polyimide resins and preparation method thereof
Bera et al. Fluorinated Polyazoles: Synthesis, Properties, and Applications
Kim Synthesis and characterization of sulfonic acid containing polyimides for polymer electrolyte membranes (pems) in fuel cells
JP2006265496A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303