JP2005272648A - Method for producing thermally conductive material - Google Patents

Method for producing thermally conductive material Download PDF

Info

Publication number
JP2005272648A
JP2005272648A JP2004088267A JP2004088267A JP2005272648A JP 2005272648 A JP2005272648 A JP 2005272648A JP 2004088267 A JP2004088267 A JP 2004088267A JP 2004088267 A JP2004088267 A JP 2004088267A JP 2005272648 A JP2005272648 A JP 2005272648A
Authority
JP
Japan
Prior art keywords
heat
thermally conductive
composition
heat conductive
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088267A
Other languages
Japanese (ja)
Inventor
Manabu Mitsutomi
学 光冨
Takayuki Uchiumi
隆之 内海
Takayuki Tagawa
孝之 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2004088267A priority Critical patent/JP2005272648A/en
Publication of JP2005272648A publication Critical patent/JP2005272648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a thermally conductive material satisfying both of the high heat conductivity and the softness at a low cost by reducing the amount of a thermally conductive filler added. <P>SOLUTION: This method for producing the thermally conductive material comprises mixing and dispersing a thermally conductive filler having high polarity into a nonpolar and crosslinkable polymer material to prepare a composition, carrying out heat treatment of the composition once under conditions not causing crosslinkage and then crosslinking the heat-treated composition. By formulating the thermally conductive filler having high polarity into the non-polar polymer material lowering viscosity at high temperature, the viscosity of the polymer material is lowered and fluidity of the polymer material is raised when heat-treated, and thermally conductive fillers are made to aggregate to each other and link is readily formed by affinity among thermally conductive fillers. As a result, the thermally conductive material having high thermal conductivity can be obtained. In addition, the production method, does not require formulation of the thermally conductive filler in high content and impart flexibility as well as high thermal conductivity to the thermally conductive material, because thermal conductivity obtained when the conductive material is formulated in a small amount is equivalent to or higher than the thermal conductivity obtained when formulated in a large amount. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は放熱性に優れる熱伝導材料の製造方法に関し、詳しくは加熱処理を行うことによりコンパウンド中で該熱伝導性充填材を凝集させた熱伝導材料の製造方法に関する。   The present invention relates to a method for manufacturing a heat conductive material having excellent heat dissipation, and more particularly to a method for manufacturing a heat conductive material in which the heat conductive filler is aggregated in a compound by heat treatment.

近年、パーソナルコンピューター、デジタルビデオディスク、携帯電話などの電子機器に使用されるCPUやドライバICやメモリーなどのLSIは、集積度の向上と動作の高速化に伴い消費電力が増大すると共にその発熱量も増大し、電子機器の誤動作や電子部品の損傷の一因となっているため、その放熱対策が大きな問題となっている。それに加え、近年、従来セラミックス基板を使用していた部分の樹脂化が進んでいるが、この場合、基板そのものの熱伝導率が低下しており、放熱対策は非常に重要な問題として把握されている。   In recent years, LSIs such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video disks, and mobile phones have increased power consumption and heat generation as the degree of integration has increased and the operation speed has increased. As a result, it has become a cause of malfunction of electronic devices and damage of electronic components, so that heat dissipation measures have become a major problem. In addition, in recent years, resinization of the parts that used ceramic substrates has been progressing, but in this case, the thermal conductivity of the substrate itself has decreased, and heat dissipation measures have been recognized as a very important issue. Yes.

従来から、電子機器等においては、その使用中に電子部品の温度上昇を抑えるために、黄銅等、熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、その電子部品が発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。電子部品から発生する熱をヒートシンクに効率よく伝えるために、ヒートシンクを電子部品に密着させる必要があり、熱伝導シートなどを電子部品とヒートシンクとの間にインターフェイスとして用い、電子部品の効率的な熱伝導を行っている。また、樹脂基板へはその基板よりも熱伝導性の高い放熱シートを貼付することで熱対策が為されている。   Conventionally, in an electronic device or the like, a heat sink using a metal plate having a high thermal conductivity such as brass is used in order to suppress the temperature rise of the electronic component during use. The heat sink conducts heat generated by the electronic component and releases the heat from the surface due to a temperature difference from the outside air. In order to efficiently transfer the heat generated from the electronic component to the heat sink, the heat sink needs to be in close contact with the electronic component. A heat conduction sheet or the like is used as an interface between the electronic component and the heat sink to efficiently heat the electronic component. Conducting. In addition, heat countermeasures are taken by attaching a heat-dissipating sheet having a higher thermal conductivity than the substrate to the resin substrate.

しかし、近年の電子機器関連部品は高速処理化が進み、発熱量も増大していることから、従来の熱伝導シートでは熱伝導率不足のために、熱対策ができない場合が増えてきている。   However, recent electronic equipment-related parts have been processed at high speed and the amount of heat generation has increased, so that conventional thermal conductive sheets are often unable to take heat countermeasures due to insufficient thermal conductivity.

そのため、高い熱伝導性を有するダイヤモンドや窒化ホウ素などの熱伝導性充填材を高充填させた熱伝導シート等を用いることが、特許文献1や特許文献2に記載されている。   Therefore, Patent Document 1 and Patent Document 2 describe the use of a heat conductive sheet or the like highly filled with a heat conductive filler such as diamond or boron nitride having high heat conductivity.

また、高分子材料と熱伝導性充填材の親和力(分子間力など)が強いと、熱伝導性充填材を効率よく高分子材料中に分散させることが可能であるが、組成物の熱伝導性は充填材の分散が良くなるために悪くなる。これは充填材と充填材間に熱伝導率の低い高分子材料が存在し、熱伝導が妨げられてしまうためである(フォノンの格子振動が減衰)。したがって、一般には熱伝導シートには熱伝導充填材を高分子材料中に大量に配合したり、粒径の異なる充填材を用いて最密充填化を行ない、マトリックス成分をなるべく少なくなるようにした組成物を作製して高熱伝導化を狙っている。(特許文献3)   In addition, if the affinity between the polymer material and the heat conductive filler (such as intermolecular force) is strong, the heat conductive filler can be efficiently dispersed in the polymer material. The property is deteriorated because the dispersion of the filler is improved. This is because there is a polymer material with low thermal conductivity between the filler and the heat conduction is hindered (phonon lattice vibration is attenuated). Therefore, in general, the heat conductive sheet is mixed with a large amount of a heat conductive filler in a polymer material, or close-packed with fillers having different particle sizes so that the matrix component is reduced as much as possible. The composition is made and high heat conductivity is aimed at. (Patent Document 3)

特開2002−30217号公報JP 2002-30217 A 特開2000−195337号公報JP 2000-195337 A 特開2000−151160号公報JP 2000-151160 A

しかしながら、従来のように高価な熱伝導性充填材を大量に用いると、コストが高くなってしまうとともに、シートの柔軟性が失われてしまうといった問題があり、熱伝導性充填材の添加量を少なくして高熱伝導性と柔軟性が両立した熱伝導性材料材料を作製することは困難であった。   However, if a large amount of expensive thermally conductive filler is used as in the prior art, there is a problem that the cost is increased and the flexibility of the sheet is lost. It has been difficult to produce a heat conductive material with both high thermal conductivity and flexibility.

本発明はこのような問題に対処するものであり、熱伝導性充填材の添加量を少なくして高熱伝導性と柔軟性を両立させ、低コストの熱伝導性材料材料の製造方法を提供する。   The present invention addresses such problems, and provides a method for producing a low-cost thermally conductive material by reducing the amount of thermally conductive filler added to achieve both high thermal conductivity and flexibility. .

本願請求項1〜2記載の発明は、非極性の架橋可能な高分子材料に、高い極性を有する熱伝導性充填材を混合分散して組成物を作製し、該組成物を架橋しない条件でいったん加熱処理した後、架橋させる熱伝導材料の製造方法にあり、また非極性の熱可塑性高分子材料に、高い極性を有する熱伝導性充填材を混合分散して組成物を作製し、該組成物が架橋しない条件で加熱処理を行って熱可塑化した後、固化する熱伝導材料の製造方法であり、このように非極性でかつ高温時に低粘度化が起こる高分子材料中に高い極性を有する熱伝導性充填材を配合させると、加熱処理の際に高分子材料の粘度が低下して流動性が高まり、熱伝導性充填材同士の親和力(双極子‐双極子相互作用)によって、熱伝導性充填材同士の凝集が起こりリンクが形成しやすくなって高い熱伝導性を有する熱伝導材料を得ることができる。しかも熱伝導性充填材を高配合する必要が無く、少量配合でも高配合と同等以上の熱伝導性をもたせることができるため、高熱伝導性に加えて柔軟性を付与することができる。   The invention described in claims 1 and 2 of the present invention is a mixture prepared by mixing and dispersing a nonpolar crosslinkable polymer material with a heat conductive filler having high polarity, and under a condition that the composition is not crosslinked. There is a method for producing a heat conductive material that is once heat-treated and crosslinked, and a non-polar thermoplastic polymer material is mixed and dispersed with a heat conductive filler having a high polarity to produce a composition. This is a method for producing a heat conductive material that is solidified after heat treatment under conditions where the product is not cross-linked, and thus has a high polarity in a polymer material that is nonpolar and undergoes low viscosity at high temperatures. When the heat conductive filler is added, the viscosity of the polymer material decreases and the fluidity increases during the heat treatment, and heat is generated by the affinity between the heat conductive fillers (dipole-dipole interaction). Conductive fillers aggregate and form links It is possible to obtain a thermally conductive material having high thermal conductivity is easier. In addition, it is not necessary to add a high amount of heat conductive filler, and even a small amount can provide a thermal conductivity equal to or higher than that of the high compound, so that flexibility can be imparted in addition to high heat conductivity.

本願請求項3〜5記載の発明は、非極性の架橋可能な高分子材料がイソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、そしてシリコーンゴムから選ばれた少なくとも一種の合成ゴムの場合や、高い極性を有する熱伝導性充填材が組成物中に体積分率で5〜40体積%配合されている場合や、高い極性を有する熱伝導性充填材が酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化アルミニウム、窒化ケイ素、窒化ホウ素、そして二酸化ケイ素から選ばれる少なくとも一種の粉体である場合を含んでいる。   The inventions according to claims 3 to 5 of the present invention are characterized in that the nonpolar crosslinkable polymer material is at least one synthetic rubber selected from isoprene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, and silicone rubber. In the case where the heat conductive filler having a high polarity is blended in the composition in a volume fraction of 5 to 40% by volume, or the heat conductive filler having a high polarity is aluminum oxide, aluminum hydroxide, The case of at least one powder selected from magnesium oxide, zinc oxide, aluminum nitride, silicon nitride, boron nitride, and silicon dioxide is included.

以上ように本願発明は、非極性でなおかつ熱可塑化する架橋可能もしくは熱可塑性高分子材料中に高い極性を有する熱伝導性充填材を配合させると、加熱処理の際に高分子材料の粘度が低下して流動性が高まり、また熱伝導性充填材同士の凝集が起こりやすくなってリンクが形成し、高い熱伝導性を有する熱伝導材料を得ることができ、また熱伝導性充填材を高配合する必要が無く、少量配合でも高配合と同等以上の熱伝導性をもたせることができ、高熱伝導性に加えて柔軟性を付与することができる。   As described above, according to the present invention, when a thermally conductive filler having a high polarity is blended in a non-polar and thermoplasticized crosslinkable or thermoplastic polymer material, the viscosity of the polymer material is increased during the heat treatment. The fluidity is lowered and the fluidity is increased, and the heat conductive fillers are easily aggregated to form a link, so that a heat conductive material having high heat conductivity can be obtained. There is no need for blending, and even a small amount of blending can provide thermal conductivity equal to or higher than that of high blending, and flexibility can be imparted in addition to high thermal conductivity.

加熱処理前の組成物は、密閉式混練機あるいはスクリュー押出機により非極性の架橋可能もしくは熱可塑性の高分子材料に高い極性を有する粒状の熱伝導性充填材を添加して混練してシート状に圧延したものである。この場合、熱伝導性充填材は凝集することなく分散している。そして、加熱処理前の組成物を80〜120℃で10〜30分間加熱して熱可塑化させると、高分子材料の粘度が低下して流動性が高まり、高い極性を有する粒状の熱伝導性充填材が凝集してリンクを形成しやすくなって、高い熱伝導性を得ることができる。そして、架橋可能な高分子材料を使用したときには、通常の温度、時間で加熱し架橋させて熱伝導材料を得ることができ、一方熱可塑性の高分子材料を使用した場合には、冷却し固化して熱伝導材料にする。   The composition before the heat treatment is added to a non-polar crosslinkable or thermoplastic polymer material by a closed kneader or a screw extruder and a granular heat conductive filler having high polarity is added and kneaded to form a sheet. Rolled into In this case, the thermally conductive filler is dispersed without agglomeration. And when the composition before heat processing is heated at 80-120 degreeC for 10 to 30 minutes and is thermoplasticized, the viscosity of a polymeric material will fall, fluidity | liquidity will increase, and the granular heat conductivity which has high polarity. The filler aggregates to easily form a link, and high thermal conductivity can be obtained. When a crosslinkable polymer material is used, it can be heated and crosslinked at a normal temperature for a time to obtain a heat conducting material. On the other hand, when a thermoplastic polymer material is used, it is cooled and solidified. To make a heat conductive material.

熱伝導性充填材は組成物中に体積分率で5〜40体積%配合されているが、5体積%未満になると、熱伝導性充填材の量が少なく、加熱処理しても凝集によってリンクが形成にくくなり熱伝導性が期待できなくなる。一方、40体積%を越えると、熱伝導性充填材の量が多くなり過ぎて、コスト高になるとともに柔軟性もなくなってくる。   The heat conductive filler is blended in the composition in a volume fraction of 5 to 40% by volume. However, when the volume is less than 5% by volume, the amount of the heat conductive filler is small, and even if heat treatment is performed, it is linked by aggregation. It becomes difficult to form and heat conductivity cannot be expected. On the other hand, if it exceeds 40% by volume, the amount of the thermally conductive filler is excessively increased, resulting in an increase in cost and flexibility.

ここで使用する非極性の高分子材料としては、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、シリコーンゴム等の架橋可能な合成ゴム、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー等の熱可塑性エラストマー、ポリエチレン、ポリプロピレン、ポリアミド等の熱可塑性樹脂を挙げることができる。   Nonpolar polymer materials used here include isoprene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, silicone rubber and other crosslinkable synthetic rubbers, olefin thermoplastic elastomers, styrene thermoplastic elastomers And thermoplastic elastomers such as polyethylene, polypropylene, and polyamide.

高い極性を有する熱伝導性充填材は、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化アルミニウム、窒化ケイ素、窒化ホウ素、二酸化ケイ素から選ばれる少なくとも一種の粉体である。上記熱伝導性充填材の平均一次粒径は1〜100μmである。   The heat conductive filler having a high polarity is at least one powder selected from aluminum oxide, aluminum hydroxide, magnesium oxide, zinc oxide, aluminum nitride, silicon nitride, boron nitride, and silicon dioxide. The average primary particle size of the heat conductive filler is 1 to 100 μm.

また、その他の配合剤も通常のゴム組成物に用いられているもので、例えば架橋助剤としての酸化亜鉛や加工助剤としてステアリン酸などの脂肪酸、各種可塑剤、粘着付与剤などを任意に用いることが可能である。また架橋系としても、硫黄系架橋、有機過酸化物架橋、金属酸化物架橋、樹脂架橋など各種架橋系を用いることができる。   Other compounding agents are also used in ordinary rubber compositions. For example, zinc oxide as a crosslinking aid, fatty acid such as stearic acid as processing aid, various plasticizers, tackifiers, etc. It is possible to use. As the crosslinking system, various crosslinking systems such as sulfur crosslinking, organic peroxide crosslinking, metal oxide crosslinking, and resin crosslinking can be used.

上記有機過酸化物としては、ジアシルパーオキサイド、パーオキシエステル、ジアリルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、ジクミルパーオキサイド、2.5−ジメチル−2.5−ジ(t−ブチルパーオキシ)−ヘキサン−3,1,3−ビス(t−ブチルパーオキシ−イソプロピル)ベンゼン、1,1−ジ−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン等があり、熱分解による1分間の半減期が150〜250℃のものが好ましい。   Examples of the organic peroxide include diacyl peroxide, peroxy ester, diallyl peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, 2.5-dimethyl-2.5- Di (t-butylperoxy) -hexane-3,1,3-bis (t-butylperoxy-isopropyl) benzene, 1,1-di-butylperoxy-3,3,5-trimethylcyclohexane, etc. A one-minute half-life of 150 to 250 ° C. by thermal decomposition is preferred.

以下、本発明を実施例により更に詳細に説明する。
実施例1〜3、比較例1〜2
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 1-3, Comparative Examples 1-2

表1に示したゴム配合物を密閉式混練機にて混練りした後、圧延して厚さ約1mmのシートした。この圧延シートを100℃に温調したオーブンに30分間入れて加熱処理することで熱可塑化した。これが完了すると、該シートを温度163℃の温調したオーブンに20分間入れて架橋し、熱伝導シートを作製した。   The rubber compound shown in Table 1 was kneaded in a closed kneader and then rolled to a sheet having a thickness of about 1 mm. The rolled sheet was thermoplasticized by placing it in an oven adjusted to 100 ° C. for 30 minutes and heat-treating it. When this was completed, the sheet was placed in a temperature-controlled oven at a temperature of 163 ° C. for 20 minutes for crosslinking to produce a heat conductive sheet.

得られた熱伝導シートの熱伝導率測定は、レーザーフラッシュ法熱定数測定装置TC−7000(真空理工社製)を用いて測定した熱拡散率の値から算出した。また、ショアA硬度はJIS K6253に準じて測定した。この結果を表1に併記する。   The thermal conductivity measurement of the obtained thermal conductive sheet was calculated from the value of thermal diffusivity measured using a laser flash method thermal constant measuring device TC-7000 (manufactured by Vacuum Riko Co., Ltd.). The Shore A hardness was measured according to JIS K6253. The results are also shown in Table 1.

Figure 2005272648
Figure 2005272648

実施例1と比較例1より、高い極性を有する酸化アルミニウムが配合されたゴム組成物を加熱処理することにより、より高い熱伝導性を有するゴム組成物が得られることが判った。また、実施例1と同様に実施例2と実施例3においても極性フィラーである窒化アルミニウム、水酸化アルミニウムを配合したコンパウンドも高い熱伝導性を有することが判った。更に、実施例1と比較例2より、非極性の熱伝導性充填材である炭化ケイ素を配合したゴム組成物の場合、充填材自体の熱伝導率は56W/mKと酸化アルミニウム(36W/mK)より大きいにもかかわらず、加熱処理した酸化アルミニウムを配合したゴム組成物よりも低い熱伝導性を示す結果となった。これは充填材が非極性であるため、加熱処理時に充填材の高分子材料中での凝集化がほとんど起こらなかったことを示している。   From Example 1 and Comparative Example 1, it was found that a rubber composition having higher thermal conductivity can be obtained by heat-treating a rubber composition containing aluminum oxide having a high polarity. In addition, in Example 2 and Example 3 in the same manner as in Example 1, it was found that a compound containing aluminum nitride and aluminum hydroxide as polar fillers also had high thermal conductivity. Furthermore, from Example 1 and Comparative Example 2, in the case of a rubber composition containing silicon carbide, which is a nonpolar heat conductive filler, the heat conductivity of the filler itself is 56 W / mK and aluminum oxide (36 W / mK). Despite being larger, the result showed lower thermal conductivity than the rubber composition containing the heat-treated aluminum oxide. This indicates that since the filler is non-polar, the filler hardly aggregated in the polymer material during the heat treatment.

本発明に係る放熱性に優れる熱伝導材料は、電子部品が発生する熱を伝導し、その熱を外部へ放出するヒートシンクに使用される。
The heat conductive material excellent in heat dissipation according to the present invention is used for a heat sink that conducts heat generated by an electronic component and releases the heat to the outside.

Claims (5)

非極性の架橋可能な高分子材料に、高い極性を有する熱伝導性充填材を混合分散して組成物を作製し、該組成物を架橋しない条件でいったん加熱処理した後、架橋させることを特徴とする熱伝導材料の製造方法。   A composition is prepared by mixing and dispersing a non-polar crosslinkable polymer material with a highly conductive heat conductive filler, and the composition is subjected to heat treatment under conditions that do not crosslink and then crosslinked. A method for producing a heat conductive material. 非極性の熱可塑性高分子材料に、高い極性を有する熱伝導性充填材を混合分散して組成物を作製し、該組成物が架橋しない条件で加熱処理を行った熱可塑化した後、固化することを特徴とする熱伝導材料の製造方法。   A non-polar thermoplastic polymer material is mixed and dispersed with a heat conductive filler having a high polarity to produce a composition, which is heat-treated under the conditions that the composition does not crosslink, and then solidified. A method for producing a heat conducting material. 非極性の架橋可能な高分子材料がイソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、そしてシリコーンゴムから選ばれた少なくとも一種の合成ゴムからなる請求項1記載の熱伝導材料の製造方法。   2. The heat conductive material according to claim 1, wherein the nonpolar crosslinkable polymer material comprises at least one synthetic rubber selected from isoprene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, and silicone rubber. Method. 高い極性を有する熱伝導性充填材が、組成物中に体積分率で5〜40体積%配合されている請求項1〜3の何れかに記載の熱伝導材料の製造方法。   The manufacturing method of the heat conductive material in any one of Claims 1-3 with which the heat conductive filler which has high polarity is mix | blended with the volume fraction in the composition at 5-40 volume%. 高い極性を有する熱伝導性充填材が酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化アルミニウム、窒化ケイ素、窒化ホウ素、そして二酸化ケイ素から選ばれる少なくとも一種の粉体である請求項1〜4の何れかに記載の熱伝導材料の製造方法。
The thermally conductive filler having a high polarity is at least one powder selected from aluminum oxide, aluminum hydroxide, magnesium oxide, zinc oxide, aluminum nitride, silicon nitride, boron nitride, and silicon dioxide. The manufacturing method of the heat conductive material in any one of.
JP2004088267A 2004-03-25 2004-03-25 Method for producing thermally conductive material Pending JP2005272648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088267A JP2005272648A (en) 2004-03-25 2004-03-25 Method for producing thermally conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088267A JP2005272648A (en) 2004-03-25 2004-03-25 Method for producing thermally conductive material

Publications (1)

Publication Number Publication Date
JP2005272648A true JP2005272648A (en) 2005-10-06

Family

ID=35172661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088267A Pending JP2005272648A (en) 2004-03-25 2004-03-25 Method for producing thermally conductive material

Country Status (1)

Country Link
JP (1) JP2005272648A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077220A (en) * 2008-09-24 2010-04-08 Furukawa Electric Co Ltd:The Molded article for heat conduction and heat-conductive non-silicone liquid rubber composition
JP2010144089A (en) * 2008-12-19 2010-07-01 Sumitomo Rubber Ind Ltd Rubber composition for run-flat tire and run-flat tire
CN106935342A (en) * 2009-12-04 2017-07-07 Abb研究有限公司 High voltage surge arrester
CN108410070A (en) * 2018-03-19 2018-08-17 上海利物盛企业集团有限公司 A kind of heat conductive insulating rubber sheet gasket and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077220A (en) * 2008-09-24 2010-04-08 Furukawa Electric Co Ltd:The Molded article for heat conduction and heat-conductive non-silicone liquid rubber composition
JP2010144089A (en) * 2008-12-19 2010-07-01 Sumitomo Rubber Ind Ltd Rubber composition for run-flat tire and run-flat tire
CN106935342A (en) * 2009-12-04 2017-07-07 Abb研究有限公司 High voltage surge arrester
CN108410070A (en) * 2018-03-19 2018-08-17 上海利物盛企业集团有限公司 A kind of heat conductive insulating rubber sheet gasket and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5779693B2 (en) Thermally conductive sheet, manufacturing method thereof, and semiconductor device
JP6453057B2 (en) Heat-meltable fluororesin composition excellent in thermal conductivity, molded article produced from the composition, and method for producing the same
KR102470083B1 (en) High performance thermal interface materials with low thermal impedance
JP6092806B2 (en) Zinc oxide powder, heat dissipating filler, resin composition, heat dissipating grease and heat dissipating coating composition
JP5882581B2 (en) Thermally conductive sheet, method for producing the same, and heat dissipation device
JP5407120B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
JP5089908B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
TW583275B (en) A heat radiating component
JP2015168783A (en) Highly thermal conductive resin composition
JP2012064691A (en) Thermal diffusion sheet
JP2010001402A (en) High thermal conductivity resin molded article
EP3667718B1 (en) Low-dielectric-constant thermally-conductive heat dissipation member
JP2005272648A (en) Method for producing thermally conductive material
JP5323432B2 (en) Molded body for heat conduction
JP2007311628A (en) Heat transferable elastic sheet
JP2006278445A (en) Thermally conductive sheet
WO2022054478A1 (en) Thermally conductive sheet and production method for thermally conductive sheet
JP2015167181A (en) Method of manufacturing heat dissipation sheet
JP2022041651A (en) Inorganic filler, boron nitride composition, method of producing inorganic filler, and method of producing boron nitride composition
WO2023038052A1 (en) Heat radiation sheet
JPH0370754A (en) Highly thermally conductive rubber composition
JP2002206030A (en) Method for producing heat-radiation sheet
JP3825035B2 (en) Thermally conductive molded body
WO2022264895A1 (en) Thermally-conductive sheet and thermally-conductive sheet production method
TW201116615A (en) Thermally conductive composition