JP2005272283A - Heat treatment method of zinc oxide crystal - Google Patents

Heat treatment method of zinc oxide crystal Download PDF

Info

Publication number
JP2005272283A
JP2005272283A JP2004092468A JP2004092468A JP2005272283A JP 2005272283 A JP2005272283 A JP 2005272283A JP 2004092468 A JP2004092468 A JP 2004092468A JP 2004092468 A JP2004092468 A JP 2004092468A JP 2005272283 A JP2005272283 A JP 2005272283A
Authority
JP
Japan
Prior art keywords
zinc oxide
heat treatment
crystal
oxide crystal
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004092468A
Other languages
Japanese (ja)
Inventor
Minoru Isshiki
実 一色
Yoshitoyo O
吉豊 王
Mitsuru Mikami
充 三上
Yoshihiko Sho
義彦 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004092468A priority Critical patent/JP2005272283A/en
Publication of JP2005272283A publication Critical patent/JP2005272283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for arbitrarily and precisely control coloring in a zinc oxide crystal grown by a gas phase transport method. <P>SOLUTION: The method is characterized in that a zinc oxide crystal with a desired color is obtained by heat treating a zinc oxide crystal grown by a vapor phase transport method at vapor pressure containing oxygen or zinc. For example, although a zinc oxide crystal immediately after growth by the vapor phase transport method shows an orange color or the like, it changes into a colorless and transparent zinc oxide crystal having the stoichiometric composition when the crystal is heat treated in an oxygen atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化亜鉛デバイス用基板材料等に適した、高純度で高品質な酸化亜鉛結晶を得る方法に関するものである。   The present invention relates to a method for obtaining high-purity and high-quality zinc oxide crystals suitable for a substrate material for zinc oxide devices and the like.

酸化亜鉛(Zn0)単結晶はバンドギャップが3.3eVのII−VI族化合物半導体であり、窒化ガリウム(GaN)に代表される窒化物半導体と同様に、紫外から緑色に至る短波長領域で発光可能な発光ダイオード(LED)や、レーザーダイオード(LD)等の光デバイス材料としての応用が期待される材料である。特に、酸化亜鉛単結晶は励起子結合エネルギーが59meVと大きいことから、室温でも励起子が保持され、高効率で単色性に優れる等、新しい機能を持った発光デバイスが可能であるといった特徴を有する。   Zinc oxide (Zn0) single crystal is a group II-VI compound semiconductor with a band gap of 3.3 eV, and emits light in the short wavelength region from ultraviolet to green, as is the case with nitride semiconductors typified by gallium nitride (GaN). It is a material expected to be applied as an optical device material such as a possible light emitting diode (LED) or laser diode (LD). In particular, since zinc oxide single crystal has a large exciton binding energy of 59 meV, excitons are retained even at room temperature, and light emitting devices with new functions such as high efficiency and excellent monochromaticity are possible. .

半導体材料をデバイスとして用いる場合には、酸化亜鉛に限らず薄膜構造を形成する必要があるが、薄膜の品質に大きな影響を与えるのがベースとなる基板材料の特性である。良質なデバイスを実現するには、良質な薄膜単結晶を成長させる必要があり、そのためには格子定数や熱膨張係数が同じである同種基板を用いるのが最良の方法である。   In the case of using a semiconductor material as a device, it is necessary to form a thin film structure as well as zinc oxide, but it is a characteristic of the base substrate material that has a great influence on the quality of the thin film. In order to realize a high-quality device, it is necessary to grow a high-quality thin film single crystal. For this purpose, it is the best method to use the same type of substrate having the same lattice constant and thermal expansion coefficient.

酸化亜鉛の場合、サファイア等の異種基板の上に酸化亜鉛薄膜をエピタキシャル成長させることによって薄膜構造を得る試み(特許文献1参照)が数多く実施されている。サファイアと酸化亜鉛とでは、格子不整合が約18%もあり、また熱膨張係数にも2.6倍という大きな差があるため、成長後の酸化亜鉛薄膜には多くの結晶欠陥が生じている。また、サファイアと酸化亜鉛との熱膨張係数の差により酸化亜鉛薄膜にクラックが生じる等の問題を避けるため、酸化亜鉛薄膜のエピタキシャル成長法として適用できるものは分子線成長法(MBE法)等の低温成長法に制限される等の問題がある。   In the case of zinc oxide, many attempts have been made to obtain a thin film structure by epitaxially growing a zinc oxide thin film on a dissimilar substrate such as sapphire (see Patent Document 1). Since sapphire and zinc oxide have a lattice mismatch of about 18% and a large difference in thermal expansion coefficient of 2.6 times, many crystal defects are generated in the grown zinc oxide thin film. . Also, in order to avoid problems such as cracks in the zinc oxide thin film due to the difference in thermal expansion coefficient between sapphire and zinc oxide, low temperature such as molecular beam growth (MBE) can be applied as an epitaxial growth method for the zinc oxide thin film. There are problems such as being restricted by the growth method.

一方、良質な酸化亜鉛デバイスを実現するためにはバルクの酸化亜鉛単結晶をエピタキシャル成長用基板として用いることが適切であるという観点から、最近では酸化亜鉛バルク単結晶の成長が試みられている。その代表的なものは、水熱合成法を用いるものである(特許文献2参照)。この方法では比較的大型の結晶育成が可能という特徴を持つが、溶媒からの不純物混入が多いという問題がある。   On the other hand, from the viewpoint that it is appropriate to use a bulk zinc oxide single crystal as a substrate for epitaxial growth in order to realize a high-quality zinc oxide device, growth of a zinc oxide bulk single crystal has recently been attempted. A typical example is a method using a hydrothermal synthesis method (see Patent Document 2). Although this method has the feature that relatively large crystals can be grown, there is a problem that impurities are often mixed from the solvent.

不純物の多い酸化亜鉛結晶をエピタキシャル成長用基板として用いた場合、格子不整合や熱膨張係数の差による影響は軽減されるものの、得られる酸化亜鉛薄膜に基板から不純物が混入し、酸化亜鉛薄膜にとって重要な電気的特性が影響を受けてしまい、所望のデバイスを形成することが著しく困難になる。酸化亜鉛薄膜の場合、デバイスの実用化のためにはp型導電性の制御が特に大きな課題となっているが、基板から混入する不純物の影響はこの課題解決をさらに困難にする。   When zinc oxide crystals with a large amount of impurities are used as the substrate for epitaxial growth, the effects of lattice mismatch and differences in thermal expansion coefficient are reduced, but impurities are mixed into the resulting zinc oxide thin film, which is important for the zinc oxide thin film. Therefore, it is extremely difficult to form a desired device. In the case of a zinc oxide thin film, control of p-type conductivity is a particularly big problem for practical use of the device, but the influence of impurities mixed in from the substrate makes it difficult to solve this problem.

以上述べたように、酸化亜鉛薄膜を用いたデバイスを実用化させるには、高純度でかつ転位等の結晶欠陥の少ない良質のバルクの単結晶を得ることが重要な課題となっている。このような高純度、高品質な酸化亜鉛単結晶を得る方法として気相輸送法を適用することが有効である。気相輸送法とは真空封管した石英管の一端に炭素と酸化亜鉛を装入し、炭素と酸化亜鉛とを加熱し、他端をこれより低い温度に維持し、この部分に酸化亜鉛単結晶を析出させる方法である。   As described above, in order to put a device using a zinc oxide thin film into practical use, it is an important issue to obtain a high-quality bulk single crystal with high purity and few crystal defects such as dislocations. As a method for obtaining such a high purity and high quality zinc oxide single crystal, it is effective to apply a gas phase transport method. In the vapor phase transport method, carbon and zinc oxide are charged into one end of a vacuum-sealed quartz tube, the carbon and zinc oxide are heated, and the other end is maintained at a lower temperature. This is a method for precipitating crystals.

しかしながら、この方法を適用して酸化亜鉛単結晶を成長させると、黄色やオレンジ色に着色した結晶が得られるのが一般的である(非特許文献1参照)。酸化亜鉛結晶は本来無色透明であるが、このような着色があると、例えばエピタキシャル成長させた酸化亜鉛薄膜を基板付きのまま使用する場合に、本来透明である波長領域で光の吸収を引き起こす等、デバイス用基板として用いるには適切でない現象が起こりうる。他方、酸化亜鉛結晶が有する上記光吸収性を必要とする適用分野も存在し、このような用途に適用される酸化亜鉛結晶については所定の色を有することが要求される。
特開2003−264201(第1頁) 特開2003−146800(第1頁) J. M. Ntep et al, Journal of Crystal Growth 207(1999)30-34
However, when zinc oxide single crystals are grown by applying this method, crystals colored yellow or orange are generally obtained (see Non-Patent Document 1). Zinc oxide crystals are essentially colorless and transparent, but if there is such coloration, for example, when using an epitaxially grown zinc oxide thin film with a substrate, it causes light absorption in a wavelength range that is originally transparent, etc. A phenomenon that is not suitable for use as a device substrate may occur. On the other hand, there is an application field that requires the above-described light absorptivity of the zinc oxide crystal, and the zinc oxide crystal applied for such use is required to have a predetermined color.
JP2003-264201 (first page) JP2003-146800 (first page) JM Ntep et al, Journal of Crystal Growth 207 (1999) 30-34

本発明はこのような問題点に着目してなされたもので、その課題とするところは、気相輸送法で成長させた酸化亜鉛結晶の着色について、この着色を任意にかつ精密に制御できる方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the coloring of zinc oxide crystals grown by the vapor transport method can be controlled arbitrarily and precisely. Is to provide.

そこで、本発明者らは上記課題を達成するために酸化亜鉛結晶の着色現象の原因とそれを制御する方法について鋭意研究を重ねた結果、気相輸送法で得られた酸化亜鉛結晶の着色の原因が化学量論組成からのずれに起因することを見出した。さらに、成長後には着色している結晶であっても、適正な組成の蒸気下で酸化亜鉛結晶を加熱処理することによってその酸化亜鉛結晶の化学量論組成からのずれを制御することが可能であることを見出して本発明を完成した。   Accordingly, the present inventors have conducted extensive research on the cause of the coloring phenomenon of zinc oxide crystals and a method for controlling the coloring phenomenon in order to achieve the above-mentioned problems, and as a result, the coloring of zinc oxide crystals obtained by the vapor transport method has been investigated. We found that the cause was due to deviation from the stoichiometric composition. Furthermore, even if the crystals are colored after growth, it is possible to control the deviation from the stoichiometric composition of the zinc oxide crystals by heat-treating the zinc oxide crystals under a vapor having an appropriate composition. As a result, the present invention was completed.

すなわち、請求項1に係る発明は、
酸化亜鉛結晶の熱処理方法を前提とし、
気相輸送法で成長された酸化亜鉛結晶を、酸素または亜鉛を含む蒸気圧下で熱処理して、無色透明または所望の色を有する酸化亜鉛結晶を得ることを特徴とする。
That is, the invention according to claim 1
Assuming a heat treatment method for zinc oxide crystals,
A zinc oxide crystal grown by a vapor transport method is heat-treated under a vapor pressure containing oxygen or zinc to obtain a zinc oxide crystal having colorless and transparent or a desired color.

また、請求項2に係る発明は、
酸化亜鉛結晶の熱処理方法を前提とし、
気相輸送法で成長された有色の酸化亜鉛結晶を、酸素分圧が10−2Pa以上、好ましくは100kPa以下の酸素雰囲気下で温度500〜900℃の条件下で3時間以上熱処理して、無色透明の酸化亜鉛結晶を得ることを特徴とし、
請求項3に係る発明は、
請求項2記載の発明に係る酸化亜鉛結晶の熱処理方法を前提とし、
上記熱処理時間が3〜50時間であることを特徴とする。
The invention according to claim 2
Assuming a heat treatment method for zinc oxide crystals,
A colored zinc oxide crystal grown by a vapor transport method is heat-treated for 3 hours or more under a temperature condition of 500 to 900 ° C. in an oxygen atmosphere having an oxygen partial pressure of 10 −2 Pa or more, preferably 100 kPa or less, Obtaining colorless and transparent zinc oxide crystals,
The invention according to claim 3
Based on the heat treatment method for zinc oxide crystals according to the invention of claim 2,
The heat treatment time is 3 to 50 hours.

次に、請求項4に係る発明は、
酸化亜鉛結晶の熱処理方法を前提とし、
気相輸送法で成長された無色透明または有色の酸化亜鉛結晶を、亜鉛分圧が100Pa以上、好ましくは250kPa以下の亜鉛雰囲気下で温度800〜1000℃の条件下で48時間以上の所定の時間熱処理して、所望の色を有する酸化亜鉛結晶を得ることを特徴とし、
請求項5に係る発明は、
請求項4記載の発明に係る酸化亜鉛結晶の熱処理方法を前提とし、
上記熱処理時間が48〜800時間内の所定の時間であることを特徴とする。
Next, the invention according to claim 4 is:
Assuming a heat treatment method for zinc oxide crystals,
A colorless transparent or colored zinc oxide crystal grown by a vapor transport method is subjected to a predetermined time of 48 hours or more under a condition of a temperature of 800 to 1000 ° C. in a zinc atmosphere having a zinc partial pressure of 100 Pa or more, preferably 250 kPa or less. It is characterized by obtaining a zinc oxide crystal having a desired color by heat treatment,
The invention according to claim 5
Based on the heat treatment method of zinc oxide crystals according to the invention of claim 4,
The heat treatment time is a predetermined time within 48 to 800 hours.

本発明に係る熱処理方法は、気相輸送法で成長された酸化亜鉛結晶に特有な現象であるオレンジ色や赤色の着色を、得られた酸化亜鉛結晶を所定の条件下で熱処理することにより固有欠陥濃度を減少させ、化学量論的組成の無色透明の高品質な酸化亜鉛結晶に改善する方法である。このようにして得られた無色透明の酸化亜鉛結晶を基板として用いて酸化亜鉛薄膜をエピタキシャル成長させると、酸化亜鉛デバイスの作製用の優れた特性を持った酸化亜鉛薄膜が得られる。従って、従来、エピタキシャル成長に適した基板がないために実用化が困難であった酸化亜鉛を用いたデバイスの製造が可能となり、本発明の工業的価値は極めて大きい。   The heat treatment method according to the present invention inherently produces orange or red coloring, which is a phenomenon peculiar to zinc oxide crystals grown by a vapor transport method, by heat-treating the obtained zinc oxide crystals under predetermined conditions. This is a method of reducing the defect concentration and improving to a colorless transparent high-quality zinc oxide crystal having a stoichiometric composition. When the zinc oxide thin film is epitaxially grown using the colorless and transparent zinc oxide crystal thus obtained as a substrate, a zinc oxide thin film having excellent characteristics for producing a zinc oxide device can be obtained. Therefore, it is possible to manufacture a device using zinc oxide, which has been difficult to put to practical use because there is no substrate suitable for epitaxial growth, and the industrial value of the present invention is extremely large.

また、本発明に係る熱処理方法を適用することにより、気相輸送法により得られる結晶の化学量論組成からズレのバラツキにもかかわらずこれらのズレを最小限とすることができるため、着色現象に代表される結晶品質のバラツキが最小限に低減され、酸化亜鉛薄膜成長用基板に適用できる酸化亜鉛結晶を安定して製造できるという効果も有する。   Further, by applying the heat treatment method according to the present invention, these deviations can be minimized despite variations in the stoichiometric composition of crystals obtained by the vapor transport method. The variation in crystal quality represented by the above is reduced to the minimum, and it is possible to stably produce a zinc oxide crystal that can be applied to a substrate for growing a zinc oxide thin film.

更に、本発明に係る熱処理方法によれば、熱処理条件を選定することにより着色度合い、即ち化学量論組成に起因する欠陥の程度を任意にかつ精密に制御できるため、所望の特性を有するエピタキシャル成長用基板の材料となる酸化亜鉛結晶を得ることが可能になる。   Furthermore, according to the heat treatment method of the present invention, the degree of coloration, that is, the degree of defects due to the stoichiometric composition can be arbitrarily and precisely controlled by selecting the heat treatment conditions, and therefore, for epitaxial growth having desired characteristics. It becomes possible to obtain a zinc oxide crystal as a material for the substrate.

以下、本発明の熱処理方法を詳細に説明する。   Hereinafter, the heat treatment method of the present invention will be described in detail.

本発明者らは以下に述べる諸事実、特に実施例より気相輸送法で得られた酸化亜鉛結晶が着色する理由は、得られる酸化亜鉛結晶の組成と酸化亜鉛の化学量論組成とのズレが原因と考えている。すなわち、このズレが小さければ淡いオレンジ色となり、大きくなるに従い、オレンジ色から赤色に変化すると考えている。この関係より、酸化亜鉛結晶の組成を化学量論組成に近づけることができれば、気相輸送法で得られる結晶がオレンジ色や赤色に着色していても、これを無色透明、あるいは、所望の色にすることが可能であると考えている。   The inventors of the present invention described below, particularly the reason why the zinc oxide crystals obtained by the vapor transport method from the examples are colored is the difference between the composition of the obtained zinc oxide crystals and the stoichiometric composition of zinc oxide. I think this is the cause. That is, it is considered that if the deviation is small, the color becomes pale orange, and the color is changed from orange to red as the deviation increases. From this relationship, if the composition of the zinc oxide crystal can be made close to the stoichiometric composition, even if the crystal obtained by the vapor transport method is colored orange or red, it can be colorless and transparent or desired color. I believe it is possible.

本発明の熱処理方法は、気相輸送法で得られた酸化亜鉛結晶を、酸素または亜鉛を含む蒸気圧下で加熱処理することを特徴とする。これにより酸化亜鉛結晶の組成と化学量論組成とのズレを制御する。熱処理条件を選定することにより気相輸送法で得られる結晶がオレンジ色や赤色に着色していても、無色透明、あるいは任意の着色の状態に変えることが可能となる。即ち、熱処理条件を選定することにより、成長状態の僅かな変化によって生じる化学量論組成からのずれに起因する着色現象に代表される酸化亜鉛結晶の諸特性を一定に保つことができ、一定の品質の酸化亜鉛結晶を安定して製造することが可能となる。これにより一定品質のエピタキシャル成長用酸化亜鉛基板を容易に得ることが可能となる。   The heat treatment method of the present invention is characterized in that a zinc oxide crystal obtained by a vapor transport method is heat-treated under a vapor pressure containing oxygen or zinc. This controls the deviation between the composition of the zinc oxide crystals and the stoichiometric composition. By selecting the heat treatment conditions, even if the crystal obtained by the vapor phase transport method is colored orange or red, it can be changed to colorless and transparent or any colored state. That is, by selecting the heat treatment conditions, it is possible to keep constant the various characteristics of the zinc oxide crystal represented by the coloring phenomenon caused by the deviation from the stoichiometric composition caused by a slight change in the growth state. It becomes possible to stably produce quality zinc oxide crystals. This makes it possible to easily obtain a zinc oxide substrate for epitaxial growth having a constant quality.

本発明による熱処理方法は、気相輸送法によって成長された酸化亜鉛結晶に適用されるものであるが、その結晶の形態や大きさ、方位等によって制限されるものではない。また、他の成長法、例えば水熱合成法等で得られた酸化亜鉛結晶であっても、その着色が化学量論組成からのズレが原因で生じている着色であれば、本発明の熱処理方法を適用することにより本発明と同様の効果が得られることは明らかである。   The heat treatment method according to the present invention is applied to a zinc oxide crystal grown by a vapor transport method, but is not limited by the form, size, orientation, or the like of the crystal. In addition, even in the case of zinc oxide crystals obtained by other growth methods such as hydrothermal synthesis method, if the coloration is caused by deviation from the stoichiometric composition, the heat treatment of the present invention It is clear that the same effect as the present invention can be obtained by applying the method.

酸化亜鉛結晶の熱処理に用いる容器は、所望の熱処理温度において機械的な強度が充分であり、かつ化学的にも安定で有害な不純物汚染が無い材質であれば良く、この限りにおいて特に限定されるものではないが、石英を用いることが好ましい。   The container used for the heat treatment of the zinc oxide crystal may be any material that has sufficient mechanical strength at the desired heat treatment temperature and is chemically stable and free from harmful impurity contamination. Although it is not a thing, it is preferable to use quartz.

熱処理を行うための加熱装置は、所望の熱処理温度と酸化亜鉛結晶を均一に加熱しうる温度分布が得られる装置であれば良く、特に限定されるものではないが、抵抗加熱装置が安価で温度制御も容易であり、好ましい。   The heating apparatus for performing the heat treatment is not particularly limited as long as it can obtain a desired heat treatment temperature and a temperature distribution capable of uniformly heating the zinc oxide crystal. Control is also easy and preferable.

熱処理を行う温度において構成成分の蒸気圧を制御するには、いくつかの方法を用いることが出来る。酸素雰囲気下で熱処理を行うには開管系にて酸素ガスを流しながら酸化亜鉛結晶を熱しても良く、又は酸素を封じた閉管内で結晶を熱しても良い。
また、亜鉛雰囲気下で熱処理を行うには亜鉛と酸化亜鉛を共に真空封管し熱する。温度を選定することで封管内の亜鉛蒸気圧を制御し適した亜鉛ガス分圧で熱処理を行うことができる。
Several methods can be used to control the vapor pressure of the constituents at the temperature at which the heat treatment is performed. In order to perform the heat treatment in an oxygen atmosphere, the zinc oxide crystal may be heated while flowing an oxygen gas in an open tube system, or the crystal may be heated in a closed tube sealed with oxygen.
In order to perform heat treatment in a zinc atmosphere, both zinc and zinc oxide are sealed in a vacuum and heated. By selecting the temperature, the zinc vapor pressure in the sealed tube can be controlled and heat treatment can be performed at a suitable zinc gas partial pressure.

酸素雰囲気下での熱処理の場合、500〜900℃、3時間以上好ましくは50時間以下の条件にて熱処理することにより、オレンジ色や赤色に着色している酸化亜鉛結晶を無色透明に変化させることが出来る。500℃未満の場合には酸素原子が酸化亜鉛結晶に取り込まれず、無色透明にすることができない。また、900℃を超えると酸素が過剰に入りやすくなることに加え、結晶内の原子同士の結合が切れ格子欠陥が誘起され易くなり、好ましくない。   In the case of heat treatment in an oxygen atmosphere, the zinc oxide crystal colored orange or red is changed to colorless and transparent by heat treatment under conditions of 500 to 900 ° C., 3 hours or more, preferably 50 hours or less. I can do it. When the temperature is lower than 500 ° C., oxygen atoms are not taken into the zinc oxide crystal and cannot be made colorless and transparent. Moreover, when it exceeds 900 degreeC, in addition to oxygen becoming easy to enter excessively, the bond between atoms in a crystal breaks and it becomes easy to induce a lattice defect, and is not preferable.

また、前記温度範囲に設定したとしても、熱処理時間が3時間未満であると同様に酸素原子が十分取り込まれず、酸化亜鉛結晶を無色透明とすることができない。熱処理時間は熱処理される酸化亜鉛結晶の着色と関連し、赤色に着色している場合には十分な熱処理時間が必要とされるが、概ね50時間熱処理すればこれも無色透明とすることができる。このことは、熱処理される酸化亜鉛結晶の色、即ち酸化亜鉛結晶の現実の化学組成と化学量論的組成とのズレに応じて熱処理条件を選定し、所望の色の酸化亜鉛結晶を得ることが可能であることを示している。   Even when the temperature range is set, if the heat treatment time is less than 3 hours, oxygen atoms are not sufficiently taken in and the zinc oxide crystal cannot be made colorless and transparent. The heat treatment time is related to the coloration of the zinc oxide crystal to be heat treated, and when it is colored red, a sufficient heat treatment time is required, but if it is heat treated for about 50 hours, it can also be made colorless and transparent. . This means that the heat treatment conditions are selected according to the color of the zinc oxide crystal to be heat treated, that is, the deviation between the actual chemical composition and the stoichiometric composition of the zinc oxide crystal, and the zinc oxide crystal of the desired color is obtained. Indicates that it is possible.

また、無色透明の酸化亜鉛結晶を、亜鉛蒸気圧雰囲気中で800〜1000℃、48時間以上好ましくは800時間以下の条件で熱処理することにより、着色させることができる。800℃未満の場合には亜鉛原子が酸化亜鉛結晶に取り込まれず、着色させることができない。また、1000℃を超えると亜鉛が過剰に入りやすくなることに加え、結晶内の原子同士の結合が切れ格子欠陥が誘起され易くなり、好ましくない。   Further, the colorless and transparent zinc oxide crystal can be colored by heat treatment in a zinc vapor pressure atmosphere at 800 to 1000 ° C. for 48 hours or more, preferably 800 hours or less. When the temperature is lower than 800 ° C., zinc atoms are not taken into the zinc oxide crystal and cannot be colored. Moreover, when it exceeds 1000 degreeC, in addition to zinc becoming easy to enter excessively, the coupling | bonding of the atoms in a crystal | crystallization will break | disconnect and it will become easy to induce a lattice defect, and is not preferable.

また、前記温度範囲に設定したとしても、熱処理時間が48時間未満であると同様に亜鉛原子が十分取り込まれず、酸化亜鉛結晶を有色とすることができない。熱処理時間は熱処理後の酸化亜鉛結晶の着色と関連し、オレンジ色に着色させるには48〜50時間程度で良く、赤色に着色させる場合にはさらに長い熱処理時間が必要とされるが、概ね800時間熱処理すればこれも可能である。このことは、求める熱処理後の酸化亜鉛結晶の色、即ち求める酸化亜鉛結晶の化学組成と化学量論的組成とのズレに応じて熱処理条件を選定し、所望の色の酸化亜鉛結晶を得ることが可能であることを示している。   Even if the temperature range is set, if the heat treatment time is less than 48 hours, zinc atoms are not sufficiently taken in, and the zinc oxide crystal cannot be colored. The heat treatment time is related to the coloration of the zinc oxide crystal after the heat treatment, and it may be about 48 to 50 hours for the orange coloration. In the case of the red coloration, a longer heat treatment time is required. This can be achieved by heat treatment for a long time. This means that the heat treatment conditions are selected according to the desired color of the zinc oxide crystal after the heat treatment, that is, the deviation between the chemical composition and the stoichiometric composition of the desired zinc oxide crystal, and the zinc oxide crystal of the desired color is obtained. Indicates that it is possible.

以下に、本発明の実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものでは無い。   EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples.

炭素を輸送剤として用いた気相輸送法により成長された、約2.5mm角の酸化亜鉛結晶を試料として用い本発明の熱処理方法の検証を行った。この酸化亜鉛結晶は図1の写真図に示すような形態を有し、成長直後の結晶はオレンジ色に着色していた。   The heat treatment method of the present invention was verified using a zinc oxide crystal of about 2.5 mm square grown by a vapor phase transport method using carbon as a transport agent as a sample. This zinc oxide crystal had a form as shown in the photograph of FIG. 1, and the crystal immediately after growth was colored orange.

この結晶を、酸素ガスを300ml/minの割合で流した直径10mmの石英管中に置き、900℃の温度にて3時間熱処理を行った。この時、900℃の均熱部の長さは30mmであり、酸化亜鉛結晶はこの均熱部の中央に設けた。   This crystal was placed in a quartz tube having a diameter of 10 mm in which oxygen gas was flowed at a rate of 300 ml / min, and heat-treated at a temperature of 900 ° C. for 3 hours. At this time, the length of the soaking part at 900 ° C. was 30 mm, and the zinc oxide crystal was provided at the center of this soaking part.

得られた酸化亜鉛結晶は図2の写真図に示すような形態で無色透明に変化していた。   The obtained zinc oxide crystals were colorless and transparent in the form as shown in the photograph of FIG.

温度を700℃とし熱処理時間を12時間とした以外は実施例1と同様にしてオレンジ色に着色した酸化亜鉛結晶を加熱処理した。   Zinc oxide crystals colored orange were heat-treated in the same manner as in Example 1 except that the temperature was 700 ° C. and the heat treatment time was 12 hours.

得られた結晶は実施例1と同様に無色透明に変化していた。   The obtained crystal was changed to colorless and transparent as in Example 1.

温度を500℃とし熱処理時間を48時間とした以外は実施例1と同様にしてオレンジ色に着色した酸化亜鉛結晶を加熱処理した。   Zinc oxide crystals colored orange were heat-treated in the same manner as in Example 1 except that the temperature was 500 ° C. and the heat treatment time was 48 hours.

得られた結晶は実施例1と同様に無色透明に変化していた。   The obtained crystal was changed to colorless and transparent as in Example 1.

温度を450℃とし熱処理時間を100時間とした以外は実施例1と同様にしてオレンジ色に着色した酸化亜鉛結晶を加熱処理した。   The zinc oxide crystals colored orange were heat-treated in the same manner as in Example 1 except that the temperature was 450 ° C. and the heat treatment time was 100 hours.

得られた結晶は薄いオレンジ色となっていた。   The obtained crystal was light orange.

温度を1000℃とし熱処理時間を3時間とした以外は実施例1と同様にしてオレンジ色に着色した酸化亜鉛結晶を加熱処理した。   Zinc oxide crystals colored orange were heat-treated in the same manner as in Example 1 except that the temperature was 1000 ° C. and the heat treatment time was 3 hours.

得られた結晶はオレンジ色で変化しなかった。   The obtained crystals were orange and did not change.

石英管にオレンジ色に着色した酸化亜鉛結晶を入れ、真空にしてから2.5×10−3Paになる様に酸素ガスを充填し封管した。それを900℃の温度にて5時間熱処理を行った。温度が上昇することにより管内の酸素圧も上昇する。900℃にて酸素圧は10−2Paとなっている。得られた結晶は実施例1と同様に無色透明になっていた。 A zinc oxide crystal colored orange was put into a quartz tube, and after evacuating, it was filled with oxygen gas so as to be 2.5 × 10 −3 Pa and sealed. It was heat-treated at 900 ° C. for 5 hours. As the temperature increases, the oxygen pressure in the tube also increases. At 900 ° C., the oxygen pressure is 10 −2 Pa. The obtained crystals were colorless and transparent as in Example 1.

この結果より、減圧下であっても酸素が存在していれば本発明の熱処理が有効であることが確認される。   This result confirms that the heat treatment of the present invention is effective if oxygen is present even under reduced pressure.

長手方向に窪みを設けて上下二室となるようにした管の上段に実施例1で得られた無色透明の酸化亜鉛結晶を入れ、金属亜鉛を下段に入れ、酸化亜鉛結晶と金属亜鉛とが接触しないようにした。この管を真空封管し、管の下段、上段共に900℃にて48時間熱処理を行った。なお、この時の亜鉛蒸気圧は蒸気圧表より100kPaと思われる。   The colorless and transparent zinc oxide crystal obtained in Example 1 is placed in the upper stage of a pipe provided with a depression in the longitudinal direction so as to have two upper and lower chambers, and the metallic zinc is placed in the lower stage. I tried not to touch it. This tube was vacuum-sealed, and heat treatment was performed at 900 ° C. for 48 hours in both the lower and upper tubes. The zinc vapor pressure at this time seems to be 100 kPa from the vapor pressure table.

得られた結晶は図3の写真図に示すような形態でオレンジ色のものであった。   The obtained crystal was orange in the form as shown in the photograph of FIG.

管の下段、上段共に1000℃とし熱処理時間を48時間とした以外は実施例6と同様にして無色透明の酸化亜鉛結晶を加熱処理した。なお、この時の亜鉛蒸気圧は蒸気圧表より230kPaと思われる。   A colorless and transparent zinc oxide crystal was heat-treated in the same manner as in Example 6 except that both the lower and upper tubes were 1000 ° C. and the heat treatment time was 48 hours. The zinc vapor pressure at this time seems to be 230 kPa from the vapor pressure table.

得られた結晶はオレンジ色となっていた。   The obtained crystal was orange.

管の下段、上段共に800℃とし熱処理時間を100時間とした以外は実施例6と同様にして無色透明の酸化亜鉛結晶を加熱処理した。なお、この時の亜鉛蒸気圧は蒸気圧表より30kPaと思われる。   A colorless and transparent zinc oxide crystal was heat-treated in the same manner as in Example 6 except that the lower and upper stages of the tube were set to 800 ° C. and the heat treatment time was set to 100 hours. The zinc vapor pressure at this time seems to be 30 kPa from the vapor pressure table.

得られた結晶はオレンジ色となっていた。   The obtained crystal was orange.

温度を管の上段、下段共に700℃とし熱処理時間を1600時間とした以外は実施例6と同様にして無色透明の酸化亜鉛結晶を加熱処理した。なお、この時の亜鉛蒸気圧は蒸気圧表より8kPaと思われる。   A colorless and transparent zinc oxide crystal was heat-treated in the same manner as in Example 6 except that the temperature was 700 ° C. for both the upper and lower tubes and the heat treatment time was 1600 hours. The zinc vapor pressure at this time seems to be 8 kPa from the vapor pressure table.

得られた結晶は変化なくほぼ透明であった。   The obtained crystals were almost transparent with no change.

二段の電気炉を用い、管の下段を500℃、上段を1000℃とし熱処理時間を48時間とした以外は実施例6と同様にして無色透明の酸化亜鉛結晶を加熱処理した。なお、この時の亜鉛蒸気圧は蒸気圧表より180Paと思われる。   A colorless and transparent zinc oxide crystal was heat-treated in the same manner as in Example 6 except that a two-stage electric furnace was used, the lower stage of the tube was 500 ° C., the upper stage was 1000 ° C., and the heat treatment time was 48 hours. The zinc vapor pressure at this time seems to be 180 Pa from the vapor pressure table.

得られた結晶はオレンジ色となっていた。   The obtained crystal was orange.

この結果より、減圧下であっても本発明の熱処理が有効であることが確認される。   This result confirms that the heat treatment of the present invention is effective even under reduced pressure.

「確 認」
このように酸化亜鉛結晶の着色現象は化学量論組成からのズレに起因するものであり、各実施例に係る熱処理により、このような着色現象あるいは化学量論組成のずれによる結晶欠陥を可逆的に制御できることが確認された。
"Confirmation"
As described above, the coloring phenomenon of the zinc oxide crystal is caused by the deviation from the stoichiometric composition, and the crystal defects due to the coloring phenomenon or the deviation of the stoichiometric composition are reversibly caused by the heat treatment according to each example. It was confirmed that it can be controlled.

気相輸送法による成長直後の酸化亜鉛結晶を写した写真図。The photograph which copied the zinc oxide crystal immediately after the growth by the vapor-phase transport method. 酸素雰囲気熱処理後の酸化亜鉛結晶を写した写真図。The photograph which copied the zinc oxide crystal after oxygen atmosphere heat processing. 亜鉛雰囲気熱処理後の酸化亜鉛結晶を写した写真図。A photograph showing a zinc oxide crystal after heat treatment in a zinc atmosphere.

Claims (5)

気相輸送法で成長された酸化亜鉛結晶を、酸素または亜鉛を含む蒸気圧下で熱処理して、無色透明または所望の色を有する酸化亜鉛結晶を得ることを特徴とする酸化亜鉛結晶の熱処理方法。   A method of heat treating a zinc oxide crystal, characterized in that a zinc oxide crystal grown by a vapor transport method is heat-treated under a vapor pressure containing oxygen or zinc to obtain a zinc oxide crystal which is colorless and transparent or has a desired color. 気相輸送法で成長された有色の酸化亜鉛結晶を、酸素分圧が10−2Pa以上の酸素雰囲気下で温度500〜900℃の条件下で3時間以上熱処理して、無色透明の酸化亜鉛結晶を得ることを特徴とする酸化亜鉛結晶の熱処理方法。 Colored and transparent zinc oxide crystals grown by vapor-phase transport method are heat-treated for 3 hours or more under a temperature condition of 500 to 900 ° C. in an oxygen atmosphere having an oxygen partial pressure of 10 −2 Pa or more. A method for heat treatment of zinc oxide crystals, characterized in that crystals are obtained. 上記熱処理時間が3〜50時間であることを特徴とする請求項2記載の酸化亜鉛結晶の熱処理方法。   The method for heat treatment of zinc oxide crystals according to claim 2, wherein the heat treatment time is 3 to 50 hours. 気相輸送法で成長された無色透明または有色の酸化亜鉛結晶を、亜鉛分圧が100Pa以上の亜鉛雰囲気下で温度800〜1000℃の条件下で48時間以上の所定の時間熱処理して、所望の色を有する酸化亜鉛結晶を得ることを特徴とする酸化亜鉛結晶の熱処理方法。   A colorless transparent or colored zinc oxide crystal grown by a vapor transport method is heat-treated in a zinc atmosphere having a zinc partial pressure of 100 Pa or more and a temperature of 800 to 1000 ° C. for a predetermined time of 48 hours or more. A method for heat treatment of zinc oxide crystals, characterized in that the zinc oxide crystals having the following colors are obtained. 上記熱処理時間が48〜800時間内の所定の時間であることを特徴とする請求項4記載の酸化亜鉛結晶の熱処理方法。   5. The method for heat treatment of zinc oxide crystals according to claim 4, wherein the heat treatment time is a predetermined time within 48 to 800 hours.
JP2004092468A 2004-03-26 2004-03-26 Heat treatment method of zinc oxide crystal Pending JP2005272283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092468A JP2005272283A (en) 2004-03-26 2004-03-26 Heat treatment method of zinc oxide crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092468A JP2005272283A (en) 2004-03-26 2004-03-26 Heat treatment method of zinc oxide crystal

Publications (1)

Publication Number Publication Date
JP2005272283A true JP2005272283A (en) 2005-10-06

Family

ID=35172335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092468A Pending JP2005272283A (en) 2004-03-26 2004-03-26 Heat treatment method of zinc oxide crystal

Country Status (1)

Country Link
JP (1) JP2005272283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068535A1 (en) * 2013-11-06 2015-05-14 三井金属鉱業株式会社 Sputtering target and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068535A1 (en) * 2013-11-06 2015-05-14 三井金属鉱業株式会社 Sputtering target and method for producing same
CN105705673A (en) * 2013-11-06 2016-06-22 三井金属矿业株式会社 Sputtering target and method for producing same
TWI619818B (en) * 2013-11-06 2018-04-01 三井金屬鑛業股份有限公司 Sputtering target and method for producing the same

Similar Documents

Publication Publication Date Title
CN1610138B (en) Group-III-element nitride crystal semiconductor device
KR101302845B1 (en) Method of surface reconstruction for silicon carbide substrate
JP2009517329A (en) Low defect large aluminum nitride crystal and method for producing the same
CN110373718B (en) Preparation method of two-dimensional tungsten disulfide film
TW200424128A (en) β-ga203 type single crystal growth method, thin film type single crystal growth method, ga2o3 type light emitting device and manufacturing method thereof
JP2001044123A (en) Method for growing semiconductor layer
JP2005272283A (en) Heat treatment method of zinc oxide crystal
JP2008285401A (en) Method for manufacturing group iii nitride single crystal substrate, and stacked substrate obtained by stacking group iii nitride single crystal substrate
JP2003300798A (en) Method and apparatus for growing group iii nitride crystal
JP2003286098A (en) Method and apparatus for growing group iii nitride crystal
JPH01232732A (en) Semiconductor crystal manufacturing process
Mimila et al. Sublimation and chemical vapor transport, a new method for the growth of bulk ZnSe crystals
JP4410734B2 (en) Method for growing zinc oxide crystals
JP4776460B2 (en) Method for forming AlN single crystal film
JP4936829B2 (en) Method for growing zinc oxide crystals
JP4366224B2 (en) Method for growing zinc oxide crystals
KR101168655B1 (en) Enhancing method of optical property of gallium nitride wafer
TW201414888A (en) A method for fabricating III-nitride with zinc-blende structure and an epitaxy structure having III-nitride with zinc-blende structure
JP2006135032A (en) Group iii nitride single-crystal wafer, method of manufacturing group iii nitride semiconductor device using it, and semiconductor device obtained thereby
JP2002053397A (en) Nitride crystal and method for producing the same
JP2008184360A (en) Nitride semiconductor single crystal
JPH01234400A (en) Semiconductor crystal
JP5248452B2 (en) Zinc oxide single crystal growth method
JP2005239517A (en) Gallium oxide single crystal composite body and its manufacturing method
JP5424476B2 (en) Single crystal substrate, manufacturing method thereof, semiconductor thin film formed on the single crystal substrate, and semiconductor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Effective date: 20081015

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081021

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081218

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421