JP2005272152A - Method for producing bottomed tubular ceramic body - Google Patents

Method for producing bottomed tubular ceramic body Download PDF

Info

Publication number
JP2005272152A
JP2005272152A JP2004083518A JP2004083518A JP2005272152A JP 2005272152 A JP2005272152 A JP 2005272152A JP 2004083518 A JP2004083518 A JP 2004083518A JP 2004083518 A JP2004083518 A JP 2004083518A JP 2005272152 A JP2005272152 A JP 2005272152A
Authority
JP
Japan
Prior art keywords
molded body
firing
bottomed tubular
tubular ceramic
formed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083518A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Oshima
和喜 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004083518A priority Critical patent/JP2005272152A/en
Publication of JP2005272152A publication Critical patent/JP2005272152A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a bottomed tubular ceramic body 1 in high productivity and yield by which the occurrence of cracks caused by biting at the time of firing and insufficient dewaxing of a binder is prevented and also the occurrence of falling-down or reaction is prevented. <P>SOLUTION: In a method for firing a bottomed tubular ceramic formed body 1a having a curved bottom face 8 while allowing an opening face 2 to direct downward, the opening face 2 of the formed body 1a is mounted on a supporting table 3 having at least one communication hole 3a communicating with the outside, and a firing tool 9 constituted of a column support part 4 having the same coefficient of thermal expansion as that of the formed body 1a, and a bottom supporting part 5 being provided at the tip end of the column support part 4 and having a curved face for supporting the bottom face 8 of the formed body 1a is arranged in a vertically standing condition in the tube of the formed body 1a. At this time, the firing tool 9 is arranged so that it is apart from the formed body 1a within a low temperature region of the firing temperature, and the bottom supporting part 5 is brought into contact with the bottom face 8 of the formed body 1a when the shrinkage of the formed body 1a is completed at a high temperature region. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有底管状セラミックス体を焼成治具を用いて焼成する方法に関するものである。   The present invention relates to a method for firing a bottomed tubular ceramic body using a firing jig.

従来より図6(a)の斜視図、同図(b)に断面図を示すような、一端が有底で他端が開口している有底管状セラミック体1は、溶湯部品や耐熱部品の保護管等として使用されている。   A bottomed tubular ceramic body 1 having a bottom at one end and an opening at the other end as shown in a perspective view of FIG. 6A and a cross-sectional view of FIG. It is used as a protective tube.

このような有底管状セラミック体1は、長尺形状でその肉厚も薄いことから、変形し易いため、成形体を焼成する際には焼成治具を用いて焼成する方法が用いられていた。   Since such a bottomed tubular ceramic body 1 is long and thin, and easily deforms, a method of firing using a firing jig has been used when firing the molded body. .

例えば、図4(a)示すように、基台6に支持台33を載せ、成形体1aの開口面2を支持台33側として、その内側に有底管状セラミック体1となる焼結体1bより熱膨張係数の大きな管状の芯材34を配置し、この芯材34を覆うように隙間をあけて成形体1aを被せて配置して焼成する。   For example, as shown in FIG. 4A, a support base 33 is placed on a base 6, the opening surface 2 of the molded body 1a is set to the support base 33 side, and a sintered body 1b that becomes a bottomed tubular ceramic body 1 inside thereof. A tubular core material 34 having a larger coefficient of thermal expansion is disposed, and the molded body 1a is placed with a gap so as to cover the core material 34, and then fired.

このとき焼成前に成形体1aを配置した段階では、成形体1aの底面側に位置する芯材34の支持部35は、成形体1aに当接せず、焼成段階における成形体1aの収縮によって図4(b)に示すように芯材34の支持部35に当接する。成形体1aの収縮によって焼結が進むと開口面2は支持台33より離れて持ち上がり、高温域では芯材34の支持部35に焼結体1bが支持され、焼成が終了して低温域になる段階で熱膨張係数の大きな芯材34が縮み、有底管状セラミック体1の焼結体1bとの間に隙間37が生じ、焼結体1bを芯材34より外して焼結体1bを得ることが提案されている(特許文献1参照)。   At this time, at the stage where the molded body 1a is arranged before firing, the support portion 35 of the core member 34 located on the bottom surface side of the molded body 1a does not contact the molded body 1a, and is contracted by the molded body 1a in the firing stage. As shown in FIG. 4B, it abuts on the support portion 35 of the core member 34. When the sintering proceeds due to the shrinkage of the molded body 1a, the opening surface 2 is lifted away from the support base 33, and the sintered body 1b is supported by the support portion 35 of the core material 34 in the high temperature region. At this stage, the core material 34 having a large thermal expansion coefficient shrinks, and a gap 37 is formed between the bottomed tubular ceramic body 1 and the sintered body 1b, and the sintered body 1b is removed from the core material 34 to remove the sintered body 1b. It has been proposed to obtain (see Patent Document 1).

また、図5(a)に示すように有底管状セラミック体1の成形体1aの開口面2を支持台33側として、有底管状セラミック体1となる焼結体1bより熱膨張係数の大きなセラミック成形体からなる芯材34を内部に配置したもの、同様に有底管状セラミック体1となる焼結体1bより熱膨張係数の大きな金属からなる芯材34を内部に配置し、その焼成段階において成形体1aが収縮し、高温域でその内面の少なくとも一部が芯材34に内接して矯正され、その後焼成が終了して低温域になる段階で熱膨張係数の大きな芯材34が縮み、有底管状セラミック体1となる焼結体1bとの間に隙間37が生じ、焼結体1bを芯材34より外して焼結体1bを得ることが提案されている(特許文献2、3参照)。   Further, as shown in FIG. 5 (a), with the opening surface 2 of the molded body 1a of the bottomed tubular ceramic body 1 as the support base 33 side, the thermal expansion coefficient is larger than that of the sintered body 1b that becomes the bottomed tubular ceramic body 1. A core material 34 made of a ceramic molded body is disposed inside, and similarly, a core material 34 made of a metal having a larger thermal expansion coefficient than the sintered body 1b to be the bottomed tubular ceramic body 1 is disposed inside, and a firing stage thereof. In step 1, the molded body 1 a contracts, and at least a part of the inner surface thereof is inscribed in the core material 34 in the high temperature range and is corrected. It has been proposed that a gap 37 is formed between the bottomed tubular ceramic body 1 and the sintered body 1b, and the sintered body 1b is obtained by removing the sintered body 1b from the core material 34 (Patent Document 2, 3).

このような焼成治具を用いて焼成することで、焼成時に発生する反りや真円度不良を低減し、寸法精度に優れた有底管状セラミック体1を製造できるものである。
特開2000−86351号公報 特開2000−86352号公報 特開2000−86355号公報
By firing using such a firing jig, it is possible to produce a bottomed tubular ceramic body 1 having excellent dimensional accuracy by reducing warpage and roundness failure generated during firing.
JP 2000-86351 A JP 2000-86352 A JP 2000-86355 A

しかしながら、図4、図5に示すような焼成治具を用いた焼成方法では、高温域において成形体1aが収縮することにより、芯材34の支持部35に成形体1aが当接した際に、開口面2が支持台33より持ち上がる構造となっているため、成形体1aの底面に引っ張り応力が作用しクラックが発生しやすいという問題があった。   However, in the firing method using the firing jig as shown in FIGS. 4 and 5, when the molded body 1 a comes into contact with the support portion 35 of the core member 34 due to the contraction of the molded body 1 a in the high temperature range. Further, since the opening surface 2 is lifted from the support base 33, there is a problem that a tensile stress acts on the bottom surface of the molded body 1a and a crack is easily generated.

また、平滑な支持台33に、成形体1aの開口面2を配置しており、焼成段階の初期に成形助剤であるバインダーが揮発してガスとなるが、このガスが成形体1aの内部に残ったまま高温域に達してしまうため、バインダーの脱脂不足により成形体1aにクラックが発生しやすいという問題があった。   Moreover, the opening surface 2 of the molded body 1a is disposed on the smooth support base 33, and the binder as a molding aid volatilizes into a gas at the initial stage of the firing stage. This gas is converted into the interior of the molded body 1a. Therefore, there is a problem that cracks are easily generated in the molded body 1a due to insufficient degreasing of the binder.

さらに、成形体1aの収縮を芯材34により矯正して焼成する方法では、芯材34への噛み込みが一定にはならないため、時には強く矯正されて噛み込みが強く、隙間37がなくなると、クラックの発生や成形体1aから芯材34が抜けなくなる恐れがある。   Furthermore, in the method of correcting and shrinking the shrinkage of the molded body 1a with the core material 34, since the biting into the core material 34 is not constant, sometimes it is strongly corrected and the biting is strong, and the gap 37 is eliminated. There is a possibility that the core material 34 may not come off from the occurrence of cracks or the molded body 1a.

さらに、芯材34がセラミック成形体からなる場合は、芯材34の強度が低いために有底管状セラミック体1の成形体1aの自重を抑えることができずに倒れが発生しやすく、また芯材34をなるセラミック成形体と有底管状セラミック体1の成形体1aが接触した場合、相互が収縮しながら焼結していくため、噛み込みが強くなり芯材34が抜けなくなる場合が生じるという問題があった。   Further, when the core material 34 is made of a ceramic molded body, the strength of the core material 34 is low, so that the weight of the molded body 1a of the bottomed tubular ceramic body 1 cannot be suppressed, and collapse easily occurs. When the ceramic molded body comprising the material 34 and the molded body 1a of the bottomed tubular ceramic body 1 are in contact with each other, they are sintered while contracting each other. There was a problem.

またさらに、金属からなる芯材34を用いた場合は、上記問題の他に有底管状セラミック体1の成形体1aと反応するという問題がある。例えば、芯材34が白金、白金−ロジウム合金、熱基耐熱合金、ニッケル基耐熱合金、コバルト基耐熱合金からなる場合、高温で溶融しセラミックスとの反応が発生する。一般的にこれらの金属は、焼成炉中に溶出して炉を傷めることがあるため、炉中へは入れないことが知られている。   Furthermore, when the metal core material 34 is used, there is a problem that it reacts with the molded body 1a of the bottomed tubular ceramic body 1 in addition to the above problems. For example, when the core material 34 is made of platinum, a platinum-rhodium alloy, a heat-base heat-resistant alloy, a nickel-base heat-resistant alloy, or a cobalt-base heat-resistant alloy, it melts at a high temperature and a reaction with ceramics occurs. In general, it is known that these metals are not allowed to enter the furnace because they may elute into the firing furnace and damage the furnace.

本発明は、上述の課題に鑑みなされたものであって、その目的は有底管状セラミック体1の製造方法において、焼成時の噛み込みやバインダーの脱脂不足によるクラックの発生を防ぎ、また倒れや反応の発生を防ぐことで、生産性や歩留まりの良い有底管状セラミック体の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to prevent cracking due to biting during firing and insufficient degreasing of the binder in the manufacturing method of the bottomed tubular ceramic body 1, An object of the present invention is to provide a method for producing a bottomed tubular ceramic body with good productivity and yield by preventing the occurrence of reaction.

上記問題に鑑み、本発明の有底管状セラミック体の製造方法は、曲面状の底面を有し、セラミックスからなる有底管状の成形体を、その開口面を下方に向けて焼成する方法であって、上記成形体の開口面を、少なくとも1つの外部と連通する連通孔を有する支持台上に載置し、成形体の管内に、該成形体と熱膨張係数が同一な支柱部および該支柱部の先端に成形体の底面を支持するための曲面を備えた底面支持部とからなる焼成治具を垂直に立設するとともに、焼成温度の低温域において上記焼成治具と成形体とが離間した状態とし、高温域において成形体の収縮が完了することにより、上記底面支持部と成形体の底面とが当接することを特徴とする。   In view of the above problems, the method for producing a bottomed tubular ceramic body of the present invention is a method of firing a bottomed tubular molded body having a curved bottom surface and made of ceramics with the opening surface facing downward. The opening surface of the molded body is placed on a support base having a communication hole communicating with at least one outside, and a strut portion having the same thermal expansion coefficient as the molded body and the strut are placed in a tube of the molded body. A firing jig comprising a bottom surface supporting portion having a curved surface for supporting the bottom surface of the molded body at the tip of the section is vertically erected, and the firing jig and the molded body are separated in a low temperature range of the firing temperature. When the shrinkage of the molded body is completed in the high temperature range, the bottom surface supporting portion and the bottom surface of the molded body are in contact with each other.

また、上記底面支持部が曲面状の先端面と、該先端面に連続し、外周側に傾斜したテーパ部とからなることを特徴とする。   In addition, the bottom surface support portion includes a curved tip surface and a tapered portion that is continuous with the tip surface and is inclined toward the outer periphery.

さらに、上記焼成治具における支柱部と底面支持部とを分割構造としたことを特徴とする。   Further, the supporting column and the bottom support in the firing jig have a divided structure.

本発明の有底管状セラミック体の製造方法によれば、成形体の開口面を、少なくとも1つの外部と連通する連通孔を有する支持台上に載置し、成形体の管内に、該成形体と熱膨張係数が同一な支柱部および該支柱部の先端に成形体の底面を支持するための曲面を備えた底面支持部とからなる焼成治具を垂直に立設するとともに、焼成温度の低温域において上記焼成治具と成形体とが離間した状態とし、高温域において成形体の収縮が完了することにより、上記底面支持部と成形体の底面とが当接することから、焼成時のバインダーの脱脂不足を解消し、また収縮率の変動によって成形体に焼成治具が噛み込むことを防止できるため、クラックの発生を低減させ、寸法精度の高い有底管状セラミック体を得ることができる。   According to the method for producing a bottomed tubular ceramic body of the present invention, the opening surface of the molded body is placed on a support base having a communication hole communicating with at least one outside, and the molded body is placed in the tube of the molded body. And a supporting jig having the same thermal expansion coefficient and a bottom supporting part having a curved surface for supporting the bottom surface of the molded body at the tip of the supporting part. When the firing jig and the molded body are separated from each other in the region, and the shrinkage of the molded body is completed in the high temperature region, the bottom support portion and the bottom surface of the molded body come into contact with each other. Since the lack of degreasing can be eliminated and the firing jig can be prevented from biting into the molded body due to fluctuations in the shrinkage rate, the occurrence of cracks can be reduced and a bottomed tubular ceramic body with high dimensional accuracy can be obtained.

また、上記底面支持部が曲面状の先端面と、該先端面に連続し、外周側に傾斜したテーパ部とからなることから、成形体と接する底面支持部の収縮による噛み込みをさらに抑えることができるため、噛み込みによるクラックの発生をより有効に防止でき、焼成治具を容易に取り外すことができる。   In addition, since the bottom surface support portion includes a curved front end surface and a tapered portion that is continuous with the front end surface and is inclined to the outer peripheral side, the biting due to the contraction of the bottom surface support portion in contact with the molded body is further suppressed. Therefore, the generation of cracks due to biting can be more effectively prevented, and the firing jig can be easily removed.

さらに、上記焼成治具における支柱部と底面支持部とを分割構造としたことにより、有底管状セラミック体となる成形体の収縮率の変動に合わせて、高さを調節できるため、噛み込みを抑えるとともに変形を防止でき、寸法精度の高い有底管状セラミック体を得ることができる。   Furthermore, since the strut portion and the bottom support portion in the firing jig have a split structure, the height can be adjusted in accordance with the fluctuation of the shrinkage rate of the molded body that becomes the bottomed tubular ceramic body, so that the biting is performed. A bottomed tubular ceramic body with high dimensional accuracy can be obtained while suppressing deformation and preventing deformation.

以下、本発明の実施形態を図面を参照して説明する
本発明の有底管状セラミック体1の製造方法について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. A method for producing a bottomed tubular ceramic body 1 of the present invention will be described.

先ず、窒化珪素、アルミナ、炭化珪素等のセラミック原料からなる粉末に、成形助剤を添加、混合して、例えば、有底管状セラミック体1の内径の形状を模した金属製の芯金を有する湿式静水圧成形用のゴム型内に充填し、これに約100MPaの成形圧力を加えて成形する。   First, a molding aid is added to and mixed with a powder made of a ceramic raw material such as silicon nitride, alumina, silicon carbide, etc., for example, to have a metal core bar that simulates the shape of the inner diameter of the bottomed tubular ceramic body 1 A rubber mold for wet isostatic pressing is filled, and a molding pressure of about 100 MPa is applied thereto for molding.

得られた成形体は、図1(a)の断面図に示すように、外形や長さ方向を切削加工することで曲面状の底面9を有する有底管状セラミック体1の成形体1aへと加工される。   As shown in the sectional view of FIG. 1A, the obtained molded body is cut into an outer shape and a length direction to form a molded body 1a of a bottomed tubular ceramic body 1 having a curved bottom surface 9. Processed.

ここで、有底管状セラミック体1は、例えば、外径がφ100〜300mm、長さが500〜1500mm、肉厚が10〜20mmの焼結体1bからなり、耐熱用部品として使用されることが多いため、通常は窒化珪素セラミックス等の耐熱衝撃性や高強度特性を備えた材料で製造される。   Here, the bottomed tubular ceramic body 1 includes, for example, a sintered body 1b having an outer diameter of φ100 to 300 mm, a length of 500 to 1500 mm, and a thickness of 10 to 20 mm, and is used as a heat-resistant component. Therefore, it is usually manufactured from a material having thermal shock resistance and high strength characteristics such as silicon nitride ceramics.

次いで、得られた成形体1aを焼成する。本発明の製造方法では、焼成時に図1に示すような焼成治具9を用いて焼成することを特徴とする。   Next, the obtained molded body 1a is fired. The production method of the present invention is characterized by firing using a firing jig 9 as shown in FIG. 1 during firing.

先ず、図1(a)に示すように、有底管状セラミック体1となる成形体1aを、その開口面2を下方に向けて、基台6上に載置された支持台3上に載置する。   First, as shown in FIG. 1A, a molded body 1a to be a bottomed tubular ceramic body 1 is placed on a support base 3 placed on a base 6 with its opening surface 2 facing downward. Put.

この支持台3は、図2に示すように、有底管状セラミック体1と同様の材質の成形体からなり、有底管状セラミック体1の成形体1aと同様の収縮が発生することから、焼成時の開口面2の径方向の真円度を良好に保ち、変形の少ない焼結体1bを得ることができる。   As shown in FIG. 2, the support 3 is formed of a molded body having the same material as the bottomed tubular ceramic body 1, and contraction similar to that of the molded body 1 a of the bottomed tubular ceramic body 1 occurs. Thus, it is possible to obtain a sintered body 1b that maintains good roundness in the radial direction of the opening surface 2 and has little deformation.

また、形状も成形体1aと同一な形状とし、開口面2を十分安定して載置できる径、面を有するものとすることが好ましく、成形体1aをより安定して載置するための座繰り部10が設けることが好ましい。さらに、支持台3は、有底管状セラミック体1よりその外径が30〜100mm程度大きいことが好ましく、その厚みは10〜30mm程度であれば良い。   Further, the shape is preferably the same as that of the molded body 1a and preferably has a diameter and a surface on which the opening surface 2 can be mounted sufficiently stably, and a seat for mounting the molded body 1a more stably. It is preferable that the feeding part 10 is provided. Furthermore, it is preferable that the outer diameter of the support base 3 is about 30 to 100 mm larger than the bottomed tubular ceramic body 1, and the thickness may be about 10 to 30 mm.

さらに、少なくとも1つの外部と連通する溝や貫通孔からなる連通孔3aを有し、焼成段階において成形体1aからバインダーがガスとなって出てくる際に、そのガスの排出口として作用するため、脱脂不足を解消することができ、脱脂不足によるクラックの発生を防ぐことができる。この連通孔3aは、成形体1aが円管状の場合、等間隔に複数形成することが好ましく、バインダーのガスを十分外部に排出し、脱脂不足によるクラックの発生をより有効に防ぐことができる。   Furthermore, since it has the communicating hole 3a which consists of a groove | channel and a through-hole which communicate with at least 1 exterior, when a binder comes out as gas from the molded object 1a in a baking step, it acts as the discharge port of the gas The lack of degreasing can be eliminated, and the occurrence of cracks due to the lack of degreasing can be prevented. When the molded body 1a is circular, a plurality of the communication holes 3a are preferably formed at equal intervals, and the binder gas can be discharged to the outside sufficiently to effectively prevent the occurrence of cracks due to insufficient degreasing.

なお、連通孔3aは、孔と同様の機能を果たす溝として製作すれば良く、1ヶ所以上必要で、2ヶ〜4ヶ設けることが好ましく、その溝の幅は10〜30mm程度で、深さは成形体1aを載置する座繰り部10より、5〜10mm程度の深さとすることが好ましい。   The communication hole 3a may be manufactured as a groove that performs the same function as the hole, and it is necessary to provide at least one place, preferably two to four, and the width of the groove is about 10 to 30 mm and the depth. Is preferably about 5 to 10 mm deeper than the counterbore 10 on which the molded body 1a is placed.

また、成形体1aの管内に、該成形体1aと熱膨張係数が同一な支柱部4および該支柱部4の先端に成形体1aの底面8を支持するための曲面を備えた底面支持部5とからなる焼成治具9を垂直に立設する。   Also, a bottom support 5 having a support 4 having the same thermal expansion coefficient as that of the compact 1a and a curved surface for supporting the bottom 8 of the compact 1a at the tip of the support 4 in the tube of the compact 1a. A firing jig 9 consisting of

この焼成治具9を形成する支柱部4および底面支持部5は、有底管状セラミック体1となる焼結体1bと熱膨張係数が同一な材料であるセラミックス焼結体とすることで、焼成時の収縮により底面支持部5に当接した焼結体が、その後の温度が降下していく間においても当接することで支持することができ、より好ましくは、有底管状セラミック体1と同材質とする。   The support column 4 and the bottom support 5 that form the firing jig 9 are fired by forming a ceramic sintered body having the same thermal expansion coefficient as that of the sintered body 1b to be the bottomed tubular ceramic body 1. The sintered body that has come into contact with the bottom surface support portion 5 due to the shrinkage at the time can be supported by coming into contact even during the subsequent temperature decrease, and more preferably, the same as the bottomed tubular ceramic body 1. Material.

なお、熱膨張係数が同一とは、成形体1aの熱膨張係数との差が1.5×10−6以内程度の材質を示す、これ以上に熱膨張係数の差が大きい材質で形成した場合は、収縮が完了した後でも焼成段階の降温中における変形が生じ易く、反りなどが発生することがある。一方、熱膨張係数が小さい部材では、有底管状セラミック体1の開口面2が持ち上がり、クラックなどを発生させる可能性がある。 The same thermal expansion coefficient means a material whose difference from the thermal expansion coefficient of the molded body 1a is about 1.5 × 10 −6 or less, and a material having a larger difference in thermal expansion coefficient. In this case, even after the shrinkage is completed, deformation is likely to occur during temperature reduction in the firing stage, and warping may occur. On the other hand, in a member having a small coefficient of thermal expansion, the opening surface 2 of the bottomed tubular ceramic body 1 may be lifted up and may cause cracks.

また、焼成治具9と成形体1aは、焼成温度の低温域において離間した状態とし、高温域において成形体1aの収縮が完了することにより、上記底面支持部5と成形体1aの底面8とが当接するようにすることが重要である。   Further, the firing jig 9 and the molded body 1a are separated from each other in the low temperature range of the firing temperature, and the shrinkage of the molded body 1a is completed in the high temperature range, whereby the bottom support portion 5 and the bottom surface 8 of the molded body 1a It is important that the abut.

このように当接するための焼成治具9の寸法の算出方法に関しては、予め他の部材を使用した予備焼成により成形体1aの寸法からのどのくらい収縮するかの収縮率を求め、この収縮率により目標とする焼結体の寸法を計算し、これにより求めた有底管状セラミック体1の焼結体1bの内径の高さと焼成治具9の高さを同じくすることで達成できる。このような焼成治具9を有底管状セラミック体1の内部に載置して焼成した場合、伝熱効率が高まるために、通常の何も載置しない予備焼成の場合よりも、わずかではあるが収縮が大きくなる傾向にある。したがって、上記で求めた通常の収縮率からその支柱部4と底面支持部5の高さを計算して製作しておけば、特に小さめに設定するなど当接する分を考慮しなくても必ず当接することができる。   Regarding the calculation method of the size of the firing jig 9 for contacting in this way, the shrinkage rate of how much shrinkage from the size of the molded body 1a is obtained in advance by pre-baking using other members, and the shrinkage rate is This can be achieved by calculating the target size of the sintered body, and making the height of the inner diameter of the sintered body 1b of the bottomed tubular ceramic body 1 obtained thereby equal to the height of the firing jig 9. When such a firing jig 9 is placed and fired inside the bottomed tubular ceramic body 1, the heat transfer efficiency is increased. There is a tendency for shrinkage to increase. Therefore, if the height of the column part 4 and the bottom surface support part 5 is calculated from the normal shrinkage rate obtained above and manufactured, it is always necessary even if the contact amount is not taken into consideration, such as setting it to be smaller. You can touch.

ここで、焼成工程の温度変化および成形体1aの収縮変化を説明する。先ず、成形体1aの焼結温度に達するまでは温度が昇温するとともに、成形体1aが収縮を続ける。例えば、成形体1aが窒化珪素セラミックからなり、収縮率18%の場合、焼結温度1700℃に達するまで、収縮を伴いながら結晶化による緻密化が進んで窒化珪素セラミックスとなる。約1000℃付近までは、成形助剤が揮発してガス化する脱脂工程を含み、その後1000℃を越えてから結晶化が始まり、特に収縮が大きくなるのはこの後者の段階である。   Here, the temperature change in the firing step and the shrinkage change of the molded body 1a will be described. First, the temperature rises and the compact 1a continues to shrink until it reaches the sintering temperature of the compact 1a. For example, when the molded body 1a is made of silicon nitride ceramic and the shrinkage rate is 18%, the densification by crystallization proceeds with shrinkage until the sintering temperature reaches 1700 ° C., and becomes silicon nitride ceramic. Up to about 1000 ° C. includes a degreasing step in which the molding aid volatilizes and gasifies, and thereafter the crystallization starts after exceeding 1000 ° C., and the shrinkage is particularly increased in this latter stage.

そして、成形体1aの収縮が完了し焼結体1bとなり、この時点で図1(b)に示すように底面支持部5と成形体1aの底面8とが図3に示す拡大断面図のように当接する。 And the shrinkage | contraction of the molded object 1a is completed and it becomes the sintered compact 1b, and as shown in FIG.1 (b), the bottom face support part 5 and the bottom face 8 of the molded object 1a are like the expanded sectional view shown in FIG. Abut.

なお、この状態でも支持台3より焼結体1bが当接されていることが重要である。次いで、温度が降温するとともに、焼結体1bと焼成治具9は若干収縮していき、常温となっても当接した状態で焼成を終了する。   Even in this state, it is important that the sintered body 1 b is in contact with the support 3. Next, as the temperature is lowered, the sintered body 1b and the firing jig 9 are slightly contracted, and the firing is finished in a state where they are in contact with each other even at room temperature.

このように、成形体1aが焼成されて焼結体1bとなった場合の熱膨張係数を、支柱部4、底面支持部5からなる焼成治具9と合わせることで、得られた有底管状セラミック体1の長さ方向を焼結の終了段階で支持するため、強度の弱い収縮段階での接触を避けたことにより、底面8にクラックが発生することを防ぐことができる。また、強度の弱い成形体1aが焼成の初期段階である低温域では成形体1aに当接することがないため、接触によるクラックの発生を防ぐことができる。さらに、高温域において成形体1aが収縮を完了する間際に、底面支持部5と成形体1aの底面8が当接する際には、焼結もほぼ終了する段階であることから、強度も高くなっており、当接してもクラックが発生することはない。   Thus, the bottomed tubular shape obtained by combining the thermal expansion coefficient when the molded body 1a is fired into the sintered body 1b with the firing jig 9 including the support column part 4 and the bottom surface support part 5 is obtained. Since the length direction of the ceramic body 1 is supported at the end stage of sintering, it is possible to prevent cracks from occurring on the bottom surface 8 by avoiding contact at the contraction stage where the strength is weak. In addition, since the weak molded body 1a does not come into contact with the molded body 1a in the low temperature range, which is the initial stage of firing, the generation of cracks due to contact can be prevented. Furthermore, when the molded body 1a completes contraction in the high temperature region, when the bottom surface support portion 5 and the bottom surface 8 of the molded body 1a come into contact with each other, the sintering is almost completed, so the strength is increased. Therefore, cracks do not occur even if they come into contact.

また、図3に示すように底面支持部5は、底面8を支持する曲面状の先端面12を備えていることから、底面8に集中応力が発生することを防ぐことができるため、底面8のクラックの発生を防ぐことができる。また、先端面12により底面8の一部を支持しているため、倒れや変形を防ぐこともでき、底面支持部5との噛み込みが小さいため、焼成後の支柱部4や底面支持部5を容易に抜き取ることができる。底面支持部5の先端面12は、成形体1aの焼成後の底面8の内部の曲面に合わせた曲面状とすることが好ましく、これより若干小さめであってもかまわない。   Further, as shown in FIG. 3, the bottom surface support portion 5 includes a curved front end surface 12 that supports the bottom surface 8, and therefore it is possible to prevent concentrated stress from being generated on the bottom surface 8. The generation of cracks can be prevented. Moreover, since a part of the bottom surface 8 is supported by the front end surface 12, it is possible to prevent collapse and deformation, and since the biting with the bottom surface support portion 5 is small, the post portion 4 and the bottom surface support portion 5 after firing. Can be easily extracted. The front end surface 12 of the bottom surface support portion 5 is preferably a curved surface that matches the curved surface inside the bottom surface 8 of the molded body 1a after firing, and may be slightly smaller than this.

また、上記底面支持部5は、図3に示すように、曲面状の先端面12と、該先端面12に連続し、外周側に傾斜したテーパ部11とからなることが好ましい。   Further, as shown in FIG. 3, the bottom surface support portion 5 preferably includes a curved tip surface 12 and a tapered portion 11 that is continuous with the tip surface 12 and is inclined toward the outer periphery.

これにより、成形体1aと当接する底面支持部5の収縮による噛み込みをさらに抑えることができ、噛み込みによるクラックの発生と有底管状セラミック体1から焼成治具9が抜けなくなることを防止できる。   As a result, it is possible to further suppress the biting due to the contraction of the bottom surface support portion 5 that comes into contact with the molded body 1a, and to prevent the occurrence of cracks due to the biting and the firing jig 9 from being detached from the bottomed tubular ceramic body 1. .

図3に示すように底面支持部5は、成形体1aの底面8で当接するようにその先端を成形体1aの内径と近傍の半径をもつ曲面状としており、その曲面状の先端面12に連続してテーパ部11を有する。例えば、焼成後の有底管状セラミック体1の内径がφ135mmであるため、底面支持部5の曲率半径は67.5mmとし、この曲面状の先端面12に連続した側面側に10°以上のテーパ部11を設けることで、面接触することにより成形体1aの底面8に応力によるクラックが発生することを防ぐとともに、収縮により噛み込みが生じた場合に底面支持部5を容易に抜くことができる。   As shown in FIG. 3, the bottom surface support portion 5 has a curved surface with a radius close to the inner diameter of the molded body 1a so as to abut on the bottom surface 8 of the molded body 1a. It has the taper part 11 continuously. For example, since the inner diameter of the bottomed tubular ceramic body 1 after firing is φ135 mm, the radius of curvature of the bottom surface supporting portion 5 is 67.5 mm, and the taper is 10 ° or more on the side surface continuous to the curved distal end surface 12. By providing the portion 11, it is possible to prevent cracks due to stress from occurring on the bottom surface 8 of the molded body 1 a due to surface contact, and to easily remove the bottom surface support portion 5 when biting occurs due to contraction. .

なお、このテーパ部11は、傾斜角度が5°〜15°であることが好ましい。5°未満となると成形体1aの内周面が底面支持部5より内周側へ入り込んでしまうために抜けなくなるという場合がある。また、15°を超えると曲面状の先端面12の面積が小さくなり、成形体1aから焼結体1bに収縮する段階でこのテーパ部11に当接した場合に、有底管状セラミック体1の底部8がきれいな曲面状とならない。   The tapered portion 11 preferably has an inclination angle of 5 ° to 15 °. If the angle is less than 5 °, the inner peripheral surface of the molded body 1a may enter the inner peripheral side from the bottom support portion 5 and may not come out. In addition, when the angle exceeds 15 °, the area of the curved tip surface 12 becomes small, and when the taper portion 11 comes into contact with the sintered body 1b when contracted from the molded body 1a to the sintered body 1b, the bottomed tubular ceramic body 1 The bottom 8 is not a beautiful curved surface.

また、この底面支持部5が成形体1aと反応あるいは溶着しないように、表面に窒化硼素などをコーティングすると底面支持部5の抜き取りが容易になる。 Further, if the surface is coated with boron nitride or the like so that the bottom surface support portion 5 does not react or weld with the molded body 1a, the bottom surface support portion 5 can be easily removed.

また、上記焼成治具9における支柱部4と底面支持部5とを分割構造とすることが好ましい。   Moreover, it is preferable to make the support | pillar part 4 and the bottom face support part 5 in the said baking jig 9 into a division | segmentation structure.

これにより、成形体1aの収縮率の変動に合わせて、高さを調節できることで噛み込みを抑えるとともに、有底管状セラミック体1の変形を防止できる。   Accordingly, the height can be adjusted in accordance with the fluctuation of the shrinkage rate of the molded body 1a, so that the biting can be suppressed and the deformation of the bottomed tubular ceramic body 1 can be prevented.

また、支柱部4の外径が底面支持部5の外径より小さくすることにより、有底管状セラミック体1と支柱部4との間に十分な空間7があり噛み込むことがなくなり、また底面支持部5を支柱部4と分割構造にすることで噛み込んだとしても後で容易に取り出すことできる。これは、底面支持部5の外径寸法より内側にセラミックスが収縮することがないためである。例えば、支柱部4の外径寸法を110mmとし、有底管状セラミック体1の焼結後の外径寸法である135mmよりも小さくすることで成形体1が収縮後の支柱部4へ 噛み込むことを防ぐことができるため、焼成後に容易に支柱部4を抜くことが可能になる。   Further, by making the outer diameter of the support column part 4 smaller than the outer diameter of the bottom support part 5, there is sufficient space 7 between the bottomed tubular ceramic body 1 and the support column part 4, and the bottom surface is not bitten. Even if the support portion 5 is bitten by dividing the support portion 5 into a support structure, it can be easily taken out later. This is because the ceramics do not shrink inside the outer diameter of the bottom surface support 5. For example, the outer diameter of the support column 4 is 110 mm, and the molded body 1 is engaged with the contracted support column 4 by shrinking the bottomed tubular ceramic body 1 to be smaller than 135 mm, which is the outer diameter after sintering. Therefore, it is possible to easily remove the support column 4 after firing.

また、支柱部4も同様にその表面に窒化硼素などをコーティングすることで成形体1との反応を抑えることができる。 Similarly, the column portion 4 can be coated with boron nitride or the like on its surface to suppress reaction with the molded body 1.

また、上記支柱部4を長さ方向に分割構造として多数の熱膨張係数の異なる材質から形成したものを予め準備することで、例えば、支柱部4をコージライト等の低熱膨張材料とアルミナを組み合わせて、その相互の長さを調整することで、窒化珪素や炭化珪素の熱膨張係数と合わせることができるため、種々の材質の成形体1aを焼成することができる。   In addition, by preparing in advance a structure in which the support column 4 is divided in the length direction and formed from a number of materials having different thermal expansion coefficients, for example, the support column 4 is combined with a low thermal expansion material such as cordierite and alumina. By adjusting the mutual length, it is possible to match the thermal expansion coefficient of silicon nitride or silicon carbide, so that the molded body 1a of various materials can be fired.

さらに、この焼成治具9を用いた焼成方法は、バインダーを10%以上含有するような成形体1aを焼成する際に有効に用いることができ、焼成時に収縮率が大きく、ガスを多量に発生しても、支持台3に連通孔3aを備えているため、このガスを外部へ排出することができる。   Further, the firing method using the firing jig 9 can be used effectively when firing the molded body 1a containing 10% or more of the binder, has a large shrinkage rate during firing, and generates a large amount of gas. Even so, since the support 3 is provided with the communication hole 3a, this gas can be discharged to the outside.

次に本発明の実施例を示す。   Next, examples of the present invention will be described.

ここで以下に示す方法で実験を行った。   Here, an experiment was conducted by the following method.

先ず、有底管状セラミック体として、窒化珪素セラミックスにて、長さが1337mm、円筒部の外径が180mm、内径が157mm、開口面の外径が205mm、肉厚が12mm、底面の内部の曲率半径が78.5mmの成形体を準備した。   First, the bottomed tubular ceramic body is made of silicon nitride ceramic, the length is 1337 mm, the outer diameter of the cylindrical portion is 180 mm, the inner diameter is 157 mm, the outer diameter of the opening surface is 205 mm, the wall thickness is 12 mm, and the curvature inside the bottom surface A molded body having a radius of 78.5 mm was prepared.

予備成形により求めた収縮率は、17.6%であったため、これから焼結体の寸法を求めると、長さが1102mm、円筒部の外径が148.3mm、内径が129.3mm、開口面の外径が168.9mm、肉厚が10mmの有底管状セラミック体となる。   Since the shrinkage ratio obtained by the preforming was 17.6%, the dimensions of the sintered body were obtained from this, and the length was 1102 mm, the outer diameter of the cylindrical portion was 148.3 mm, the inner diameter was 129.3 mm, the opening surface The bottomed tubular ceramic body has an outer diameter of 168.9 mm and a thickness of 10 mm.

ここで有底管状セラミック体となる焼結体の内面部の高さは、長さより肉厚を減じた寸法の1092mmとなる。   Here, the height of the inner surface portion of the sintered body that becomes the bottomed tubular ceramic body is 1092 mm, which is a dimension obtained by subtracting the thickness from the length.

比較例として試料1〜4に従来の焼成方法の成形体を評価した。比較例の試料1は、図5に示すような焼成方法で、芯材として、同材質の窒化珪素セラミックスからなる成形体で製作した。芯材の長さを1300mmとし、径は156.0mmとして成形体の内径の1.0mm小さく、底面の内部の曲率半径が78.0mmとした。   As comparative examples, samples 1 to 4 were evaluated for molded bodies of the conventional firing method. Sample 1 of the comparative example was manufactured by a firing method as shown in FIG. 5 using a molded body made of silicon nitride ceramics of the same material as a core material. The length of the core material was 1300 mm, the diameter was 156.0 mm, the inner diameter of the molded body was 1.0 mm smaller, and the radius of curvature inside the bottom surface was 78.0 mm.

また、比較例である試料2は、同様の焼成方法で、芯材を熱膨張係数の大きいアルミナセラミックスの焼結体で、比較例の試料3は、熱膨張係数の小さいコージライトセラミックスの焼結体で、比較例の試料4は、窒化珪素セラミックの焼結体で製作し、試料2〜4は、芯材の長さを1200mmとし、その外径を129.9mmとして有底管状セラミック体の焼成後の径寸法より、0.5%大きくし、底面の内部の曲率半径が65.0mmで製作した。   Sample 2 which is a comparative example is a sintered body of alumina ceramic having a large thermal expansion coefficient as a core material by the same firing method, and sample 3 of the comparative example is sintered of cordierite ceramic having a small thermal expansion coefficient. The sample 4 of the comparative example was made of a sintered body of silicon nitride ceramic, and the samples 2 to 4 were made of a bottomed tubular ceramic body with a core material length of 1200 mm and an outer diameter of 129.9 mm. It was made 0.5% larger than the diameter after firing, and the radius of curvature inside the bottom surface was 65.0 mm.

また、各支持部にはその表面に窒化硼素をコーティングした。   Each support was coated with boron nitride on its surface.

もう1つの比較例として、試料5は、以下の図1に示すような本発明に示す試料と同様の焼成方法であるが、支持台に連通孔を設けないものとした。   As another comparative example, Sample 5 is the same firing method as the sample shown in the present invention as shown in FIG. 1 below, but the support base is not provided with a communication hole.

また、本発明の実施例として試料6〜12を図1に示すような焼成方法で焼成した。   Further, as examples of the present invention, Samples 6 to 12 were fired by the firing method as shown in FIG.

先ず、成形体として窒化珪素セラミックスにて、長さが1337mm、円筒部の外径が180mm、内径が157mm、開口面の外径が205mm、肉厚が12mmの成形体を準備した。   First, a molded body having a length of 1337 mm, an outer diameter of a cylindrical portion of 180 mm, an inner diameter of 157 mm, an outer diameter of an opening surface of 205 mm, and a thickness of 12 mm was prepared using silicon nitride ceramics as a molded body.

そして、図1に示すように、成形体の開口面を、4個の連通孔を有する外径250mmで厚みを20mm、座繰り部の径が206mm、深さが10mmからなる支持台上に載置し、成形体の管内に表1に示す如く材質からなり、成形体の底面を支持するための表1に示すような曲率半径を有する曲面を備えた底面支持部とからなる焼成治具を垂直に立設した。   Then, as shown in FIG. 1, the opening surface of the molded body is placed on a support base having an outer diameter of 250 mm having four communication holes, a thickness of 20 mm, a countersink portion diameter of 206 mm, and a depth of 10 mm. And a firing jig comprising a bottom surface support portion having a curved surface having a radius of curvature as shown in Table 1 for supporting the bottom surface of the molded body, as shown in Table 1, in the tube of the molded body. Standing vertically.

焼成治具の長さは有底管状セラミック体の焼結体の内面の長さ1092mmと支持台の座繰り部の厚み10mmを加算して、1102mmとした。   The length of the firing jig was 1102 mm by adding the length of 1092 mm of the inner surface of the sintered body of the bottomed tubular ceramic body and the thickness of the countersink portion of the support base to 10 mm.

そして、種々の焼成方法の評価をした。有底管状セラミック体の真円度、長手方向の反り、クラックの発生有無、焼成治具の抜け具合を評価項目とし、真円度は外形の開口面付近、中央、上部の3ヶ所を45°毎に各4ヶ所ずつ測定してその変形量を求め、また反りは、径部分を定盤に載せてゆっくりと回転させ、定盤との隙間が最も大きい部分の寸法を測定した。また、クラックは焼結体をカラーチェックして目視で確認し、焼成治具は抜けにくいものは振動を与えて実施して抜け具合を評価した。   And various baking methods were evaluated. The evaluation items were roundness of the bottomed tubular ceramic body, warpage in the longitudinal direction, occurrence of cracks, and the degree of omission of the firing jig. Roundness is 45 ° near the open surface of the outer shape, at the center and at the top. The amount of deformation was determined by measuring each of the four locations for each, and the warpage was measured by measuring the dimension of the portion having the largest gap with the surface plate by slowly rotating the diameter portion on the surface plate. In addition, the crack was visually checked by color-checking the sintered body, and the firing jig was evaluated with respect to the degree of removal by applying vibration to those which were difficult to come off.

総合判定としてクラックが発生し、焼成治具が抜けないものは×とし、真円度が5mm以上のもの、反りが4mm以上のものを△、真円度が5mm未満、反りが4mm未満のものを○とした。   As a comprehensive judgment, if the crack is generated and the firing jig cannot be removed, it is ×, the roundness is 5 mm or more, the warpage is 4 mm or more, Δ, the roundness is less than 5 mm, and the warpage is less than 4 mm. Was marked as ○.

評価結果を表1に示す。

Figure 2005272152
The evaluation results are shown in Table 1.
Figure 2005272152

表1の結果より、従来の焼成方法である試料1は、焼成による収縮段階で部分的に芯材と成形体が接触し、くっつきが発生してこの芯材を抜くことができなかった。また、試料2〜4は、試料2の熱膨張係数の大きなアルミナセラミックス以外は、芯材の抜き取りができず、また矯正により強固に噛み込み底部やその筒状の側面にもクラックが発生していた。   From the results shown in Table 1, in Sample 1 which is a conventional firing method, the core material and the molded body partially contacted each other at the shrinkage stage by firing, and sticking occurred, and this core material could not be pulled out. In Samples 2 to 4, the core material cannot be removed except for the alumina ceramic having a large thermal expansion coefficient of Sample 2, and the bottom portion of the core and its cylindrical side surface are cracked firmly by correction. It was.

また、図1の焼成方法であるが、支持台に連通孔を設けなかった試料5は、焼成変形も大きく、また脱脂不良と思われるクラックが確認できた。   Moreover, although it is the baking method of FIG. 1, the sample 5 which did not provide the communicating hole in the support stand had large baking deformation, and the crack considered to be a degreasing defect has been confirmed.

また、本発明の実施例である試料6〜12は、どれも焼結体にクラックは発生せず、焼成治具も抜くことが可能であった。   Moreover, all the samples 6-12 which are the Examples of this invention did not generate | occur | produce a crack in a sintered compact, and it was possible to remove a baking jig.

また、試料9、10は、底面支持部の外径の大きさを有底管状セラミック体の焼成後の寸法よりも、径で2mm小さく製作し、その曲面状の外周部に5°〜10°のテーパを設けているもので、径の変形や反りも少なく良好な状態であった。また試料11、12は、底面支持部の外径の大きさを有底管状セラミック体の焼成後の寸法に合わせ、またその曲面状の外周部に15°、20°のテーパを備えており、15°までは径の変形が少なかったが、20°のものは若干径の変形が増えている。さらに試料10〜12は、支柱部と底面支持部を分割で製作したもので、特に試料11が真円度、反りがともに小さく最も良好な結果であった。   Samples 9 and 10 were manufactured such that the outer diameter of the bottom support portion was 2 mm smaller than the size after firing the bottomed tubular ceramic body, and 5 ° to 10 ° on the curved outer peripheral portion. The taper was provided in a good state with little deformation and warping of the diameter. Samples 11 and 12 have a bottom support portion whose outer diameter matches the size after firing the bottomed tubular ceramic body, and has a taper of 15 ° and 20 ° on the curved outer peripheral portion thereof, The deformation of the diameter was small up to 15 °, but the deformation of the diameter increased slightly at 20 °. Further, Samples 10 to 12 were manufactured by dividing the column portion and the bottom surface support portion. In particular, Sample 11 had the best results with both roundness and warpage being small.

本発明の有底管状セラミック体の製造方法を示す断面図であり、(a)は焼成治具をセットした状態を示す断面図、(b)は焼成後の断面図である。It is sectional drawing which shows the manufacturing method of the bottomed tubular ceramic body of this invention, (a) is sectional drawing which shows the state which set the baking jig, (b) is sectional drawing after baking. 本発明の有底管状セラミック体の製造方法に用いる支持台を示す斜視図である。It is a perspective view which shows the support stand used for the manufacturing method of the bottomed tubular ceramic body of this invention. 本発明の有底管状セラミック体の焼結直後の底面部の拡大断面図である。It is an expanded sectional view of the bottom face part just after sintering of the bottomed tubular ceramic body of the present invention. 従来の有底管状セラミック体の製造方法を示す断面図であり、(a)は焼成治具をセットした状態を示す断面図、(b)は焼成後の断面図である。It is sectional drawing which shows the manufacturing method of the conventional bottomed tubular ceramic body, (a) is sectional drawing which shows the state which set the baking jig, (b) is sectional drawing after baking. 従来の有底管状セラミック体の製造方法を示す断面図であり、(a)は焼成治具をセットした状態を示す断面図、(b)は焼成後の断面図である。It is sectional drawing which shows the manufacturing method of the conventional bottomed tubular ceramic body, (a) is sectional drawing which shows the state which set the baking jig, (b) is sectional drawing after baking. (a)は有底管状セラミック体を示す斜視図であり、(b)はその断面図である。(A) is a perspective view which shows a bottomed tubular ceramic body, (b) is the sectional drawing.

符号の説明Explanation of symbols

1:有底管状セラミック体
1a:成形体
1b:焼結体
2:開口面
3:支持台
3a:連通孔
4:支柱部
5:底面支持部
6:基台
7:空間
8:底面
9:焼成治具
10:座繰り部
11:テーパ部
12:曲面状の先端面
33:支持台
34:芯材
35:支持部
37:隙間
1: Bottomed tubular ceramic body 1a: Molded body 1b: Sintered body 2: Opening surface 3: Support base 3a: Communication hole 4: Strut part 5: Bottom support part 6: Base 7: Space 8: Bottom face 9: Firing Jig 10: Countersink part 11: Tapered part 12: Curved tip surface 33: Support base 34: Core material 35: Support part 37: Clearance

Claims (3)

曲面状の底面を有し、セラミックスからなる有底管状の成形体を、その開口面を下方に向けて焼成する方法であって、上記成形体の開口面を、少なくとも1つの外部と連通する連通孔を有する支持台上に載置し、成形体の管内に、該成形体と熱膨張係数が同一な支柱部および該支柱部の先端に成形体の底面を支持するための曲面を備えた底面支持部とからなる焼成治具を垂直に立設するとともに、焼成温度の低温域において上記焼成治具と成形体とが離間した状態とし、高温域において成形体の収縮が完了することにより、上記底面支持部と成形体の底面とが当接することを特徴とする有底管状セラミック体の製造方法。 A method of firing a bottomed tubular shaped body made of ceramics having a curved bottom surface with its opening surface facing downward, wherein the opening surface of the shaped body communicates with at least one outside. A bottom surface which is placed on a support base having a hole, and has a column having the same thermal expansion coefficient as that of the molded body and a curved surface for supporting the bottom surface of the molded body at the tip of the column in the tube of the molded body When the firing jig comprising the support portion is erected vertically, the firing jig and the molded body are separated from each other in the low temperature range of the firing temperature, and the shrinkage of the molded body is completed in the high temperature range, A method for producing a bottomed tubular ceramic body, characterized in that the bottom surface supporting portion and the bottom surface of the molded body abut. 上記底面支持部が曲面状の先端面と、該先端面に連続し、外周側に傾斜したテーパ部とからなることを特徴とする請求項1に記載の有底管状セラミック体の製造方法。 2. The method for producing a bottomed tubular ceramic body according to claim 1, wherein the bottom surface support portion includes a curved tip surface and a tapered portion that is continuous with the tip surface and is inclined toward the outer periphery. 上記焼成治具における支柱部と底面支持部とを分割構造としたことを特徴とする請求項1または2に記載の有底管状セラミック体の製造方法。 The method for producing a bottomed tubular ceramic body according to claim 1 or 2, wherein the supporting column and the bottom support in the firing jig have a divided structure.
JP2004083518A 2004-03-22 2004-03-22 Method for producing bottomed tubular ceramic body Pending JP2005272152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083518A JP2005272152A (en) 2004-03-22 2004-03-22 Method for producing bottomed tubular ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083518A JP2005272152A (en) 2004-03-22 2004-03-22 Method for producing bottomed tubular ceramic body

Publications (1)

Publication Number Publication Date
JP2005272152A true JP2005272152A (en) 2005-10-06

Family

ID=35172212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083518A Pending JP2005272152A (en) 2004-03-22 2004-03-22 Method for producing bottomed tubular ceramic body

Country Status (1)

Country Link
JP (1) JP2005272152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270027A (en) * 2007-04-23 2008-11-06 Coki Engineering Inc Manufacturing method and manufacturing system of electrode for cold cathode discharge tube, and tray used for the above

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270027A (en) * 2007-04-23 2008-11-06 Coki Engineering Inc Manufacturing method and manufacturing system of electrode for cold cathode discharge tube, and tray used for the above

Similar Documents

Publication Publication Date Title
JP2010528731A5 (en)
US11666967B2 (en) Sintered body, method of manufacturing sintered body, combustor panel, and method of manufacturing combustor panel
EP3023723B1 (en) Raw setter, and firing method of honeycomb formed body
EP3466910B1 (en) Honeycomb structure production method
JP6224637B2 (en) Honeycomb structure manufacturing method and honeycomb formed body
CN109896844A (en) Pass through the method for the blank that increases material manufacturing technology manufacture is made of ceramic materials
JP2005272152A (en) Method for producing bottomed tubular ceramic body
US20180319039A1 (en) Sprayed article and making method
JP4290850B2 (en) Press forming method of disk-shaped parts made of aluminum matrix composite
EP0265112A2 (en) Feeder sleeves
US5064588A (en) Method of manufacturing elongate ceramic articles
KR100807779B1 (en) Manufacture method of recuperator and thereof product
CN210080662U (en) Sagger with correcting function for sintering ceramic core
CN108297242A (en) Ceramic batch injection-molded item and its sintering method, ceramic batch injection mold
CN105514000A (en) Semiconductor chip sintering mold
JP3863591B2 (en) Method for producing sintered metal powder
JP2006055892A (en) Ceramic stoke and its production method
JP2004161596A (en) Method for firing cylindrical long-length ceramic body
CN115283658A (en) Ceramic filter and method for manufacturing the same
TWI329620B (en) Mold for molding glass optical articles
CN115385674A (en) Preparation method of high-precision ceramic core
JPH11117004A (en) Manufacture of sintered body of metal powder
US6709700B1 (en) Process assembly utilizing fixturing made of an open-cell ceramic solid foam, and its use
JP2003238260A (en) Method of manufacturing long-sized cylindrical ceramic body
JP2926881B2 (en) Ceramic firing method