JP2005271206A - Resin material welding method and welded body - Google Patents

Resin material welding method and welded body Download PDF

Info

Publication number
JP2005271206A
JP2005271206A JP2004083371A JP2004083371A JP2005271206A JP 2005271206 A JP2005271206 A JP 2005271206A JP 2004083371 A JP2004083371 A JP 2004083371A JP 2004083371 A JP2004083371 A JP 2004083371A JP 2005271206 A JP2005271206 A JP 2005271206A
Authority
JP
Japan
Prior art keywords
resin material
heat
foamed
opaque
transparent resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083371A
Other languages
Japanese (ja)
Inventor
Toshio Watanabe
敏雄 渡辺
Kanemitsu Kondo
兼光 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004083371A priority Critical patent/JP2005271206A/en
Publication of JP2005271206A publication Critical patent/JP2005271206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/043Skinned foam

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently weld resin materials mutually by a laser beam relatively low in energy. <P>SOLUTION: A laser beam is emitted to a foamed resin material 2 from the side of a transparent resin material so as to closely bond a transparent resin material 1 for permitting the laser beam to transmit and a foamed resin layer 2 including carbon black. A molten basin 4 is formed by the heat caused in the foamable resin material 2 upon the absorption of the heat energy of the laser beam. At this time, since the foamed cells 3 of a foamable resin material 2 become a heat insulating material to preven the diffusion of heat, the accumulation of heat in the molten basin 4 is accelerated to effectively transfer heat to the transparent resin material 1. That is, since the loss of heat energy is reduced, the resin can be melted in a short time by relatively low energy. Thereafter, the molten resin is solidified and a welded part 5 is formed to weld both resin materials. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂材の溶着方法と溶着体に関する。特に、熱光線に対して透明な樹脂材と不透明な樹脂材を溶着する技術に関する。   The present invention relates to a resin material welding method and a welded body. In particular, the present invention relates to a technique for welding a transparent resin material and an opaque resin material to heat rays.

レーザ光を照射して透明樹脂材と不透明樹脂材を溶着する技術が知られている。不透明樹脂材には、たとえばカーボン粒子を混入したものを使用する。両樹脂材を重ね合わせた状態で透明樹脂材側から不透明樹脂材に向けてレーザ光を照射すると、不透明樹脂材中のカーボン粒子がレーザ光のエネルギーを吸収して発熱する。これによってレーザ光照射部近傍の樹脂が加熱されて溶融し、それが冷却されて固化することによって両部材が溶着される。   A technique for welding a transparent resin material and an opaque resin material by irradiating a laser beam is known. As the opaque resin material, for example, a material mixed with carbon particles is used. When laser light is irradiated from the transparent resin material side toward the opaque resin material in a state where the two resin materials are overlapped, the carbon particles in the opaque resin material absorb the energy of the laser light and generate heat. As a result, the resin in the vicinity of the laser beam irradiation part is heated and melted, and it is cooled and solidified to weld both members.

ところが、カーボン粒子は伝熱材でもあるから発生した熱を逃がし易い。このために不透明樹脂材側の溶融範囲が大きく育ち難い。それに伴って透明樹脂材側への伝熱量も不足しがちになって透明樹脂材の溶融範囲も大きく育ち難い。必要な溶着強度を得るためには所定範囲の樹脂材を溶融させる必要があるところ、不透明樹脂材側の熱伝導度が高いと溶融範囲が小さくなってしまうことから、不透明樹脂材側の熱伝導度が高い場合には溶着強度を確保し難い。必要な溶着強度を確保するためには、照射するレーザ光を高エネルギー化するか、あるいはレーザ光の走査速度を低速化することが必要とされる。しかしながらレーザ光を高エネルギー化すると歪などの熱影響が出やすくなるし、装置が大型になってしまう。また走査速度を低速化すると加工に長時間を要するようになる。従来の溶着方法は、案外と効率が悪いという問題を抱えている。   However, since the carbon particles are also a heat transfer material, the generated heat is easily released. For this reason, the melting range on the opaque resin material side is difficult to grow. Accordingly, the amount of heat transfer to the transparent resin material side tends to be insufficient, and the melting range of the transparent resin material is difficult to grow. In order to obtain the required welding strength, it is necessary to melt a predetermined range of resin material. However, if the thermal conductivity on the opaque resin material side is high, the melting range becomes small. When the degree is high, it is difficult to secure the welding strength. In order to ensure the necessary welding strength, it is necessary to increase the energy of the laser beam to be irradiated or to reduce the scanning speed of the laser beam. However, when the energy of the laser beam is increased, thermal effects such as distortion are likely to occur, and the apparatus becomes large. Further, if the scanning speed is reduced, it takes a long time for processing. The conventional welding method has a problem that the efficiency is unexpectedly low.

本発明は、上記事情に鑑みてなされたものであり、樹脂材同士を比較的低エネルギーの熱光線でもって効率よく溶着する技術を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the technique which welds resin materials efficiently with a comparatively low energy heat beam.

本願発明者は、樹脂材溶着技術の研究を通して発泡セルの断熱効果が重要な役割を果たすことを見出して本発明を完成した。本発明によって樹脂材を効率よく溶着することが可能になる。   The inventor of the present application has found that the heat insulating effect of the foamed cell plays an important role through research on the resin material welding technique, and has completed the present invention. By this invention, it becomes possible to weld a resin material efficiently.

本発明の溶着方法では、熱光線に対して透明な透明樹脂材と熱光線に対して不透明な発泡樹脂材を重ね合わせ、透明樹脂材側から不透明発泡樹脂材に向けて熱光線を照射することによって不透明発泡樹脂材を溶融させ、溶融した不透明発泡樹脂材に接する透明樹脂材を溶融させることによって両樹脂材を溶着する。
発泡樹脂材とは多数の発泡セルを有する樹脂発泡体をいう。また、熱光線とは熱エネルギーをもつ電磁波であって、例えばレーザ光や赤外線等をいう。また、熱光線に対して不透明とは熱光線を吸収することをいう。
In the welding method of the present invention, a transparent resin material that is transparent to heat rays and a foam resin material that is opaque to heat rays are overlapped, and the heat rays are irradiated from the transparent resin material side toward the opaque foam resin material. The two resin materials are welded by melting the opaque foamed resin material and melting the transparent resin material in contact with the melted opaque foamed resin material.
The foamed resin material refers to a resin foam having a large number of foam cells. Further, the heat ray is an electromagnetic wave having heat energy, for example, laser light or infrared ray. Further, being opaque to heat rays means absorbing heat rays.

上記溶着方法では、熱光線の熱エネルギーを吸収して不透明発泡樹脂材が発熱する。このとき、発泡樹脂材の発泡セルが断熱材となって周囲への熱の拡散を防ぐため、不透明発泡樹脂材に十分な大きさの溶融池が形成させる。それにともなって、透明樹脂材へ十分な熱エネルギーが伝熱され、透明樹脂材側にも溶融池が育ち易くなる。すなわち、発泡セルが断熱材となって熱エネルギーの拡散を防ぐために、樹脂材同士の重ね合わせ面近傍に効率的に溶融池を形成することができる。比較的低エネルギーの熱光線で比較的短時間に樹脂材同士を溶着させることが可能になる。   In the above welding method, the opaque foamed resin material generates heat by absorbing the heat energy of heat rays. At this time, a foamed cell of the foamed resin material becomes a heat insulating material to prevent diffusion of heat to the surroundings, so that a sufficiently large molten pool is formed in the opaque foamed resin material. Accordingly, sufficient thermal energy is transferred to the transparent resin material, and the molten pool is easily grown on the transparent resin material side. That is, since the foamed cell becomes a heat insulating material to prevent thermal energy diffusion, the molten pool can be efficiently formed in the vicinity of the overlapping surface of the resin materials. Resin materials can be welded together in a relatively short time with a relatively low energy heat beam.

なお、発泡層と樹脂製基材層を積層した不透明な内装材に、透明な樹脂製ヒンジ部材を重ね合わせた状態でレーザ光を照射することによって溶着する技術が特許文献1に開示されている。この場合は、不透明な樹脂製基材(発泡樹脂材ではない)に透明樹脂製ヒンジ部材を溶着するのであって、発泡樹脂材自体へ溶着するものとはなっていない。樹脂製基材の厚みが厚いことから、樹脂製基材の中を熱が拡散してしまう。本発明は、溶融池に隣接する範囲に存在する発泡セルの断熱効果を利用するものであり、発泡層と非発泡層が積層された樹脂材の非発泡層に溶着するものと相違する。発泡層自体に溶着するときに有用な結果をもたらす。
特開2002−316608号公報
Patent Document 1 discloses a technique of welding by irradiating laser light in a state where a transparent resin hinge member is superimposed on an opaque interior material in which a foam layer and a resin base material layer are laminated. . In this case, the transparent resin hinge member is welded to the opaque resin base material (not the foamed resin material), and is not welded to the foamed resin material itself. Since the resin base material is thick, heat diffuses in the resin base material. The present invention utilizes the heat insulating effect of the foamed cell existing in the range adjacent to the molten pool, and is different from that welded to the non-foamed layer of the resin material in which the foamed layer and the non-foamed layer are laminated. Useful results when welded to the foam layer itself.
JP 2002-316608 A

本発明は従来にない溶着体を実現した。本発明で創作された溶着体は、透明樹脂材と不透明発泡樹脂材を溶着した溶着体であり、透明樹脂材と不透明発泡樹脂材の重ね合わせ面に双方の樹脂材が溶融してから固化することで形成された溶着部が形成されており、透明樹脂材側の溶着部の厚みが不透明発泡樹脂材側の溶着部の厚みより厚いことを特徴とする。   The present invention has realized an unprecedented welded body. The welded body created by the present invention is a welded body in which a transparent resin material and an opaque foamed resin material are welded, and both the resin materials are melted and solidified on the overlapping surface of the transparent resin material and the opaque foamed resin material. The welding part formed by this is formed, The thickness of the welding part by the side of a transparent resin material is thicker than the thickness of the welding part by the side of an opaque foamed resin material, It is characterized by the above-mentioned.

従来の溶着方法による限り、不透明樹脂材側が発熱し、それを透明樹脂材側に伝熱することで溶着するために、透明樹脂材側の溶着部の厚みが不透明樹脂材側の溶着部の厚みよりも薄くならざるを得なかった。
本発明によると、不透明樹脂材が発熱したときに、その周囲に存在する発泡セルが周囲に伝熱することを防止するために、不透明発泡樹脂材の溶融池は大きくなり難い。それに代わってその熱量が透明樹脂材側に伝熱し、透明樹脂材側に大きな溶融池が育ちやすい。このために、本発明によると、透明樹脂材側の溶着部の厚みが不透明樹脂材側の溶着部の厚みよりも厚い溶着体を形成することができる。
As long as the conventional welding method is used, the opaque resin material side generates heat, and heat is transferred to the transparent resin material side for welding, so the thickness of the welded portion on the transparent resin material side is the thickness of the welded portion on the opaque resin material side. I had to make it thinner.
According to the present invention, when the opaque resin material generates heat, the molten cell of the opaque foamed resin material is unlikely to become large in order to prevent the foam cells existing around the opaque resin material from transferring heat to the surroundings. Instead, the amount of heat is transferred to the transparent resin material side, and a large molten pool tends to grow on the transparent resin material side. For this reason, according to the present invention, it is possible to form a welded body in which the thickness of the welded portion on the transparent resin material side is thicker than the thickness of the welded portion on the opaque resin material side.

本発明によれば、樹脂材を比較的低エネルギーの熱光線で効率よく溶着させることができる。低エネルギーの熱光線で溶着できることから熱ひずみを抑制することができ、高速に加工することができる。また、より薄い材料へ適用範囲を広げることもできる。   According to the present invention, the resin material can be efficiently welded with a relatively low energy heat beam. Since it can be welded with a low-energy heat beam, thermal strain can be suppressed and processing can be performed at high speed. In addition, the application range can be expanded to thinner materials.

つぎに、発明の実施形態について説明する。
(樹脂材の溶着方法)
本発明で溶着する樹脂材は、熱光線に対して透明な透明樹脂材と熱光線に対して不透明な発泡樹脂材である。熱光線は、800〜1100nmの近赤外波長のレーザ光とする。透明樹脂材は、このレーザ光を十分透過させる樹脂材、例えばポリプロピレンを用いる。他方、発泡樹脂材は、発泡ポリプロピレン等の樹脂発泡体であって、レーザ光を吸収して発熱する材料(例えばカーボンブラック等の着色材)を内包させたものを用いる。不透明樹脂発泡体は、独立気泡体である多数の発泡セルを有し、表面には発泡セルを含まない層(スキン層)が形成されている。発泡樹脂材の表面は透明樹脂材と密着し得るように平滑であるのが好ましい。なお、適宜な着色材を発泡樹脂材の表面にコーティングして不透明化しても構わない。
Next, an embodiment of the invention will be described.
(Resin material welding method)
The resin material welded in the present invention is a transparent resin material that is transparent to heat rays and a foamed resin material that is opaque to heat rays. The heat beam is a laser beam having a near infrared wavelength of 800 to 1100 nm. As the transparent resin material, a resin material that sufficiently transmits the laser beam, for example, polypropylene is used. On the other hand, the foamed resin material is a resin foam such as foamed polypropylene and includes a material that absorbs laser light and generates heat (for example, a colorant such as carbon black). The opaque resin foam has a large number of foam cells that are closed cells, and a layer (skin layer) that does not include the foam cells is formed on the surface. It is preferable that the surface of the foamed resin material is smooth so as to be in close contact with the transparent resin material. An appropriate coloring material may be coated on the surface of the foamed resin material to make it opaque.

上記樹脂材を溶着する際には、透明樹脂材と発泡樹脂材とを重ね合わせて密着させたうえで、透明樹脂材側から不透明発泡樹脂材に向けてレーザ光を照射する。照射されたレーザ光は透明樹脂材を透過して不透明発泡樹脂材に達する。不透明発泡樹脂材はレーザ光に対して不透明であるから容易にレーザ光のエネルギーを吸収して発熱し、これにより発泡樹脂材の樹脂が溶融して溶融池が形成される。このとき、発泡樹脂材の発泡セルが断熱材となって熱の拡散を防ぐため溶融池での蓄熱が促されるとともに、透明樹脂材側に溶融池が育ち易くなる。すなわち、発泡セルの存在により熱エネルギーの拡散が少なくなるので、比較的低エネルギーのレーザ光で効率よく溶着することが可能になる。レーザ光の入射エネルギーは、装置出力および照射時間と比例関係にある。したがって、従来と比べてレーザ装置の低出力化および/または走査時間の短縮化が可能となる。入熱量が少なくなれば内部応力も小さくなるので好都合である。その後、溶融樹脂が固化することで溶着部が形成されて両樹脂材が確実に溶着する。レーザ光の照射に際しては、透明樹脂材側の溶着部が過度に発達し表面に達して露出しないように照射量を調節することによって透明樹脂材表面の美観を保つことができる。なお、この溶着方法は、発泡樹脂材を界面付近(スキン層の厚みがおよそ500μm以下のレベル)で溶融させる場合において作用効果が際立つのでより効果的である。   When welding the resin material, the transparent resin material and the foamed resin material are overlapped and brought into close contact with each other, and then laser light is irradiated from the transparent resin material side toward the opaque foamed resin material. The irradiated laser light passes through the transparent resin material and reaches the opaque foamed resin material. Since the opaque foamed resin material is opaque to the laser beam, it easily absorbs the energy of the laser beam and generates heat, whereby the resin of the foamed resin material melts to form a molten pool. At this time, the foamed cell of the foamed resin material becomes a heat insulating material to prevent heat diffusion, so that heat storage in the molten pool is promoted and the molten pool is easily grown on the transparent resin material side. That is, since the diffusion of thermal energy is reduced due to the presence of the foam cell, it is possible to efficiently perform the welding with a relatively low energy laser beam. The incident energy of laser light is proportional to the apparatus output and irradiation time. Therefore, it is possible to reduce the output of the laser device and / or shorten the scanning time as compared with the conventional case. If the amount of heat input is reduced, the internal stress is also reduced, which is convenient. Thereafter, the molten resin is solidified to form a welded portion, and both resin materials are reliably welded. When irradiating with laser light, the aesthetics of the surface of the transparent resin material can be maintained by adjusting the irradiation amount so that the welded portion on the transparent resin material side is excessively developed and reaches the surface and is not exposed. This welding method is more effective because the operational effect stands out when the foamed resin material is melted in the vicinity of the interface (the thickness of the skin layer is approximately 500 μm or less).

(溶着体)
上記溶着方法によって透明樹脂材と不透明発泡樹脂材が溶着してなる溶着体を製造することができる。その場合、上述したように透明樹脂材側に溶融池が育ち易くなるので、溶着後に重ね合わせ面に介在する溶着部は、透明樹脂材側の溶着部の厚みが不透明発泡樹脂材側の溶着部の厚みより薄くなることが避けられる。すなわち、透明樹脂材側の溶着部の形成が容易になるので溶着品質(溶着部強度)を確保し易い。また、レーザ装置の低出力化および/またはレーザ走査時間の短縮化が可能となるため、加工サイクルの短時間化が実現できる。なお、入熱量が少なくなる分、製品の残留応力も小さくなる。
(Welded body)
A welded body in which a transparent resin material and an opaque foamed resin material are welded can be manufactured by the above welding method. In this case, as described above, since the molten pool is easily grown on the transparent resin material side, the welded portion interposed on the overlapping surface after welding is welded on the opaque foamed resin material side. It can be avoided that the thickness is thinner. That is, since it becomes easy to form the welded portion on the transparent resin material side, it is easy to ensure the welding quality (welded portion strength). Further, since the output of the laser device can be reduced and / or the laser scanning time can be shortened, the processing cycle can be shortened. Note that the residual stress of the product is also reduced as the amount of heat input is reduced.

以下、本発明の実施例を図面に基づいて説明する。図1は樹脂材の溶着方法を説明する図である。同図(イ)に示すように、透明樹脂材1と不透明発泡樹脂材2とが重ね合わされており、透明樹脂材1側からレーザ光Lが照射されるようになっている。透明樹脂材1は材質が未強化ポリプロピレンであり、次述するレーザ光Lの透過率が80%である。不透明発泡樹脂材2はカーボンブラックを0.3重量%含有する未強化ポリプロピレンの発泡体である。この発泡体2が内包する発泡セル3は、表面近傍では分布が疎であり、セル径が小であり、内部に向かうにつれて分布が密となり、セル径が大となっている。本例では、表面には発泡セル3が存在しないスキン層を有し、そのスキン層の厚みは約230μmである。このスキン層の厚みは溶融池の深さにほぼ対応し、スキン層の直下に存在する発泡セル3が溶融池に接する。スキン層は、発泡セル3による熱の拡散防止効果が十分に得られるほど薄い。
使用するレーザ出力装置は出力100Wの半導体レーザで、波長が940nm、焦点距離が150mm、焦点径は直径5mmであり、入射エネルギーを0.03〜0.40J/mmの範囲で設定した。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining a method of welding a resin material. As shown in FIG. 2A, a transparent resin material 1 and an opaque foamed resin material 2 are superposed, and laser light L is irradiated from the transparent resin material 1 side. The transparent resin material 1 is made of unreinforced polypropylene and has a laser beam L transmittance of 80% as described below. The opaque foamed resin material 2 is an unreinforced polypropylene foam containing 0.3% by weight of carbon black. The foamed cells 3 included in the foamed body 2 have a sparse distribution near the surface, a small cell diameter, a denser distribution toward the inside, and a larger cell diameter. In this example, the surface has a skin layer in which the foamed cells 3 do not exist, and the thickness of the skin layer is about 230 μm. The thickness of the skin layer substantially corresponds to the depth of the molten pool, and the foamed cells 3 existing immediately below the skin layer are in contact with the molten pool. The skin layer is so thin that the effect of preventing diffusion of heat by the foamed cells 3 can be sufficiently obtained.
The laser output device used is a semiconductor laser with an output of 100 W, the wavelength is 940 nm, the focal length is 150 mm, the focal diameter is 5 mm, and the incident energy is set in the range of 0.03 to 0.40 J / mm 2 .

溶着作業は、透明樹脂材1と発泡樹脂材2が密着するように両者に荷重をかけながらレーザ光Lを適宜速度で走査することにより行う。密着加圧荷重は360mm辺り34Kgとした。レーザ光の照射を受けて発熱したカーボンブラックからの伝熱の様子が模式的に同図(ロ)に示されている。このとき、発泡セル3の断熱効果により、溶融池4の熱が透明樹脂材1側により多く伝熱する結果、同図(ハ)に示すように、溶融樹脂が固化して形成される溶着部5は、透明樹脂材側の溶着部の厚みH1の方が、発泡樹脂材側の溶着部の厚みH2よりも厚くなっている。 The welding operation is performed by scanning the laser beam L at an appropriate speed while applying a load to the transparent resin material 1 and the foamed resin material 2 so as to be in close contact with each other. Contact pressure load was set to 360mm 2 around 34Kg. The state of heat transfer from the carbon black that has generated heat upon receiving laser light is schematically shown in FIG. At this time, as a result of the heat insulation effect of the foam cell 3, the heat of the molten pool 4 is more transferred to the transparent resin material 1 side, and as a result, as shown in FIG. 5, the thickness H1 of the welded portion on the transparent resin material side is thicker than the thickness H2 of the welded portion on the foamed resin material side.

上記の溶着方法と従来手法との比較実験を行った。図2は本実施例の効果を説明するグラフである。同グラフの横軸にはレーザ光の入射エネルギー量(J/mm)をとり、縦軸には最大溶着強度との強度比をとっている。入射エネルギー量は下記の式で計算した。
入射エネルギー量=樹脂の透過率xレーザ光出力/(走査速度x焦点径)である。
なお、図中の従来手法とは発泡体を有さない樹脂材を同条件で溶着したものである。入射エネルギー量を変えて多数の溶着実験をしたところ、同等の溶着強度を得るのに本実施例の方が従来手法より低エネルギーで済む傾向となった。すなわち、同図に矢印で示すように、本実施例では従来手法に対し「溶着強度の立ち上がり」および「最大強度到達」の各入射エネルギー量が低エネルギー域へシフトすることが確認できた。表1は本実施例の効果を従来手法と比較した表である。

Figure 2005271206
期待される効果として次のような効率アップが見込まれる。
(1)レーザ出力装置の出力が一定の場合、従来手法の3分の2の時間で溶着が可能。
(2)レーザ出力装置の速度が一定の場合、従来手法の3分の2の出力で溶着が可能。 A comparative experiment between the above welding method and the conventional method was performed. FIG. 2 is a graph for explaining the effect of this embodiment. The horizontal axis of the graph represents the incident energy amount (J / mm 2 ) of the laser beam, and the vertical axis represents the intensity ratio with the maximum welding strength. The amount of incident energy was calculated by the following formula.
Incident energy amount = resin transmittance × laser light output / (scanning speed × focal diameter).
In addition, the conventional method in the figure is obtained by welding a resin material having no foam under the same conditions. When a large number of welding experiments were performed while changing the amount of incident energy, the present example tended to require lower energy than the conventional method to obtain the same welding strength. In other words, as shown by the arrows in the figure, it was confirmed that the incident energy amounts of “rise of welding strength” and “reaching maximum strength” were shifted to a low energy region in this example compared to the conventional method. Table 1 is a table comparing the effects of the present embodiment with the conventional method.
Figure 2005271206
Expected effects are as follows.
(1) When the output of the laser output device is constant, welding can be performed in two-thirds the time of the conventional method.
(2) When the speed of the laser output device is constant, welding is possible with the output of two-thirds of the conventional method.

以上、本発明の実施形態について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
たとえば、ポリプロピレン以外の材質の樹脂材に適用することが可能である。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
As mentioned above, although embodiment of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
For example, the present invention can be applied to resin materials other than polypropylene.
In addition, the technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

実施例に係る樹脂材の溶着方法を説明する図である。It is a figure explaining the welding method of the resin material which concerns on an Example. 実施例に係る樹脂材の溶着方法の効果発現を説明する線図である。It is a diagram explaining the effect expression of the welding method of the resin material which concerns on an Example.

符号の説明Explanation of symbols

1・・透明樹脂材
2・・発泡樹脂材
3・・発泡セル
5・・溶着部
1 .... Transparent resin material 2 .... Foam resin material 3 .... Foam cell 5 .... Welded part

Claims (2)

熱光線に対して透明な透明樹脂材と熱光線に対して不透明な発泡樹脂材を重ね合わせ、透明樹脂材側から不透明発泡樹脂材に向けて熱光線を照射することによって不透明発泡樹脂材を溶融させ、溶融した不透明発泡樹脂材に接する透明樹脂材を溶融させることを特徴とする樹脂材の溶着方法。   A transparent resin material that is transparent to heat rays and a foam resin material that is opaque to heat rays are overlapped, and the opaque foam resin material is melted by irradiating heat rays toward the opaque foam resin material from the transparent resin material side. And melting the transparent resin material in contact with the melted opaque foamed resin material. 透明樹脂材と不透明発泡樹脂材を溶着した溶着体であって、透明樹脂材と不透明発泡樹脂材の重ね合わせ面に双方の樹脂材が溶融して固化して形成された溶着部が形成されており、透明樹脂材側の溶着部の厚みが不透明発泡樹脂材側の溶着部の厚みより厚いことを特徴とする溶着体。   A welded body in which a transparent resin material and an opaque foamed resin material are welded, and a welded portion formed by melting and solidifying both resin materials on the overlapping surface of the transparent resin material and the opaque foamed resin material is formed. And a thickness of the welded portion on the transparent resin material side is greater than the thickness of the welded portion on the opaque foamed resin material side.
JP2004083371A 2004-03-22 2004-03-22 Resin material welding method and welded body Pending JP2005271206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083371A JP2005271206A (en) 2004-03-22 2004-03-22 Resin material welding method and welded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083371A JP2005271206A (en) 2004-03-22 2004-03-22 Resin material welding method and welded body

Publications (1)

Publication Number Publication Date
JP2005271206A true JP2005271206A (en) 2005-10-06

Family

ID=35171378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083371A Pending JP2005271206A (en) 2004-03-22 2004-03-22 Resin material welding method and welded body

Country Status (1)

Country Link
JP (1) JP2005271206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045694A (en) * 2007-08-20 2009-03-05 Toyo Tire & Rubber Co Ltd Polishing pad and its manufacturing method
JP2010137368A (en) * 2008-12-09 2010-06-24 Nitto Denko Corp Laminated sheet and method of manufacturing laminated sheet
WO2019053885A1 (en) * 2017-09-15 2019-03-21 株式会社アシックス Laminated body, shoe sole, and shoes
EP4197752A1 (en) * 2021-12-15 2023-06-21 Universidade de Aveiro Laser welding of cellular and non-cellular polymeric materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045694A (en) * 2007-08-20 2009-03-05 Toyo Tire & Rubber Co Ltd Polishing pad and its manufacturing method
JP2010137368A (en) * 2008-12-09 2010-06-24 Nitto Denko Corp Laminated sheet and method of manufacturing laminated sheet
WO2019053885A1 (en) * 2017-09-15 2019-03-21 株式会社アシックス Laminated body, shoe sole, and shoes
JPWO2019053885A1 (en) * 2017-09-15 2020-04-23 株式会社アシックス Laminates, shoe soles and shoes
EP3683058A4 (en) * 2017-09-15 2020-11-04 ASICS Corporation Laminated body, shoe sole, and shoes
US11667105B2 (en) 2017-09-15 2023-06-06 Asics Corporation Laminate, shoe sole, and shoe
EP4197752A1 (en) * 2021-12-15 2023-06-21 Universidade de Aveiro Laser welding of cellular and non-cellular polymeric materials

Similar Documents

Publication Publication Date Title
Oladimeji et al. Trend and innovations in laser beam welding of wrought aluminum alloys
CN105694440B (en) The welding method of thermoplastic composite and wherein used doping resin
CN108453374B (en) Double-beam laser welding method and device for aluminum alloy
Ohnishi et al. Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content
Duley et al. CO2 laser welding of polymers
JP2013203052A (en) Method for sealing container and lid by laser welding
JP2009302533A (en) Method for recycling thin-film solar cell module
JP5470059B2 (en) Laser bonding method for resin members
CN111002591A (en) Laser transmission welding method for plastic parts
JP2002331588A (en) Laser welding method
JP4848242B2 (en) Resin joint
JP2005271206A (en) Resin material welding method and welded body
Nordin et al. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass
JP2008213156A (en) Metal resin jointing method using plurality of laser beam sources and metal resin composite
Seyfarth et al. Selective laser melting of borosilicate glass using ultrashort laser pulses
JP5555613B2 (en) Laser bonding method of resin member and laser bonded body of resin member
JP4230826B2 (en) Laser processing method
van der Straeten et al. Laser-based plastic-metal-joining with self-organizing microstructures considering different load directions
Cambronero et al. Weld structure of joined aluminium foams with concentrated solar energy
CN106626379B (en) The method and apparatus that laser manufactures polyamide three-dimension object
JP5912687B2 (en) Welding apparatus and welding method for thermoplastic resin tube
Sari et al. Applications of laser transmission processes for the joining of plastics, silicon and glass micro parts
Morimoto et al. Influence of laser wavelength on melt pool behavior in welding of thin pure copper plate with blue diode and fiber lasers
JP2011161651A (en) Laser joining method of resin member, and laser joined body of resin member
JPH06114943A (en) Method for fusion-bonding fluorine resin film