JP2005269652A - 光ノード、光通信システム、トークン制御データ伝送方法及び論理装置 - Google Patents

光ノード、光通信システム、トークン制御データ伝送方法及び論理装置 Download PDF

Info

Publication number
JP2005269652A
JP2005269652A JP2005077521A JP2005077521A JP2005269652A JP 2005269652 A JP2005269652 A JP 2005269652A JP 2005077521 A JP2005077521 A JP 2005077521A JP 2005077521 A JP2005077521 A JP 2005077521A JP 2005269652 A JP2005269652 A JP 2005269652A
Authority
JP
Japan
Prior art keywords
data
node
transmission
token
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005077521A
Other languages
English (en)
Other versions
JP4547287B2 (ja
Inventor
Suu Chin-Fon
スゥ チン−フォン
Takeo Hamada
健生 浜田
R Rabatto Richard
アール ラバット リチャード
Hung-Ying Tyan
ティエヌ フン−イン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2005269652A publication Critical patent/JP2005269652A/ja
Application granted granted Critical
Publication of JP4547287B2 publication Critical patent/JP4547287B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】 通信ネットワークにおけるトークンの制御されたデータ伝送方式を提供すること。
【解決手段】 ネットワークはリングトポロジを形成するように相互接続される複数のノードを含む。これらのノードはトークンを用いてネットワーク上のデータ伝送をサポートする。ネットワーク上のデータを送受信するため、ノードは制御メッセージを処理してもよい。ノードは、複数のデータチャネルの1つで送信することを認証するトークンを受信し、認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し、前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定することができる。また、ノードは、送信割当及び前記宛先割当に従って認証されたデータチャネルで前記データを送信することができる。
【選択図】 図1a

Description

本発明は、一般に通信ネットワークに関し、特に通信ネットワークでトークンの制御されたデータ伝送に関する。
光ネットワークは、光ファイバ上で搬送されるデータを光信号形式で伝送する。ネットワーク帯域の利用度を最小化するため、光ネットワークは、時分割多重化(TDM)又は波長分割多重化(WDM)のような技術を使用する。例えば、同期光ネットワーク又はソネット(SONET)は、光ネットワークでデータを多重化するのにTDMを利用する光伝送規格である。
本発明は、通信ネットワークにおけるトークンの制御されたデータ伝送技術を提供することを目的とする。
本発明の特定の態様によれば、ネットワーク要素に、通信ネットワークのデータチャネル上でのデータ伝送をスケジューリングさせることを可能にする。
特定の態様によれば、光ノードは、複数の宛先に送信するためのデータを受信することができるデータインターフェースと、前記データを格納することができるバッファとを含む。また、光ノードは、複数のデータチャネルを含む光伝送媒体に結合可能な送信ユニットを含む。送信ユニットは、前記データチャネルにおける光信号を選択的に送信することができる。また、光ノードは、前記データチャネルの1つで送信することを認証するトークンを受信することができるコントローラを含む。コントローラは、認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し、前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定することができる。また、コントローラは、前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信することができる。
本発明の実施例は様々な技術的利点を与える。それらの技法は、ネットワークトラフィックを処理するための通信ネットワークの容量を増やすかもしれない。また、これらの技法は、ネットワーク上の伝送に関するサービス品質を向上させるかもしれない。更に、これらの技法は、ネットワーク利用における変更条件に適合するように、より適応的且つ柔軟であるかもしれない。例えば、トークンを利用するデータ伝送を制御する機能は、通信ネットワークが、「バースト状の(bursty)」ネットワークトラフィックを処理することを可能にするかもしれない。更に、これらの技法は、オーバーヘッドを削減し、システムパフォーマンスを改善するかもしれない。
本発明による他の技術的利点は、以下の説明、図面及び特許請求の範囲から当業者に更に明白になるであろう。なお、具体的な利点が前に列挙されたが、様々な実施例は、列挙された利点の全部又は一部を含んでもよいし、全く含まなくてもよい。
本発明及びその利点を更に完全に理解するため、添付図面に関連する以下の説明が参照される。
以下、本発明の実施例による光ノード、光通信システム、トークン制御データ伝送方法及び論理装置が説明される。この場合において、論理装置は、ソフトウエアで構成される論理プログラム又はハードウエアで構成される論理回路を含む。
図1aは、全体的に10で示される通信ネットワークを示し、通信ネットワークは複数のネットワークノード12を含み、ネットワークノードは本発明の様々な実施例に従って動作する。概して、ネットワーク10はノード12間のデータ伝送をサポート(支援)する。より具体的には、ノード12は通信を制御するためにトークン方式を用いる。
特定の実施例によれば、ネットワーク10は光通信リングを形成し、ノード12は光通信ノードである。以下の残りの説明は、光学装置としてのネットワーク10及びノード12の例に主に絞られる。しかしながら、開示される技術が、適切ないかなる形式のネットワークに使用されてもよいことは理解されるべきである。
図示されるように、ネットワーク10は光通信リング12であり、ノード12は光通信ノードである。動作時にあっては、ネットワーク10は波長分割多重化(WDM)を使用し、WDMでは、複数のチャネルを波長で変調することで、多数の光チャネルが共通の経路上で搬送される。しかしながら、ネットワーク10は適切ないかなる多重化法を利用してもよく、チャネルは、WDMにおける波長のような利用可能な帯域のどのような分離部分でもそれを表現することが理解されるべきである。更に、ネットワーク10は、都市領域ネットワーク(MAN)を含むどのような形式のネットワークでもよい。また、ネットワーク10は時計回り及び/又は反時計回り方向に動作してもよい。例えば、ネットワーク10は2つの反対向きのリングを含んでもよい。
各ノード12は、適切ないかなる制御論理部をも含み、他のネットワーク要素とリンク可能であり、データを伝送することができるハードウエアを表現する。動作時にあっては、ネットワーク10のリング形態(コンフィギュレーション)は、どのノード12でも、ネットワーク10内の他のいかなるノード12でもそこにデータを伝送することを可能にする。隣接ノード12については、データは直接的に伝送されてもよい。非隣接ノード12については、データは、1以上の中間ノード12を介して伝送される。例えば、ノード12aは隣接ノード12b,12eにデータを直接的に伝送するかもしれないが、ノード12aは非隣接ノード12dへ中間ノード12b、12c又は12eを介してデータを伝送する。
ノード12はデータソース14に結合されてもよい。動作時にあっては、データソースはネットワーク10にデータ提供する、或いはネットワーク10からデータを受信する。データソース14aのようなデータソースは、データを送信又は受信してもよいローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)その他の適切ないかなる形式の装置でもよい。
ノード12は光ファイバ16により互いに結合される。動作時にあっては、ファイバ16はノード12間で光信号を伝送する。ファイバ16は、1つの単方向ファイバ、1つの双方ファイバ、又は単方向若しくは双方向の複数のファイバでもよい。図示されるように、ネットワーク10は2つの単方向ファイバ16a,16bを含む。ネットワーク10で時計回りに送信されたデータはファイバ16a上で搬送されるが、ネットワーク10で反時計回りに送信されたデータはファイバ16b上で搬送される。ファイバ16は、複数の波長を含む光信号を伝送することのできる材料から構成されてもよい。
ノード12は、制御チャネル18により互いに結合される。制御チャネル18は、隣接するノード12の間で、トークンを含む制御メッセージを通信するのに適切な光チャネルその他のいかなる形式のチャネルでもよい。例えば、制御チャネル18は、ネットワーク10がWDMを使用するならば、光監視チャネル(OSC)と呼ばれる、ある別個のチャネルでもよい。制御メッセージはネットワーク上のデータ伝送の動作を制御する。特定の実施例によれば、トークン及び制御メッセージはノード12毎に処理されてもよく、データ伝送は電気的な処理を行わずに中間ノード12を通過させてもよい。
動作時にあっては、ノード12は伝送を制御するためにトークンベースの制御法を使用する。より具体的には、ノード12は、ネットワーク10の中でチャネル各々に関する個別制御を可能にするトークン方式を使用してもよい。特定の実施例によれば、ノード12は、チャネル固有トークンを用いて、個々の波長の各々に対して個別化した制御を可能にする。具体的な動作例が図1bに示される。
図1bは、本発明の一実施例による通信ネットワークでのトークン制御データ伝送を示す。この例では、ノード12aは、ネットワーク10上で送信するデータをデータソース14aから受信する。データは、ネットワーク10上の1以上のノード12を介して伝送されるよう意図されてもよい。受信時には、ノード12aはデータを仮想キュー20にバッファリングしてもよく、仮想キューは、データを格納するよう動作する揮発性又は不揮発性のどの形式のメモリをも表す。例えば、ノード12b用に予定されるデータは仮想キュー20内でBのラベルの付された行に格納され、ノード12dに予定されるデータは仮想キュー20内でDのラベルの付された行に格納される。しかしながら、データは可能キュー20内で様々な方法のどれによって格納されてもよいことに留意を要する。
ノード12aは、仮想キュー20に格納されたデータをネットワーク10に送信するのに先立って、トークンを受信することを待機する。トークンは、ネットワーク10でのノード12間の競合を避ける調整機能を提供する。トークンは、ノード12aがネットワーク10にデータを送信することを認める、ノード12aにより受信された何らかの通信内容である。トークンは、認証されるデータチャネルで、ノード12がデータ伝送を予定すること及び/又は送信することの許可を与える。特定の実施例では、各データチャネルは少なくとも1つのトークンを使用する。例えば、トークンは、ノード12aがネットワークの特定のデータチャネルでデータ伝送を予定することを承認してもよい。トークンは、代替的に又は付加的に、ノード12aがネットワーク10の特定のデータチャネルでデータを速やかに送信することを認めてもよい。特定のデータチャネルは、利用可能な帯域の適切ないかなる分離部分でもよい。例えば、特定のデータチャネルは、ネットワーク10がWDMを使用するならば、特定の波長でもよい。更に、トークンは、ノード12aによって受信される制御メッセージで、又は他の様々な方法の1つでノード12aに通知されてもよい。
データをネットワーク10に送信する前に、送信するノード12は制御メッセージを他のノード12に通知してもよい。動作時にあっては、制御メッセージは、将来ネットワークを通じてデータを伝送することを、1以上のノード12に通知する。制御メッセージは、データチャネル及び将来の送信の宛先を識別してもよい。また、制御メッセージは送信サイズ及び/又は送信タイミングを識別してもよい。ノード12は、宛先を確認する制御メッセージを受信した後に、光学的及び/又は電気的な要素を再構築してもよい。例えば、将来的な送信の宛先として指定されたノード12は、その将来的な伝送内容を受信するように光フィルタを調整してもよい。
ノード12aがデータチャネル上での送信を認めるトークンを受信した後であって、ノード12aがデータを送信する前に、ノード12aはネットワーク10を通じて制御メッセージを通信する。例えば、ノード12aがノード12bにデータを送信する前に、ノード12aはノード12bに制御メッセージを通知する。同様に、ノード12aがノード12dにデータを送信する前に、ノード12aはノード12dに制御メッセージを通知する。
適切な制御メッセージを通信した後に、ノード12は、ネットワーク10の認証されたデータチャネルで、仮想キュー20内に格納されているデータを送信してもよい。図示されるように、ノード12b用に意図されたデータはファイバ16bを通じて反時計回りにノード12bに送信され、ノード12d用に意図されたデータはファイバ16aを通じて時計回りにノード12dに送信されてもよい。送信22aはノード12aからノード12bへの送信を表し、送信22bはノード12aから12dへの送信を表す。送信22aはノード12aから12bへ直接的に進むが、送信22bはノード12eを通じてノード12dに至るよう伝搬する。送信22a,22bはファイバ16を通じて送信される。送信22a,22bに関連する制御メッセージは、制御チャネル18上で送信されてもよい。
図2は、ネットワーク10内のノード12の機能要素を示すブロック図である。ノード12は、光学要素30、電気要素32及びコントローラ34を含む。光学要素30はファイバ16に結合し、電気要素32は光学要素30に結合する。コントローラ34は、制御チャネル18に加えて、光学要素30及び電気要素32の双方に結合する。
動作時にあっては、光学要素30は、データに関する光信号を受信、伝送及び送信し、電気要素32は光学要素30からのデータを受信し、又は光学要素30にデータを送信する。また、電気要素32はデータソース14からデータを受信し、又はデータソース14にデータを送信するが、特定の実施例では、光学要素30は電気要素32を迂回し(バイパスし)、データソース14からデータを直接的に受信し、又はデータソース14にデータを直接的に送信してもよい。更に、ある実施例では、光学要素しか存在しなくてもよい。コントローラ34は、光学要素30及び電気要素32双方を(それらが存在すれば)制御し、制御チャネル18を用いてトークン及び制御メッセージを通信する。
図示の例では、ノード12は少なくとも3つの動作モードを与え、それらは:痩身モード、通過モード及び受信モードである。送信モードでは、ノード12はネットワーク10でデータを送信するよう機能する。通過モードでは、ノード12は電気的な処理なしにデータがノード12を通過することを許容するように機能する。受信モードでは、ノード12はネットワーク10からデータを受信するよう機能する。どの特定のノード12でもそれは、どの時点でも、どのモードでも或いは複数のモードでも動作してよい。
送信モードでは、ノード12は、あるデータチャネルでのデータ伝送を認証するトークンを受信する。この状況では、コントローラ34は、データが送信に利用可能か否かを判別してもよい。データが利用可能ならば、コントローラ34は、データの宛先;データチャネル;データ伝送サイズ;及び/又はデータ伝送のタイミングの1以上を示す制御メッセージを準備し、次に隣接するノード12に通知する。制御メッセージを通信した後に、コントローラ34は、制御メッセージで指定されるパラメータに従って、ネットワーク10上でデータを送信するように、光学要素30及び電気要素32を制御してもよい。
通過モードでは、ノード12は制御メッセージを受信し、その制御メッセージは、トークンを含まず、ノード12が宛先であることも示さない。コントローラ34は、制御メッセージを次に隣接するノード12に転送し、電気的な処理なしにデータがノード12を通過できるようにする。言い換えれば、光学要素30は、電気要素32による電気処理をせずに、データを次の隣接ノード12に単に伝送させる。ノード12がデータを通過させるが、電気要素32を用いてそのデータの複製を記憶する場合には、この状況は変化する。この技術は、障害管理機能を与える。例えば、ファイバ16が切断され、データが意図される宛先に到達しない場合に、データはノード12によってその宛先に方向付け直されてもよい。
受信モードでは、ノード12は自身が宛先であることを示す制御メッセージを受信する。この場合には、コントローラ34は、制御メッセージに指定されているパラメータに従って、ネットワーク10からデータを受信するように、光学要素30及び電気要素32を制御してもよい。
これら3モード各々の例として、図1bにおける、ノード12eを介するノード12aからノード12dへのデータ伝送を考察する。この例では、3つ総てのモードが生じ:ノード12aは送信モードで動作し;ノード12eは通過モードで動作し;ノード12dは受信モードで動作する。従って、トークン及び制御メッセージが3つ総てのノード12で処理されるが、データ伝送は、ノード12eを電気的処理なしに通過する。
以下、光学要素30及び電気要素32が更に詳細に説明される。光学要素30は図3に関連して説明され、電気要素32は図4a,4bに関連して説明される。
図3は本発明の様々な実施例における光学要素30を示す。特定の実施例では、光学要素30はネットワーク10で光信号を受信及び/又は送信するよう動作してもよい。光信号を受信するのに使用されてもよい光学要素30は、ドロップカプラ40、分配カプラ42及びフィルタ44を含む。光信号を送信するのに使用されてもよい光学要素30は、レーザ46、合成カプラ48及びカプラ50を含む。例えば、ノード12は、ネットワーク10からデータを受信するよう構成されているならば、ドロップカプラ40、分配カプラ42及びフィルタ44は、ファイバ16bから光信号を受信するよう動作してもよい。ノード12がネットワーク10にデータを送信するよう構成されているならば、レーザ46、合成カプラ48及びカプラ50は、ファイバ16bに光信号を送信するよう動作してもよい。光学要素30は、光学的な処理をせずに、光信号を通過させてもよいことに留意を要する。
ファイバ16bは、ドロップカプラ40、分配カプラ42及びフィルタ44に結合される。ノード12がネットワーク10からデータを受信するよう構成されるならば、ドロップカプラ40はファイバ16bで伝送されるある光信号を落とす(除去する)よう動作し、分配カプラ42は落とされた信号(ドロップ信号)を分配するよう動作し、フィルタ44は分配された信号を選別(フィルタリング)するよう動作する。この手法では、光学要素30は、データソース14に対して意図されるデータようなネットワークデータを受信するようにファイバ16bに取り出し口を入れる(tap)。
ファイバ16bは、レーザ46、合成カプラ48及び付加カプラ50にも結合される。ノード12がネットワーク10にデータを送信するよう構成されるならば、レーザ46はそのデータに対応する光信号を生成するよう動作し、合成カプラ48は生成した信号を合成するよう動作し、付加カプラ50は合成した信号をファイバ16bに加えるよう動作する。この手法では、光学要素30は、データソース14により生成されたデータのようなローカルデータを送信するようにファイバ16bに引き入れる(tap)。
フィルタ44及びレーザ46はチューナブル(調整可能)でも固定的(静的)でもよいことに留意を要する。静的な構成は、データを送信又は受信するために、光学要素30を構成するのに費やされる時間の量を減らすかもしれない。しかしながら、ダイナミックな(動的な)構成は、更なる柔軟性を与えるかもしれない。例えば、チューナブルなフィルタ及びレーザを用いて、光学経路が構築及び再構築されてもよい。以後の残りの説明では、1以上のチューナブルフィルタ44及びレーザ46を含む光学要素30の実施例に主に焦点を当てる。しかしながら、説明される技法は調整可能な又は固定的なフィルタ44及びレーザ46の何れを利用してもよいことが、理解されるべきである。
特定の要素が図示及び説明されるが、要素が適切な機能を果たす限り、他の要素が付加されてもよく、及び/又は要素が除去されてもよい。例えば、光学要素30は波長ブロッカを含んでもよく、波長ブロッカ(blocker)は、ある波長の光信号を落とす(ドロップする)のに使用される。例えば、ノード12が特定の波長を用いてデータを送信する時間に、波長ブロッカが使用されてもよい。波長ブロッカは、送信されるデータが、ファイバ16上で望まれない光信号と衝突しないことを保証する。図3はファイバ16を用いる伝送に関連する要素を示すが、同様な又は異なる光学要素がファイバ16a上での伝送に使用されてもよい。
図4aは、本発明の一実施例による電気要素32を示す。電気要素32は、仮想キュー20、スイッチ60、プロセッサ62、ポート64及びメモリ66を含む。動作時にあっては、電気要素32は、進出するローカルデータを収集し、進入するネットワークデータを非集約化し、後のデータ送信用に格納する。スイッチ60は仮想キュー20、ポート64、メモリ66及びプロセッサ62を選択的に接続する。
仮想キュー20は、データソース14への送信用に、ネットワークデータの集約化を解除して(de−aggregation)一時的にバッファリングし、及びネットワーク10への送信用に、ローカルデータを収集して一時的にバッファリングする。仮想キュー20の動作は図4bに関連して更に説明される。ポート64はデータソース14との通信を可能にする1以上のネットワーク接続部である。ポート64は電気要素32をデータソース14に結合するよう動作し、データソース14から受信したローカルデータ又はデータソース14に送信されるネットワークデータがポート64を通じて伝搬するようにしてもよい。
メモリ66は、プロセッサ62により処理するデータ及び他の情報を永久的に又は一時的に格納する。メモリ66は、宛先に送信するデータ、ネットワーク10から受信したデータ、プロセッサ62で使用するルーチン又は他の適切な情報を格納してもよい。メモリ66は障害管理機能も与える。例えば、データ伝送経路上の中間ノード12は、その中間ノード12を介するデータ伝送内容として、データ伝送の複製を格納してもよい。この手法では、送信内容がその意図する宛先ノード12に到達しなかった場合に、データが復元されるかもしれない。例えば、ファイバ16が切断された場合に、そのようなことが生じるかもしれない。メモリ66は、情報を格納するのに適した揮発性又は不揮発性のローカル又はリモート装置のどの1つ又は組み合わせで表現されてもよい。例えば、メモリ66は、ランダムアクセスメモリ(RAM)装置、リードオンリメモリ(ROM)装置、磁気格納装置、光学式格納装置、若しくは他の適切ないかなる情報格納装置でもよく、又はそれらの装置のどの組み合わせでもよい。また、メモリ66は、データスループット及び信頼性を高めるために、RAIDベースの格納方式及び階層ディスクストリッピング(RAID)方式を利用してもよい。メモリ66はノード12が大量のデータを格納及び送信可能にするために、大きな格納容量を備えてもよい。
プロセッサ62は、スイッチ60及び他の電気要素32の動作及び管理を制御する。例えば、プロセッサ62は、メモリ66に格納される仮想キュー20を通じて受信したネットワークデータ、及び仮想キュー20における送信用に集められたポート64を介して受信されたローカルデータを指図してもよい。プロセッサ62は情報を制御及び処理するよう機能するいかなるハードウエアを含んでもよい。例えば、プロセッサ62は、マイクロコントローラ、プロセッサ、プログラマブル論理装置、及び/又は他の適切ないかなる処理装置でもよい。
特定の要素が図示及び説明されているが、要素が適切に動作する限り、他の要素が付加されてもよいし、及び/又は要素が除去されてもよい。更に、一実施例では光学要素のみが存在してもよい。
図4bは、本発明の一実施例による仮想キュー20で生じるバースト的な収集の様子を示す。バーストは、ネットワーク10を介して送信するデータの集まりである。より多くのバーストを用いてネットワーク10のパフォーマンスを向上させてもよいことに留意を要する。その理由は、各データ伝送は制御メッセージに関連付けられてもよく、制御メッセージはノード12毎に処理され、データ伝送内容は宛先ノードでクロックに同期するためのヘッダを含んでいるからである。制御メッセージ及びヘッダの処理はオーバーヘッドを生み出すが、そのオーバーヘッドは、データ収集によりバーストのサイズを増やすことで減らされてもよい。例えば、複数のデータパケットが1つのバーストに合成されてもよく、それによりネットワーク10で通信される制御メッセージ及びヘッダの数を減らしてもよい。しかしながら、より小さなバースも効果的になるかもしれない。
仮想キュー20は進入キュー68及び複数の進出キュー70を含む。進入キュー68及び進出キュー70は宛先によってデータを編成する。進出キュー70もデータチャネルによってデータを編成する。例えば、WDMが使用される場合に、データは波長で編成(組織化)されてもよい。動作時にあっては、ノード12は、ローカルデータをデータソース14から受信し、宛先によってデータを分離し、分離したデータを特定の宛先に意図されたバーストにバッファリングする。この手法では、進入するキュー68は、データチャネルではなく宛先で編成された一時的なキューとして機能する。ノード12がデータチャネルでの送信を認めるトークンを受信すると、プロセッサ62は、進入キュー68内のデータを、認証されたデータチャネルに付随する複数の進出キューの1つに差し向けてもよい。図示されるように、進出キュー70は光の波長に対応する。しかしながら、進出キュー70は、ネットワーク10で見出されるいかなる形式のデータチャネルに関連してもよい。
図示されるように、ノード12aに関連してもよい進入キュー68が、受信され、分離され、ノード12b,12c,12d,12eに意図されるデータバーストにバッファリングされてもよい。ノード12aは第1波長(λ)での送信を認めるトークンを受信すると、プロセッサ62は進入キュー68内のデータを、第1波長に関連する進出キュー70aに向けてもよい。或いは、ノード12aは第2波長(λ)での送信を認めるトークンを受信すると、プロセッサ62は進入キュー68内のデータを、第2波長に関連する進出キュー70bに向けてもよい。データが宛先により分離されるので、ノード12aは複数のデータ送信内容を、バッファリングされたバーストに対応する個々の宛先の各々に容易に送信できることに留意を要する。複数のバーストは、異なるトークンで認められる異なる波長を通じて、同一の宛先に送信されてもよいことにも留意を要する。
ノード12は、進出キュー70に関するスケジューリングアルゴリズムを使用してもよい。動作時にあっては、スケジューリングアルゴリズムは、1以上の伝送割り当てをノード12に割り当ててもよい。伝送割当は、ノード12が、ネットワーク10でローカルデータを送信するのにデータチャネルを利用してもよい期間を表す。従って、ノード12があるデータチャネルでの送信を認めるトークンを受信すると、ノード12は、その送信割当で定められている期間中に、認証された進出キュー70からデータを送信だけしてよい。その期間が終了すると、ノード12はそのデータチャネルでの送信を中止する。例えば、第2波長送信を認めるトークンがノード12に到着すると、第2波長を用いて、進出キュー70bから1以上の宛先へ、1以上のバーストの形式でデータバーストが送信される。しかしながら、第2波長に対する伝送割当によって制限された期間中でのみ、バーストが送信されてもよい。送信割当は各データチャネルについて異なっていてもよいことに留意を要する。
スケジューリングアルゴリズムは、ノード12に至る宛先割当を割当ててもよい。宛先割当は、送信割当ての一部を表し、特定の宛先にデータバーストを送信するのに使用されてもよい。複数の宛先の中で、公平な分配又は保証帯域を可能にするように、ある比率が事前に定められていてもよい。スケジューリングアルゴリズムが、重み付けされたラウンドロビンスケジューリングで使用されてもよい。例えば、第1波長での送信を認めるトークンがノード12に到着した場合に、その宛先割当に従って、バーストが進出キュー70aから送信されてもよい。以下の比率は宛先割当によって指定されてもよい:宛先Bへの送信割当1/3、宛先Cへ1/3、宛先Dへ1/6及び宛先Eへ1/6。様々な比率のいかなる組み合わせが使用されてもよいことに留意を要する。更に、宛先割手はデータチャネルの各々について同一でも相違していてもよい。
複数のデータチャネルの間で送信割当及び宛先割当を算出するために、トポロジ情報が使用されてもよい。トポロジ情報は、ネットワーク10のトポロジに関するいかなる情報をも含む。例えば、トポロジ情報は、ネットワーク10におけるノード数、ネットワーク10の一部を通じて送信するのに要する時間データ及び制御メッセージ、制御メッセージ及びトークンを処理するのに要する時間ノード12、特定のノード12におけるレーザ及びフィルタの数、特定のレーザ及びフィルタが静的であるか又は調整可能であるか、特定のレーザ及びフィルタを調整するのに要する時間を含んでもよい。また、トポロジ情報は、スタティックでもダイナミックでもよく、適切などの時間でもその時点で測定、交換又は構成されてもよい。
ソース及び宛先属性に基づくスケジューリングは、保証された帯域をネットワーク10がサポートし、ソース及び宛先のいかなる対も通信不能にしないようにする。例えば、スケジューリングアルゴリズムは、ノード12a,12d間のような特定のノード12間で最小帯域を保証してもよい。アルゴリズムは、データを送信するために、各ノード12がネットワーク10にアクセスするのを各ノード12が待機する最大時間を減らしてもよい。これは、TCPトラフィック及びリアルタイムトラフィックのような時間が重要なトラフィックについて、ネットワーク10がサービスレベルの最小品質をサポート及び保証させてもよい。更に、アルゴリズムは、ネットワーク10へのアクセスがノード12の間で適切に割当てられることを保証してもよい。例えば、重点的に使用されるノード12をサポートすることに加えて、トラフィック条件の動的な変更に応じるために、ノード12は異なるウエイトを有してもよい。アルゴリズムは、宛先ノード12での競合を減らしてもよい。従って、遅延に関する影響を制限するために、特定のノード12におけるフィルタ数が減らされてもよい。
図4bはデータ集約化の様子を示し、ネットワークデータの非集約化を行うのに同様な構造及びプロセスが使用されてもよいことに留意を要する。例えば、バースト形式のネットワークデータは、データチャネルによって編成された複数のキューの中で受信され、非集約化され、再編成されてもよい。しかしながら、スケジューリングアルゴリズムが、非集約化ネットワークデータに使用されなくてもよい。
図5aはトークンを用いる通信ネットワークでデータを送信する方法を示すブローチャートである。フローチャートは、データチャネル毎に1つのトークンの利用度を考察し、関連付けられ認証されたデータチャネルでノード12がデータ送信を終了するまで、トークンの各々はノード12によっては解放されない。図示の例では、1つのノード12のみが、所与のどの時点でも、全通信リングに沿ってデータチャネルの各々についてデータを送信可能にする。
トークンはデータチャネル各々へのアクセスを制御する。ノード12は1以上の宛先に対するバース伝送用に、データチャネルにアクセスするトークンを保持してもよい。実際のデータ送信には、宛先を識別する制御メッセージが先行する。制御メッセージが受信された後であるが、データが送信される前に、複数のノード12が、送信ノード12及び宛先ノード12の間で光経路を確立するように再構成されてもよい。送信ノード12は、その構成変更が生じるのを可能にするためにデータ送信を遅らせてもよいことに留意を要する。送信割当以外ではトークンは保持されず、データ送信後にトークンは解放される。一度に高々1つのノードがデータチャネルにアクセスしてもよいので、トークンを用いると、ネットワークアクセスの競合を排除できる。また、トークンはリングを巡回するので、各ノード12はラウンドロビン形式でデータチャネルにアクセスしてもよい。
フローチャートを参照するに、ステップ80にて、ノード12はネットワークデータを通すようにノード12の要素を構築する。ネットワークデータを通過させることは、例えば、目下のノード12を介する経路で他のノード12との通信を可能にするために、データがノード12を介して伝搬可能にすることを想定する。ステップ81では、ノード12がローカルデータを受信し、バッファリングする。例えば、ノード12は、取り付けられているデータソース14からデータを受信してもよい。
ノード12はステップ82にて制御メッセージを待機及び受診する。制御メッセージは制御チャネル18上で受信されてもよい。ステップ84では、ノード12は制御メッセージがトークンを含むか否かを判別し、そのトークンはネットワーク10の特定のチャネルでデータを送信を認証するものである。例えば、トークンは、ネットワーク10がWDMを使用するならば、ノード12が特定の波長でデータを送信することを認めてもよい。
制御メッセージがトークンを含まないならば、ステップ86にて、ノード12はそれが宛先に指定されているか否かを判別する。制御メッセージがノード12を宛先として指定していないならば、ノード12はステップ88で次に隣接するノードへ制御メッセージを転送し、ステップ81に戻る。一方、制御メッセージがノード12を宛先に指定しているならば、ステップ90で、ノード12は制御メッセージで指定されているパラメータを判別する。パラメータは、データチャネル、バーストサイズ及びバーストタイミングを含んでもよい。例えば、データチャネルは、WDMが使用されているならば、1以上の波長を指定してもよい。バーストタイミングは、データ伝送内容が到着する時間を示す絶対的な又は相対的なタイムスタンプを反映してもよい。絶対タイムスタンプの場合は、ノード12間でクロック同期法が使用されてもよい。相対的なタイムスタンプの場合は、処理する時間はタイムスタンプから導出されてもよい。
判別されたパラメータに応じて、ノード12は、ステップ92にて、ネットワークデータを受信するように光学要素30及び電気要素32を構築してもよい。例えば、この時点でチューナブルフィルタが構築されてもよい。ステップ94では、制御メッセージで指定されたパラメータに従って、ノード12がネットワークデータを受信し、ステップ80に戻る。
ステップ84に戻って、制御メッセージがトークンを含むならば、ノード12はステップ96に進み、ノード12から送信されるローカルデータが利用可能か否かを判別する。ローカルデータが送信に利用可能でないならば、ノード12は、ステップ98でトークンを次に隣接するノードに転送することによってトークンを解放し、ステップ80に戻る。一方、ローカルデータが送信に利用可能ならば、ノード12はステップ100にて制御メッセージで指定されるデータチャネルを判別する。前述したように、WDMの場合には、データチャネルは1以上の波長を含んでもよい。ノード12はステップ102にてデータを送信することに関連するパラメータを判別する。これらのパラメータは、例えば、宛先ノード12の身元、差し迫っている送信データのサイズ、及びバースト時間を含んでもよい。ステップ104でノード12はそれらのパラメータを反映する新たな制御メッセージを構築し、ステップ106でその新たな制御メッセージを次に隣接するノードに転送する。ステップ108では、ノード12はデータバーストを構築及び送信するように要素を構成する。例えば、ノード12はチューナブルレーザを構築してもよい。ステップ110では、ノード12はデータバーストを構築する。
ノード12はステップ112でデータバーストを送信する。データバーストはノード12によりステップ102で決定されステップ104で新たな制御メッセージ内で指定されたパラメータに従って送信される。データ伝送内容の送信後に、ノード12はステップ114でトークンを更に長く保持するか否かを判定する。トークンが更に長く保持されないならば、ノード12はトークンを解放し、ステップ98でそれを隣接する次のノードに転送する。一方、より長くトークンが保持される場合には、ノード12はステップ96でより多くのローカルデータが利用可能か否かを判別する。より多くのデータが送信に利用可能ならば、ノード12はステップ100乃至114を反復する。データが送信に利用可能でないならば、ノード12はトークンを解放し、ステップ98でそれを次に隣接するノードに転送する。トークンを転送した後に、ノード12はステップ80に戻り、ネットワークデータを通すように要素を再構築する。この手法では、ノード12はネットワーク10におけるトークン制御データ伝送を使用している。例えば、ノード12aに関連するデータソース14aに意図されたネットワークデータはノード12aにより受信され、データソース14aから発信してノード12b,12dのような他のノードに宛てられたローカルノードは、ノード12aによりネットワーク10上で送信されてもよい。
図5bは、図5aに関して説明される方法の一例を示す図である。この図は特定のデータチャネルで発生したデータ伝送を示す。縦軸は時間を示し、横向きのアクセスは距離を表す。そして、図はノードA及びB間のデータ伝送を時間と共に示す。図は特定の時点でノードAで生じたイベントに関連して説明される。
ノードAは時刻130でトークンを受信する。時間130及び132の間で、ノードAはそれが送信に利用可能データを有しているか否かを判別し、送信されるデータに関連するパラメータを判別し、それらのパラメータを反映する制御メッセージを作成する。ノードAは時刻132で次に隣接するノードに制御メッセージを通知する。次に、ノードAはデータを送信するようそれ自身構築する。ノードAは、受信構成及びチューニングを可能にするように、ある期間待機してもよい。この時間は、受信機におけるデータチャネルが固定されている或いは何らのフィルタチューニングもなされないならば、省略されても酔いし或いは減らされてもよい。時刻134にて、ノードAはデータ伝送を開始し、それはデータ伝送が終了する時刻136まで続く。時刻136及び時刻138の間の時間内に、ノードAはトークンを次に隣接するノードに転送する準備を行う。ノードAは時刻138でそのトークンを通知する。
このように、この図は、データバースト伝送内容が送信された後になるまで、トークンが各ノードに保持されるトークン制御法の例を示す。しかしながら、複数のデータバースト伝送が時刻134及び時刻136の期間内に完了し、これら複数の伝送内容が1以上の宛先ノードに送信されてもよいことに留意を要する。この図は時刻136から時刻138への期間が正であることを示すが、別の実施例では、例えばトークンの設定がデータバースト伝送以前に完了するならば、その時間は負になってもよい。
図6aは通信ネットワークでトークンを用いてデータを伝送する別方法を示すフローチャートである。このフローチャートはデータチャネルにつき1つのトークンを利用し、ノード12が関連する認証されたデータチャネルでのデータ伝送の前後で、トークンの各々はノード12により解放されてもよい。図示の例では、1つのノード12のみが、所与のどの時点でも全通信リングに沿ってデータチャネルの各々でデータを送信可能にしてもよい。
前述の方法と同様に、トークンはデータチャネル各々へのアクセスを制御し、ノード12はトークン受信後に1以上の複数の宛先にバースト伝送するために、データチャネルにアクセスしてもよい。実際のデータ伝送では、宛先を識別する制御メッセージが先行する。制御メッセージが受信された後であるがデータが送信される前に、ノード12は、送信ノード12及び宛先ノード12の間で光学経路を再構成してもよい。送信ノード12は、この構築がなされるようにデータ送信を遅らせてもよい。制御メッセージが通知された直後のような、データ伝送の完了前にトークンを解放し、不要な遅延を排除してもよいことに留意を要する。しかしながら、以下に説明される様々な理由により、トークンが保持されてもよい。
ここでフローチャートを参照するに、ノード12はステップ150でノード12の要素をネットワークデータが通るように構築する。ネットワークデータを通すことは、ノード12aを通じてデータを送信可能にすることを想定する。これは、目下のノード12を介する経路で他のノード12が通信することを可能にする。ノード12はステップ151でローカルデータを受信及びバッファリングする。例えば、ノード12は取り付けられたデータソース14からデータを受信してもよい。
ステップ152では、ノード12は制御メッセージを待機して受信する。制御メッセージは制御チャネル18上で受信されてもよい。ステップ154では、ノード12は、ネットワーク10の特定のチャネルでのデータ伝送を承認するトークンを制御メッセージが含んでいるか否かを判別する。例えば、ネットワーク10がWDMを使用するならば、トークンは、ノード12が特定の波長でデータを送信することを認めてもよい。
制御メッセージがトークンを含まないならば、ノード12はステップ156でそれが宛先に指定されているか否かを判別する。制御メッセージがノード12を宛先として指定していないならば、ノード12は、ステップ158でその制御メッセージを次の隣接するノードに転送し、ステップ151に戻る。一方、制御メッセージがノード12を宛先として指定していたならば、ノード12はステップ160で制御メッセージで指定されているパラメータを判別する。パラメータは、データチャネル、バーストサイズ及びバーストタイミングを含んでもよい。例えば、データチャネルは、WDMが使用されるならば、1以上の波長を含んでもよい。バーストタイミングは、データ伝送内容が到着する時間を示す絶対的な又は相対的なタイムスタンプを反映してもよい。絶対的なタイムスタンプの場合は、ノード12の間でクロック同期法が使用されてもよい。相対的なタイムスタンプの場合は、そのタイムスタンプから処理時間が導出されてもよい。
判定されたパラメータに応じて、ノード12はステップ162でネットワークデータを受信するように光学要素30及び電気要素32を構築してもよい。例えば、チューナブルフィルタがこの時点で構築されてもよい。ステップ164では、ノード12は制御メッセージで指定されているパラメータに従ってネットワークデータを受信し、ステップ150に戻る。
ステップ154に戻って、制御メッセージがトークンを含むならば、ノード12はステップ166に進み、ローカルデータがノード12からの送信に利用可能か否かを判別する。データが送信に利用可能でないならば、ノード12は、ステップ168で、トークンの転送を遅らせるか否かを判定する。例えば、ノード12がある期間トークンを保持するのを希望するならば、遅延時間が挿入されてもよく、遅延時間は送信割当に対応してもよい。この期間の間に、ノード12はネットワーク10を介してノード12に到着するローカルデータを待機してもよい。ノード12はネットワーク10でのデータ伝送の衝突を回避するためにトークンを保持してもよい。例えば、ネットワーク10の他の伝送に関する知識なしに、以後のノード12がトークンを受信し、ネットワーク10の一部でデータ伝送内容を同じ期間内に送信し、その期間は以前に予定されたデータ伝送内容が同じ部分(セクション)で送信されるものであったならば、衝突が生じるかもしれない。そのような知識不足は、以後のノード12が制御メッセージを受信しないことによって引き起こされるかもしれない。宛先ノード12はそれを宛先として指定する制御メッセージを転送しないかもしれないので、宛先ノードは適切な遅延時間の間トークンを維持してもよい。
ノード12が何らかの理由でトークンの転送を遅らせるよう決定しなかった場合には、ノード12はステップ170でトークンを速やかに転送してもよい。一方、ノード12が遅延を導入する或いは維持することを選択した場合には、ステップ172にてノード12は遅延時間の後にトークンを転送する。
ステップ166を参照するに、データがネットワーク10上での送信に利用可能ならば、ノード12はステップ174で制御メッセージで指定されるデータチャネルを判別する。前述したように、データチャネルは、ネットワークがWDMを利用ならば、1以上の波長を指定してもよい。次に、ステップ176では、ノード12は送信するデータに関連するパラメータを決定する。これらのパラメータは、例えば、宛先ノード12の身元、差し迫っているデータ伝送のサイズ及びバーストタイミングを含んでもよい。ノード12はステップ178でそれらのパラメータを反映する新たな制御メッセージを構築し、ステップ180でその新たな制御メッセージを次に隣接するノードに転送する。
ノード12はステップ182にてトークンの転送を遅らせるか否かを判定する。例えば、ノード12がある期間トークンを保持することを望むならば遅延が挿入され、その遅延波送信割当に対応してもよい。この遅延の間に、ノード12はネットワーク10で伝送するローカルデータがノード12に到着するのを待機してもよい。ノード12はネットワーク10でのデータ伝送の衝突を回避するようにトークンを保持してもよい。例えば、以後のノード12がトークンを受信し、ネットワーク10で他の送信に関する知識なしに、ネットワーク10の一部でデータ伝送内容を同じ期間に送信し、同じ期間は以前に予定されたデータ伝送が同じ部分で送信されるものであったならば、衝突が生じるかもしれない。このような知識不足は、制御メッセージを受信しない後続ノード12によって引き起こされるかもしれない。宛先ノード12はそれを宛先として指定する制御メッセージを転送しないかもしれないので、宛先ノードはトークンを保持することで遅延を強制してもよい。
ノード12が何らかの理由でトークンを遅らせるように決定しなかったならば、ステップ184にてノード12はトークンを速やかに転送する。一方、ノード12がトークンの転送を遅らせるよう決定したならば、ステップ186で遅延の後にトークンを転送する。
ステップ188では、ノード12はデータ伝送を行って伝送するように要素を構築する。例えば、ノード12はチューナブルレーザを構築してもよい。ノード12はステップ190でデータバーストを構築する。
ノード12はステップ192でデータバーストを送信する。データバーストはノード12によりステップ176で決定されステップ178にて新規制御メッセージで指定されたパラメータに従って送信される。データバーストを送信した後に、ステップ194ではノード12は最後のデータバースト又は唯一のデータバーストが送信されたか否かを判別する。最後の又は唯一のデータバーストが送信されていないならば、ノード12はステップ188乃至194を反復してもよい。一方、最後の又は唯一のデータバーストが送信されたならば、ステップ150に戻ってもよい。
この手法では、ノード12はネットワーク10にてトークン制御データ伝送法が使用する。例えば、ノード12aに関連するデータソース14aに予定されるネットワークデータはノード12aによって受信されてもよく、データソース14aから発してノード12b,12dのような他のノード宛のローカルデータは、ノード12aによりネットワーク10で送信されてもよい。
図6bは図6aに関連して説明された方法の一例を示す図である。この図は特定のデータチャネルで生じたデータ伝送を示す。縦軸は時間を示し、横向きのアクセスは距離を示す。この図はノードI,J,K及びLの間でのデータ伝送を時間経過と共に示す。図は特定の時刻でノードI,J,K,Lに起こるイベントに関連して説明される。
ノードIは時刻210でトークンを受信する。時刻210及び212の間に、ノードIはそれがノードKへの送信に利用可能なデータを有することを判別し、送信されるデータに関連するパラメータを判別し、それらのパラメータを反映する制御メッセージXを構築する。ノードIは時刻212にて制御メッセージXを次に隣接するノードに通知する。ノードJはトークンの前に制御メッセージXを受信するので、ノードIは時刻214にて遅延なしに隣接するノードJにトークンを転送する。ノードIは時刻216及び時刻218の間にデータバースト伝送Xを送信する。
ノードJを考察するに、時刻220でノードJは制御メッセージXを受信し、時刻222でノードJがトークンを受信する。制御メッセージXがノードJを宛先ノードとして識別していないことを確認した後に、ノードJは時刻224で制御メッセージXを転送する。ノードJは、それが送信に利用可能なデータを有することを判別し、送信されるデータに付随するパラメータを判別し、それらのパラメータを反映する制御メッセージYを構築する。制御メッセージYは、データバースト伝送Xの後に生じるように設定されるデータバースト伝送Yに関連する。ノードJは時刻225で制御メッセージYを解放する。その後に、ノードJは、ノードKがトークンを受信する前に制御メッセージX,Yを受信するので、遅延なしに時刻226でトークンを解放する。データバースト伝送Xは時刻228及び230の間でノードJを通じて伝送する。ノードJは時刻232及び234でデータバースト伝送Yを開始して終了する。
ノードKを考察するに、時刻236でノードKは制御メッセージXを受信し、時刻238で制御メッセージYを受信する。ノードKは制御メッセージXで宛先ノードに指定されているので、ノードKは制御メッセージXを転送しない。しかしながら、ノードKはデータバースト伝送内容Xを受信するよう要素を再構成してもよい。制御メッセージYはノードKを宛先ノードとして指定していないので、ノードKは時刻240で制御メッセージYを転送する。
時刻242では、ノードKがトークンを受信し、ノードKは制御メッセージXを転送していなかったので、ノードKはトークンが保持されるべきか否かを判定する。ノードKはトークンを保持し、例えば、データバースト伝送Xと他のノードによる将来的な伝送との衝突を回避することを支援し、或いはネットワーク10のノード間で帯域の不均衡な分配を避ける。時刻242及び時刻244の間で、ノードKはトークンを保持しないよう決定する。例えば、ノードLは、トークンが速やかに解放されたとしても、要素を再構築できず、データバースト伝送Xと衝突する伝送を開始するかもしれない。従って、ノードKは時刻244で遅延なしにトークンを解放する。
データバースト伝送Xは時刻246及び248の間でノードKで受信され、データバースト伝送Yは時刻250及び252の間でノードKを通じて伝送される。
ノードLを考察するに、制御メッセージY及びトークンが時刻254,256でノードLにて受信される。トークンを受信した後に、データバースト伝送X又はYと、他のノードによる将来的な伝送の衝突の可能性を避けるために、ノードLは、データが送信に利用可能でないが、トークンが保持されてもよいことを確認する。例えば、他のノードが要素を再構築可能であり、データバースト伝送X又はYと衝突するかもしれない送信を開始する場合に、そのような衝突が生じるかもしれない。従って、トークンがノードLによって解放される場合に、ノードLは時刻256及び時刻258の間でトークンを保持する。データバースト伝送Yは時刻260及び時刻262の間でノードLにて受信される。
この図はトークン制御法の例を示し、データバースト伝送内容が送信される前にトークンが解放される。トークンの解放はタイミング遅延を最小化するよう機能し、トークンを保持することはネットワークでの衝突を回避するよう機能する。
図7aは、通信ネットワークでトークンを利用してデータを伝送する別方法を示すフローチャートである。このフローチャートはデータチャネル毎に複数のトークンを使用することを想定し、ノード12が関連する認証されたデータチャネルでデータ送信を完了する前又は後で、トークンの各々がノード12により解放されてもよい。
所与のいかなる時点でも、複数のノード12は、ネットワーク10の別個の部分により各データチャネルでデータを送信可能にされてもよい。例えば、複数の二次的な伝送は、一時的な伝送又は他の二次的な伝送と何らの重複も生じない場合に許容されてもよい。
本方法では、制御メッセージがネットワーク10全体を巡回し、宛先ノード12ではなく送信ノード12で制御チャネルから除去される。ネットワーク10上の全ノード12は、制御メッセージに含まれるタイミング情報のメモを取り(タイミング情報に配慮し)、全ノード12がネットワーク10のどの時間部分が使用されているかを知るようにする。二次的トークンは送信割当の開始時にノード12によって解放され、その二次トークンは、他のノード12がネットワーク10の未使用部分でのデータ伝送を予定できるようにネットワーク10を巡回する。二次トークンは、それが当初のノード12によって取り返されるまで、ネットワーク10を周回し続けてもよく、その当初のノード12はそれが一時的なトークンを解放した後でのみ二次トークンを取り返してもよい。二次トークンは、一次トークンが解放されるより後に取り返されるので、ダウンストリームノード12は一次トークンを受信し、データ伝送の予定を立ててもよく、そのデータ伝送は二次トークンにより早期に動機付けられた伝送内容と競合するものである。そのような衝突(競合)が生じると、一次トークンにより動機付けられた伝送は、二次トークンにより動機付けられた他のいかなる伝送内容より優先されてもよい。しかしながら、データ伝送は全ノードで知られていてもよいので、ノード12は、一次伝送及び二次伝送間の衝突を減らす又は回避するようにスケジュールを作成してもよい。
フローチャートを参照するに、ノード12はステップ270にてネットワークデータを通すようにノード12の要素を構築する。ネットワークデータを通すことは、ノード12aを介してデータを伝送可能にすることを考慮する。このことは、現在のノード12を介する経路で他のノード12が通信することを許容する。ノード12はステップ271でローカルデータを受信してバッファリングする。例えば、ノード12は取り付けられたデータソース14からデータを受信してもよい。
ノード12はステップ272で制御メッセージを待機して受信する。制御メッセージは制御チャネル18上で受信されてもよい。ステップ274では、ノード12は制御メッセージが、ネットワーク10の特定のチャネルでデータを伝送することを認めるトークンを含むか否かを判別する。例えば、ネットワーク10がWDMを用いるならば、トークンはノード12が特定の波長でデータを送信することを認めてもよい。
制御メッセージがトークンを含んでいないならば、ステップ275にて、ノード12はそれが制御メッセージを送信するか否かを決定する。このステップが含まれるのは、本実施例では制御メッセージはその制御メッセージを送信したノード12によってネットワーク10から除去されるからである。ノード12はそれが制御メッセージを送信したことを確認すると、ノード12は制御メッセージを転送しないが、ステップ278で制御メッセージをネットワーク10から除去し、ステップ271に戻る。一方、ノード12はそれが制御メッセージを送信していなかったことを確認すると、ノード12はステップ280で次に隣接するノード12に制御メッセージを転送する。この手法では、ノード12はノード12が作成した制御メッセージをネットワーク10から除去する。特に、ネットワーク10がリングに構成されるならば、この方法は、制御メッセージをネットワーク10から適切に除去する方法を提供しつつ、制御メッセージがネットワーク10を巡回することを可能にする。
次に、ノード12はステップ282でそれが宛先に指定されているか否かを判別する。制御メッセージがノード12を宛先に指定していないならば、ノード12aはステップ271に戻るよう動作する。一方、制御メッセージがノード12を宛先に指定しているならば、ステップ284にてノード12は制御メッセージで指定されるパラメータを判別する。パラメータはデータチャネル、バーストサイズ及びバーストタイミングを含んでもよい。例えば、WDMが使用されるならば、データチャネルは1以上の波長を含んでもよい。バーストタイミングは、データ伝送内容が到着する時間を示す絶対的な又は相対的なタイムスタンプを反映してもよい。絶対的なタイムスタンプの場合には、ノード12の間でクロック同期法が使用されてもよい。相対的なタイムスタンプの場合には、そのタイムスタンプから処理時間が導出されてもよい。
判定されたパラメータに応じて、ノード12はステップ286でデータを受信するように光学要素30及び電気要素32を構築してもよい。例えば、チューナブルフィルタがこの時点で構築されてもよい。更に、波長ブロッカがデータ伝送を終わらせるために使用され、ネットワーク10の異なる部分の上で、同時に複数の伝送内容が同一波長で現われてもよい。ステップ288では、ノード12は制御メッセージで指定されたパラメータに従ってネットワークデータを受信し、ステップ270に戻る。
ステップ274に戻って、制御メッセージがトークンを含んでいたならば、ノード12はステップ290に進み、トークンがノード12により作成された二次トークンであるか否かを判別する。トークンがノード12により作成された二次トークンであるならば、ステップ292にてノード12は一次トークンが解放されているか否かを判定する。一次トークンが解放されていなければ、ノード12はその二次トークンを解放し、ステップ294にてそれを次に隣接するノードに転送し、ステップ270に戻る。一方、一次トークンが解放されていたならば、ステップ296にてノード12はその二次トークンを取り返し、ステップ298に進む。
ステップ298では、ノード12はローカルデータがノード12からの送信に利用可能か否かを判別する。ローカルデータが送信に利用可能でないならば、ステップ300にて、ノード12はそのトークンの転送を遅らせるか否かを判別する。例えば、ノード12がある期間の間トークンを保持することを望むならば、遅延が挿入されてもよく、その遅延は送信割当に対応してもよい。この期間の間に、ノード12はネットワーク10で送信するためにノード12へのローカルデータの到着を待機してもよい。ノード12はネットワーク10におけるデータ伝送の競合を回避するためにトークンを保持してもよい。例えば、以後のノードがトークンを受信し、ネットワーク10における他の送信についての知識なしに、同じ期間内にネットワーク10の一部でデータ伝送内容を送信し、その期間は以前に予定されたデータ伝送がその同じ部分で伝送されるものであった場合に、競合が生じるかもしれない。このような知識の欠如は、後続のノード12が制御メッセージを受信しないことによって引き起こされるかもしれない。宛先ノードはそれを宛先に指定する制御メッセージを転送しないので、宛先ノードで遅延が挿入されてもよい。
ノード12がトークンの転送を遅らせないように決定したならば、ステップ302にてノード12はトークンを速やかに転送し、ステップ271に戻る。一方、ノード12がトークンの転送を遅らせるように決定したならば、ノード12はステップ304で二次トークンを解放し、そのトークンを転送し(そのトークンは解放したばかりの二次トークンと区別するために一次トークンと呼ぶ)、その転送はステップ271へ戻る前であってステップ306での遅延の後に行われる。
ステップ298に戻って、ローカルデータが送信に利用可能ならば、ステップ308にてノード12は制御メッセージで指定されたデータチャネルを判別する。例えば、WDMが使用されるならば、データチャネルは1以上の波長を示すかもしれない。次に、ステップ310では、ノード12は送信するデータに関連するパラメータを判別する。これらのパラメータは、宛先ノード12、差し迫っているデータ伝送のサイズ及びバーストタイミングを含んでもよい。ノード12はそれらのパラメータを反映する新たな制御メッセージをステップ312で構築し、ステップ314でその新たな制御メッセージを次に隣接するノードに転送する。
ノード12はステップ316にてトークンを遅らせるか否かを決定する。遅らせる様々な理由はステップ300に関して説明済みであり、それらの理由がここでもまた用いられる。ノード12がトークンの転送を遅らせないように決定したならば、ステップ318にてノードはトークンを直ちに転送する。一方、ノード12がトークンの転送を遅らせるように決定したならば、ノード12はステップ320で二次トークンを解放し、そのトークンを転送し(そのトークンは解放したばかりの二次トークンと区別するために一次トークンと呼ぶ)、その転送はステップ322での遅延の後に行われる。
次に、ステップ324では、ノード12はデータバーストを構築するように要素を構成する。例えば、ノード12はチューナブルフィルタを構成してもよい。ノード12はステップ326でデータバーストを構築する。
ノード12はステップ328でデータバーストを送信する。データバーストはステップ310で決定されステップ312で新たな制御メッセージ内で指定されるパラメータに従って送信される。データバースト送信後に、ステップ330では、ノード12は最後の又は唯一のデータバーストが送信されたか否かを判定する。最後の又は唯一のデータバーストが送信されていなかったならば、ノード12はステップ324乃至330を反復する。一方、最後の又は唯一のデータバーストが送信されていたならば、ノード12はステップ270に戻る。
この手法では、ノード12は、ネットワーク10におけるトークン制御データ伝送法を使用する。複数のトークンがある場合には、データチャネルは、ネットワーク10の別々の部分で同時伝送をサポートしてもよい。例えば、ノード12a及び12b間のデータ伝送は、同じデータチャネルにおけるノード12b及び12d間のデータ伝送と同時に行ってもよい。
図7bは図7aに関連して説明した方法の一例を示す図である。この図は特定のデータチャネルで生じるデータ伝送の様子を示す。縦軸は時間を表し、横向きのアクセスは距離を表す。この図はある期間にわたるノードN,O,P,Q,R及びS間におけるデータ伝送を示す。この図は、特定の時刻にノードP,Q及びRで生じるイベントに関連して説明される。ノードO,P及びQにおける伝送及び通信は、図6bのノードI,J及びKにおけるものに類似することに留意を要する。しかしながら、時刻338にて、ノードPは制御メッセージAをノードQに通知する。制御メッセージはリング全体を循環してもよく、宛先ノード以外の送信するノードで制御チャネルから除去されてもよい。ノードは制御メッセージに含まれるタイミング情報に着目し、ネットワークの部分(セクション)が使用されている間の時間を総てのノードが知るようにする。
ノードQを考察するに、ノードQは時刻340,342で制御メッセージA及び制御メッセージBを受信する。ノードQは制御メッセージの内容に注意を払い、時刻346,348でそれらを転送する。制御メッセージBはノードQを宛先として指定するので、ノードQは、一次データバースト伝送Bを受信するよう準備を行い、それは時刻354及び356の間で受信される。
ノードQは時刻344で一次トークンを受信する。その一次トークンには一次のラベルが付され、その理由は、時刻350でノードQが二次トークンを解放するからである。二次トークンは一次トークンの受信後に短期間のうちに解放され、以後のノードがネットワークに伝送内容を挿入することを可能にする。以後のノードは制御メッセージA及びBのような制御メッセージ総てを受信し、制御メッセージは二次トークンを受信する前のネットワーク上の伝送内容を記述するので、そのように挿入される伝送内容は衝突を引き起こさないであろう。本方法では、トークンはネットワークでのデータ伝送を計画(予定)する許可を与えることに留意を要する。以前に予定された伝送はネットワークで通信される制御メッセージに反映される。従って、現在予定されている送信は、以前に予定された伝送と競合しないであろう。しかしながら、衝突が起こる場合には、一次トークンを用いてスケジューリングされた伝送が優先性を有する。
例えば、ノードQがネットワークで送信するためにローカルデータを受信したか否かを確認するまで待機するために、ノードQは一次トークンを保持してもよい。ノードQは送信用のローカルデータを受信しないので或いはデータ送信を予定していないことを確認するので、ノードQはデータ伝送を計画せずに時刻352で一次トークンを転送する。例えば、所定の送信割当の満了により、ノードQに一次トークンを転送させてもよい。ノードQは時刻354及び356の間で一次データバースト伝送Bを受信する。
ノードRに関し、ノードRは制御メッセージA及び制御メッセージBを時刻358及び360でそれぞれ受信する。ノードRはこれらの制御メッセージで予定されるデータ伝送に注意を払い、制御メッセージA,Bを時刻364,366でそれぞれ転送する。
ノードRは時刻362で二次トークンを受信する。時刻362及び368の間に、ノードRは、ローカルデータがネットワーク10での送信に利用可能であることを確認し、二次的なデータバースト伝送に関連するパラメータを決定し、それらのパラメータを反映する制御メッセージCを準備する。制御メッセージCは時刻368で転送され、二次トークンが時刻370で転送される。
時刻372及び374の間で、ノードRは制御メッセージCで指定されるパラメータに従って二次バーストを送信する。ノードRは時刻376で一次トークンを受信し、時刻378で一次トークンを解放する。
このようにこの図は複数のトークンが使用されるトークン制御法の例を示す。二次トークンを利用することで、ノードはネットワークの一部に二次的なバーストを挿入することができ、そのネットワークの部分は、本方法が使用されていなかったならば、問題のその時点で未使用になっているものである。
図8aは通信ネットワークでトークンを用いてデータを電送する別方法を示すフローチャートである。このフローチャートはネットワークスケジュールを利用することを含み、ネットワークスケジュールは、データベース、チャート、テーブルその他の適切な構造形式をとってもよく、ネットワーク10でのデータ伝送に関連する情報を含む。一実施例では、ネットワークスケジュールは、データチャネルによるネットワーク10でのデータ伝送のタイミング及びロケーションに関する情報を編成する。データチャネル各々におけるデータ伝送総ての完全なスケジュールが構築されてもよい。全ノード12はネットワークスケジュールの自身の複製を維持し、制御メッセージが通信される度にスケジュールを更新してもよい。従って、ノード12が特定のデータチャネルでのデータ伝送を予定することをトークンが認めるならば、ノード12はネットワークスケジュールを考慮してデータ伝送を計画する。例えば、ネットワーク10がバースト状のネットワークトラフィックを更に処理できるように、ノード12は、ネットワーク10をより適切に利用するデータ伝送をスケジューリングするために、ネットワークスケジュール内の「空きスペース」を発見することができてもよい。スケジューリングアルゴリズムは、データ伝送を計画するために、ネットワークスケジュール及びネットワークトポロジ情報に関連して使用されてもよい。
ネットワークスケジュールを利用する方法では、制御メッセージが、ネットワーク10の全体を循環し、宛先ノード12以外の送信ノード12にて制御チャネルから除去される。ネットワーク10の総てのノード12は、制御メッセージに含まれるタイミング情報に注意を払い、ネットワーク10の一部分が使用されている時間を総てのノード12が知るようにする。これは、ノード12が正確な伝送スケジュールを維持することを可能にする。トポロジ情報は制御メッセージに含まれてもよい。一実施例では、制御メッセージが通知された直後に、トークンが解放されてもよいことに留意を要する。即ち、トークンは保持されず、二次トークンが生成されなくてもよい。
フローチャートを参照するに、ステップ400にてノード12はネットワークスケジュールを初期化する。ネットワークスケジュールは多くの方法でノード12を支援する。例えば、ネットワークスケジュールは、ノード12の各々が、ネットワーク10からデータを受信する時点及びデータを以後のノード12に伝送可能にする時点を判別することを支援する。ネットワークスケジュールは、いつ、どこで、どのようなデータチャネルでネットワーク10を介してデータを送信するかを決定する際に、各ノード12が衝突を回避することを支援する。
ステップ402にてノード12はネットワークデータを通すようにノード12の要素を構成する。ネットワークデータを通すことは、ノード12を介してデータを送信可能にすることを考慮に入れる。これは、目下のノード12を介する経路で他のノード12が通信することを許容する。ステップ403にてノード12はローカルデータを受信及びバッファリングする。例えば、ノード12は接続されたデータソース14からデータを受信してもよい。
ステップ404にてノード12は制御メッセージを待機して受信する。制御メッセージは制御チャネル18上で受信されてもよい。ステップ406では、ノード12は制御メッセージがトークンを含んでいるか否かを判別し、そのトークンはネットワーク10の特定のチャネルでのデータ伝送を認証するものである。例えば、ネットワーク10がWDMを用いる場合に、トークンはノードが特定の波長でデータを送信することを認めてもよい。
制御メッセージがトークンを含んでいない場合には、ステップ408にて、ノード12はそれが制御メッセージを送信したか否かを確認する。このステップが含まれる理由は、本方法では、制御メッセージは、その制御メッセージを送信したノード12によりネットワーク10から除去されるからである。ノード12はそれが制御メッセージを送信したことを確認すると、ノード12は制御メッセージを転送せず、ステップ410にてネットワーク10から制御メッセージを除去し、ステップ403に戻る。この手法では、ノード12はノード12が作成した制御メッセージをネットワーク10から除去する。特に、ネットワーク10がリング構成に編成されている場合に、これは、ネットワーク10から制御メッセージを除去する適切な方法を提供する。
一方、ノード12はそれが制御メッセージを送信しなかったことを確認すると、ステップ412にてノード12は制御メッセージを次に隣接するノード12に転送する。特にネットワーク10がリング構成に編成されているならば、これは制御メッセージがネットワーク10を循環できるようにし、各ノード12が最新のデータネットワークスケジュールを維持するようにしてもよく、そのデータスケジュールは、いつ、どこで、どのようなデータチャネルトラフィックがネットワーク10で生じるかを示す。
ステップ414では、ノード12は、制御メッセージに含まれるトポロジ情報及び/又は他のパラメータを引き出す。パラメータは、データチャネル、バーストサイズ及びバーストタイミングを含んでもよい。WDMが使用される場合に、データチャネルは1以上の波長を含んでもよい。バーストタイミングは、データ伝送内容が到着する時点を示す絶対的な又は相対的なタイムスタンプを反映してもよい。絶対的なタイムスタンプの場合には、ノード12の間でクロック同期法が使用されてもよい。相対的なタイムスタンプの場合には、そのタイムスタンプから処理する時間が導出されてもよい。ステップ406では、抽出された情報を用いて、ノード12はネットワークスケジュールを更新する。
ステップ418では、ノード12はそれが宛先に指定されているか否かを判別する。制御メッセージがノード12を宛先として指定しているならば、ノード12はステップ403に戻る。一方、制御メッセージがノード12を宛先として指定しているならば、ステップ420にてノード12はデータを受信するように光学要素30及び電気要素32を構築してもよい。この構成は、データ伝送を終端する波長ブロッカを利用することを含んでもよく、ネットワーク10の様々な地点で同時に同一の波長で複数の伝送が行われてもよいようにする。ステップ422では、ノード12は、制御メッセージで指定されるパラメータに従ってネットワークデータを受信し、ステップ402に戻る。
ステップ406に戻って、制御メッセージがトークンを含んでいたならば、ステップ424にて、ノード12はローカルデータがノード12による送信に利用可能か否かを判定する。ローカルデータが送信に利用可能でないならば、ステップ426にてノード12はトークンを解放し、ステップ403に戻る。一方、データが送信に利用可能ならば、ステップ428にて、ノード12は、そのトークンにより認証されたデータチャネルを判別する。例えば、WDMが使用されるならば、データチャネルは1以上の波長を含んでもよい。次に、ステップ430では、ノード12は送信するデータに関連するパラメータを決定する。これらのパラメータは、宛先ノード12の身元、差し迫っているデータ伝送内容のサイズ及びバーストタイミングを含んでもよい。宛先ノードの身元、バーストサイズ及びバーストタイミングを確認するために、ノード12はネットワークスケジュールを利用する。ノード12はトポロジ情報に関連するスケジューリングアルゴリズムを利用してもよい。スケジューリングアルゴリズムは、ネットワーク10の一部でデータを送信するのに適切な時間を決定するために、トポロジ情報及びネットワークスケジュールを分析する。この手法では、ネットワーク10における衝突が回避され、ネットワーク10を効率的に利用する目的を達成してもよい。
ノード12が送信するデータに関連するパラメータを確認すると、ステップ432及び434で、ノード12は、それらのパラメータを反映する新しい制御メッセージを構築し、次に隣接するノードに転送する。これらの制御メッセージもトポロジ情報を含んでもよい。ステップ436では、ノード12は次に隣接するノード12にトークンを転送する。ノード12は制御メッセージを解放した後でのみトークンを解放すべきであり、制御メッセージがネットワーク10におけるトークンに先行しているようにする。この手法では、ノード12は、最新のトポロジ情報及び最新のネットワークスケジュールを使用せずに、データ伝送を計画するであろう。
ステップ438では、ノード12は新規の制御メッセージ内の情報を反映するようにそれ自身のネットワークスケジュールを更新する。次に、ステップ440にて、ノード12はデータバーストを構築するように要素を構成する。例えば、ノード12はこの時点でチューナブルレーザを構築してもよい。ステップ442にて、ノード12はデータバーストを構築する。
ステップ444にてノード12はデータバーストを送信する。データバーストは、ノード12によりステップ430で確認され及びステップ432における新規制御メッセージで指定されたパラメータに従って送信される。データバーストを送信した後に、ステップ446では、ノード12は最後の又は唯一のデータバーストが送信されたか否かを判別する。最後の又は唯一のデータバーストが送信されていなかったならば、ノード12aはステップ440乃至446を反復する。一方、最後の又は唯一のデータバーストが送信されたならば、ノード12aはステップ402に戻る。
この手法では、ノード12はネットワーク10におけるトークン制御データ伝送を使用する。ネットワークスケジュールを用いることで、データチャネルは、ネットワーク10の別々の部分で同一のデータチャネルによる同時伝送をサポートしてもよい。例えば、ノード12a及び12bの間のデータ伝送は、ノード12b及び12d間のデータ伝送と同時に且つ同一のデータチャネルでなされてもよい。
図8bは図8aに関して説明した方法の一例を示す図である。この図は特定のデータチャネルで生じるデータ伝送を示す。縦軸は時間を表し、横向きのアクセスは距離を表す。この図はノードT,U,V,W及びXの間でのデータ伝送を時間経過と共に示す。
この図は図8aに関連する方法を使用することで得られるかもしれない程度の複雑さを示す。ネットワークスケジュールを用いることで、ノードT,U,V,W及びXは、データを送信するのにネットワークを効率的に利用する。データ伝送間の遅延は短縮化され、ネットワークの別々の部分で複数の伝送が同時に生じる。
進行する線図及びフローチャートは、通信ネットワークにおけるトークン制御データ伝送の特定の方法を示す。しかしながら、これらの図及びフローチャートは、動作に関する方法例に過ぎず、ネットワーク10は、それらの機能を実行するために、適切ないかなる技術、要素及びアプリケーションでもそれらを利用するノード12を想定している。図及びフローチャート中の多くのステップは、同時に及び/又は図示されるものと異なる順序でなされてもよい。更に、各方法が適切である限り、ノード12は付加的なステップ有する又はより少ないステップを有する方法を利用してもよい。更に、中間ノード12、宛先ノード12又は他の適切な要素のようなネットワーク10の他の要素が、ネットワーク10内でデータを伝送するのにトークンを用いる同様な手法を実行してもよい。
以上本発明が複数の実施例の中で説明されてきたが、多数の変更及び修正が当業者に示唆され、本発明はそのような変更及び修正を特許請求の範囲内のものとして包含することが意図される。
以下、本発明により教示される手段を例示的に列挙する。
(付記1)
複数の宛先に送信するためのデータを受信するデータインターフェース;
前記データを格納するバッファ;
複数のデータチャネルを含む光伝送媒体に結合し、前記データチャネルにおける光信号を選択的に送信する送信ユニット;及び
前記データチャネルの1つで送信することを認証するトークンを受信し、認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し、前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定し、前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信するよう動作するコントローラ;
を有することを特徴とする光ノード。
(付記2)
前記コントローラが、複数の送信制御メッセージを受信するよう動作し、送信制御メッセージの各々が、ノード、データチャネル及び送信タイミングを示す情報を含み、前記コントローラが、前記情報に基づいてネットワークスケジュールを構築し、前記認証されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析し、前記適切な期間の間に前記認証されたデータチャネルで前記データを送信するよう動作する
ことを特徴とする付記1記載の光ノード。
(付記3)
光通信リングに関連するトポロジ情報を分析し、前記送信割当及び前記宛先割当を算出することで、前記送信割当及び前記宛先割当を決定する
ことを特徴とする付記1記載の光ノード。
(付記4)
前記トポロジ情報が、前記光通信リングの一部に関連する伝搬遅延時間、並びに前記光通信リングの複数のノードに関連するトークンの処理時間及び送信制御メッセージの処理時間を含む
ことを特徴とする付記3記載の光ノード。
(付記5)
通信機器を修正するように前記光通信リングが構築される場合に、前記トポロジ情報が前記コントローラにより受信される
ことを特徴とする付記3記載の光ノード。
(付記6)
前記バッファが複数の仮想キュー内のデータを格納し、前記コントローラが、重み付けされたラウンドロビンスケジューラを用いて、サービス対象の仮想キューを判別するよう動作する
ことを特徴とする付記1記載の光ノード。
(付記7)
前記コントローラが、宛先ノード及び前記認証されたデータチャネルを識別する送信制御メッセージを作成し、前記送信制御メッセージを次のノードに通知し、前記トークンを前記次のノードに通知するよう動作する
ことを特徴とする付記1記載の光ノード。
(付記8)
複数の光通信ノード;
前記光通信ノードに相互接続され、複数のデータチャネルを有する光伝送媒体;及び
前記データチャネルに対応する複数の論理トークン;
を備え、前記光通信ノードの各々は:
前記光通信ノードの宛先の1つに送信するためのデータを受信し;
前記論理トークンに関連するデータチャネルの1つを確認し;
確認されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し;
前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定し;
前記送信割当及び前記宛先割当に従って前記確認されたデータチャネルを用いて前記データを宛先の光通信ノードに送信する;
ことを特徴とする光通信システム。
(付記9)
前記光通信ノードの各々が:
光通信ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信し;
前記情報に基づいてネットワークスケジュールを構築し;
前記確認されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析し:及び
前記適切な期間の間に前記確認されたデータチャネルで前記データを送信する
ことを特徴とする付記8記載の光通信システム。
(付記10)
光通信リングに関連するトポロジ情報を分析し、前記送信割当及び前記宛先割当を算出することで、前記送信割当及び前記宛先割当を決定する
ことを特徴とする付記8記載の光通信システム。
(付記11)
前記トポロジ情報が、前記光通信リングの一部に関連する伝搬遅延時間、並びに前記光通信リングの複数のノードに関連するトークンの処理時間及び送信制御メッセージの処理時間を含む
ことを特徴とする付記10記載の光通信システム。
(付記12)
通信機器を修正するように前記光通信リングが構築される場合に、前記光通信ノード各々が前記トポロジ情報を受信する
ことを特徴とする付記10記載の光通信システム。
(付記13)
前記光通信ノードの各々が、固有の宛先ノードに関連する仮想キュー複数個の中に前記データを格納し、重み付けされたラウンドロビンスケジューラを用いて、サービス対象の仮想キューを判別する
ことを特徴とする付記8記載の光通信システム。
(付記14)
前記光通信ノードの各々が、宛先ノード及び前記確認されたデータチャネルを識別する送信制御メッセージを作成し、前記送信制御メッセージを次のノードに通知し、前記トークンを前記次のノードに通知する
ことを特徴とする付記8記載の光通信システム。
(付記15)
複数の宛先に送信するためのデータを受信し;
前記データをバッファに格納し;
複数のデータチャネルを含む光伝送媒体に結合し;
前記データチャネルの1つで送信することを認証するトークンを受信し;
認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し;
前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定し;
前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信する;
ことを特徴とするトークンで制御されたデータ伝送方法。
(付記16)
ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信し;
前記情報に基づいてネットワークスケジュールを構築し;
前記認証されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析し;
前記適切な期間の間に前記認証されたデータチャネルで前記データを送信する
ことを特徴とする付記15記載の方法。
(付記17)
光通信リングに関連するトポロジ情報を分析し、前記送信割当及び前記宛先割当を算出することで、前記送信割当及び前記宛先割当を決定する
ことを特徴とする付記15記載の方法。
(付記18)
前記トポロジ情報が、前記光通信リングの一部に関連する伝搬遅延時間、並びに前記光通信リングの複数のノードに関連するトークンの処理時間及び送信制御メッセージの処理時間を含む
ことを特徴とする付記17記載の方法。
(付記19)
通信機器を修正するように前記光通信リングが構築される場合に、前記トポロジ情報が前記光通信リング内の光ノードにより受信される
ことを特徴とする付記17記載の方法。
(付記20)
固有の宛先に関連する仮想キュー複数個の各々の中の前記データを前記バッファに格納し、重み付けされたラウンドロビンスケジューラを用いて、サービス対象の仮想キューを判別する
ことを特徴とする付記15記載の方法。
(付記21)
宛先ノード及び前記認証されたデータチャネルを識別する送信制御メッセージを作成し;
前記送信制御メッセージを次のノードに通知し;
前記トークンを前記次のノードに通知する;
ことを特徴とする付記15記載の方法。
(付記22)
記憶媒体内ではエンコードされ、実行されるとトークンで制御されたデータ伝送を行わせる論理装置であって:
複数の宛先に送信するためのデータを受信し;
前記データをバッファに格納し;
複数のデータチャネルを含む光伝送媒体に結合し;
前記データチャネルの1つで送信することを認証するトークンを受信し;
認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し;
前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定し;
前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信する;
ことを実行させる論理装置。
(付記23)
ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信し;
前記情報に基づいてネットワークスケジュールを構築し;
前記認証されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析し;
前記適切な期間の間に前記認証されたデータチャネルで前記データを送信する
ことを実行させる付記22記載の論理装置。
(付記24)
光通信リングに関連するトポロジ情報を分析し、前記送信割当及び前記宛先割当を算出することで、前記送信割当及び前記宛先割当を決定する
ことを実行させる付記22記載の論理装置。
(付記25)
前記トポロジ情報が、前記光通信リングの一部に関連する伝搬遅延時間、並びに前記光通信リングの複数のノードに関連するトークンの処理時間及び送信制御メッセージの処理時間を含む
ことを特徴とする付記24記載の論理装置。
(付記26)
通信機器を修正するように前記光通信リングが構築される場合に、前記トポロジ情報が前記光通信リング内の光ノードにより受信される
ことを特徴とする付記24記載の論理装置。
(付記27)
固有の宛先に関連する仮想キュー複数個の各々の中の前記データを前記バッファに格納し、重み付けされたラウンドロビンスケジューラを用いて、サービス対象の仮想キューを判別する
ことを実行させる付記22記載の論理装置。
(付記28)
宛先ノード及び前記認証されたデータチャネルを識別する送信制御メッセージを作成し;
前記送信制御メッセージを次のノードに通知し;
前記トークンを前記次のノードに通知する;
ことを実行させる付記22記載の論理装置。
(付記29)
複数の宛先に送信するためのデータを受信する手段;
前記データをバッファに格納する手段;
複数のデータチャネルを含む光伝送媒体に結合する手段;
前記データチャネルの1つで送信することを認証するトークンを受信する手段;
認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定する手段;
前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定する手段;
前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信する手段;
を有することを特徴とする光ノード。
(付記30)
ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信する手段;
前記情報に基づいてネットワークスケジュールを構築する手段;
前記認証されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析する手段;
前記適切な期間の間に前記認証されたデータチャネルで前記データを送信する手段
を有することを特徴とする付記29記載の光ノード。
(付記31)
複数の宛先に送信するためのデータを受信し;
固有の宛先に関連する仮想キュー複数個の各々に前記データをバッファに格納し;
複数のデータチャネルを含む光伝送媒体に結合し;
通信機器を修正するように光通信リングが構築される場合にトポロジ情報を受信し、前記トポロジ情報は、光通信リングの一部に関する伝搬遅延時間並びに光通信リングの複数のノードに関するトークンの処理時間及び送信制御メッセージの処理時間を有し;
認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を算出するために前記トポロジ情報を分析し;
前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を算出するために前記トポロジ情報を分析し;
ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信し;
前記情報に基づいてネットワークスケジュールを作成し;
前記データチャネルの1つで送信することを認証するトークンを受信し;
認証されたデータチャネルで前記データを送信するのに適切な期間を決定するために前記ネットワークスケジュールを分析し;
重み付けされたラウンドロビンスケジューラを用いてサービス対象の仮想キューを決定し;
宛先ノード及び認証されたデータチャネルを示す送信制御メッセージを生成し;
前記送信制御メッセージを次のノードに通知し;
前記送信割当及び前記宛先割当に従って前記適切な期間の間に、前記認証されたデータチャネルで前記宛先ノードに、選択された仮想キューからのデータを送信し;及び
前記トークンを次のノードに通知する;
ことを特徴とする光通信リングにおけるトークンで制御されたデータ伝送方法。
本発明の様々な実施例で使用するネットワークノードを含む通信ネットワークを示す図である。 本発明の一実施例による通信ネットワークにおけるトークン制御データ伝送を示す図である。 ネットワーク中のノードの機能要素を示すブロック図である。 本発明の様々な実施例による光学要素を示す図である。 本発明の様々な実施例による電気的要素を示す図である。 本発明の一実施例によるデータ収集の様子を示す図である。 トークンを用いる通信ネットワークでデータを伝送する方法を示すフローチャートである。 図5aに関連して説明される方法の一例を示す図である。 トークンを用いる通信ネットワークでデータを伝送する別の方法を示すフローチャート(その1)である。 トークンを用いる通信ネットワークでデータを伝送する別の方法を示すフローチャート(その2)である。 図6aに関連して説明される方法の一例を示す図である。 トークンを用いる通信ネットワークでデータを伝送する別の方法を示すフローチャート(その1)である。 トークンを用いる通信ネットワークでデータを伝送する別の方法を示すフローチャート(その2)である。 図7aに関連して説明される方法の一例を示す図である。 トークンを用いる通信ネットワークでデータを伝送する別の方法を示すフローチャートである。 図8aに関連して説明される方法の一例を示す図である。
符号の説明
10 通信ネットワーク
12 ネットワークノード
14 データソース
16 光ファイバ
18 制御チャネル
20 仮想キュー
30 光学要素
32 電気要素
34 コントローラ
40 ドロップカプラ
42 分配カプラ
44 フィルタ
46 レーザ
48 合成カプラ
50 付加カプラ
60 スイッチ
62 プロセッサ
64 ポート
66 メモリ
68 入力キュー
70 出力キュー

Claims (10)

  1. 複数の宛先に送信するためのデータを受信するデータインターフェース;
    前記データを格納するバッファ;
    複数のデータチャネルを含む光伝送媒体に結合し、前記データチャネルにおける光信号を選択的に送信する送信ユニット;及び
    前記データチャネルの1つで送信することを認証するトークンを受信し、認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し、前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定し、前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信するよう動作するコントローラ;
    を有することを特徴とする光ノード。
  2. 前記コントローラが、複数の送信制御メッセージを受信するよう動作し、送信制御メッセージの各々が、ノード、データチャネル及び送信タイミングを示す情報を含み、前記コントローラが、前記情報に基づいてネットワークスケジュールを構築し、前記認証されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析し、前記適切な期間の間に前記認証されたデータチャネルで前記データを送信するよう動作する
    ことを特徴とする請求項1記載の光ノード。
  3. 複数の光通信ノード;
    前記光通信ノードに相互接続され、複数のデータチャネルを有する光伝送媒体;及び
    前記データチャネルに対応する複数の論理トークン;
    を備え、前記光通信ノードの各々は:
    前記光通信ノードの宛先の1つに送信するためのデータを受信し;
    前記論理トークンに関連するデータチャネルの1つを確認し;
    確認されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し;
    前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定し;
    前記送信割当及び前記宛先割当に従って前記確認されたデータチャネルを用いて前記データを宛先の光通信ノードに送信する;
    ことを特徴とする光通信システム。
  4. 前記光通信ノードの各々が:
    光通信ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信し;
    前記情報に基づいてネットワークスケジュールを構築し;
    前記確認されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析し:及び
    前記適切な期間の間に前記確認されたデータチャネルで前記データを送信する
    ことを特徴とする請求項3記載の光通信システム。
  5. 複数の宛先に送信するためのデータを受信し;
    前記データをバッファに格納し;
    複数のデータチャネルを含む光伝送媒体に結合し;
    前記データチャネルの1つで送信することを認証するトークンを受信し;
    認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し;
    前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定し;
    前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信する;
    ことを特徴とするトークンで制御されたデータ伝送方法。
  6. ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信し;
    前記情報に基づいてネットワークスケジュールを構築し;
    前記認証されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析し;
    前記適切な期間の間に前記認証されたデータチャネルで前記データを送信する
    ことを特徴とする請求項5記載の方法。
  7. 記憶媒体内ではエンコードされ、実行されるとトークンで制御されたデータ伝送を行わせる論理装置であって:
    複数の宛先に送信するためのデータを受信し;
    前記データをバッファに格納し;
    複数のデータチャネルを含む光伝送媒体に結合し;
    前記データチャネルの1つで送信することを認証するトークンを受信し;
    認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定し;
    前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定し;
    前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信する;
    ことを実行させる論理装置。
  8. ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信し;
    前記情報に基づいてネットワークスケジュールを構築し;
    前記認証されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析し;
    前記適切な期間の間に前記認証されたデータチャネルで前記データを送信する
    ことを実行させる請求項7記載の論理装置。
  9. 複数の宛先に送信するためのデータを受信する手段;
    前記データをバッファに格納する手段;
    複数のデータチャネルを含む光伝送媒体に結合する手段;
    前記データチャネルの1つで送信することを認証するトークンを受信する手段;
    認証されたデータチャネルが前記データを送信するのに使用されてもよい期間を表す送信割当を決定する手段;
    前記データを特定の宛先に送信するのに使用されてもよい一部の送信割当を表す宛先割当を決定する手段;
    前記送信割当及び前記宛先割当に従って前記認証されたデータチャネルで前記データを送信する手段;
    を有することを特徴とする光ノード。
  10. ノード、データチャネル及び送信タイミングを示す情報を含む送信制御メッセージを複数受信する手段;
    前記情報に基づいてネットワークスケジュールを構築する手段;
    前記認証されたデータチャネルで前記データを送信するのに適切な期間を定めるために前記ネットワークスケジュールを分析する手段;
    前記適切な期間の間に前記認証されたデータチャネルで前記データを送信する手段
    を有することを特徴とする請求項9記載の光ノード。
JP2005077521A 2004-03-19 2005-03-17 光ノード、光通信システム、トークン制御データ伝送方法及び論理装置 Expired - Fee Related JP4547287B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/804,555 US7965732B2 (en) 2004-03-19 2004-03-19 Scheduling token-controlled data transmissions in communication networks

Publications (2)

Publication Number Publication Date
JP2005269652A true JP2005269652A (ja) 2005-09-29
JP4547287B2 JP4547287B2 (ja) 2010-09-22

Family

ID=34838938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077521A Expired - Fee Related JP4547287B2 (ja) 2004-03-19 2005-03-17 光ノード、光通信システム、トークン制御データ伝送方法及び論理装置

Country Status (5)

Country Link
US (1) US7965732B2 (ja)
EP (1) EP1578049B1 (ja)
JP (1) JP4547287B2 (ja)
CN (1) CN100461738C (ja)
DE (1) DE602005021178D1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529267B2 (en) * 2004-03-19 2009-05-05 Fujitsu Limited Data transmissions in communication networks using multiple tokens
US7623543B2 (en) * 2004-03-19 2009-11-24 Fujitsu Limited Token-controlled data transmissions in communication networks
US7650076B2 (en) * 2005-11-17 2010-01-19 Fujitsu Limited Dynamic blocking of token-controlled data transmissions in communication networks
JP5055942B2 (ja) * 2006-10-16 2012-10-24 富士通株式会社 計算機クラスタ
US7826747B2 (en) * 2006-11-27 2010-11-02 Fujitsu Limited Optical burst transport using an electro-optic switch
US20080124081A1 (en) * 2006-11-27 2008-05-29 Takeo Hamada Predictive scheduling of data path control
US8634430B2 (en) * 2006-11-27 2014-01-21 Fujitsu Limited Multicast transmissions in optical burst transport
US8588613B1 (en) * 2007-12-27 2013-11-19 At&T Intellectual Property I, L.P. Sync distribution over a non-traffic bearing channel
EP2375773A1 (en) * 2010-03-29 2011-10-12 Intune Networks Limited Random GAP insertion in an optical ring network
WO2012042623A1 (ja) * 2010-09-29 2012-04-05 富士通株式会社 リングネットワークを構築する方法
CN102308591B (zh) * 2011-07-28 2014-03-12 华为技术有限公司 一种通信网络数据传输方法、节点和系统
JP5696957B2 (ja) * 2012-02-22 2015-04-08 日本電信電話株式会社 マルチレーン伝送装置及びマルチレーン伝送方法
CN102710481B (zh) * 2012-05-18 2015-07-08 华为技术有限公司 一种令牌周转控制方法、装置及系统
CN104737476B (zh) * 2012-08-22 2018-07-13 瑞典爱立信有限公司 在面向连接的通信网络上分布路径延迟数据的方法及相应设备和机器可读介质
US9213660B2 (en) 2013-06-14 2015-12-15 Arm Limited Receiver based communication permission token allocation
US10205666B2 (en) * 2013-07-29 2019-02-12 Ampere Computing Llc End-to-end flow control in system on chip interconnects
CN103984303A (zh) * 2014-05-07 2014-08-13 江苏宁克传感器科技有限公司 一种机房环境控制系统
CN104320427A (zh) * 2014-09-22 2015-01-28 国家电网公司 一种继电保护系统多智能体的分布式组通信方法
CN105574292B (zh) * 2016-01-29 2018-12-11 盛科网络(苏州)有限公司 一种基于动态数组实现多通道任意带宽发包的方法
US10157023B2 (en) 2016-02-25 2018-12-18 SK Hynix Inc. Memory controller and request scheduling method using request queues and first and second tokens
US9998225B2 (en) * 2016-08-06 2018-06-12 OE Solutions Co., Ltd. Protected ethernet ring with small form-factor pluggable devices
US10451714B2 (en) * 2016-12-06 2019-10-22 Sony Corporation Optical micromesh for computerized devices
US10536684B2 (en) 2016-12-07 2020-01-14 Sony Corporation Color noise reduction in 3D depth map
US10181089B2 (en) 2016-12-19 2019-01-15 Sony Corporation Using pattern recognition to reduce noise in a 3D map
US10178370B2 (en) 2016-12-19 2019-01-08 Sony Corporation Using multiple cameras to stitch a consolidated 3D depth map
US10495735B2 (en) 2017-02-14 2019-12-03 Sony Corporation Using micro mirrors to improve the field of view of a 3D depth map
US10795022B2 (en) 2017-03-02 2020-10-06 Sony Corporation 3D depth map
US10979687B2 (en) 2017-04-03 2021-04-13 Sony Corporation Using super imposition to render a 3D depth map
US10602245B2 (en) * 2017-04-04 2020-03-24 Oracle International Corporation Medium-access control technique for optically switched networks
US10484667B2 (en) 2017-10-31 2019-11-19 Sony Corporation Generating 3D depth map using parallax
US10549186B2 (en) 2018-06-26 2020-02-04 Sony Interactive Entertainment Inc. Multipoint SLAM capture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143441A (ja) * 1987-11-30 1989-06-06 Nec Corp プロセッサ間通信システム
JPH06188893A (ja) * 1992-12-16 1994-07-08 Canon Inc 回線割り当て方法及びそれを用いた通信システム
WO2003079658A1 (fr) * 2002-03-20 2003-09-25 Fujitsu Limited Procede de transmission de donnees et dispositif de transmission

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527401A1 (fr) * 1982-05-18 1983-11-25 Philips Ind Commerciale Procede et dispositif d'allocation deterministe explicite du jeton dans un reseau local distribue de transmission avec priorites
DE3304823A1 (de) * 1983-02-11 1984-08-16 Siemens AG, 1000 Berlin und 8000 München Verfahren fuer eine fernmelde-, insbesondere fernsprechnebenstellenanlage mit einem datenuebertragungsleitungssystem, insbesondere mit einem optischen datenuebertragungsleitungssystem
US4663748A (en) * 1984-04-12 1987-05-05 Unisearch Limited Local area network
US4858232A (en) * 1988-05-20 1989-08-15 Dsc Communications Corporation Distributed switching system
EP0364638B1 (en) * 1988-10-20 1994-04-20 International Business Machines Corporation Communication network
US4993025A (en) * 1989-11-21 1991-02-12 Picker International, Inc. High efficiency image data transfer network
US5418785A (en) * 1992-06-04 1995-05-23 Gte Laboratories Incorporated Multiple-channel token ring network with single optical fiber utilizing subcarrier multiplexing with a dedicated control channel
ATE218257T1 (de) * 1992-11-16 2002-06-15 Canon Kk Übertragungsverfahren und -system mit tokenübergabezugriffsprotokoll
JPH09153907A (ja) * 1995-11-28 1997-06-10 Matsushita Electric Ind Co Ltd バス型通信網
US6816296B2 (en) * 1997-10-29 2004-11-09 Teloptics Corporation Optical switching network and network node and method of optical switching
US20050058149A1 (en) * 1998-08-19 2005-03-17 Howe Wayne Richard Time-scheduled and time-reservation packet switching
JP4304821B2 (ja) * 2000-04-05 2009-07-29 沖電気工業株式会社 ネットワークシステム
US7310670B1 (en) * 2000-04-25 2007-12-18 Thomson Licensing S.A. Multi-channel power line exchange protocol
AU2001257316A1 (en) * 2000-05-03 2001-11-12 Nokia Inc. Robust transport of ip traffic over wdm using optical burst switching
US20010051913A1 (en) * 2000-06-07 2001-12-13 Avinash Vashistha Method and system for outsourcing information technology projects and services
CN1331531A (zh) * 2000-06-29 2002-01-16 杨震 异步转移模式令牌环网
US7092633B2 (en) * 2000-11-14 2006-08-15 University Of Texas System Board Of Regents System and method for configuring optical circuits
US7158528B2 (en) * 2000-12-15 2007-01-02 Agere Systems Inc. Scheduler for a packet routing and switching system
US6553030B2 (en) * 2000-12-28 2003-04-22 Maple Optical Systems Inc. Technique for forwarding multi-cast data packets
US6965933B2 (en) * 2001-05-22 2005-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for token distribution
US7730528B2 (en) * 2001-06-01 2010-06-01 Symantec Corporation Intelligent secure data manipulation apparatus and method
US20030023499A1 (en) * 2001-07-25 2003-01-30 International Business Machines Corporation Apparatus, system and method for automatically making operational purchasing decisions
KR100431191B1 (ko) * 2001-12-03 2004-05-12 주식회사 케이티 크레딧 기반 라운드 로빈을 이용한 패킷 스케쥴링장치 및방법
JP4495388B2 (ja) * 2002-04-01 2010-07-07 富士通株式会社 波長多重伝送システムにおける信号伝送方法並びに波長多重伝送システムに使用される波長多重送信装置,光分岐/挿入装置及び伝送装置
US20030223405A1 (en) 2002-05-31 2003-12-04 El-Bawab Tarek S. WDM metropolitan access network architecture based on hybrid switching
US20050182639A1 (en) * 2004-02-18 2005-08-18 Fujitsu Limited Dynamic virtual organization manager
US7529267B2 (en) * 2004-03-19 2009-05-05 Fujitsu Limited Data transmissions in communication networks using multiple tokens
US7623543B2 (en) * 2004-03-19 2009-11-24 Fujitsu Limited Token-controlled data transmissions in communication networks
JP4270024B2 (ja) * 2004-05-21 2009-05-27 コニカミノルタビジネステクノロジーズ株式会社 画像形成装置及び画像形成方法
JP4587792B2 (ja) * 2004-11-30 2010-11-24 富士通株式会社 リング状光伝送システムおよびこれに接続される光装置
US7573815B2 (en) * 2005-03-04 2009-08-11 Alcatel-Lucent Usa Inc. Flow control and congestion management for random scheduling in time-domain wavelength interleaved networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143441A (ja) * 1987-11-30 1989-06-06 Nec Corp プロセッサ間通信システム
JPH06188893A (ja) * 1992-12-16 1994-07-08 Canon Inc 回線割り当て方法及びそれを用いた通信システム
WO2003079658A1 (fr) * 2002-03-20 2003-09-25 Fujitsu Limited Procede de transmission de donnees et dispositif de transmission

Also Published As

Publication number Publication date
EP1578049A3 (en) 2007-04-04
JP4547287B2 (ja) 2010-09-22
EP1578049A2 (en) 2005-09-21
CN100461738C (zh) 2009-02-11
EP1578049B1 (en) 2010-05-12
US20050207755A1 (en) 2005-09-22
CN1671117A (zh) 2005-09-21
DE602005021178D1 (de) 2010-06-24
US7965732B2 (en) 2011-06-21

Similar Documents

Publication Publication Date Title
JP4547287B2 (ja) 光ノード、光通信システム、トークン制御データ伝送方法及び論理装置
JP4547286B2 (ja) 光ノード、光通信システム、トークン制御データ伝送方法及び論理装置
JP4547288B2 (ja) 光ノード、光通信システム、トークン制御データ伝送方法及び論理装置
US9100347B2 (en) Method of burst scheduling in a communication network
US20020126343A1 (en) System and method for configuring optical circuits
US7466917B2 (en) Method and system for establishing transmission priority for optical light-trails
US5521732A (en) Optical wavelength selection control system in optical networks
US7826747B2 (en) Optical burst transport using an electro-optic switch
US7117257B2 (en) Multi-phase adaptive network configuration
JP2007068181A (ja) 光ネットワーク、ノード、終端ノード及び通信方法
JP2008136206A (ja) データパス制御の予測的スケジューリング方法
US9172466B2 (en) Method for switching an optical data stream, computer program product and corresponding storage means and node
JP3595332B2 (ja) 通信システム
Li et al. An in-band signaling protocol for optical packet switching networks
JP3777261B2 (ja) 光ネットワーク
JP4190528B2 (ja) 光ネットワーク
JP3595331B2 (ja) 通信システム
Maier Architecture and access protocol for a wavelength-selective single-hop packet switched metropolitan area network
KR20220058404A (ko) 종단간 주기적 저지연 트래픽 전송을 위한 오프셋 기반의 전송 경로 및 슬롯 탐색 방법과 그를 수행하는 제어 장치
Yau WDM network design and destination conflicts
Diao et al. Scheduling packets in a WDM lightwave network with priority differentiation
KR20200111586A (ko) 광 스위칭 스케줄링 방법 및 장치
Maier et al. Ring Networks
JP2018042126A (ja) 光信号送信方法、および、光集線ネットワークシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees