JP2005268799A - Cerium oxide slurry for polishing semiconductor thin film - Google Patents

Cerium oxide slurry for polishing semiconductor thin film Download PDF

Info

Publication number
JP2005268799A
JP2005268799A JP2005075551A JP2005075551A JP2005268799A JP 2005268799 A JP2005268799 A JP 2005268799A JP 2005075551 A JP2005075551 A JP 2005075551A JP 2005075551 A JP2005075551 A JP 2005075551A JP 2005268799 A JP2005268799 A JP 2005268799A
Authority
JP
Japan
Prior art keywords
slurry
cerium oxide
polishing
semiconductor thin
scratches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005075551A
Other languages
Japanese (ja)
Other versions
JP4927342B2 (en
Inventor
Yunju Cho
允珠 趙
Jongsik Jeong
鐘植 鄭
Dongchyun Choi
東泉 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Precision Materials Co Ltd
Original Assignee
Samsung Corning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Corning Co Ltd filed Critical Samsung Corning Co Ltd
Publication of JP2005268799A publication Critical patent/JP2005268799A/en
Application granted granted Critical
Publication of JP4927342B2 publication Critical patent/JP4927342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cerium oxide slurry, which can minimize the fraction defective resulted from scratches, by reducing the size of each scratch generated, as well as reducing scratches, without decrease in the polishing rate by efficiently removing large particles. <P>SOLUTION: This invention is related to a water-base cerium oxide slurry for polishing semiconductor thin films. The cerium oxide slurry for polishing semiconductor thin films, of which weight change measured in a slurry concentration loss (CSL) test using centrifugal separation is 20% or lower, is superior in long-term storage stability, and will not generate scratches on a film being polished in a semiconductor wafer planarization process while being excellent in polishing productivity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体薄膜研磨用酸化セリウムスラリーに関し、特に遠心分離によるスラリー濃度試験における重量変化が20%以下であって、高い研磨速度と優れたスクラッチ特性を有する酸化セリウムスラリーに関する。   The present invention relates to a cerium oxide slurry for polishing a semiconductor thin film, and more particularly to a cerium oxide slurry having a high polishing rate and excellent scratch characteristics, with a weight change of 20% or less in a slurry concentration test by centrifugation.

半導体の化学的機械研磨(CMP)の用途には、主に酸化セリウムを水中懸濁液に分散させてスラリー化した後使用しているが、これまでは高い研磨速度を有することを酸化セリウムスラリーの主な目的としてきた。しかし、最近、半導体工程の配線が次第に微細化され、チップ間の間隔が減少するにつれ、化学的機械研磨用スラリーは研磨速度以外にもスクラッチ発生の防止、及び発生したスクラッチのサイズ減少の特性が要求されている。   For chemical mechanical polishing (CMP) of semiconductors, cerium oxide is mainly used after being dispersed in a suspension in water and slurried. Has been the main purpose of. However, recently, as the wiring of semiconductor processes is gradually miniaturized and the distance between chips decreases, the slurry for chemical mechanical polishing has the characteristics of preventing the generation of scratches and reducing the size of the generated scratches in addition to the polishing rate. It is requested.

従来の化学的機械研磨用スラリーに用いられた酸化セリウムは比重が高いため、長時間保管した場合大部分の粒子が沈み、再分散の際、粒子が凝集し、スクラッチの原因となっている。したがって、分散安定性を有するスラリーを製造するために多くの努力を注いでおり、研磨粒子に合う界面活性剤の適用と分散機の開発によって分散安定性は相当改善されている。 Since cerium oxide used in conventional chemical mechanical polishing slurries has a high specific gravity, most of the particles sink when stored for a long time, and when redispersed, the particles aggregate and cause scratches. Therefore, much effort has been put into producing a slurry having dispersion stability, and the dispersion stability has been considerably improved by the application of a surfactant suitable for abrasive particles and the development of a disperser.

近来では、研磨後の不良製品発生は主にスクラッチによるもので、特にスラリー中に微量存在する大きい粒子がその原因であることが明らかにされている。このようなスクラッチを減少させるための努力として、特許文献1は、凝集した粒子の粒径を3ミクロン以下に保持しているが、これもまた実際0.16μm以下の微細パターンではスクラッチによって収率が著しく落ちるという問題が生じる。これは、実際ウエハ表面にスクラッチを発生させる粒子が700nm以上、特に1μm以上の粒子であるためである。   In recent years, it has been clarified that the generation of defective products after polishing is mainly caused by scratches, and in particular, large particles present in a minute amount in the slurry. As an effort to reduce such scratches, Patent Document 1 keeps the particle size of aggregated particles at 3 microns or less, and this also yields yields by scratching in fine patterns of 0.16 μm or less. The problem arises that the sag drops significantly. This is because the particles that generate scratches on the wafer surface are actually 700 nm or more, particularly 1 μm or more.

また、近来、半導体の製造において線幅が大幅に減少し、従来に比べて一枚のウエハから生産されるチップの数が増加したが、このような線幅が減少したパターンを有する半導体チップの製造工程に従来のスラリーをそのまま用いる場合、マイクロサイズのスクラッチも致命的に作用するので、生産量を高めるのには限界がある。さらに、半導体製造工程に化学的機械研磨工程を適用する場合が次第に増加する趨勢であるので、このような研磨工程後のスクラッチの有無およびサイズはウエハ内のチップの収率と密接な関係がある。   In recent years, the line width has been greatly reduced in the manufacture of semiconductors, and the number of chips produced from a single wafer has increased compared to the prior art. When the conventional slurry is used as it is in the production process, micro-sized scratches also act fatally, so there is a limit to increasing the production amount. In addition, since the chemical mechanical polishing process is increasingly applied to the semiconductor manufacturing process, the presence and size of scratches after the polishing process are closely related to the yield of chips in the wafer. .

したがって、スクラッチの発生と直接関連のある大きい粒子の除去はさらに重要な技術であると言えるが、このようにスクラッチを減少させるためにスラリーの平均粒径を減らす場合、研磨速度の減少によって生産量が減少するという問題が生じる。たとえば、特許文献2は、スクラッチを減少させるために0.56μm以上の研磨粒子量を制御しているが、実際使用したスラリーは平均粒径が30〜88nmと非常に小さいため、実際の研磨工程に使用した場合、研磨速度の減少および研磨後のウエハの平坦度にも問題を引き起し得るため、実効性が低い。
特開2003−171653 特開2003−188122
Therefore, the removal of large particles that are directly related to the occurrence of scratches can be said to be an even more important technique. However, when the average particle size of the slurry is reduced in order to reduce scratches, the production rate is reduced by reducing the polishing rate. The problem of decrease is caused. For example, Patent Document 2 controls the amount of abrasive particles of 0.56 μm or more in order to reduce scratches. However, since the actually used slurry has a very small average particle size of 30 to 88 nm, the actual polishing process is performed. When used in the above, the problem is also caused in the reduction of the polishing rate and the flatness of the wafer after polishing, so that the effectiveness is low.
JP 2003-171653 A JP 2003-188122 A

したがって、本発明の目的は、研磨速度を減少させることなく、大きい粒子を効率よく除去し、スクラッチの低減はもちろん、発生するスクラッチのサイズを小さくすることによりスクラッチによる不良率を最小化できる酸化セリウムスラリーを提供することである。   Accordingly, an object of the present invention is to remove cerium oxide efficiently by removing large particles efficiently without reducing the polishing rate, and by reducing the size of the generated scratch as well as by reducing the size of the generated scratch. Providing a slurry.

前記目的を達成するために、本発明は、平均粒径が0.1〜0.2μm範囲の酸化セリウム粉末を含み、下記式(1)を満足する、半導体薄膜研磨用酸化セリウムスラリーを提供する。   In order to achieve the above object, the present invention provides a cerium oxide slurry for polishing a semiconductor thin film, which contains cerium oxide powder having an average particle size in the range of 0.1 to 0.2 μm and satisfies the following formula (1). .

(C−C)/C×100≦20 ・・・(1)
(式中、Cは、原スラリーの固形分濃度であり、Cは、スラリーが受ける平均遠心力gが1970gである条件で2分間遠心分離した後の固形分濃度であり、gは重力加速度である。)
(C 0 -C 1 ) / C 0 × 100 ≦ 20 (1)
(Wherein, C 0 is the solids concentration of the starting slurry, C 1 is the solid content concentration after the average centrifugal force g of the slurry is subjected is centrifuged for 2 minutes at a 1970g 0, g 0 Is gravitational acceleration.)

本発明に係る、所定の条件で遠心分離によるスラリー濃度減少(CSL)試験における重量%の濃度変化が20%以下である酸化セリウムスラリーは、化学的機械研磨の際、発生するスクラッチ数が顕著に少なく、サイズが小さく、また、貯蔵容器の底に沈む粒子がほとんどないため、粒子間の凝集が発生しないので、長期間保管後に使用してもスクラッチ数が増加しないなどの優れた性能を示す。   In the cerium oxide slurry according to the present invention, in which the concentration change of weight% in a slurry concentration reduction (CSL) test by centrifugation under a predetermined condition is 20% or less, the number of scratches generated during chemical mechanical polishing is remarkable. It is small, small in size, and has few particles that sink to the bottom of the storage container, so that no aggregation occurs between the particles. Therefore, it exhibits excellent performance such that the number of scratches does not increase even after use for a long period of storage.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明のスラリーは、前記式(1)を満足する、特定の条件での遠心分離時、重量変化が20%以下であることを特徴とし、粒度分析機(laser scattering particle size distribution analyzer)での測定時、平均粒径(mean volume size)が0.1〜0.2μm範囲であり、D100(粒度分布機で測定時、分布累積値が100となる粒径)が約0.5〜0.7μm範囲である。 The slurry of the present invention satisfies the above formula (1) and has a weight change of 20% or less upon centrifugation under specific conditions. At the time of measurement, the average particle size (mean volume size) is in the range of 0.1 to 0.2 μm, and D 100 (the particle size at which the cumulative distribution value becomes 100 when measured with a particle size distribution machine) is about 0.5 to 0. .7 μm range.

通常の分散工程、たとえば、対抗衝突機または超音波機を通過させるか、ウェットミリング工程を経た酸化セリウムスラリーは、大部分の粒子が数十マイクロから数百ナノサイズの粒子に粉砕されて水中に均一に分散するが、これまではこのように分散機を通過させて分散されたスラリーをそのまま使用するか、フィルターを用いて粉砕されていない大きい粒子を濾過した後用いる程度であった。しかし、半導体配線の幅が0.16μm以下となるに伴い、スクラッチは半導体ウエハの収率を低下させる最も大きな原因となり、この直接の原因は0.7μm以上の大きい粒子の存在であるという事実が明らかになった。一方、従来のスラリーの場合、酸化セリウムスラリーの粒径分布の平均粒径は350nm前後であり、1μm以上の大きい粒子も少量存在し、このような大きい粒子はスラリー中に極微量存在してもCMP工程において薄膜に多数のスクラッチを発生させ、発生したスクラッチのサイズや深さが大きすぎるため、収率に致命的な影響を及ぼす。しかし、前記条件を満足する本発明に係るスラリーは、長期間保管しても容器の底に沈む固形分量が少ないため、酸化セリウム粒子間の凝集を防止できるので、安定性も大きく向上でき、したがって、長期間保管後に使用してもスクラッチの数が増加しない。   The cerium oxide slurry that has been passed through a normal dispersion process, for example, an anti-collision machine or an ultrasonic machine, or that has undergone a wet milling process, is pulverized into particles of tens of micrometers to hundreds of nanosizes in water. Although it is uniformly dispersed, until now, the slurry dispersed through the disperser in this way is used as it is, or it is only used after filtering large particles that have not been pulverized using a filter. However, as the width of the semiconductor wiring becomes 0.16 μm or less, scratches are the biggest cause of reducing the yield of the semiconductor wafer, and the direct cause is the presence of large particles of 0.7 μm or more. It was revealed. On the other hand, in the case of a conventional slurry, the average particle size distribution of the cerium oxide slurry is around 350 nm, and there are a small amount of large particles of 1 μm or more. Even if such large particles exist in a very small amount in the slurry. A large number of scratches are generated in the thin film in the CMP process, and the size and depth of the generated scratches are too large, which has a fatal effect on the yield. However, since the slurry according to the present invention that satisfies the above conditions has a small solid content that sinks to the bottom of the container even if stored for a long period of time, it can prevent agglomeration between the cerium oxide particles, so that the stability can be greatly improved, and therefore The number of scratches does not increase even when used after long-term storage.

本発明に係る酸化セリウムスラリーは、酸化セリウム粉末を水に分散させて得られたスラリーを遠心分離工程および任意に追加のフィルタリング工程を経て得られる。   The cerium oxide slurry according to the present invention is obtained by subjecting a slurry obtained by dispersing cerium oxide powder in water to a centrifugal separation step and optionally an additional filtering step.

具体的に、本発明に係る酸化セリウムスラリーの製造に用いられる酸化セリウム粉末は、その製造方法に特に制限はなく、通常の方法で製造できる。たとえば、炭酸セリウム、水酸化セリウム、窒化セリウム、塩化セリウム、酢酸セリウムなどの原料を650〜900℃で焼成し、酸化させて酸化セリウムを得た後、これをウェットミル、ドライミルなどを用いて粉砕することによって得られ、10〜100nm範囲の平均サイズを有する。前記焼成工程およびミリング工程は順序を変えて行うこともできる。   Specifically, the production method of the cerium oxide powder used for producing the cerium oxide slurry according to the present invention is not particularly limited, and can be produced by a usual method. For example, raw materials such as cerium carbonate, cerium hydroxide, cerium nitride, cerium chloride, cerium acetate are fired at 650 to 900 ° C. and oxidized to obtain cerium oxide, which is then pulverized using a wet mill, dry mill, etc. And has an average size in the range of 10-100 nm. The firing process and milling process may be performed in different order.

このようにして製造された酸化セリウム粉末を水に入れて分散させるが、この際、分散を容易にするための酸化セリウムの濃度は0.5〜20重量%の範囲が好ましい。分散工程も特に制限されず、対抗衝突方式、超音波方式、ウェットミル方式などを用いることができる。   The cerium oxide powder produced in this manner is dispersed in water. At this time, the concentration of cerium oxide for facilitating dispersion is preferably in the range of 0.5 to 20% by weight. The dispersion process is not particularly limited, and a counter collision method, an ultrasonic method, a wet mill method, or the like can be used.

前記分散の際、分散を容易にするために分散剤を使用でき、分散剤は酸化セリウムが水中で帯びる表面電位値を考慮して選択することが好ましいが、特に制限されない。酸化セリウムの分散は通常pH4〜9の範囲で行われ、この際、酸化セリウムの表面電位値はプラスの値を有するので、陰イオン性有機化合物が好ましく用いられ、その具体的な例としては、ポリアクリル酸、ポリビニル硫酸、ポリメタクリル酸、ポリアクリルアミド、ポリアリールアミンなどがある。前記分散剤は重量平均分子量が1,000以上50,000以下のものが好ましく、分子量が1,000未満の場合は酸化セリウムスラリーの分散安定性を確保することが難しく、50,000を超える場合はスラリーの粘度が増加するため、長期安定性を確保することが難しい。   In the dispersion, a dispersing agent can be used for facilitating dispersion, and the dispersing agent is preferably selected in consideration of the surface potential value that cerium oxide is charged in water, but is not particularly limited. Dispersion of cerium oxide is usually carried out in the range of pH 4 to 9, and at this time, since the surface potential value of cerium oxide has a positive value, an anionic organic compound is preferably used. Examples include polyacrylic acid, polyvinyl sulfate, polymethacrylic acid, polyacrylamide, and polyarylamine. The dispersant preferably has a weight average molecular weight of 1,000 or more and 50,000 or less. When the molecular weight is less than 1,000, it is difficult to ensure the dispersion stability of the cerium oxide slurry, and the dispersing agent exceeds 50,000. Since the viscosity of the slurry increases, it is difficult to ensure long-term stability.

前述のように分散処理された酸化セリウムスラリーに対してスラリー中に存在する大きい粒子を除去するため、本発明では遠心分離機を用いて粒径が0.7μm以上である大きい粒子を強制的に遠心分離することによって除去する。たとえば、数千rpm、好ましくは1,000〜5,000rpmで回転する円筒にスラリーを通過させることによって円筒の内壁にスラリー中の大きい粒子を付着させて除去できる。スラリーが一定流速で円筒の内部を通過することになると、大きい粒子の場合、遠心力が大きく作用して機壁に付着し、サイズが小さい粒子は円筒を通過するようになる。   In order to remove the large particles existing in the slurry from the cerium oxide slurry dispersed as described above, the present invention forcibly uses a centrifuge to force large particles having a particle size of 0.7 μm or more. Remove by centrifugation. For example, by passing the slurry through a cylinder rotating at several thousand rpm, preferably 1,000 to 5,000 rpm, large particles in the slurry can be adhered and removed from the inner wall of the cylinder. When the slurry passes through the inside of the cylinder at a constant flow rate, in the case of large particles, the centrifugal force acts greatly and adheres to the machine wall, and the particles having a small size pass through the cylinder.

前記のように遠心分離工程により大きい粒子を除去したセリアスラリーは、本発明に従って、スラリーが受ける平均遠心力が1970g(g=重力加速度;9.8m/sec)である条件で2分間回転させて粒子を強制沈降させた後試験前後の重量を比較する試験(「遠心分離スラリー濃度減少試験」)を行う場合、20重量%以下、好ましくは10重量%以下のスラリー濃度(すなわち、固形分)の減少を示す。 Ceria slurry to remove larger particles in the centrifugal separation step as described above, in accordance with the present invention, the average centrifugal force the slurry is subjected is 1970g 0 (g 0 = gravitational acceleration; 9.8 m / sec 2) at a condition in 2 min When performing a test to compare the weight before and after the test after the particles are forced to settle by rotation (“centrifugal slurry reduction test”), the slurry concentration is 20 wt% or less, preferably 10 wt% or less (that is, solids) Min) decrease.

通常の粒度分析機を用いて分析する場合、1%以下の量で存在する大きい粒子に関する情報を得ることは難しい反面、本発明に係る遠心分離スラリー濃度減少試験法は平均粒径が同じスラリーにおける大きい粒子含量を区別できる方法であると言える。   When analyzing using a normal particle size analyzer, it is difficult to obtain information on large particles present in an amount of 1% or less, but the centrifugal slurry concentration reduction test method according to the present invention is used in a slurry having the same average particle size. It can be said that this method can distinguish large particle content.

このようにして製造された本発明のスラリーは既に大きい粒子の大部分が除去されたものであって、化学的機械研磨工程に研磨剤完成品として使用する場合、研磨性能に優れていながらも、従来の分散機のみを用いたスラリーと比較して高いスクラッチ低減効果が得られる。すなわち、本発明に係るセリアスラリーは大きい粒子のみが除去されるだけで、平均粒径は0.1〜0.2μm範囲に保持されるので、従来の工程通り研磨を行う場合、研磨生産性は保持しながら90%以上のスクラッチ低減効果が得られる。   The slurry of the present invention produced in this way has already had most of the large particles removed, and when used as a finished abrasive product in a chemical mechanical polishing process, while having excellent polishing performance, A high scratch reduction effect is obtained as compared with a slurry using only a conventional disperser. That is, since the ceria slurry according to the present invention only removes large particles and the average particle size is maintained in the range of 0.1 to 0.2 μm, when polishing is performed according to the conventional process, the polishing productivity is A scratch reduction effect of 90% or more can be obtained while holding.

本発明に係るスラリーは、スラリーの製造過程において、上述のように大きい粒子を除去するための遠心分離工程を経た後必要に応じてフィルタリング工程を経て製造してもよい。   The slurry according to the present invention may be manufactured through a filtering step as necessary after passing through a centrifugal separation step for removing large particles as described above in the manufacturing process of the slurry.

本発明に係る酸化セリウムスラリーは0.16μm以下の微細パターン用半導体薄膜の研磨だけでなく、従来のシリカスラリーで研磨されていた半導体層間絶縁膜層(ILD層)とSTI(shallow trench isolation)のCMP研磨にも適用が可能であり、長期間保管しても沈む粒子の量が少ないため、長期安定性もまた非常に優れている。   The cerium oxide slurry according to the present invention not only polishes a semiconductor thin film for fine patterns of 0.16 μm or less, but also includes a semiconductor interlayer insulating film layer (ILD layer) and an STI (shallow trench isolation) polished with a conventional silica slurry. It can also be applied to CMP polishing, and since the amount of particles that sink even after long-term storage is small, long-term stability is also very good.

(実施例)
以下、本発明を下記実施例によってさらに詳細に説明する。ただし、これらは本発明を例示するためのものであり、本発明の範囲を制限しない。
(Example)
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these are for illustrating the present invention and do not limit the scope of the present invention.

(製造例1)酸化セリウム粉末の調製
水酸化セリウムを750℃で熱処理して酸化セリウムを得た後、これをボールミルで粉砕して平均粒径40nm(XRDで測定)の酸化セリウムを得た。
Production Example 1 Preparation of Cerium Oxide Powder Cerium hydroxide was heat treated at 750 ° C. to obtain cerium oxide, which was then pulverized by a ball mill to obtain cerium oxide having an average particle size of 40 nm (measured by XRD).

(製造例2)被研磨膜の製造
8インチシリコンウエハ上に、TEOS(オルトケイ酸テトラエチル(tetraethyl orthosilicate))を用いるPE−CVD(plasma enhanced-chemical vapor deposition)方式、すなわち、PE−TEOS工程によって10,000Åの厚さに二酸化ケイ素膜を成膜して被研磨膜を製造した。
(Manufacturing Example 2) Manufacturing of Polishing Film PE-CVD (plasma enhanced-chemical vapor deposition) method using TEOS (tetraethyl orthosilicate) on an 8-inch silicon wafer, that is, 10 by a PE-TEOS process. A silicon dioxide film having a thickness of 1,000 mm was formed to produce a film to be polished.

(製造例3)酸化セリウムスラリーの製造
製造例1で得られた酸化セリウム粉末800gを脱イオン水9160gに加えた後、酸化セリウム粉末の調製時、凝集した粉末塊が水中に残らないようにプロペラ攪拌機を用いて30分間攪拌した。分散剤であるポリアクリル酸(重量平均分子量3000、濃度40重量%)20gを攪拌しながら加えた後、対抗衝突分散機を用いて200MPaの圧力で粒子を衝突させることにより、水中に均一に分散された8重量%濃度の酸化セリウムスラリーを得た。
Production Example 3 Production of Cerium Oxide Slurry After adding 800 g of the cerium oxide powder obtained in Production Example 1 to 9160 g of deionized water, a propeller is used so that no agglomerated powder lump remains in the water when preparing the cerium oxide powder. It stirred for 30 minutes using the stirrer. Disperse uniformly in water by adding 20 g of polyacrylic acid (weight average molecular weight 3000, concentration 40% by weight) as a dispersing agent while stirring, and then colliding the particles at a pressure of 200 MPa using a counter collision disperser. An 8 wt% concentration cerium oxide slurry was obtained.

酸化セリウム研磨スラリーの製造
(実施例1)
製造例3の酸化セリウムスラリーを1,500rpmで回転する円筒状の遠心分離機の下段から注入して上段に排出する方式(この際、大きい粒子は遠心分離機の機壁に付着し、小さい粒子のみが遠心分離機の上段に排出される)により大きい粒子を除去した。その後、スラリーの濃度を測定した後、脱イオン水を加えて5wt%セリアスラリーを製造した。
Production of cerium oxide polishing slurry (Example 1)
A method in which the cerium oxide slurry of Production Example 3 is injected from the lower stage of a cylindrical centrifuge rotating at 1,500 rpm and discharged to the upper stage (at this time, large particles adhere to the wall of the centrifuge, and small particles Only the larger particles were removed). Then, after measuring the density | concentration of a slurry, deionized water was added and 5 wt% ceria slurry was manufactured.

(実施例2)
遠心分離機の回転速度が2,000rpmであることを除いては、実施例1と同様な方法で行って5wt%セリアスラリーを製造した。
(Example 2)
A 5 wt% ceria slurry was produced in the same manner as in Example 1 except that the rotational speed of the centrifuge was 2,000 rpm.

(実施例3)
製造例3の酸化セリウムスラリーを1,500rpmで遠心分離して大きい粒子を1次的に除去した後、1μmサイズのフィルターを用いて濾過し、以降の工程は実施例1と同様な方法で行って5wt%セリアスラリーを製造した。
(Example 3)
The cerium oxide slurry of Production Example 3 was centrifuged at 1,500 rpm to primarily remove large particles, and then filtered using a 1 μm size filter. The subsequent steps were performed in the same manner as in Example 1. 5 wt% ceria slurry was produced.

(比較例1)
製造例3の酸化セリウムスラリーを遠心分離せず、脱イオン水のみを加えて5wt%セリアスラリーを製造した。
(Comparative Example 1)
The cerium oxide slurry of Production Example 3 was not centrifuged, and only deionized water was added to produce a 5 wt% ceria slurry.

(比較例2)
製造例3の酸化セリウムスラリーを遠心分離せず、直接3μmサイズのフィルターに10L/分の流速で濾過し、以降の工程は実施例1と同様な方法で行って5wt%セリアスラリーを製造した。
(Comparative Example 2)
The cerium oxide slurry of Production Example 3 was directly filtered through a 3 μm size filter at a flow rate of 10 L / min without centrifuging, and the subsequent steps were performed in the same manner as in Example 1 to produce a 5 wt% ceria slurry.

(比較例3)
水酸化セリウムを650℃で熱処理して酸化セリウムを得た後、これをボールミルで粉砕して平均粒径25nm(XRDで測定)の酸化セリウム粉末を得た。これを製造例3および実施例1と同様な方法で行って5wt%セリアスラリーを製造した。
(Comparative Example 3)
Cerium hydroxide was heat-treated at 650 ° C. to obtain cerium oxide, which was then pulverized by a ball mill to obtain a cerium oxide powder having an average particle size of 25 nm (measured by XRD). This was performed in the same manner as in Production Example 3 and Example 1 to produce a 5 wt% ceria slurry.

(参照例)
実施例1による酸化セリウムスラリーに対してrpmと時間を変えてCSL試験を行い、その結果を下記表1に示す。

Figure 2005268799
(Reference example)
The CSL test was performed on the cerium oxide slurry according to Example 1 while changing the rpm and time, and the results are shown in Table 1 below.
Figure 2005268799

スラリー中の粒子の粒径測定
前記実施例1〜3および比較例1〜3のスラリーに対して、日本ホリバ(Horiba)社の粒度分析器LA910を用いて平均粒径を測定し、その結果を表2に示す。
Particle size measurement of particles in slurry The average particle size was measured using the particle size analyzer LA910 of Japan Horiba, Inc. for the slurry of Examples 1-3 and Comparative Examples 1-3, and the results were obtained. It shows in Table 2.

遠心分離による沈降濃度減少試験および大きい粒子含量試験
前記実施例1〜3および比較例1〜3のスラリーに対して、長期間保管した場合のスラリー保管容器の底に沈んで凝集する可能性がある粒子の含量を調べるために、チューブ型遠心分離機(Hanil Science Industrial MF80)を用いて強制沈降させて酸化セリウム固形分の濃度減少量を互いに比較した。試験は、高さ11.5cm、体積50mlの遠心分離用試験管に5重量%酸化セリウムスラリー40mlを各々充填し、4,000rpmで2分間回転(この際、試験管は水平状態となり、遠心分離機の回転中心側から試験管入口までの距離は2.5cm、試験管底面までの距離は14cmとなる。すなわち、スラリーが受ける遠心力は1970gとなる。)させた後、試験管の底に沈んだ硬いケークを除いた上澄液を他の試験管に移した後、上澄液の濃度を測定することにより行い、前記式(1)のように計算して遠心分離による沈降濃度減少%(CSL%)を求めた。減少%が少ないことが大きい粒子の濃度が低いことを意味する。この試験を通じて長期安定性を確認でき、大きい粒子の含有程度も確認できる。試験結果を表2に示す。
Sediment concentration reduction test by centrifugation and large particle content test The slurries of Examples 1 to 3 and Comparative Examples 1 to 3 may sink and agglomerate at the bottom of the slurry storage container when stored for a long time. In order to examine the content of the particles, forced precipitation was performed using a tube centrifuge (Hanil Science Industrial MF80), and the amount of decrease in the concentration of cerium oxide solids was compared with each other. In the test, a centrifuge test tube having a height of 11.5 cm and a volume of 50 ml was filled with 40 ml of 5 wt% cerium oxide slurry, and rotated at 4,000 rpm for 2 minutes (at this time, the test tube was in a horizontal state and centrifuged. The distance from the rotation center side of the machine to the test tube inlet is 2.5 cm, and the distance from the test tube bottom surface is 14 cm (that is, the centrifugal force applied to the slurry is 1970 g 0 ). After removing the hard cake submerged in the sample, transfer it to another test tube, measure the concentration of the supernatant, and reduce the sediment concentration by centrifugation as calculated by equation (1) above. % (CSL%) was determined. A small percentage reduction means a low concentration of large particles. Through this test, long-term stability can be confirmed, and the content of large particles can also be confirmed. The test results are shown in Table 2.

被研磨膜の研磨特性
実施例1〜3、および比較例1〜3で得られた各々の酸化セリウムスラリーを用いて、8インチ用のCMP研磨機であるミラー(Mirra)装置(米国AMAT社)で製造例2で得られた被研磨膜を3.5psiの圧力で90秒間研磨した。前記スラリーは150ml/minの速度で供給し、上定盤ウエハヘッド(wafer head)の回転速度は104rpmであり、下定盤の回転速度は110rpmであった。パッドとしては、米国ローデル(Rodel)社のIC1000/suba IV stacked padを用いた。
Polishing Characteristics of Film to be Polished Using each cerium oxide slurry obtained in Examples 1 to 3 and Comparative Examples 1 to 3, a mirror (Mirra) apparatus (AMAT Corp., USA) which is a CMP polishing machine for 8 inches The polished film obtained in Production Example 2 was polished for 90 seconds at a pressure of 3.5 psi. The slurry was supplied at a speed of 150 ml / min, the rotation speed of the upper surface plate wafer head was 104 rpm, and the rotation speed of the lower surface plate was 110 rpm. As the pad, IC1000 / suba IV stacked pad manufactured by Rodel, USA was used.

被研磨膜の研磨後、米国KLA−Tenco社のスクラッチ評価装備であるAIT−XPを用いてサイズが0.16μm以上になるスクラッチ数を測定し、また米国THERMA-WAVE社のTherma-wave Optiprobe 300 seriesを用いて研磨前後の膜厚で研磨速度を測定し、その結果を表2に示す。

Figure 2005268799
After polishing the film to be polished, the number of scratches with a size of 0.16 μm or more was measured using AIT-XP, a scratch evaluation equipment of KLA-Tenco, USA, and the Therma-wave Optiprobe 300 of THERMA-WAVE, USA. The polishing rate was measured with the film thickness before and after polishing using series, and the results are shown in Table 2.
Figure 2005268799

前記表2から、本発明に係る酸化セリウムスラリーは、平均粒径0.1〜0.2μmを保持し、研磨速度に優れていながらもCSL%が少ないため、長期安定性に優れており、半導体の研磨時に生成するスクラッチ数を著しく減少できることが分かる。   From Table 2 above, the cerium oxide slurry according to the present invention has an average particle size of 0.1 to 0.2 μm and has excellent polishing rate, but has low CSL%, and thus has excellent long-term stability. It can be seen that the number of scratches generated during polishing can be significantly reduced.

Claims (5)

平均粒径が0.1〜0.2μm範囲の酸化セリウム粉末を含み、下記式(1)を満足する半導体薄膜研磨用酸化セリウムスラリー。
(C−C)/C×100≦20 ・・・(1)
(式中、Cは、原スラリーの固形分濃度であり、Cは、スラリーが受ける平均遠心力gが1970gである条件で2分間遠心分離した後の固形分濃度であり、gは重力加速度である。)
A cerium oxide slurry for polishing a semiconductor thin film, which contains cerium oxide powder having an average particle size of 0.1 to 0.2 μm and satisfies the following formula (1).
(C 0 -C 1 ) / C 0 × 100 ≦ 20 (1)
(Wherein, C 0 is the solids concentration of the starting slurry, C 1 is the solid content concentration after the average centrifugal force g of the slurry is subjected is centrifuged for 2 minutes at a 1970g 0, g 0 Is gravitational acceleration.)
酸化セリウム粉末を水に0.5〜20重量%の濃度で分散させた後、1,000〜5,000rpmの回転速度で遠心分離して製造されることを特徴とする請求項1記載の酸化セリウムスラリー。   The oxidation according to claim 1, wherein the cerium oxide powder is produced by dispersing the cerium oxide powder in water at a concentration of 0.5 to 20% by weight and then centrifuging at a rotational speed of 1,000 to 5,000 rpm. Cerium slurry. 遠心分離工程が、スラリーを高速で回転する円筒の下段に一定流速で注入して上段から排出させる方式であることを特徴とする請求項2記載の酸化セリウムスラリー。   The cerium oxide slurry according to claim 2, wherein the centrifugal separation step is a system in which the slurry is injected at a constant flow rate into a lower stage of a cylinder rotating at a high speed and discharged from the upper stage. 請求項1〜3のいずれか一項に記載の酸化セリウムスラリーを用いて半導体薄膜または絶縁膜を研磨する方法。   The method of grind | polishing a semiconductor thin film or an insulating film using the cerium oxide slurry as described in any one of Claims 1-3. 線幅0.16μm以下の微細パターン用半導体薄膜を研磨することを特徴とする請求項4記載の方法。   5. The method according to claim 4, wherein the fine pattern semiconductor thin film having a line width of 0.16 [mu] m or less is polished.
JP2005075551A 2004-03-16 2005-03-16 Cerium oxide slurry for semiconductor thin film polishing Expired - Fee Related JP4927342B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2004-017741 2004-03-16
KR20040017741 2004-03-16

Publications (2)

Publication Number Publication Date
JP2005268799A true JP2005268799A (en) 2005-09-29
JP4927342B2 JP4927342B2 (en) 2012-05-09

Family

ID=34986979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075551A Expired - Fee Related JP4927342B2 (en) 2004-03-16 2005-03-16 Cerium oxide slurry for semiconductor thin film polishing

Country Status (5)

Country Link
US (1) US20050208882A1 (en)
JP (1) JP4927342B2 (en)
KR (1) KR100588404B1 (en)
CN (1) CN1680510A (en)
TW (1) TWI370843B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524236A (en) * 2006-01-25 2009-06-25 エルジー・ケム・リミテッド CMP slurry and semiconductor wafer polishing method using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541796B2 (en) * 2004-07-30 2010-09-08 ルネサスエレクトロニクス株式会社 Manufacturing method of polishing slurry
KR100864996B1 (en) * 2004-09-28 2008-10-23 히다치 가세고교 가부시끼가이샤 Cmp polishing compound and method for polishing substrate
KR101107524B1 (en) * 2008-09-25 2012-01-31 솔브레인 주식회사 A method for preparing aqueous cerium oxide dispersion
JP2015120845A (en) * 2013-12-24 2015-07-02 旭硝子株式会社 Polishing agent production method, polishing method, and semiconductor integrated circuit device production method
KR101706975B1 (en) * 2014-02-14 2017-02-16 주식회사 케이씨텍 Manufacturing method of slurry composition and slurry composition thereby
US10319601B2 (en) 2017-03-23 2019-06-11 Applied Materials, Inc. Slurry for polishing of integrated circuit packaging

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320418A (en) * 1996-03-29 1999-11-24 Hitachi Chem Co Ltd Cerium oxide abrasive and manufacture of substrate
JP2000239654A (en) * 1998-12-21 2000-09-05 Showa Denko Kk Cerium oxide slurry for polishing, preparation thereof, and polishing method
WO2000079577A1 (en) * 1999-06-18 2000-12-28 Hitachi Chemical Co., Ltd. Abrasive compound for cmp, method for polishing substrate and method for manufacturing semiconductor device using the same, and additive for cmp abrasive compound
JP2001189291A (en) * 1996-02-07 2001-07-10 Hitachi Chem Co Ltd Cerium oxide polishing agent, semiconductor chip, their manufacturing method, and method for polishing board
JP2001308044A (en) * 2000-04-26 2001-11-02 Hitachi Chem Co Ltd Oxide cerium polishing agent and polishing method for substrate
JP2002194334A (en) * 2000-12-27 2002-07-10 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive particle powder having excellent particle size distribution, slurry of abrasive containing the particle powder and method for producing the particle powder
JP2002241739A (en) * 2001-02-20 2002-08-28 Hitachi Chem Co Ltd Polishing agent and method for polishing substrate
JP2003209076A (en) * 2002-01-15 2003-07-25 Hitachi Chem Co Ltd Cmp abrasive and abrading method for substrate

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181403A (en) * 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
US6383905B2 (en) * 1998-07-31 2002-05-07 Stmicroelectronics, Inc. Formation of micro rough poly surface for low sheet resistance salicided sub-quarter micron poly lines
US6396136B2 (en) * 1998-12-31 2002-05-28 Texas Instruments Incorporated Ball grid package with multiple power/ground planes
US6244935B1 (en) * 1999-02-04 2001-06-12 Applied Materials, Inc. Apparatus and methods for chemical mechanical polishing with an advanceable polishing sheet
JP2001011432A (en) 1999-06-29 2001-01-16 Seimi Chem Co Ltd Abrasive agent for semiconductor
US6348076B1 (en) * 1999-10-08 2002-02-19 International Business Machines Corporation Slurry for mechanical polishing (CMP) of metals and use thereof
CN1193408C (en) * 1999-11-04 2005-03-16 清美化学股份有限公司 Polishing compound for semiconductor containing peptide
US6319096B1 (en) * 1999-11-15 2001-11-20 Cabot Corporation Composition and method for planarizing surfaces
US6293848B1 (en) * 1999-11-15 2001-09-25 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
JP2002075927A (en) * 2000-08-24 2002-03-15 Fujimi Inc Composition for polishing and polishing method using it
DE10063492A1 (en) * 2000-12-20 2002-06-27 Bayer Ag Process for chemical-mechanical polishing of insulation layers using the STI technique at elevated temperatures
US6726534B1 (en) * 2001-03-01 2004-04-27 Cabot Microelectronics Corporation Preequilibrium polishing method and system
KR100449948B1 (en) * 2002-05-18 2004-09-30 주식회사 하이닉스반도체 Method for fabricating contact plug with low contact resistance
US6913634B2 (en) * 2003-02-14 2005-07-05 J. M. Huber Corporation Abrasives for copper CMP and methods for making
JP2005093785A (en) * 2003-09-18 2005-04-07 Toshiba Corp Slurry for cmp, polish method, and method for manufacturing semiconductor device
US7241725B2 (en) * 2003-09-25 2007-07-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Barrier polishing fluid
US6964600B2 (en) * 2003-11-21 2005-11-15 Praxair Technology, Inc. High selectivity colloidal silica slurry

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189291A (en) * 1996-02-07 2001-07-10 Hitachi Chem Co Ltd Cerium oxide polishing agent, semiconductor chip, their manufacturing method, and method for polishing board
JPH11320418A (en) * 1996-03-29 1999-11-24 Hitachi Chem Co Ltd Cerium oxide abrasive and manufacture of substrate
JP2000239654A (en) * 1998-12-21 2000-09-05 Showa Denko Kk Cerium oxide slurry for polishing, preparation thereof, and polishing method
WO2000079577A1 (en) * 1999-06-18 2000-12-28 Hitachi Chemical Co., Ltd. Abrasive compound for cmp, method for polishing substrate and method for manufacturing semiconductor device using the same, and additive for cmp abrasive compound
JP2001308044A (en) * 2000-04-26 2001-11-02 Hitachi Chem Co Ltd Oxide cerium polishing agent and polishing method for substrate
JP2002194334A (en) * 2000-12-27 2002-07-10 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive particle powder having excellent particle size distribution, slurry of abrasive containing the particle powder and method for producing the particle powder
JP2002241739A (en) * 2001-02-20 2002-08-28 Hitachi Chem Co Ltd Polishing agent and method for polishing substrate
JP2003209076A (en) * 2002-01-15 2003-07-25 Hitachi Chem Co Ltd Cmp abrasive and abrading method for substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524236A (en) * 2006-01-25 2009-06-25 エルジー・ケム・リミテッド CMP slurry and semiconductor wafer polishing method using the same

Also Published As

Publication number Publication date
US20050208882A1 (en) 2005-09-22
TWI370843B (en) 2012-08-21
KR100588404B1 (en) 2006-06-12
TW200536930A (en) 2005-11-16
KR20060043627A (en) 2006-05-15
CN1680510A (en) 2005-10-12
JP4927342B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP7130608B2 (en) Composite abrasive particles for chemical-mechanical planarizing compositions and methods of use thereof
JP6748096B2 (en) Polishing composition containing ceria abrasive
KR101028622B1 (en) Cerium oxide slurry, cerium oxide polishing liquid, and method for polishing substrate by using those
JP6760955B2 (en) Polishing composition containing ceria particles and how to use
JP4927342B2 (en) Cerium oxide slurry for semiconductor thin film polishing
US6294106B1 (en) Slurries of abrasive inorganic oxide particles and method for adjusting the abrasiveness of the particles
KR101091532B1 (en) Method for preparing slurry of cerium oxide for chemical mechanical planarization
CA2406958A1 (en) Slurries of abrasive inorganic oxide particles and method for polishing copper containing surfaces
US10428240B2 (en) Method for preparing slurry composition and slurry composition prepared thereby
JP5256832B2 (en) Abrasive and production method thereof
KR101134596B1 (en) Ceruim-based abrasive slurry
KR101090913B1 (en) Cerium oxide abrasive suspension for chemical mechanical polishing and method for producing the same
KR101107524B1 (en) A method for preparing aqueous cerium oxide dispersion
JP2004200268A (en) Cmp polishing agent and polishing method of substrate
KR20150067784A (en) Metal oxide slurry for cmp and method of the same
JP2008063421A (en) Polishing material composition and its manufacturing method
KR20160040856A (en) Manufacturing method of slurry composition for polishing using multiple times centrifugation
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP2003171653A (en) Cmp abrasive and method of abrading substrate
JP2007153728A (en) Metal oxide fine particle, abrasive material, method for polishing substrate using the same, and method for manufacturing semiconductor device
KR20180034935A (en) Manufacturing method of slurry composition and slurry composition thereby
JPH11181406A (en) Cerium oxide abrasive and grinding of substrate
JPH11330014A (en) Grinding method for substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080620

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees