JP2005268368A - Li-Zn GROUP FERRITE POWDER FOR WAVE ABSORBER AND THE SAME - Google Patents
Li-Zn GROUP FERRITE POWDER FOR WAVE ABSORBER AND THE SAME Download PDFInfo
- Publication number
- JP2005268368A JP2005268368A JP2004075714A JP2004075714A JP2005268368A JP 2005268368 A JP2005268368 A JP 2005268368A JP 2004075714 A JP2004075714 A JP 2004075714A JP 2004075714 A JP2004075714 A JP 2004075714A JP 2005268368 A JP2005268368 A JP 2005268368A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- ferrite
- wave absorber
- radio wave
- ferrite powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 69
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 63
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 36
- 229910008405 Li-Zn Inorganic materials 0.000 title claims abstract description 30
- 229910007049 Li—Zn Inorganic materials 0.000 title claims abstract description 30
- 239000002245 particle Substances 0.000 claims description 27
- 229920000642 polymer Polymers 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000010521 absorption reaction Methods 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- 230000035699 permeability Effects 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 7
- 229910001035 Soft ferrite Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000006247 magnetic powder Substances 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 229910017752 Cu-Zn Inorganic materials 0.000 description 2
- 229910017943 Cu—Zn Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 229910020521 Co—Zn Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910020941 Sn-Mn Inorganic materials 0.000 description 1
- 229910008953 Sn—Mn Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910007565 Zn—Cu Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Compounds Of Iron (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、1〜4GHz帯域の電波吸収特性に優れたLi−Zn系フェライト粉末およびその粉末を使用した電波吸収体に関する。 The present invention relates to a Li-Zn ferrite powder excellent in radio wave absorption characteristics in the 1-4 GHz band and a radio wave absorber using the powder.
近年、携帯電話,無線LANなど、1〜4GHz帯域の電波を使用した通信機器が急速に普及し、また、コンピュータのCPUもクロック周波数1GHz以上で駆動するものが広く普及するに至っている。これらの電子機器の誤動作や相互干渉を効果的に防止する上で、1〜4GHz帯域の電波吸収性能を顕著に改善した電波吸収体の出現が強く望まれている。 In recent years, communication devices using radio waves in the 1 to 4 GHz band such as mobile phones and wireless LANs have rapidly spread, and those in which the CPU of a computer is driven at a clock frequency of 1 GHz or more have become widespread. In order to effectively prevent malfunctions and mutual interference of these electronic devices, there is a strong demand for the appearance of a radio wave absorber that significantly improves the radio wave absorption performance in the 1 to 4 GHz band.
一般に電波吸収体には、合成ゴム等の高分子マトリックス中に電波吸収性の粉末を混ぜて成形したシート素材が使用される。その電波吸収性粉末としてはフェライト粉末が広く用いられ、周波数帯域に応じて種々の電波吸収性フェライトが実用化されている。例えば、5GHz以上の周波数帯域用としては、元素置換型のTi−Co系(5〜15GHz)やTi−Mn系(8〜18GHz)、W型のZn−Sn−Mn系(5〜19GHz)、Y型のCo−Zn系(9〜17GHz)などが知られている。一方、0.1〜2GHz帯域で使用可能なフェライトとしてはMn−Zn系,Cu−Zn系,Ni−Zn系などのソフトフェライトが知られている。 Generally, a sheet material formed by mixing a radio wave absorbing powder in a polymer matrix such as a synthetic rubber is used for the radio wave absorber. As the radio wave absorptive powder, ferrite powder is widely used, and various radio absorptive ferrites are put into practical use according to the frequency band. For example, for a frequency band of 5 GHz or more, element substitution type Ti-Co system (5 to 15 GHz), Ti-Mn system (8 to 18 GHz), W type Zn-Sn-Mn system (5 to 19 GHz), A Y-type Co—Zn system (9 to 17 GHz) and the like are known. On the other hand, soft ferrites such as Mn-Zn, Cu-Zn, and Ni-Zn are known as ferrite that can be used in the 0.1 to 2 GHz band.
下記特許文献1には、一般式MFe2O4(MはMn,Ni,Cu,Zn,Mg,Co)を有するフェライト粉末を使用したマイクロ波吸収体が記載されている。このうち、1〜4GHz帯域に使用可能なフェライト粉末は粒径が数十μm〜1.65mmとかなり大きいものに限られる。このような粒径の大きい粉末は高分子マトリックス中に均一に分散させることが難しく、薄型で高性能の電波吸収体を得るには適していない。また、前記一般式のMの部分を単にMn,Ni,Cu,Zn,Mg,Co等の2価金属で構成したフェライトでは、1〜4GHz帯域で優れた電波吸収能を有する微細粒径の粉末を得ることは困難である。事実、特許文献1の開示によれば粒径が43μm未満と小さいものは使用可能な周波数帯域が6〜12GHzにシフトしている。
The following
下記特許文献2には、Mn−Zn系フェライト粉末を使用したフェライト・ゴム系電波吸収体が記載されている。これは800MHz〜1GHz帯用の電波吸収体であり、1〜4GHz帯域で高性能を発揮するものではない。また、これに用いるフェライト粉末として粒径5〜20μmのものが開示されているが、高分子マトリックス中への分散性を考慮すると更なる微細粒のものが望まれる。
上記のように、従来開発されてきた電波吸収性フェライト粉末の多くは5GHz以上の帯域、あるいは1GHz以下の帯域で高性能を呈するタイプであり、1〜4GHz帯域については基本的にこれらのタイプのものを流用せざるを得ない状況である。これら従来のフェライト粉末は、1〜4GHzの周波数帯域において昨今のニーズに十分対応できる電波吸収性能を発揮するものとは言い難い。
本発明は、このような現状に鑑み、1〜4GHz帯域での使用に照準を合わせ、この周波数帯域において電波吸収性能を大幅に改善し得る新たなフェライト粉末を開発し提供すること、およびそのフェライト粉末を用いた電波吸収体を提供することを目的とする。
As described above, most of the electromagnetic wave absorbing ferrite powders that have been developed in the past are of a type exhibiting high performance in a band of 5 GHz or higher, or a band of 1 GHz or lower. Basically, these types are used for the 1-4 GHz band. It is a situation that must divert things. These conventional ferrite powders cannot be said to exhibit radio wave absorption performance that can sufficiently meet recent needs in the frequency band of 1 to 4 GHz.
In view of the current situation, the present invention aims to use in the 1 to 4 GHz band, develops and provides a new ferrite powder capable of greatly improving the radio wave absorption performance in this frequency band, and the ferrite An object is to provide a radio wave absorber using powder.
発明者らは種々検討の結果、特定組成のLi−Zn系のソフトフェライトを用いたとき、1〜4GHz帯域の電波吸収性能が大幅に向上することを見出した。また、そのフェライト粉末は粒径2μm以下の微細粒の状態で1〜4GHz帯域の電波吸収性能を向上させる特性を有することがわかった。このような微細なフェライト粉末は高分子マトリックス中への分散性向上に有利となる。本発明はこれらの知見に基づいて完成したものである。 As a result of various studies, the inventors have found that when a Li-Zn soft ferrite having a specific composition is used, the radio wave absorption performance in the 1-4 GHz band is greatly improved. Further, it was found that the ferrite powder has a characteristic of improving the radio wave absorption performance in the 1 to 4 GHz band in the state of fine particles having a particle diameter of 2 μm or less. Such fine ferrite powder is advantageous for improving dispersibility in the polymer matrix. The present invention has been completed based on these findings.
すなわち、上記目的を達成するため、ZnXLi(1-X)0.5Fe(1-X)0.5・Fe2O4(Xは0.1〜0.8)の構造式で表されるフェライトからなる電波吸収体用Li−Zn系フェライト粉末が提供される。また、その好ましい態様として、平均粒径が2μm以下のフェライト粉末が提供される。
ここで「平均粒径」は、フランフォーファー回折理論を用いたレーザー回折式粒度分布測定装置で測定される「HELOS 50%粒子径」が採用できる。
That is, in order to achieve the above object, from the ferrite represented by the structural formula of Zn X Li (1-X) 0.5 Fe (1-X) 0.5.Fe 2 O 4 (X is 0.1 to 0.8). An Li-Zn ferrite powder for a radio wave absorber is provided. Further, as a preferred embodiment thereof, a ferrite powder having an average particle size of 2 μm or less is provided.
Here, as the “average particle size”, “
また、ZnXLi(1-X)0.5Fe(1-X)0.5・Fe2O4(Xは0.1〜0.8)の構造式で表されるLi−Zn系フェライトの粉末を高分子マトリックス中に分散させた電波吸収体が提供される。その好ましい態様として、前記Li−Zn系フェライトからなる平均粒径が2μm以下の粉末を60〜95質量%の割合で高分子マトリックス中に分散させたものが提供される。
ここで「高分子マトリックス」とは高分子化合物で組成される物質をいう。
Also, the powder of Li-Zn ferrite represented by the structural formula of Zn X Li (1-X) 0.5 Fe (1-X) 0.5.Fe 2 O 4 (X is 0.1 to 0.8) is increased. An electromagnetic wave absorber dispersed in a molecular matrix is provided. As a preferred embodiment thereof, there is provided a powder in which a powder composed of the Li—Zn ferrite and having an average particle diameter of 2 μm or less is dispersed in a polymer matrix in a proportion of 60 to 95% by mass.
Here, the “polymer matrix” refers to a substance composed of a polymer compound.
また、これらの電波吸収体であって、特に1〜4GHzの周波数帯域で使用される電子部品の近傍に設置される電波吸収体が提供される。
ここで「電子部品の近傍に設置される」とは、i) 当該電子部品から漏れる1〜4GHzの電波を吸収して他の電子部品や筐体外部の機器等への悪影響を防止すること、または、ii) 1〜4GHzの外部電波を吸収して当該電子部品への悪影響を防止すること、という目的が果たせるように電子部品に近接して設置されることを意味する。
In addition, these radio wave absorbers, particularly, radio wave absorbers installed near electronic components used in the frequency band of 1 to 4 GHz are provided.
Here, “installed in the vicinity of an electronic component” means that i) absorbs 1 to 4 GHz radio waves leaking from the electronic component to prevent adverse effects on other electronic components or equipment outside the casing, Or, ii) means that it is installed in the vicinity of the electronic component so as to achieve the purpose of absorbing external radio waves of 1 to 4 GHz and preventing the adverse effect on the electronic component.
本発明によれば、1〜4GHz帯域の電波の吸収性能を大幅に改善した電波吸収体が得られる。しかも、平均粒径2μm以下の微細フェライト粉末を用いてそのような改善が可能となるため、高分子マトリックス中での均一な分散が得られやすく、薄肉化した電波吸収体においても安定した性能が確保される。
したがって本発明は、携帯電話(1.5GHz帯域),PHS(1.9GHz帯域),無線LAN(例えば2.45GHz帯域),1GHz以上のクロック周波数で駆動するパソコン用CPUをはじめとする、昨今普及が目覚ましい1〜4GHz帯域の周波数で使用される各種電子機器の電波障害防止に寄与し得るものである。
According to the present invention, it is possible to obtain a radio wave absorber that greatly improves the absorption performance of radio waves in the 1-4 GHz band. Moreover, since such an improvement can be made by using fine ferrite powder having an average particle diameter of 2 μm or less, uniform dispersion in the polymer matrix is easily obtained, and stable performance can be achieved even in a thin wave absorber. Secured.
Accordingly, the present invention has become widespread in recent years, including cellular phones (1.5 GHz band), PHS (1.9 GHz band), wireless LAN (eg, 2.45 GHz band), and CPUs for personal computers driven at a clock frequency of 1 GHz or higher. Can contribute to the prevention of radio wave interference in various electronic devices used at frequencies of 1 to 4 GHz.
電波吸収体には「磁性体粉末混合型」や「導電性粉末混合型」などがあるが、本発明の対象は前者の「磁性体粉末混合型」タイプである。このタイプは、フェライトなどの磁性体粉末を高分子化合物と混合して一体化した成形品が、複素透磁率の虚数部μ''(磁気損失項)の働きにより電波の磁界成分に作用して電波エネルギーを熱に変換するものである。このため、複素透磁率の虚数部μ''が大きいものほど電波吸収量が大きくなる。 The electromagnetic wave absorber includes a “magnetic powder mixed type” and a “conductive powder mixed type”. The object of the present invention is the former “magnetic powder mixed type”. In this type, a molded product in which a magnetic powder such as ferrite is mixed with a polymer compound is integrated and acts on the magnetic field component of the radio wave due to the imaginary part μ ″ (magnetic loss term) of the complex permeability. It converts radio wave energy into heat. For this reason, the amount of radio wave absorption increases as the imaginary part μ ″ of the complex permeability increases.
本発明では、高分子化合物と混合するための磁性粉として、ZnXLi(1-X)0.5Fe(1-X)0.5・Fe2O4(Xは0.1〜0.8)の構造式で表されるLi−Zn系のソフトフェライトを採用する。これは、Zn系ソフトフェライトのZnの一部をLiで置換した形態を有し、その置換により電波吸収性能のピークを1〜4GHz帯域に合わせることを可能にしたものである。すなわち、このフェライト粉末を高分子化合物と混合してなる成形体は、1〜4GHzの周波数帯域において複素透磁率の虚数部μ''が高い値を示し、この帯域の電波吸収性能に優れるのである。 In the present invention, the structure of Zn X Li (1-X) 0.5 Fe (1-X) 0.5.Fe 2 O 4 (X is 0.1 to 0.8) is used as the magnetic powder to be mixed with the polymer compound. Li-Zn type soft ferrite represented by the formula is adopted. This has a form in which a part of Zn in the Zn soft ferrite is replaced with Li, and the replacement makes it possible to match the peak of the radio wave absorption performance to the 1 to 4 GHz band. That is, a molded body obtained by mixing this ferrite powder with a polymer compound exhibits a high value of the imaginary part μ ″ of the complex permeability in the frequency band of 1 to 4 GHz, and is excellent in radio wave absorption performance in this band. .
前記構造式において、Xの値が0.1未満だと必要な磁性が得られなくなる。一方、0.8を超えると1〜4GHz帯域での複素透磁率の虚数部μ''が低下し、十分な電波吸収性能が確保できなくなる。したがって、Xの値が0.1〜0.8の範囲に組成調整されたフェライトを使用する必要がある。
種々検討の結果、Xの値が概ね0.5の付近において1〜4GHz帯域の電波の吸収性能は最も高くなる傾向があることがわかった。したがって、Xの値は0.3〜0.7の範囲とすることが好ましく、0.4〜0.6の範囲とすることが一層好ましい。
In the structural formula, if the value of X is less than 0.1, necessary magnetism cannot be obtained. On the other hand, if it exceeds 0.8, the imaginary part μ ″ of the complex permeability in the 1 to 4 GHz band is lowered, and sufficient radio wave absorption performance cannot be secured. Therefore, it is necessary to use ferrite whose composition is adjusted to a value in the range of 0.1 to 0.8.
As a result of various studies, it was found that the absorption performance of radio waves in the 1 to 4 GHz band tends to be highest when the value of X is approximately 0.5. Therefore, the value of X is preferably in the range of 0.3 to 0.7, and more preferably in the range of 0.4 to 0.6.
発明者らは、上記Li−Zn系フェライト粉末の粒子径の影響についても検討を行ってきた。その結果、平均粒径が2μm以下の微細粉末において1〜4GHz帯域でのμ''を大幅に上昇させることができた。ただし、平均粒径が1μm未満になると1〜4GHz帯域でのμ''は若干低下傾向になる。したがって、高分子マトリックス中への分散性と電波吸収性能をバランス良く両立させるには、平均粒径を1〜2μmに調整することが望ましい。 The inventors have also studied the influence of the particle size of the Li-Zn ferrite powder. As a result, μ ″ in the 1-4 GHz band could be significantly increased in a fine powder having an average particle size of 2 μm or less. However, when the average particle diameter is less than 1 μm, μ ″ in the 1 to 4 GHz band tends to slightly decrease. Therefore, in order to achieve both the dispersibility in the polymer matrix and the radio wave absorption performance in a balanced manner, it is desirable to adjust the average particle size to 1 to 2 μm.
本発明のLi−Zn系フェライト粉末は、一般的なソフトフェライトの製造方法に準じて製造することができる。例えば、酸化鉄,酸化亜鉛,炭酸リチウムを酸化物換算で所定のフェライト組成となるように秤量し、攪拌混合した後、これを焼成し、得られた焼成品をミルで解砕する手法で粉末を製造すれば良い。その際、焼成温度はLiが揮発しないよう、850〜1000℃の範囲とすることが望ましい。 The Li-Zn ferrite powder of the present invention can be manufactured according to a general soft ferrite manufacturing method. For example, iron oxide, zinc oxide, and lithium carbonate are weighed so as to have a predetermined ferrite composition in terms of oxide, stirred and mixed, then fired, and the resulting fired product is pulverized with a mill. Can be manufactured. At that time, the firing temperature is desirably in the range of 850 to 1000 ° C. so that Li does not volatilize.
得られたLi−Zn系フェライト粉末を所定割合で高分子化合物と十分に混練した後、例えば一定の厚さを有するシートに成形すれば、1〜4GHz帯域で高性能を有する電波吸収体とすることができる。その際、平均粒径が2μm以下に調整された粉末を使用すると有機高分子との良好な混練性が確保され、フェライトの分散状態を均一化する上で有利となる。特に平均粒径が1〜2μmの範囲に調整されたフェライト粉末を使用すると電波吸収性能をできるだけ高い状態に維持することができ効果的である。 After the obtained Li-Zn ferrite powder is sufficiently kneaded with a polymer compound at a predetermined ratio, for example, if formed into a sheet having a certain thickness, a radio wave absorber having high performance in the 1-4 GHz band is obtained. be able to. At this time, if a powder having an average particle size adjusted to 2 μm or less is used, good kneadability with an organic polymer is secured, which is advantageous in making the dispersed state of ferrite uniform. In particular, the use of a ferrite powder having an average particle size adjusted to a range of 1 to 2 μm is effective because the radio wave absorption performance can be maintained as high as possible.
また、平均粒径が2μm以下のLi−Zn系フェライト粉末を使用し、かつフェライト粉末を60〜95質量%の割合で高分子マトリックス中に分散させることが好ましい。Li−Zn系フェライト粉末の割合が60質量%より少ないと複素透磁率の実数部μ',虚数部μ''とも低下し、十分な電波吸収性能が得られない。逆に95質量%より多くなると有機高分子との混練が難しくなる。なお、特に好ましいLi−Zn系フェライト粉末の混合割合は80〜95質量%であり、一層好ましい混合割合は85〜95質量%である。 Further, it is preferable to use a Li—Zn ferrite powder having an average particle diameter of 2 μm or less and to disperse the ferrite powder in the polymer matrix at a ratio of 60 to 95% by mass. If the proportion of the Li—Zn ferrite powder is less than 60% by mass, both the real part μ ′ and the imaginary part μ ″ of the complex permeability are lowered, and sufficient radio wave absorption performance cannot be obtained. On the other hand, if it exceeds 95% by mass, kneading with the organic polymer becomes difficult. A particularly preferable mixing ratio of the Li—Zn ferrite powder is 80 to 95% by mass, and a more preferable mixing ratio is 85 to 95% by mass.
本発明のLi−Zn系フェライト粉末と混合する高分子化合物は、使用環境に応じて、耐熱性,難燃性,耐久性,機械的強度,電気的特性を満足する各種のものが使用できる。例えば、樹脂(ナイロン等),ゲル(シリコーンゲル等),熱可塑性エラストマー,ゴムなどから適切なものを選択すれば良い。また2種以上の高分子化合物をブレンドした組成物で高分子マトリックスを構成することもできる。 As the polymer compound to be mixed with the Li-Zn ferrite powder of the present invention, various compounds satisfying heat resistance, flame retardancy, durability, mechanical strength and electrical characteristics can be used. For example, an appropriate material may be selected from resin (nylon or the like), gel (silicone gel or the like), thermoplastic elastomer, rubber or the like. Moreover, a polymer matrix can also be comprised with the composition which blended 2 or more types of polymer compounds.
高分子化合物との相溶性や分散性を改善するために、フェライト粉末には予めシランカップリング剤,チタネートカップリング剤等による表面処理を施すことができる。
また、フェライト粉末と高分子化合物との混合に際し、可塑剤,補強剤,耐熱向上剤,熱伝導性充填剤,粘着剤などの各種添加剤を添加することができる。
In order to improve the compatibility and dispersibility with the polymer compound, the ferrite powder can be subjected to surface treatment with a silane coupling agent, a titanate coupling agent or the like in advance.
In addition, various additives such as a plasticizer, a reinforcing agent, a heat resistance improver, a heat conductive filler, and an adhesive can be added when mixing the ferrite powder and the polymer compound.
ところで、電子部品の基板近傍は、一般に電磁界成分のうち磁界成分が強い領域であると言われている。本発明で対象とする「磁性体粉末混合型」の電波吸収体は前述のように複素透磁率の虚数部μ''(磁気損失項)を大きくすることによって電波の磁界成分への作用を増大させ電波吸収性能を高めている。したがって、電波吸収体を設置する場所はできるだけ磁界成分の強い電子部品の近くとすることが効果的である。電子機器の小型化により電波吸収体を設置する場所には制約が大きいが、本発明の電波吸収体は1〜4GHzの周波数帯域で使用される電子部品にできるだけ近付けて設置することが望ましい。 Incidentally, it is generally said that the vicinity of the substrate of the electronic component is a region where the magnetic field component is strong among the electromagnetic field components. As described above, the “magnetic powder mixed type” radio wave absorber targeted by the present invention increases the effect on the magnetic field component of the radio wave by increasing the imaginary part μ ″ (magnetic loss term) of the complex permeability. The electromagnetic wave absorption performance is improved. Therefore, it is effective to place the radio wave absorber near an electronic component having a strong magnetic field component as much as possible. Although there are many restrictions on the place where the radio wave absorber is installed due to the downsizing of electronic equipment, it is desirable that the radio wave absorber of the present invention be installed as close as possible to electronic components used in the frequency band of 1 to 4 GHz.
酸化鉄(Fe2O3),酸化亜鉛(ZnO),炭酸リチウム(LiCO3)を、酸化物換算でZn0.5Li0.25Fe0.25・Fe2O4の組成となるように秤量し、これらをよく混合した。混合手法は、ハイスピードミキサーを用いて混合し、その後更に、10L振動ミルを用いて混合する2段階混合プロセスとした。得られた混合物を電気炉(ローラーハウス炉)に入れ920℃で焼成した。焼成品をミル(協立理工株式会社製、SK−M10)を用いて解砕し、HELOS 50%粒子径が1.57μmのLi−Zn系フェライト粉末(構造式:Zn0.5Li0.25Fe0.25・Fe2O4)を得た。これを「粉末A」と呼ぶ。 Weigh iron oxide (Fe 2 O 3 ), zinc oxide (ZnO) and lithium carbonate (LiCO 3 ) so that they have a composition of Zn 0.5 Li 0.25 Fe 0.25 · Fe 2 O 4 in terms of oxide. Mixed. The mixing method was a two-stage mixing process in which mixing was performed using a high speed mixer and then further mixing was performed using a 10 L vibration mill. The obtained mixture was put into an electric furnace (roller house furnace) and baked at 920 ° C. The fired product is pulverized using a mill (SK-M10, manufactured by Kyoritsu Riko Co., Ltd.), and Li-Zn ferrite powder having a HELOS 50% particle size of 1.57 μm (structural formula: Zn 0.5 Li 0.25 Fe 0.25 · Fe 2 O 4 ) was obtained. This is called “powder A”.
次に粉末Aの一部を更に乾式振動ミル(中央化工機社製、3L−VM)を用いて微粉砕してHELOS 50%粒子径が0.97μmのLi−Zn系フェライト粉末を得た。これを「粉末B」と呼ぶ。
なお、粒子径の測定には、日本電子株式会社製、HELOS & RODOS レーザー回折式粒度分布測定装置を用いた。
Next, a part of the powder A was further finely pulverized using a dry vibration mill (manufactured by Chuo Kako Co., Ltd., 3L-VM) to obtain a Li-Zn ferrite powder having a HELOS 50% particle size of 0.97 μm. This is referred to as “powder B”.
For measurement of the particle diameter, a HELOS & RODOS laser diffraction particle size distribution measuring device manufactured by JEOL Ltd. was used.
比較のために市販のZn−Cu系ソフトフェライト粉末(構造式:Zn0.5Cu0.5・Fe2O4、平均粒径:23.9μm)を用意した。これを「粉末C」と呼ぶ。 For comparison, a commercially available Zn—Cu based soft ferrite powder (structural formula: Zn 0.5 Cu 0.5 · Fe 2 O 4 , average particle diameter: 23.9 μm) was prepared. This is referred to as “powder C”.
各フェライト粉末85質量%とNBRゴム系樹脂15質量%をラボプラストミル(東洋精機株式会社製、R−60)により80℃で10分間混練し、一旦排出後、再度同条件で混練した。粉末Aについては粉末の混合割合を90質量%(残部はNBRゴム系樹脂)としたものも用意した。得られた混練物を6インチ径の電熱圧延ロールにより厚さ2mmに圧延し、計4種類(粉末A;2種、粉末B,C;各1種)の電波吸収体シートを得た。
表1に、各シートの構成を示す。
85% by mass of each ferrite powder and 15% by mass of NBR rubber-based resin were kneaded at 80 ° C. for 10 minutes with a lab plast mill (manufactured by Toyo Seiki Co., Ltd., R-60), once discharged, and again kneaded under the same conditions. For powder A, a powder mixture ratio of 90% by mass (the balance being NBR rubber resin) was also prepared. The obtained kneaded material was rolled to a thickness of 2 mm with a 6-inch diameter electrothermal rolling roll to obtain a total of four types (powder A; two types, powders B and C; one type each) of radio wave absorber sheets.
Table 1 shows the configuration of each sheet.
得られた電波吸収体シートについてSパラメーター法により電波吸収特性を調べた。各シートから切り出した小片を外径7mm,内径3mmの円筒状測定ピースに成形し、これをφ7mm×φ3.04mmの同軸管に挿入し、ネットワークアナライザー(ヒュレットパッカード社製、商品名;HP85071B)を用いて1〜11GHzにわたって反射・透過係数(Sパラメーター)を測定した。
図1〜4に、複素透磁率の実数部μ'と虚数部μ''の周波数依存性を各シート毎に示す。
The obtained radio wave absorber sheet was examined for radio wave absorption characteristics by the S parameter method. A small piece cut out from each sheet is formed into a cylindrical measurement piece having an outer diameter of 7 mm and an inner diameter of 3 mm, and this is inserted into a φ7 mm × φ3.04 mm coaxial tube, and a network analyzer (trade name: HP85071B, manufactured by Hewlett-Packard Company). The reflection / transmission coefficient (S parameter) was measured over 1 to 11 GHz.
1 to 4 show the frequency dependence of the real part μ ′ and the imaginary part μ ″ of the complex permeability for each sheet.
また、測定されたSパラメーターに基づいて、厚さ6〜7mm程度のシートを使用した場合の1.9GHzにおける反射減衰率をシミュレートした。
表2に、そのシミュレート結果を示す。
Further, based on the measured S parameter, the return loss at 1.9 GHz when a sheet having a thickness of about 6 to 7 mm was used was simulated.
Table 2 shows the simulation results.
図1と図4を対比すると、本発明のLi−Zn系フェライトを使用したシート(図1)は平均粒径2μm以下の微細粒フェライトを使用したにもかかわらず、従来材(図4)と比べ、1〜4GHz帯域におけるμ''が大幅に上昇していることがわかる。つまり、1〜4GHz帯域での電波吸収性能を大幅に向上させることが可能になった。 Comparing FIG. 1 and FIG. 4, the sheet using the Li-Zn ferrite of the present invention (FIG. 1) is the same as the conventional material (FIG. 4), despite using fine grain ferrite having an average grain size of 2 μm or less. In comparison, it can be seen that μ ″ in the 1-4 GHz band is significantly increased. That is, the radio wave absorption performance in the 1-4 GHz band can be greatly improved.
図1と図2を対比すると、シート中におけるLi−Zn系フェライト粉末の配合量を90質量%に高めることによって(図2)、1〜4GHz帯域におけるμ''は更に顕著に上昇することがわかる。 When FIG. 1 and FIG. 2 are compared, by increasing the blending amount of the Li-Zn ferrite powder in the sheet to 90% by mass (FIG. 2), μ ″ in the 1-4 GHz band can be further significantly increased. Understand.
図1と図3を対比すると、Li−Zn系フェライト粉末の平均粒径を1μm未満に微細化した場合(図3)、特に1〜2GHz帯域においてμ''は若干低下することがわかる。それでも図4の従来材よりかなり高水準を維持している。 Comparing FIG. 1 and FIG. 3, it can be seen that when the average particle size of the Li-Zn ferrite powder is refined to less than 1 μm (FIG. 3), μ ″ slightly decreases particularly in the 1-2 GHz band. Nevertheless, the level is still considerably higher than that of the conventional material shown in FIG.
また、表2から、Li−Zn系フェライト粉末を用いた本発明例のシートは、1〜4GHz帯域中で、比較例(従来材)に比べ非常に優れた電波吸収性能を発揮し得ることがわかる。例えば、厚さ6.0mmのシート2(本発明例)は、厚さ7.0mmのシート4(比較例)に比べ、1.9GHzにおける電波吸収量が大きく、約20dB以上を有することになる。 In addition, from Table 2, the sheet of the present invention example using the Li-Zn ferrite powder can exhibit extremely excellent radio wave absorption performance in the 1-4 GHz band as compared with the comparative example (conventional material). Understand. For example, a sheet 2 (example of the present invention) having a thickness of 6.0 mm has a large amount of radio wave absorption at 1.9 GHz and about 20 dB or more compared to a sheet 4 (comparative example) having a thickness of 7.0 mm. .
図5に、本発明の前記粉末Aについて、CoKα線を用いたX線回折パターンを示す。このパターンから粉末Aはスピネル構造を有するフェライトであることがわかる。 FIG. 5 shows an X-ray diffraction pattern using CoKα rays for the powder A of the present invention. From this pattern, it can be seen that the powder A is a ferrite having a spinel structure.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004075714A JP4709994B2 (en) | 2004-03-17 | 2004-03-17 | Radio wave absorber using Li-Zn ferrite powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004075714A JP4709994B2 (en) | 2004-03-17 | 2004-03-17 | Radio wave absorber using Li-Zn ferrite powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005268368A true JP2005268368A (en) | 2005-09-29 |
JP4709994B2 JP4709994B2 (en) | 2011-06-29 |
Family
ID=35092631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004075714A Expired - Lifetime JP4709994B2 (en) | 2004-03-17 | 2004-03-17 | Radio wave absorber using Li-Zn ferrite powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4709994B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2008047854A1 (en) * | 2006-10-19 | 2010-02-25 | 日立金属株式会社 | Radio wave absorbing material and radio wave absorber |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299872A (en) * | 1992-04-20 | 1993-11-12 | Fuji Elelctrochem Co Ltd | Wave absorber for 900mhz-band |
JPH0653024A (en) * | 1991-07-26 | 1994-02-25 | Tokin Corp | Oxide magnetic powder, oxide nonmagnetic powder and magnetic bar code |
JPH0923087A (en) * | 1995-07-06 | 1997-01-21 | Nippon Paint Co Ltd | Low reflection sheet for office use and its manufacture |
JPH1065384A (en) * | 1996-08-21 | 1998-03-06 | Nippon Paint Co Ltd | Low-reflection sheet for office use and its manufacture |
JP3041295B1 (en) * | 1998-10-15 | 2000-05-15 | 株式会社リケン | Composite radio wave absorber and its construction method |
JP2002289413A (en) * | 2001-03-23 | 2002-10-04 | Miyagawa Kasei Ind Co Ltd | Electromagnetic wave absorbent composite powder material, electromagnetic wave absorbent, and its manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2905501B2 (en) * | 1989-07-08 | 1999-06-14 | 科学技術振興事業団 | Active thermal insulation method using fibrous body or porous body |
-
2004
- 2004-03-17 JP JP2004075714A patent/JP4709994B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653024A (en) * | 1991-07-26 | 1994-02-25 | Tokin Corp | Oxide magnetic powder, oxide nonmagnetic powder and magnetic bar code |
JPH05299872A (en) * | 1992-04-20 | 1993-11-12 | Fuji Elelctrochem Co Ltd | Wave absorber for 900mhz-band |
JPH0923087A (en) * | 1995-07-06 | 1997-01-21 | Nippon Paint Co Ltd | Low reflection sheet for office use and its manufacture |
JPH1065384A (en) * | 1996-08-21 | 1998-03-06 | Nippon Paint Co Ltd | Low-reflection sheet for office use and its manufacture |
JP3041295B1 (en) * | 1998-10-15 | 2000-05-15 | 株式会社リケン | Composite radio wave absorber and its construction method |
JP2002289413A (en) * | 2001-03-23 | 2002-10-04 | Miyagawa Kasei Ind Co Ltd | Electromagnetic wave absorbent composite powder material, electromagnetic wave absorbent, and its manufacturing method |
Non-Patent Citations (2)
Title |
---|
宮本剛、中村龍哉、山田義博: "粉体および粉末冶金", リチウム亜鉛フェライトの複素透磁率スペクトル, JPN7010000998, August 2003 (2003-08-01), JP, pages 609 - 612, ISSN: 0001582394 * |
最新 電磁波の吸収と遮蔽, vol. 第2判, JPN6010017994, 10 September 1999 (1999-09-10), JP, pages 111 - 115, ISSN: 0001582393 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2008047854A1 (en) * | 2006-10-19 | 2010-02-25 | 日立金属株式会社 | Radio wave absorbing material and radio wave absorber |
US8138959B2 (en) | 2006-10-19 | 2012-03-20 | Hitachi Metals, Ltd. | Radio wave absorption material and radio wave absorber |
Also Published As
Publication number | Publication date |
---|---|
JP4709994B2 (en) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4674380B2 (en) | Magnetic powder for radio wave absorber, manufacturing method, and radio wave absorber | |
JP5780408B2 (en) | Soft magnetic resin composition and electromagnetic wave absorber | |
JP5097971B2 (en) | Manufacturing method of magnetic powder for electromagnetic wave absorber | |
KR101458839B1 (en) | Electric wave absorption sheet for near-field and manufacturing method thereof | |
CN112409936A (en) | Low-frequency magnetic dielectric composite wave-absorbing patch and preparation method thereof | |
CN110776314A (en) | Wide-high-frequency anti-EMI manganese-zinc ferrite material and preparation method thereof | |
JP5391414B2 (en) | Magnetic powder for electromagnetic wave absorber | |
JP4279393B2 (en) | Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same | |
JP4709994B2 (en) | Radio wave absorber using Li-Zn ferrite powder | |
JP2006278433A (en) | Compound electromagnetic noise suppression sheet | |
JP4639384B2 (en) | Method for producing magnetic powder for radio wave absorber and radio wave absorber | |
JP2007088316A (en) | Magnetic powder and electric wave absorber | |
JP4599575B2 (en) | Magnetoplumbite type hexagonal ferrite and electromagnetic wave absorber using the same | |
JP5282318B2 (en) | Solid solution Y-type hexagonal ferrite material, molded body using the material, electromagnetic wave absorber, and antenna | |
JP2005116819A (en) | Flame-retardant compound magnetic sheet | |
JPH1027986A (en) | Radio wave absorber | |
JPH01305503A (en) | Radio wave absorbing material | |
JP2000223884A (en) | Electromagnetic wave absorber | |
JP2005019846A (en) | Noise suppressing sheet | |
JP2000200990A (en) | High corrosion resistant microwave absorber | |
JP2002344192A (en) | Composite powder for radio wave absorber | |
TW202337835A (en) | Electromagnetic wave absorption ferrite particle powder, manufacturing method of the same, and resin composition using the same | |
JP2012216865A (en) | Magnetic powder for radio wave absorber and radio wave absorber | |
JPS6290909A (en) | Electromagnetic shielding material | |
CN118063202A (en) | High-performance spinel soft magnetic ferrite and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110224 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4709994 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |