JP2005268107A - Dye-sensitized solar cell and its manufacturing method - Google Patents

Dye-sensitized solar cell and its manufacturing method Download PDF

Info

Publication number
JP2005268107A
JP2005268107A JP2004080614A JP2004080614A JP2005268107A JP 2005268107 A JP2005268107 A JP 2005268107A JP 2004080614 A JP2004080614 A JP 2004080614A JP 2004080614 A JP2004080614 A JP 2004080614A JP 2005268107 A JP2005268107 A JP 2005268107A
Authority
JP
Japan
Prior art keywords
dye
adhesive resin
working electrode
counter electrode
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004080614A
Other languages
Japanese (ja)
Inventor
Yukiyasu Nakao
之泰 中尾
Kazuki Kubo
一樹 久保
Eiji Nobutoki
英治 信時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004080614A priority Critical patent/JP2005268107A/en
Publication of JP2005268107A publication Critical patent/JP2005268107A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell capable of preventing deteriorate of photoelectric conversion efficiency by preventing liquid leakage of an electrolyte and improving the strength of a separator separating a working electrode and a counter electrode for preventing a short circuit between the electrodes. <P>SOLUTION: A spacer 12 is arranged between the working electrode 10 and the counter electrodes 8 facing the working electrode 10. The spacer 12 has inorganic fine particles 5, a porous adhesive resin film 14 comprising an adhesive resin 4 wherein the inorganic fine particles 5 are dispersed, and an electrolyte 3 held in pores of the porous adhesive resin 14. In the porous adhesive resin 14, between the inorganic fine particles 5, between the inorganic fine particles 5 and the working electrode 10 and between the inorganic fine particles 5 and the counter electrodes 8 are bonded with the adhesive resin 4 and between the working electrode 10 and the counter electrode 8A is bridged with a skeleton of the inorganic fine particles 5. Thereby, the strength as a spacer is maintained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、色素増感型太陽電池とその製造方法に関するものである。   The present invention relates to a dye-sensitized solar cell and a method for producing the same.

色素増感型太陽電池は、主に色素を吸着させた半導体電極、対極およびこれら電極間に挟持された電解質層から構成される。上記電解質として電解液を用いると、電解液を保持できずに作用電極と対極のすき間から電解液が漏れたり揮発して、作用電極と対極が接触して短絡することがある。これを防止するものとして、作用電極と対極の間に、多孔質高分子膜に電解液を保持したセパレータを挟持した光電変換素子がある。(例えば、特許文献1参照)。   A dye-sensitized solar cell is mainly composed of a semiconductor electrode on which a dye is adsorbed, a counter electrode, and an electrolyte layer sandwiched between these electrodes. When an electrolytic solution is used as the electrolyte, the electrolytic solution may not be retained, and the electrolytic solution may leak or volatilize from the gap between the working electrode and the counter electrode, and the working electrode and the counter electrode may contact and short circuit. In order to prevent this, there is a photoelectric conversion element in which a separator holding an electrolytic solution in a porous polymer film is sandwiched between a working electrode and a counter electrode. (For example, refer to Patent Document 1).

特開平11−339866号公報(第1頁)JP-A-11-339866 (first page)

上記光電変換素子では、作用電極と対極の間に高分子多孔膜を挟持することにより、毛細管現象で電解液の揮発が抑制できる。しかしながら、高分子多孔膜が電極間に挟み込まれているだけなので、素子内でガス等が発生した場合や応力がかかった場合には、浮きが発生し性能劣化を引き起こしたり、光電変換効率を上げるために高分子多孔膜の空孔率を上げると強度が低下してセパレータの役割を果たせず両極間の短絡を引き起こすという課題があった。   In the photoelectric conversion element, the volatilization of the electrolytic solution can be suppressed by a capillary phenomenon by sandwiching the porous polymer film between the working electrode and the counter electrode. However, since the polymer porous film is only sandwiched between the electrodes, when gas or the like is generated in the element or when stress is applied, floating occurs, causing performance deterioration or increasing photoelectric conversion efficiency. For this reason, when the porosity of the polymer porous membrane is increased, the strength is lowered, and the role of the separator cannot be achieved, causing a short circuit between both electrodes.

本発明は、かかる課題を解決するためになされたものであり、電解液の液漏れを防止し、作用電極と対極とを隔てるセパレータの強度を向上して、上記電極間の短絡を防止することにより光電変換効率の劣化が防止できる色素増感型太陽電池とこの製造方法を得ることを目的とする。   The present invention has been made to solve such a problem, and prevents leakage of the electrolytic solution, improves the strength of the separator separating the working electrode and the counter electrode, and prevents a short circuit between the electrodes. It aims at obtaining the dye-sensitized solar cell which can prevent the deterioration of photoelectric conversion efficiency by this, and this manufacturing method.

本発明に係る第1の色素増感型太陽電池は、色素で被覆された多孔性半導体膜を有する作用電極と、上記作用電極に対向して設けられた対極と、上記作用電極と上記対極の間に配置され、電解液を保持するスペーサを備えた色素増感型太陽電池において、上記スペーサが、無機微粒子とこの無機微粒子を分散した接着性樹脂からなり、上記作用電極および上記対極と接着する多孔性接着樹脂膜と、上記多孔性接着樹脂膜の孔に保持された電解液とを有するものである。   A first dye-sensitized solar cell according to the present invention includes a working electrode having a porous semiconductor film coated with a dye, a counter electrode provided opposite to the working electrode, the working electrode, and the counter electrode. In the dye-sensitized solar cell provided with a spacer that is disposed between and holding the electrolytic solution, the spacer is made of inorganic fine particles and an adhesive resin in which the inorganic fine particles are dispersed, and adheres to the working electrode and the counter electrode. It has a porous adhesive resin film and an electrolytic solution held in the holes of the porous adhesive resin film.

本発明の第1の色素増感型太陽電池は、色素で被覆された多孔性半導体膜を有する作用電極と、上記作用電極に対向して設けられた対極と、上記作用電極と上記対極の間に配置され、電解液を保持するスペーサを備えた色素増感型太陽電池において、上記スペーサが、無機微粒子とこの無機微粒子を分散した接着性樹脂からなり、上記作用電極および上記対極と接着する多孔性接着樹脂膜と、上記多孔性接着樹脂膜の孔に保持された電解液とを有するもので、電解液の液漏れを防止し、作用電極と対極とを隔てるセパレータの強度を向上して、上記電極間の短絡を防止することにより光電変換効率が劣化することを防止できる。   The first dye-sensitized solar cell of the present invention includes a working electrode having a porous semiconductor film coated with a dye, a counter electrode provided to face the working electrode, and a gap between the working electrode and the counter electrode. In the dye-sensitized solar cell provided with the spacer for holding the electrolytic solution, the spacer is made of an inorganic fine particle and an adhesive resin in which the inorganic fine particle is dispersed, and is porous to adhere to the working electrode and the counter electrode. Having a conductive adhesive resin film and an electrolytic solution held in the pores of the porous adhesive resin film, preventing leakage of the electrolytic solution, improving the strength of the separator separating the working electrode and the counter electrode, By preventing a short circuit between the electrodes, the photoelectric conversion efficiency can be prevented from deteriorating.

実施の形態1.
図1は、本発明の実施の形態1の色素増感型太陽電池の構成図である。
つまり、作用電極10は、作用電極基材7の表面に設けられた光透過性導電層6と、その上に色素2で被覆された多孔性半導体膜11を設けて構成され、上記多孔性半導体膜11は半導体微粒子1からなるものである。また、上記作用電極10に対向する対極8は、対極基材9の表面に電極物質を坦持した導電層13を設けて構成され、上記作用電極10と上記対極8間にはスペーサ12が配置されている。
上記スペーサ12は、無機微粒子5とこの無機微粒子5を分散した接着性樹脂4からなる多孔性接着樹脂膜14と、この多孔性接着樹脂膜14の孔に電解液3を保持するものであり、本実施の形態においては、上記多孔性接着樹脂膜14が無機微粒子5を分散したものであるので、上記作用電極10と対極8を隔てるセパレータの強度を向上するとともに、上記作用電極および対極と接着するので、色素増感型太陽電池に応力がかかることによる剥離を防止することができる。
なお、上記構成を有する色素増感型太陽電池において、多孔性半導体膜11に吸着した色素2に太陽光を照射すると、色素2は可視領域の光を吸収して励起する。この励起によって発生した電子は多孔性半導体膜11、さらに外部回路(図示せず)を通って対極8に移動し、対極8に移動した電子は電解液3中のレドックス系を還元する。一方、多孔性半導体膜11に電子を移動させた色素2は酸化体の状態になっており、この酸化状態の色素2が、レドックス系によって還元される。以上のようにして電子が流れ、色素増感型太陽電池を構成することができる。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of the dye-sensitized solar cell according to the first embodiment of the present invention.
In other words, the working electrode 10 is configured by providing the light-transmissive conductive layer 6 provided on the surface of the working electrode base material 7 and the porous semiconductor film 11 coated with the dye 2 thereon, and the porous semiconductor described above. The film 11 is made of semiconductor fine particles 1. The counter electrode 8 facing the working electrode 10 is configured by providing a conductive layer 13 carrying an electrode material on the surface of the counter electrode base material 9, and a spacer 12 is disposed between the working electrode 10 and the counter electrode 8. Has been.
The spacer 12 is a porous adhesive resin film 14 composed of the inorganic fine particles 5 and the adhesive resin 4 in which the inorganic fine particles 5 are dispersed, and holds the electrolytic solution 3 in the holes of the porous adhesive resin film 14. In the present embodiment, since the porous adhesive resin film 14 is a dispersion of the inorganic fine particles 5, the strength of the separator separating the working electrode 10 and the counter electrode 8 is improved, and the working electrode and the counter electrode are bonded. Therefore, peeling due to stress applied to the dye-sensitized solar cell can be prevented.
In the dye-sensitized solar cell having the above configuration, when the dye 2 adsorbed on the porous semiconductor film 11 is irradiated with sunlight, the dye 2 absorbs light in the visible region and is excited. Electrons generated by this excitation move to the counter electrode 8 through the porous semiconductor film 11 and an external circuit (not shown), and the electrons moved to the counter electrode 8 reduce the redox system in the electrolytic solution 3. On the other hand, the dye 2 that has moved electrons to the porous semiconductor film 11 is in an oxidant state, and the dye 2 in the oxidized state is reduced by the redox system. Electrons flow as described above, and a dye-sensitized solar cell can be configured.

本発明の実施の形態に係わるスペーサ12の多孔性接着樹脂膜14は、図1に示すように、無機微粒子5とこれを分散した接着性樹脂4から構成され、上記無機微粒子5間、無機微粒子5と作用電極10の間および無機微粒子5と対極8の間を、上記接着性樹脂4が接着して、作用電極と対極間を無機微粒子5の骨格で架橋することによりスペーサとしての強度をさらに向上することができる。
以上のことから、本実施の形態においては、電解液3を用いているので作用電極と電解質との接触面積が大きく高い導電率を示すことができるとともに、光電変換特性を向上するために空孔率を上げても、スペーサの強度を維持することができ、正負極間のショートを抑制できる。
As shown in FIG. 1, the porous adhesive resin film 14 of the spacer 12 according to the embodiment of the present invention is composed of inorganic fine particles 5 and an adhesive resin 4 in which the inorganic fine particles 5 are dispersed. The adhesive resin 4 adheres between the electrode 5 and the working electrode 10 and between the inorganic fine particle 5 and the counter electrode 8, and the working electrode and the counter electrode are cross-linked by the skeleton of the inorganic fine particle 5 to further increase the strength as a spacer. Can be improved.
From the above, in the present embodiment, since the electrolytic solution 3 is used, the contact area between the working electrode and the electrolyte can be large, exhibit high conductivity, and pores can be used to improve the photoelectric conversion characteristics. Even if the rate is increased, the strength of the spacer can be maintained, and a short circuit between the positive and negative electrodes can be suppressed.

また、上記多孔性接着樹脂膜14は、光に対して強い性質を持つことが必要であり、熱に対しても強いのが好ましい。光や熱に対して弱いと長期安定性が悪くなる。
また、多孔性接着樹脂膜14は、電解液3に不溶であり、また電解液3と化学反応を起さないことが必要で、多孔性接着樹脂膜14が電解液3に溶解したり反応したりすると、電解液3を保持できなくなったり、電池の形状が変化する。
Further, the porous adhesive resin film 14 needs to have a strong property against light and is preferably resistant to heat. If it is weak against light and heat, long-term stability will deteriorate.
Further, the porous adhesive resin film 14 is insoluble in the electrolytic solution 3 and must not cause a chemical reaction with the electrolytic solution 3, and the porous adhesive resin film 14 dissolves or reacts in the electrolytic solution 3. The electrolyte solution 3 cannot be retained or the shape of the battery changes.

また、上記多孔性接着樹脂膜14が、電解液を保持していない乾燥状態での平均空孔率は30〜80%が好ましく、さらに好ましくは35〜80%、最も好ましくは45〜75%である。平均空孔率が30%未満では電解液の担持量が少なくなるため、スペーサ12の電気抵抗が高くなり電池としての性能が低下し、平均空孔率が80%を越えると機械的強度が低下する。
また、多孔性接着樹脂膜14の乾燥状態での平均孔径は0.01〜10μmが好ましく、さらに好ましくは、0.05〜3μm、最も好ましくは0.1〜1μmである。平均孔径が0.01μm未満ではイオン透過性が低下し、電気抵抗が高くなり電池としての機能が十分ではなく、平均孔径が10μmを越えると孔の大きさが大きくなるため表面張力による溶液の保持が困難になるため電解液の保持能力が低下する。
また、上記多孔性接着樹脂膜14の厚さは10〜50μmが好ましく、15〜25μmがさらに好ましい。10μm未満では機械的な変形によって短絡を起しやすく、50μmを越えると電池1個当たりの固体層の閉める体積割合が高くなるため、電池容量が低下し、電極間の距離が離れるので、イオン種の拡散が悪くなる。
The average porosity in the dry state where the porous adhesive resin film 14 does not hold the electrolyte is preferably 30 to 80%, more preferably 35 to 80%, and most preferably 45 to 75%. is there. When the average porosity is less than 30%, the amount of the electrolyte supported becomes small, so that the electrical resistance of the spacer 12 is increased and the performance as a battery is deteriorated. When the average porosity exceeds 80%, the mechanical strength is reduced. To do.
The average pore diameter of the porous adhesive resin film 14 in a dry state is preferably 0.01 to 10 μm, more preferably 0.05 to 3 μm, and most preferably 0.1 to 1 μm. If the average pore diameter is less than 0.01 μm, the ion permeability decreases, the electric resistance increases, and the battery function is not sufficient. If the average pore diameter exceeds 10 μm, the pore size increases, so that the solution is retained by surface tension. Therefore, the ability to retain the electrolyte is reduced.
Further, the thickness of the porous adhesive resin film 14 is preferably 10 to 50 μm, and more preferably 15 to 25 μm. If it is less than 10 μm, it is easy to cause a short circuit due to mechanical deformation, and if it exceeds 50 μm, the volume ratio of the solid layer per battery increases, so the battery capacity decreases and the distance between the electrodes increases. The diffusion of.

上記多孔性接着樹脂膜14における接着性樹脂4としては、具体的にはフッ化ビニリデン、4−フッ化エチレンなどのフッ素分子を分子構造内に有する重合体、または上記重合体とポリメタクリル酸メチル、ポリスチレン、ポリエチレンもしくはポリプロピレンなどとの混合物が用いられ、ビニルアルコールを分子骨格に有する重合体もしくは共重合体、または上記重合体もしくは共重合体とポリメタクリル酸メチル、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリアクリロニトリルもしくはポリエチレンオキサイドなどとの混合物が用いられる。
特に、ポリフッ化ビニリデンまたはポリビニルアルコールが高い化学安定性を有し経時劣化が抑制できるため好適である。
ただし、接着性樹脂4は、電解液3による膨潤が起こってもよく、膨潤による体積膨張によって孔の大きさがより小さくなるとともに、表面張力が小さくなって、溶液の保持力が向上するため電解液の飛散を抑制できる。
Specifically, the adhesive resin 4 in the porous adhesive resin film 14 is a polymer having fluorine molecules such as vinylidene fluoride or 4-fluoroethylene in the molecular structure, or the polymer and polymethyl methacrylate. A mixture of polystyrene, polyethylene or polypropylene is used, and a polymer or copolymer having vinyl alcohol in the molecular skeleton, or the above polymer or copolymer and polymethyl methacrylate, polystyrene, polyethylene, polypropylene, polychlorinated A mixture with vinylidene, polyvinyl chloride, polyacrylonitrile, polyethylene oxide or the like is used.
In particular, polyvinylidene fluoride or polyvinyl alcohol is preferable because it has high chemical stability and can suppress deterioration over time.
However, the adhesive resin 4 may be swelled by the electrolytic solution 3, and the volume expansion due to the swelling makes the pore size smaller and the surface tension becomes smaller, so that the holding power of the solution is improved. Spattering of the liquid can be suppressed.

上記多孔性接着樹脂膜14における無機微粒子5は、作用電極10と対極8の短絡を抑制するために、絶縁体であることが望ましい。具体的には、シリカ、アルミナ、マイカなどの酸化物誘電体、窒化ホウ素、窒化珪素などの窒素化物などの微粒子が利用できる。
また、無機微粒子5は多孔性接着樹脂膜14の孔を上記平均孔径とするために、直径1μm以下が好ましく、さらに好ましくは100nm以下の微粒子が利用できる。また、上記微粒子は、粒径が100nm以下、好ましくは50nm以下の一次粒子の凝集体であっても良い。
The inorganic fine particles 5 in the porous adhesive resin film 14 are desirably an insulator in order to suppress a short circuit between the working electrode 10 and the counter electrode 8. Specifically, fine particles such as oxide dielectrics such as silica, alumina and mica, and nitrides such as boron nitride and silicon nitride can be used.
The inorganic fine particles 5 preferably have a diameter of 1 μm or less, more preferably 100 nm or less in order to make the pores of the porous adhesive resin film 14 have the above average pore size. The fine particles may be aggregates of primary particles having a particle size of 100 nm or less, preferably 50 nm or less.

実施の形態2.
本発明の実施の形態2の色素増感型太陽電池の製造方法を説明する。
まず、実施の形態1における接着性樹脂4と無機微粒子5を溶剤に混入して溶解または分散させた接着液を調整する。ここで用いる溶剤は、多孔性半導体膜11に担持されている色素2が不溶であれば特に制限は無いが、ジメトキシエタン、ジエトキシエタン、ジエチルエーテル、ジメチルエーテルなどのエーテル系溶剤、炭酸プロピレン、炭酸エチレン、炭酸ジエチル、炭酸ジメチル、γ‐ブチロラクトンなどのエステル系溶剤の単独液、N−メチルアセトアミドやN−メチルピロリドンなどのアミド系溶剤の単独液、または上記溶剤同士もしくは異種溶剤からなる2種の混合液が使用可能である。
Embodiment 2. FIG.
A method for manufacturing the dye-sensitized solar cell according to the second embodiment of the present invention will be described.
First, an adhesive solution in which the adhesive resin 4 and the inorganic fine particles 5 in Embodiment 1 are mixed and dissolved or dispersed in a solvent is prepared. The solvent used here is not particularly limited as long as the dye 2 supported on the porous semiconductor film 11 is insoluble, but ether solvents such as dimethoxyethane, diethoxyethane, diethyl ether and dimethyl ether, propylene carbonate, carbonic acid A single solution of an ester solvent such as ethylene, diethyl carbonate, dimethyl carbonate, or γ-butyrolactone, a single solution of an amide solvent such as N-methylacetamide or N-methylpyrrolidone, or two types of the above solvents or different solvents Mixtures can be used.

本実施の形態に係わるスペーサを構成する多孔性接着樹脂膜が、図1に示すように、無機粒子5の骨格で作用電極10と対極8を架橋する構造であると、上記スペーサの強度をさらに向上することができる。
上記架橋状態を実現するには、本発明の実施の形態に係わる接着液における、接着性樹脂4に対する無機微粒子5の混合重量比と、接着性樹脂4と無機微粒子5の濃度を下記所定の範囲とする必要がある。
即ち、接着性樹脂4に対する無機微粒子5の混合重量比が0.5〜3の範囲が好ましく、さらに好ましくは0.8〜2で、かつ接着液の無機微粒子の濃度が5〜40重量%の範囲が好ましく、さらに好ましくは5〜20重量%であり、接着性樹脂4の濃度が2〜15重量%の範囲が好ましく、さらに好ましくは2〜10重量%である。
接着性樹脂4に対する無機微粒子5の混合重量比が上記範囲より小さいと多孔性接着樹脂膜の孔が小さくなり電解液の浸透が困難となり、上記混合重量比が上記範囲より大きいと多孔性接着樹脂膜の孔が大きくなり浸透した電解液の保持が困難となり揮発しやすくなり電池としての機能が低下する危険性が生じる。
また、それぞれの濃度が上記濃度範囲より薄いと膜厚が薄くなるため実用的でなく、それぞれの濃度が上記濃度範囲より濃いと無機微粒子が凝集する危険性が生じる。
また、接着性樹脂4中の無機微粒子5の分散を好くするために、界面活性剤などの添加剤を添加してもよい。
When the porous adhesive resin film constituting the spacer according to the present embodiment has a structure in which the working electrode 10 and the counter electrode 8 are bridged by the skeleton of the inorganic particles 5, as shown in FIG. Can be improved.
In order to realize the cross-linked state, the mixing weight ratio of the inorganic fine particles 5 to the adhesive resin 4 and the concentration of the adhesive resin 4 and the inorganic fine particles 5 in the adhesive liquid according to the embodiment of the present invention are within the following predetermined ranges. It is necessary to.
That is, the mixing weight ratio of the inorganic fine particles 5 to the adhesive resin 4 is preferably in the range of 0.5 to 3, more preferably 0.8 to 2, and the concentration of the inorganic fine particles in the adhesive liquid is 5 to 40% by weight. The range is preferable, more preferably 5 to 20% by weight, and the concentration of the adhesive resin 4 is preferably 2 to 15% by weight, and more preferably 2 to 10% by weight.
If the mixing weight ratio of the inorganic fine particles 5 to the adhesive resin 4 is smaller than the above range, the pores of the porous adhesive resin film become small and it is difficult to permeate the electrolyte solution. If the mixing weight ratio is larger than the above range, the porous adhesive resin As the pores of the membrane become larger, it becomes difficult to retain the permeated electrolyte, and it tends to volatilize, resulting in a risk that the function of the battery will be reduced.
Further, if each concentration is lower than the above concentration range, the film thickness becomes thin, which is not practical. If each concentration is higher than the above concentration range, there is a risk that inorganic fine particles aggregate.
In addition, an additive such as a surfactant may be added in order to favor the dispersion of the inorganic fine particles 5 in the adhesive resin 4.

次に、上記接着液を作用電極10および対極8の少なくとも一方に塗布し、上記接着液の層を介して作用電極10と対極8を合わせて後、上記接着液の層の溶剤を除去して多孔性接着樹脂膜14とする。
塗布する手段としては、バーコータやスプレーガンを用いる方法、浸漬法、またはスクリーン印刷やグラビア印刷などの印刷法が採用できるので、高生産性が望める。
なお、上記のように接着液を塗布後、作用電極10と対極8を合わせてから上記溶剤を除去乾燥して多孔性接着樹脂膜14としても良いし、上記溶剤を乾燥してから作用電極10と対極8を多孔性接着樹脂膜14を介して熱圧着等によって接着しても良い。
Next, the adhesive solution is applied to at least one of the working electrode 10 and the counter electrode 8, the working electrode 10 and the counter electrode 8 are aligned through the adhesive solution layer, and then the solvent in the adhesive solution layer is removed. The porous adhesive resin film 14 is used.
As a means for applying, a method using a bar coater or a spray gun, a dipping method, or a printing method such as screen printing or gravure printing can be adopted, so that high productivity can be expected.
After applying the adhesive liquid as described above, the working electrode 10 and the counter electrode 8 may be combined, and then the solvent may be removed and dried to form the porous adhesive resin film 14, or the working electrode 10 may be dried after the solvent is dried. And the counter electrode 8 may be bonded by thermocompression bonding or the like through the porous adhesive resin film 14.

上記のようにして得られた多孔性接着樹脂膜14の孔に電解液を保持させるために、電解液3を上記多孔性接着樹脂膜14に含浸させるが、その方法に特に制限はないが、浸漬法によるのが望ましい。
また、対極の一部を線状あるいは格子状に切り取っておいて、多孔性接着樹脂膜全体への含浸を速やかに行えるようにしても良い。また、浸漬中、減圧して気泡を取り除くのが望ましい。
本発明の実施の形態に係わる電解液3として好ましい溶剤としては、限定的ではないが、水もしくはアルコールとその混合物、炭酸プロピレン、炭酸エチレンもしくはメチルピロリドンのような非揮発性有機溶剤、または上記非揮発性有機溶剤と例えばアセトニトリル、エチルアセテートもしくはテトラヒドロフランのような粘性低下剤との混合物など、ジメチルスルホキシドまたはジクロロエタンなどを用いることができる。
混和性であるならば、上記溶剤の任意の混合内を使用することができ、ピリジニウム塩、イミダゾリウム塩またはトリアゾリウム塩などのイオン性液体は、揮発性が低いため、電解液3に用いると長期安定性が期待できるので好ましい。
また、電解液3にはレドックス系を含むのが好ましく、電解液3中に存在するレドックス系は電荷を一方の電極から他方の電極へと運搬するもので、純粋な仲介物質として作用し、電池の作動の間には化学的変化を受けないものであり、上記レドックス系としては、ヨウ素(I)/ヨウ素(I )溶液、臭素(Br)/臭素(Br )溶液、ヒドロキシ溶液、または未結合電子を運搬するキノン錯体、テトラシアノキノンジメタン(TCNQ)錯体、ジシアノキノンジイミン錯体などの遷移金属錯体溶液を用いることができる。
なお、電解液3は多孔性半導体膜11に被覆した色素2が不溶性を示すような有機溶剤中に溶解するか、色素2が飽和濃度まで溶解しているのが好ましい。このことによって、上記色素2の電解液への溶解を抑制できることから、長期安定性を有することができる。
In order to retain the electrolytic solution in the pores of the porous adhesive resin film 14 obtained as described above, the porous adhesive resin film 14 is impregnated with the electrolytic solution 3, but the method is not particularly limited, It is desirable to use an immersion method.
Alternatively, a part of the counter electrode may be cut out in a linear shape or a lattice shape so that the entire porous adhesive resin film can be quickly impregnated. In addition, it is desirable to remove bubbles by reducing the pressure during immersion.
Solvents preferable as the electrolytic solution 3 according to the embodiment of the present invention include, but are not limited to, water or alcohol and a mixture thereof, a non-volatile organic solvent such as propylene carbonate, ethylene carbonate, or methylpyrrolidone, or the above non-solvent. Dimethyl sulfoxide or dichloroethane, such as a mixture of a volatile organic solvent and a viscosity reducing agent such as acetonitrile, ethyl acetate or tetrahydrofuran can be used.
Any miscible solvent can be used as long as it is miscible, and ionic liquids such as pyridinium salts, imidazolium salts, or triazolium salts have low volatility, so that when used in the electrolytic solution 3, they can be used for a long time. It is preferable because stability can be expected.
The electrolyte solution 3 preferably contains a redox system, and the redox system present in the electrolyte solution 3 carries electric charge from one electrode to the other electrode, acts as a pure mediator, and is a battery. The redox system includes an iodine (I 2 ) / iodine (I 3 ) solution, a bromine (Br 2 ) / bromine (Br 3 ) solution, A transition metal complex solution such as a hydroxy solution or a quinone complex that transports unbonded electrons, a tetracyanoquinone dimethane (TCNQ) complex, or a dicyanoquinone diimine complex can be used.
The electrolytic solution 3 is preferably dissolved in an organic solvent in which the dye 2 coated on the porous semiconductor film 11 is insoluble, or the dye 2 is dissolved to a saturated concentration. As a result, dissolution of the dye 2 in the electrolytic solution can be suppressed, and thus long-term stability can be achieved.

本発明の実施の形態に係わる作用電極基材7または対極基材9としては、ガラスまたはプラスチックフィルムなど、絶縁性、透明性のある基材であれば何ら制限されるものではなく、例えばポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートまたはトリアセチルセルロース等を用いることができるが、なかでも、太陽電池を使用する環境、寿命の観点から耐光性、耐熱性を伴う基材が好ましい。
入射する光を有効に取り入れるために、作用電極基材7の光透過性導電層6が積層されていない側の表面に反射防止層を設けたり、エンボス処理を行ったりしてもよく、作用電極基材7と対極基材9には異なる材質を選んでもよい。
The working electrode base material 7 or the counter electrode base material 9 according to the embodiment of the present invention is not limited at all as long as it is an insulating and transparent base material such as glass or plastic film. Methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate (PET), polyethylene naphthalate, or triacetyl cellulose can be used. A substrate with light resistance and heat resistance is preferred.
In order to effectively take in incident light, an antireflection layer may be provided on the surface of the working electrode substrate 7 on which the light-transmitting conductive layer 6 is not laminated, or an embossing process may be performed. Different materials may be selected for the base material 7 and the counter electrode base material 9.

また、本発明の実施の形態に係わる色素2で被覆する多孔性半導体膜11としては、一般に光電変換材料用に使用されるものであれば特に限定されるものではなく、例えば、酸化チタン、酸化亜鉛、酸化タングステン、酸化ニオブ、酸化錫、酸化バナジウム、酸化インジウム、酸化タンタル、酸化ジルコニウム、酸化モリブデン、酸化マンガン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウムもしくはニオブ酸ストロンチウムなど公知の半導体の一種、または二種以上を用いることができ、なかでも、安定性、安全性の点から酸化チタンが好ましい。
なお、本発明の実施の形態で使用される酸化チタンは、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタ酸化チタンもしくはオルソ酸化チタンなどの酸化チタン、または水酸化チタン、含酸化チタンなどのいずれでもよい。
また、多孔性半導体膜11の表面は、その上に担持される色素2の量を増加して、光の吸収量を増やすためには多孔性膜の表面積を確保する必要があり、そのために多孔性半導体膜を構成する半導体微粒子1の直径が5nm〜200nmであることが望ましい。さらに半導体微粒子1の粒径は20nm以下程度とされることが望ましい。また、多孔性半導体膜の膜厚の範囲は5μm〜20μmが好ましい。5μmより薄いと色素が吸着した多孔性半導体膜が吸収する光量が減少して特性が下がり、20μmより厚いとセル厚が大きくなって性能が低下する。
Further, the porous semiconductor film 11 coated with the dye 2 according to the embodiment of the present invention is not particularly limited as long as it is generally used for a photoelectric conversion material. For example, titanium oxide, oxide Known, such as zinc, tungsten oxide, niobium oxide, tin oxide, vanadium oxide, indium oxide, tantalum oxide, zirconium oxide, molybdenum oxide, manganese oxide, barium titanate, strontium titanate, calcium titanate, magnesium titanate or strontium niobate One kind or two or more kinds of these semiconductors can be used, and titanium oxide is particularly preferred from the viewpoint of stability and safety.
Note that the titanium oxide used in the embodiment of the present invention is anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, titanium oxide such as meta-titanium oxide or ortho-titanium oxide, or titanium hydroxide, containing oxygen. Any of titanium and the like may be used.
Further, the surface of the porous semiconductor film 11 needs to secure the surface area of the porous film in order to increase the amount of the dye 2 carried thereon and increase the light absorption amount. The diameter of the semiconductor fine particles 1 constituting the conductive semiconductor film is preferably 5 nm to 200 nm. Furthermore, it is desirable that the particle size of the semiconductor fine particles 1 be about 20 nm or less. The range of the thickness of the porous semiconductor film is preferably 5 μm to 20 μm. If the thickness is less than 5 μm, the amount of light absorbed by the porous semiconductor film to which the dye has been adsorbed is reduced and the characteristics are lowered. If the thickness is more than 20 μm, the cell thickness is increased and the performance is deteriorated.

上記多孔性半導体膜11に色素2を被覆させる方法としては、例えば多孔性半導体膜11を、色素2を溶解した溶液に浸漬する方法が挙げられるが、多孔性半導体膜11を色素溶液に浸漬する際に、加熱してもよいし、色素溶液を酸性または塩基性にしてもよく、多孔性半導体膜11を酸や塩基で処理した後に色素溶液に浸漬してもよい。
また、ここで使用することができる色素2は光増感剤として機能する色素が好ましく、特に可視光領域または赤外光領域に吸収を持ち、分子中にカルボキシル基、ヒドロキシアルキル基、ヒドロキシル基、スルホン基、カルボキシアルキル基、アミド基、アミノ基、カルボニル基、メルカプト基、ホスフィノ基もしくはホスホニル基などの結合基の1種、または2種以上を有する有機色素が好ましい。太陽光のうち可視光または赤外光を吸収し、励起して電子を発生させることができるとともに、かかる結合基により半導体微粒子1に強固に吸着することができるからである。
具体的には、メタルフリ−フタロシアニン系色素、シアニン系色素{商品名:NK1194、日本感光色素研究所(株)製}、{商品名:NK3422、日本感光色素研究所(株)製}、メロシアニン系色素{商品名:NK2426、日本感光色素研究所(株)製}、{商品名:NK2501、日本感光色素研究所(株)製}、ローズベンガル、ローダミンBなどのキサンテン系色素、マラカイトグリーンもしくはクリスタルバイオレットなどのトリフェニルメタン系色素、銅フタロシアニンもしくはチタニルフタロシアニンなどの金属フタロシアニン、クロロフィル、ヘミン、シアニジン色素、メロシアニン色素もしくはローダミン色素などの有機色素、オキサジアゾール誘導体、ベンゾチアゾール誘導体、クマリン誘導体、スチルベン誘導体もしくは芳香環を有する有機化合物、またはルテニウム、オスミウム、鉄もしくは亜鉛を1以上含有する錯体などの金属錯体塩などを用いることができる。
上記色素は、吸光係数が大きくかつ繰り返しの酸化還元に対して安定であることが好ましい。また色素2は低分子化合物であってもよいし、また繰り返し単位を有する高分子であってもよい。なかでも分光増感の効果や耐久性に優れているため金属錯体が好ましい。
Examples of the method for coating the porous semiconductor film 11 with the dye 2 include a method in which the porous semiconductor film 11 is immersed in a solution in which the dye 2 is dissolved. The porous semiconductor film 11 is immersed in the dye solution. At this time, it may be heated, the dye solution may be made acidic or basic, and the porous semiconductor film 11 may be immersed in the dye solution after being treated with an acid or a base.
The dye 2 that can be used here is preferably a dye that functions as a photosensitizer, and particularly has absorption in the visible light region or infrared light region, and has a carboxyl group, hydroxyalkyl group, hydroxyl group, Organic dyes having one or more linking groups such as sulfone group, carboxyalkyl group, amide group, amino group, carbonyl group, mercapto group, phosphino group or phosphonyl group are preferred. This is because visible light or infrared light of sunlight can be absorbed and excited to generate electrons, and can be firmly adsorbed to the semiconductor fine particles 1 by such bonding groups.
Specifically, metal-free phthalocyanine dyes, cyanine dyes {trade name: NK1194, manufactured by Nippon Photosensitizer Laboratories Co., Ltd.}, {product name: NK3422, manufactured by Nippon Photosensitizer Laboratories Co., Ltd.}, merocyanine system Dye {trade name: NK2426, manufactured by Nippon Photosensitive Dye Research Co., Ltd.}, {Product name: NK2501, manufactured by Nippon Photosensitive Dye Research Co., Ltd.}, xanthene dyes such as rose bengal and rhodamine B, malachite green or crystal Triphenylmethane dyes such as violet, metal phthalocyanines such as copper phthalocyanine or titanyl phthalocyanine, organic dyes such as chlorophyll, hemin, cyanidin dye, merocyanine dye or rhodamine dye, oxadiazole derivatives, benzothiazole derivatives, coumarin derivatives, stilbene derivatives Organic compounds having a body or aromatic ring, or ruthenium, osmium, and metal complex salt, such as complexes containing iron or zinc 1 more can be used.
The dye preferably has a large extinction coefficient and is stable against repeated redox. The dye 2 may be a low molecular compound or a polymer having a repeating unit. Of these, metal complexes are preferred because they are excellent in spectral sensitization and durability.

また、光透過性導電層6して使用する導電膜は特に限定されるものではないが、例えば、ITOまたはSnOなどの透明導電膜が好ましく、導電膜の形成方法としては、真空蒸着法、反応性蒸着法、イオンビームアシスト蒸着法、スパッタリング法、イオンプレーティング法またはプラズマCVD法等の真空成膜プロセスによることができるが、いかなる成膜方法であっても構わない。
対極8の導電層13を構成する電極物質としては特に制限はないが炭、カーボンブラックもしくはカーボンナノチューブなど導電性の炭素材料、または白金ナノ粒子などが挙げられる。また、対極8は、対極基材9上に導電層を形成した後、上記電極物質を担持して作製してもよく、導電層としては特に制限は無いが、銅、アルミもしくは白金などの金属や、ITOもしくはSnOなどの導電性を有する酸化物からなる薄膜が好ましい。
Further, the conductive film used as the light-transmissive conductive layer 6 is not particularly limited, but for example, a transparent conductive film such as ITO or SnO 2 is preferable. A vacuum deposition process such as a reactive deposition method, an ion beam assisted deposition method, a sputtering method, an ion plating method, or a plasma CVD method can be used, but any deposition method may be used.
The electrode material constituting the conductive layer 13 of the counter electrode 8 is not particularly limited, and examples thereof include conductive carbon materials such as charcoal, carbon black and carbon nanotubes, or platinum nanoparticles. The counter electrode 8 may be prepared by forming the conductive layer on the counter electrode base material 9 and then carrying the electrode material. The conductive layer is not particularly limited, but may be a metal such as copper, aluminum or platinum. A thin film made of an oxide having conductivity such as ITO or SnO 2 is preferable.

実施の形態3.
図2は本発明の実施の形態3の色素増感型太陽電池の構成図である。つまり、電解液3を多孔性接着樹脂膜14へ含浸させた後、作用電極リード線15と対極リード線16を取り付け、作用電極基材7と対極8の間を封止部材17によって封止したもので、機械的強度がさらに増加する。また、対極8に電解液を含浸するために設けた切り取り部分が存在する場合、その部分も封止剤17によって封止する。
封止剤17に特に制限はないが、耐光性、絶縁性、防湿性を備えた材料が好ましく、例えばエポキシ樹脂、紫外線硬化樹脂、アクリル系接着剤、エチレンビニルアセテート(EVA)、シリコンゴム、セラミック、熱融着フィルム等を用いることができる。
なお、作用電極リード線15と対極リード線16の取り付け位置は、いずれも封止剤より内側でも良いし、外側でも良い。
Embodiment 3 FIG.
FIG. 2 is a configuration diagram of the dye-sensitized solar cell according to the third embodiment of the present invention. That is, after impregnating the porous adhesive resin film 14 with the electrolytic solution 3, the working electrode lead wire 15 and the counter electrode lead wire 16 are attached, and the gap between the working electrode substrate 7 and the counter electrode 8 is sealed with the sealing member 17. The mechanical strength is further increased. Further, when there is a cut-out portion provided for impregnating the electrolytic solution in the counter electrode 8, the portion is also sealed with the sealant 17.
The sealant 17 is not particularly limited, but a material having light resistance, insulation, and moisture resistance is preferable. For example, epoxy resin, ultraviolet curable resin, acrylic adhesive, ethylene vinyl acetate (EVA), silicon rubber, ceramic A heat-sealing film or the like can be used.
Note that the working electrode lead wire 15 and the counter electrode lead wire 16 may be attached either inside or outside the sealant.

実施の形態4.
図3は本発明の実施の形態4の色素増感型太陽電池の構成図である。つまり、対極8の外側にカバー18を設置して、このカバー18を用いて作用電極10の作用電極基材7までを封止しても良い。
Embodiment 4 FIG.
FIG. 3 is a configuration diagram of the dye-sensitized solar cell according to the fourth embodiment of the present invention. That is, a cover 18 may be installed outside the counter electrode 8, and the cover 18 may be used to seal up to the working electrode substrate 7 of the working electrode 10.

実施例1.
酸化チタン粒子(アナターゼ型結晶、平均粗径20nm){商品名:P−25、デガッサ(株)製}をジエチレングリコールモノメチルエーテルに対して17重量%となるように調整した後、少量の分散助剤を加えて、ガラスビーズを使用し、ペイントシェイカーで6時間分散させ酸化チタン懸濁液とした。この酸化チタン懸濁液を、ドクターブレードを用いて、50μm程度の膜厚で透明導電性ガラス板に塗布し、100℃で40分間予備乾燥した後、520℃で40分間焼成し、膜厚10μm程度の酸化チタン膜を得た。
一方、色素の濃度が2.5×10−4モル/lとなるように、ルテニウム色素[Ru(4,4’―ジカルボキシルー2,2’−ビピリジン)(NCS)]をエタノールに溶解し、上記酸化チタン膜を具備したガラス基板を、上記色素溶液に常温で12時間浸漬して作用電極を得た。
また、対極として透明導電性ガラス板上に白金をスパッタしたものを用いた。
また、ポリフッ化ビニリテンと無機微粒子である微粉末アルミナ{商品名:エアロジルC,エアロジル(株)製}とをN−メチルピロリドン(NMP)に、ポリフッ化ビニリテンが5重量%となるように、微粉末アルミナ{商品名:エアロジルC,エアロジル(株)製}が5重量%となるように、溶解させて均一溶液になるように十分に撹拌して粘性のある接着液を調製した。
Example 1.
After adjusting titanium oxide particles (anatase-type crystals, average coarse diameter 20 nm) {trade name: P-25, manufactured by Degasser Co., Ltd.} to 17% by weight with respect to diethylene glycol monomethyl ether, a small amount of dispersion aid Was added and dispersed with a paint shaker for 6 hours to obtain a titanium oxide suspension. This titanium oxide suspension was applied to a transparent conductive glass plate with a doctor blade with a film thickness of about 50 μm, pre-dried at 100 ° C. for 40 minutes, and then baked at 520 ° C. for 40 minutes to obtain a film thickness of 10 μm. A titanium oxide film of a degree was obtained.
On the other hand, the ruthenium dye [Ru (4,4′-dicarboxyl-2,2′-bipyridine) 2 (NCS) 2 ] is used in ethanol so that the dye concentration becomes 2.5 × 10 −4 mol / l. The glass substrate which melt | dissolved and comprised the said titanium oxide film was immersed in the said pigment | dye solution at normal temperature for 12 hours, and the working electrode was obtained.
Moreover, what sputtered platinum on the transparent conductive glass plate was used as a counter electrode.
Further, fine powder alumina {trade name: Aerosil C, manufactured by Aerosil Co., Ltd.}, which is polyvinylidene fluoride and inorganic fine particles, is added to N-methylpyrrolidone (NMP) so that the polyvinylidene fluoride is 5% by weight. A viscous adhesive solution was prepared by sufficiently stirring so that powder alumina {trade name: Aerosil C, manufactured by Aerosil Co., Ltd.} was 5% by weight and dissolved to be a uniform solution.

上記対極上に、上記のように調製した接着液を均一に塗布した後、接着液が乾燥する前に上記作用電極を対極の接着面に密着させる。この時、対極の幅および長さは作用電極よりやや小さくする。
次に、約80℃の温風乾燥機に入れて、上記接着液の層のNMPを蒸発させるが、この時、接着液の層からNMPが抜けることによって上記接着液の層は多孔性接着樹脂膜となる。
次に、十分乾燥し、50Toorまで減圧して後、電解液中に浸した後、作用電極周辺部分を拭き取り洗浄し、作用電極と対極の隙間をエポキシ系の紫外線硬化樹脂で封止して後、作用電極リード線と対極リード線を取り付け、本発明の実施例の色素増感型太陽電池とした。
なお、前記電解液は、体積比が1:4であるアセトニトリル/炭酸エチレンの混合溶媒に、テトラプロピルアンモニウムアイオダイドとヨウ素とを、それぞれの濃度が0.5モル/l、0.07モル/lとなるように溶解したものを用いた。
After the adhesive liquid prepared as described above is uniformly applied on the counter electrode, the working electrode is brought into close contact with the adhesive surface of the counter electrode before the adhesive liquid dries. At this time, the width and length of the counter electrode are slightly smaller than the working electrode.
Next, the NMP in the adhesive liquid layer is evaporated in a hot air dryer at about 80 ° C. At this time, the NMP is removed from the adhesive liquid layer, so that the adhesive liquid layer becomes a porous adhesive resin. Become a film.
Next, after sufficiently drying and depressurizing to 50 Torr, after immersing in the electrolyte, the peripheral area of the working electrode is wiped and washed, and the gap between the working electrode and the counter electrode is sealed with an epoxy-based ultraviolet curable resin. Then, a working electrode lead wire and a counter electrode lead wire were attached to form a dye-sensitized solar cell of an example of the present invention.
In addition, the electrolyte solution contains tetrapropylammonium iodide and iodine in a mixed solvent of acetonitrile / ethylene carbonate having a volume ratio of 1: 4, with respective concentrations of 0.5 mol / l, 0.07 mol / What was melt | dissolved so that it might become 1 was used.

本実施例の色素増感型太陽電池にソーラーシュミレーターで1000W/mの強度の光を照射すると、η(変換効率)は3.5%であり、太陽電池として有用であることがわかった。
上記色素増感型太陽電池を1ケ月間、室温、大気中、暗下で放置後、ソーラーシュミレーターで1000W/mの強度の光を照射すると、η(変換効率)は3.2%となった。さらに作用電極と対極の間を指で強く抑えた状態で同様の測定を行ったが、η(変換効率)は3.2%と変わらなかった。
When the dye-sensitized solar cell of this example was irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, η (conversion efficiency) was 3.5%, which proved useful as a solar cell.
When the dye-sensitized solar cell was allowed to stand for 1 month at room temperature, in the air, in the dark, and then irradiated with light having an intensity of 1000 W / m 2 using a solar simulator, η (conversion efficiency) was 3.2%. . Further, the same measurement was performed in a state where the gap between the working electrode and the counter electrode was strongly suppressed with a finger, but η (conversion efficiency) was not changed to 3.2%.

比較例1.
実施例1と同様にして得られた作用電極と対極を用い、作用電極にリード線を取付けた後、その周辺に作用電極と対極が重なる部分を切り抜いた四フッ化エチレン樹脂フィルムを置いて、その上からリード線を取付けた対極を置き、作用電極と対極の隙間を電解液の注入部分を除いてエポキシ系の紫外線硬化樹脂でシーリングしてセルを作製した。
上記セル中に、実施例1と同じ電解液を注入した後、注入箇所をエポキシ系の紫外線硬化樹脂で封止して色素増感型太陽電池を得た。
上記色素増感型太陽電池にソーラーシュミレーターで1000W/mの強度の光を照射すると、η(変換効率)は3.7%であったが、これを1ケ月間、室温、大気中、暗下で放置後、ソーラーシュミレーターで1000W/mの強度の光を照射すると、電解液が揮発したため、η(変換効率)は1.7%となった。さらに、作用電極と対極の間を指で強く抑えた状態で同様の測定を行うと、短絡のため電池として機能しなかった。
Comparative Example 1
Using a working electrode and a counter electrode obtained in the same manner as in Example 1, after attaching a lead wire to the working electrode, a tetrafluoroethylene resin film cut out from the periphery of the portion where the working electrode and the counter electrode overlap, A counter electrode to which a lead wire was attached was placed thereon, and the gap between the working electrode and the counter electrode was sealed with an epoxy-based ultraviolet curable resin except for the portion where the electrolyte solution was injected, to produce a cell.
After injecting the same electrolytic solution as in Example 1 into the cell, the injection site was sealed with an epoxy-based ultraviolet curable resin to obtain a dye-sensitized solar cell.
When the dye-sensitized solar cell was irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, η (conversion efficiency) was 3.7%, but this was for 1 month at room temperature, in the atmosphere, in the dark. Then, when irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, the electrolyte solution volatilized, and η (conversion efficiency) was 1.7%. Furthermore, when the same measurement was performed in a state where the gap between the working electrode and the counter electrode was strongly suppressed with a finger, it did not function as a battery due to a short circuit.

比較例2.
実施例1と同様にして得られた作用電極と対極を用い、作用電極にリード線を取付けた後、その周辺に作用電極と対極が重なる部分を切り抜いた四フッ化エチレン樹脂フィルムを置いて、その上からリード線を取付けた対極を置き、作用電極と対極の間に厚さ15μmのポリエチレン多孔膜を挟持し、電解液を入れ、電解液の注入部分を除いてエポキシ系の紫外線硬化樹脂でシーリングした。
上記ポリエチレン多孔膜に、実施例1と同じ電解液を注入した後、注入箇所をエポキシ系の紫外線硬化樹脂で封止して色素増感型太陽電池を得た。
上記色素増感型太陽電池にソーラーシュミレーターで1000W/mの強度の光を照射すると、η(変換効率)は3.7%であったが、これを1ケ月室温、大気中、暗下で放置後、ソーラーシュミレーターで1000W/mの強度の光を照射したところ、η(変換効率)は電解液が揮発したため3.1となった。さらに、作用電極と対極の間を指で強く抑えた状態で同様の測定を行ったところ、η(変換効率)は作用電極と対極の短絡が一部で発生するため1.8%と低下した。
Comparative Example 2
Using a working electrode and a counter electrode obtained in the same manner as in Example 1, after attaching a lead wire to the working electrode, a tetrafluoroethylene resin film cut out from the periphery of the portion where the working electrode and the counter electrode overlap, A counter electrode with a lead wire placed thereon is placed, a 15 μm thick polyethylene porous film is sandwiched between the working electrode and the counter electrode, an electrolytic solution is put in, and an epoxy-based UV curable resin is removed except for the injection portion of the electrolytic solution. Sealed.
After injecting the same electrolytic solution as in Example 1 into the polyethylene porous film, the injection site was sealed with an epoxy-based ultraviolet curable resin to obtain a dye-sensitized solar cell.
When the above dye-sensitized solar cell was irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, η (conversion efficiency) was 3.7%, but this was left for one month at room temperature in the atmosphere and in the dark. Later, when irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, η (conversion efficiency) was 3.1 because the electrolyte solution volatilized. Furthermore, when the same measurement was performed with the finger held tightly between the working electrode and the counter electrode, η (conversion efficiency) decreased to 1.8% due to a short circuit between the working electrode and the counter electrode. .

実施例2.
酸化チタンペースト(酸化チタン含有量25重量パーセント){商品名:SP−200、昭和タイタニウム(株)製}を、スプレー法によって透明導電性フィルム(基材PET)上に塗布し、120℃で20分焼成し、膜厚10μm程度の酸化チタン膜を得た。
一方、色素の濃度が2.4×10−4モル/lとなるように、ルテニウム色素[Ru(4,4’―ジカルボキシルー2,2’−ビピリジン)(NCS)]をエタノールに溶解し、上記酸化チタン膜を具備したPETフィルムを、常温の上記色素溶液に12時間浸漬して作用電極を得た。
また、対極として透明導電性フィルム(基材PET)に白金をスパッタリングしたものを用いた。
また、ポリフッ化ビニリテンとフィラ−としてヒュームドシリカ{日本アエロジル製}とをN−メチルピロリドンに、ポリフッ化ビニリテンが5重量%となるように、ヒュームドシリカ{日本アエロジル製}が5重量%となるように、溶解させて均一溶液になるように十分に撹拌して粘性のある接着液を調製した。
Example 2
Titanium oxide paste (25% by weight titanium oxide content) {trade name: SP-200, manufactured by Showa Titanium Co., Ltd.} is applied onto a transparent conductive film (substrate PET) by a spray method, and 20 at 120 ° C. Partial firing was performed to obtain a titanium oxide film having a thickness of about 10 μm.
On the other hand, ruthenium dye [Ru (4,4′-dicarboxyl-2,2′-bipyridine) 2 (NCS) 2 ] is used in ethanol so that the concentration of the dye is 2.4 × 10 −4 mol / l. The dissolved PET film having the titanium oxide film was immersed in the dye solution at room temperature for 12 hours to obtain a working electrode.
Further, a transparent conductive film (base material PET) obtained by sputtering platinum was used as a counter electrode.
Also, polyvinylidene fluoride and fumed silica {manufactured by Nippon Aerosil Co., Ltd.] as N-methylpyrrolidone, and fumed silica {manufactured by Nippon Aerosil Co., Ltd.} are 5% by weight so that the polyvinylidene fluoride is 5% by weight. Thus, a viscous adhesive solution was prepared by sufficiently stirring so as to dissolve and form a uniform solution.

上記のように調製した接着液を用いて、実施例1と同様にして作用電極と対極とを多孔性接着樹脂膜で接着した後、電解液としてアセトニトリルに、テトラブチルアンモニウムアイオダイドとヨウ素と4−t−ブチルピリジンとヨウ化リチウムとを、それぞれの濃度が0.4モル/l、0.04モル/l、0.3モル/l、0.4モル/lとなるように溶解したものを用い、実施例1と同様にして本発明の実施例の色素増感型太陽電池を製造した。
本発明の実施例の色素増感型太陽電池にソーラーシュミレーターで1000W/mの強度の光を照射したところ、η(変換効率)は3.0%であり、太陽電池として有用であることがわかった。これを曲率半径1cmで曲げた状態で、ソーラーシュミレーターで1000W/mの強度の光を照射したところ、η(変換効率)は2.5%であった。
Using the adhesive solution prepared as described above, the working electrode and the counter electrode were bonded together with a porous adhesive resin film in the same manner as in Example 1. Then, acetonitrile was used as the electrolytic solution, tetrabutylammonium iodide, iodine, and 4 -T-butylpyridine and lithium iodide dissolved so that their respective concentrations are 0.4 mol / l, 0.04 mol / l, 0.3 mol / l, and 0.4 mol / l In the same manner as in Example 1, a dye-sensitized solar cell of the example of the present invention was manufactured.
When the dye-sensitized solar cell of the example of the present invention was irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, η (conversion efficiency) was 3.0%, which is useful as a solar cell. all right. When this was bent with a curvature radius of 1 cm and irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, η (conversion efficiency) was 2.5%.

比較例3.
実施例2と同様にして得られた作用電極と対極を用い、作用電極にリード線を取付けた後、その周辺に作用電極と対極が重なる部分を切り抜いた四フッ化エチレン樹脂フィルムを置いて、その上からリード線を取付けた対極を置き、作用電極と対極の間に厚さ15μmのポリエチレン多孔膜を挟持し、電解液の注入部分を除いてエポキシ系の紫外線硬化樹脂でシーリングした。
上記ポリエチレン多孔膜に、実施例1と同じ電解液を注入した後、注入箇所をエポキシ系の紫外線硬化樹脂で封止して色素増感型太陽電池を得た。
上記色素増感型太陽電池にソーラーシュミレーターで1000W/mの強度の光を照射したところ、η(変換効率)は3.3%であったが、この試料を曲率半径1cmで曲げた状態で、ソーラーシュミレーターで1000W/mの強度の光を照射したところ、作用電極と対極の短絡が一部で発生するため、η(変換効率)は1.0%となった。
Comparative Example 3
Using the working electrode and counter electrode obtained in the same manner as in Example 2, after attaching a lead wire to the working electrode, a tetrafluoroethylene resin film cut out of the portion where the working electrode and the counter electrode overlap was placed around the lead wire, A counter electrode to which a lead wire was attached was placed thereon, a polyethylene porous film having a thickness of 15 μm was sandwiched between the working electrode and the counter electrode, and sealing was performed with an epoxy-based ultraviolet curable resin except for the electrolyte injection portion.
After injecting the same electrolytic solution as in Example 1 into the polyethylene porous film, the injection site was sealed with an epoxy-based ultraviolet curable resin to obtain a dye-sensitized solar cell.
When the above dye-sensitized solar cell was irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, η (conversion efficiency) was 3.3%, but this sample was bent at a radius of curvature of 1 cm. When irradiated with light having an intensity of 1000 W / m 2 with a solar simulator, a short circuit between the working electrode and the counter electrode occurred in part, and η (conversion efficiency) was 1.0%.

なお、上記実施例および比較例の色素増感型太陽電池の各状態におけるη(変換効率)をまとめて表1に示す。   In addition, Table 1 collectively shows η (conversion efficiency) in each state of the dye-sensitized solar cells of the above Examples and Comparative Examples.

Figure 2005268107
Figure 2005268107

表1に示されるように、いずれの例も初期製品の変換効率に差は無いが、実施例1では、比較例1と比べて、多孔性接着樹脂膜の電解液保持能力が優れているため、長期保管後も変換効率の低下がほとんど認められない。また、比較例2と比べて、多孔性接着樹脂膜の機械強度が優れているため、作用電極と対極の間を加圧しても短絡を起こさないので変換効率が低下しない。
また、同様に実施例2では、比較例3と比べて、多孔性接着樹脂膜の機械強度が優れているため、曲げても作用電極と対極の間の短絡が抑制されるので、変換効率の低下が抑えられている。
As shown in Table 1, there is no difference in the conversion efficiency of the initial product in any of the examples. However, in Example 1, the electrolyte solution holding ability of the porous adhesive resin film is superior to that of Comparative Example 1. Even after long-term storage, there is almost no decrease in conversion efficiency. Moreover, since the mechanical strength of the porous adhesive resin film is superior to that of Comparative Example 2, a short circuit does not occur even when pressure is applied between the working electrode and the counter electrode, so that the conversion efficiency does not decrease.
Similarly, in Example 2, since the mechanical strength of the porous adhesive resin film is superior to that in Comparative Example 3, short-circuiting between the working electrode and the counter electrode is suppressed even when bent. The decline is suppressed.

本発明の実施の形態1の色素増感型太陽電池の構成図である。It is a block diagram of the dye-sensitized solar cell of Embodiment 1 of this invention. 本発明の実施の形態3の色素増感型太陽電池の構成図である。It is a block diagram of the dye-sensitized solar cell of Embodiment 3 of this invention. 本発明の実施の形態4の色素増感型太陽電池の構成図である。It is a block diagram of the dye-sensitized solar cell of Embodiment 4 of this invention.

符号の説明Explanation of symbols

2 色素、3 電解液、4接着性樹脂、5 無機微粒子、8 対極、10 作用電極、11 多孔性半導体膜、12 スペーサ、14 多孔性接着樹脂膜。

2 dye, 3 electrolyte, 4 adhesive resin, 5 inorganic fine particles, 8 counter electrode, 10 working electrode, 11 porous semiconductor film, 12 spacer, 14 porous adhesive resin film.

Claims (5)

色素で被覆された多孔性半導体膜を有する作用電極と、上記作用電極に対向して設けられた対極と、上記作用電極と上記対極の間に配置され、電解液を保持するスペーサを備えた色素増感型太陽電池において、上記スペーサが、無機微粒子とこの無機微粒子を分散した接着性樹脂からなり、上記作用電極および上記対極と接着する多孔性接着樹脂膜と、上記多孔性接着樹脂膜の孔に保持された電解液とを有することを特徴とする色素増感型太陽電池。 A working electrode having a porous semiconductor film coated with a dye, a counter electrode provided opposite to the working electrode, and a dye provided between the working electrode and the counter electrode and having a spacer for holding an electrolytic solution In the sensitized solar cell, the spacer is made of an inorganic fine particle and an adhesive resin in which the inorganic fine particle is dispersed, a porous adhesive resin film that adheres to the working electrode and the counter electrode, and a hole in the porous adhesive resin film A dye-sensitized solar cell, comprising: 無機微粒子と作用電極の間、無機微粒子と対極の間、および無機微粒子間を接着性樹脂が接着し、上記作用電極と上記対極とを無機微粒子の骨格で架橋することを特徴とする請求項1に記載の色素増感型太陽電池。 The adhesive resin adheres between the inorganic fine particles and the working electrode, between the inorganic fine particles and the counter electrode, and between the inorganic fine particles, and the working electrode and the counter electrode are cross-linked by a skeleton of the inorganic fine particles. 2. A dye-sensitized solar cell according to 1. 色素で被覆された多孔性半導体膜を有する作用電極、および上記多孔性半導体膜と対向する対極の少なくとも一方に、無機微粒子と接着性樹脂とを溶剤に含有してなる接着液を塗布する工程と、上記作用電極と上記対極を、上記接着液の層を介して配設する工程と、上記接着液の層の溶剤を除去して多孔性接着樹脂膜とし、この多孔性接着樹脂膜により上記作用電極と上記対極とを接着する工程と、上記多孔性接着樹脂膜に電解液を含浸させる工程とを備えた色素増感型太陽電池の製造方法。 Applying an adhesive liquid containing inorganic fine particles and an adhesive resin in a solvent to at least one of a working electrode having a porous semiconductor film coated with a dye and a counter electrode facing the porous semiconductor film; A step of disposing the working electrode and the counter electrode through the layer of the adhesive liquid, and removing the solvent of the layer of the adhesive liquid to form a porous adhesive resin film. A method for producing a dye-sensitized solar cell, comprising: a step of bonding an electrode and the counter electrode; and a step of impregnating the porous adhesive resin film with an electrolyte. 色素で被覆された多孔性半導体膜を有する作用電極、および上記多孔性半導体膜と対向する対極の少なくとも一方に、無機微粒子と接着性樹脂とを溶剤に含有してなる接着液を塗布する工程と、上記接着液の層の溶剤を除去して多孔性接着樹脂膜とする工程と、上記多孔性接着樹脂膜を介して上記作用電極と上記対極とを接着する工程と、上記多孔性接着樹脂膜に電解液を含浸させる工程とを備えた色素増感型太陽電池の製造方法。 Applying an adhesive solution containing inorganic fine particles and an adhesive resin in a solvent to at least one of a working electrode having a porous semiconductor film coated with a dye and a counter electrode facing the porous semiconductor film; Removing the solvent of the adhesive liquid layer to form a porous adhesive resin film; adhering the working electrode and the counter electrode through the porous adhesive resin film; and the porous adhesive resin film A method for producing a dye-sensitized solar cell, comprising: impregnating an electrolyte solution with an electrolyte solution. 接着液における、接着性樹脂に対する無機微粒子の混合重量比が、0.5〜3であり、かつ無機微粒子の濃度が5〜40重量%、接着性樹脂の濃度が5〜15重量%であることを特徴とする請求項3または請求項4に記載の色素増感型太陽電池の製造方法。

The mixing weight ratio of the inorganic fine particles to the adhesive resin in the adhesive liquid is 0.5 to 3, the concentration of the inorganic fine particles is 5 to 40% by weight, and the concentration of the adhesive resin is 5 to 15% by weight. The method for producing a dye-sensitized solar cell according to claim 3 or 4, wherein:

JP2004080614A 2004-03-19 2004-03-19 Dye-sensitized solar cell and its manufacturing method Pending JP2005268107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080614A JP2005268107A (en) 2004-03-19 2004-03-19 Dye-sensitized solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080614A JP2005268107A (en) 2004-03-19 2004-03-19 Dye-sensitized solar cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005268107A true JP2005268107A (en) 2005-09-29

Family

ID=35092420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080614A Pending JP2005268107A (en) 2004-03-19 2004-03-19 Dye-sensitized solar cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005268107A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192603A (en) * 2006-12-22 2008-08-21 Sony Deutsche Gmbh Photovoltaic cell
KR100949762B1 (en) * 2007-12-10 2010-03-25 한국과학기술연구원 Composite electrolyte and the fabrication method thereof, and dye-sensitized solar cell based on electrolyte with hollow particles of metal oxides using the same
JP2010535397A (en) * 2007-07-31 2010-11-18 韓國電子通信研究院 Porous film manufacturing method and dye-sensitized solar cell using the same
KR101408888B1 (en) * 2007-10-18 2014-06-19 삼성에스디아이 주식회사 Dye-sensitized solar cell and preparing method thereof
JP2015073116A (en) * 2012-09-18 2015-04-16 学校法人東京理科大学 Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2015128099A (en) * 2013-12-27 2015-07-09 日本ゼオン株式会社 Electrode substrate for solar cell
WO2016152393A1 (en) * 2015-03-23 2016-09-29 積水化学工業株式会社 Electronic device using film base, dye-sensitized solar cell and method for manufacturing electronic device
WO2018016569A1 (en) * 2016-07-20 2018-01-25 積水化学工業株式会社 Pigment-sensitized photovoltaic cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192603A (en) * 2006-12-22 2008-08-21 Sony Deutsche Gmbh Photovoltaic cell
JP2010535397A (en) * 2007-07-31 2010-11-18 韓國電子通信研究院 Porous film manufacturing method and dye-sensitized solar cell using the same
KR101408888B1 (en) * 2007-10-18 2014-06-19 삼성에스디아이 주식회사 Dye-sensitized solar cell and preparing method thereof
KR100949762B1 (en) * 2007-12-10 2010-03-25 한국과학기술연구원 Composite electrolyte and the fabrication method thereof, and dye-sensitized solar cell based on electrolyte with hollow particles of metal oxides using the same
JP2015073116A (en) * 2012-09-18 2015-04-16 学校法人東京理科大学 Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2015128099A (en) * 2013-12-27 2015-07-09 日本ゼオン株式会社 Electrode substrate for solar cell
WO2016152393A1 (en) * 2015-03-23 2016-09-29 積水化学工業株式会社 Electronic device using film base, dye-sensitized solar cell and method for manufacturing electronic device
CN107210135A (en) * 2015-03-23 2017-09-26 积水化学工业株式会社 Use the manufacture method of the electronic device, dye-sensitized solar cell and electronic device of film substrate
CN107210135B (en) * 2015-03-23 2019-02-22 积水化学工业株式会社 Use the manufacturing method of the electronic device of film substrate, dye-sensitized solar cell and electronic device
WO2018016569A1 (en) * 2016-07-20 2018-01-25 積水化学工業株式会社 Pigment-sensitized photovoltaic cell

Similar Documents

Publication Publication Date Title
US20100255632A1 (en) Photoelectric conversion device, its manufacturing method, electronic apparatus, its manufacturing method, semiconductor layer, and its manufacturing method
JP4754862B2 (en) Dye-sensitized solar cell and method for producing the same
JP3982968B2 (en) Dye-sensitized solar cell using polymer electrolyte and method for producing the same
JP4787540B2 (en) Method for producing dye-sensitized solar cell element
JP5139501B2 (en) Electrolyte composition for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2004152613A (en) Dye-sensitized solar cell
JP2006302530A (en) Dye-sensitized solar cell and its manufacturing method
JP4730951B2 (en) Porphyrin dye having trimethylsilyl group, photoelectric conversion element using the same, and dye-sensitized solar cell
JP2004335366A (en) Dye-sensitized solar cell
JP2005268107A (en) Dye-sensitized solar cell and its manufacturing method
JP2008186669A (en) Manufacturing method of dye-sensitized solar cell
JP5636736B2 (en) Photoelectric conversion device and manufacturing method thereof
Du Pasquier An approach to laminated flexible Dye sensitized solar cells
JP6057982B2 (en) Metal oxide semiconductor electrode formed with porous thin film, dye-sensitized solar cell using the same, and method for producing the same
JP4805442B2 (en) Dye-sensitized solar cell
JP2007200714A (en) Dye-sensitized solar cell and its manufacturing method
JP2007179822A (en) Electrode and dye-sensitized solar cell using it for counter electrode
JP2007213959A (en) Photoelectric conversion element
JP4116825B2 (en) Dye-sensitized solar cell
JP4602526B2 (en) Dye-sensitized solar cell
JP2004253333A (en) Dye-sensitized solar cell
JP2003243052A (en) Photoelectric transducing module
JP2000323189A (en) Pigment-sensitized type solar cell
JP2001076774A (en) Dye-sensitized solar battery
JP4885511B2 (en) Method for producing dye-sensitized solar cell element