JP2005268023A - Manufacturing method of assembly of solid electrolyte membrane and electrode, assembly of solid electrolyte membrane and electrode, and fuel cell - Google Patents

Manufacturing method of assembly of solid electrolyte membrane and electrode, assembly of solid electrolyte membrane and electrode, and fuel cell Download PDF

Info

Publication number
JP2005268023A
JP2005268023A JP2004078173A JP2004078173A JP2005268023A JP 2005268023 A JP2005268023 A JP 2005268023A JP 2004078173 A JP2004078173 A JP 2004078173A JP 2004078173 A JP2004078173 A JP 2004078173A JP 2005268023 A JP2005268023 A JP 2005268023A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
solid electrolyte
electrode
deformable member
deformable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004078173A
Other languages
Japanese (ja)
Inventor
Okitoshi Kimura
興利 木村
Yoshino Noguchi
愛乃 野口
Masaharu Tanaka
正治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004078173A priority Critical patent/JP2005268023A/en
Publication of JP2005268023A publication Critical patent/JP2005268023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent damage or deformation of an electrode or a solid electrolyte membrane and uniformly sufficiently conduct pressurization over the whole surface of the electrode or the solid electrolyte membrane. <P>SOLUTION: A laminated body 8 having a solid electrolyte membrane and electrodes 4 interposing the solid electrolyte membrane 3a between them and first deforming members 15 interposing the laminated body 8 and deformable by outside force are laminated on a sample stand 11, outside force is applied to a second deforming member 16 deformable by outside force with a pressurizing medium A, the second deforming member 16 is deformed and brought into contact with the first deforming member 15 to press the first deforming member 15 and the laminated body 8 in the laminated direction and to connect the solid electrolyte membrane 15 to the electrodes 4. Damage and deformation of the electrodes 4 or the solid electrolyte membrane 3a are prevented, and pressurization to them can uniformly sufficiently be conducted over the whole surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体電解質膜及び電極の接合体の製造方法、固体電解質膜及び電極の接合体、及び燃料電池に関する。   The present invention relates to a method for producing a solid electrolyte membrane and electrode assembly, a solid electrolyte membrane and electrode assembly, and a fuel cell.

温暖化ガスに代表される環境問題の観点から、クリーンエネルギー源としての燃料電池が急ピッチで開発されている。特に、固体電解質型の燃料電池は低温作動や小型で高出力密度であることから、研究開発が活発に進められている。その中において電極と電解質との均一な接合や高い接合強度は燃料電池の安定稼動に重要である。また、セパレータで狭持される電極周縁の電解質膜では、一般的なホットプレス法を用いた場合、シワが発生しやすく、発生したシワは燃料電池のガスシール性に影響を及ぼすことが知られている。そこで、電極の周縁部の電解質膜を、弾性体を介在させて選択的にホットプレスする方法(特許文献1参照)や電極の周縁部の電解質膜を電極部材で狭持しながらホットプレスする方法(特許文献2参照)等が開示されている。さらに、空気圧等で動くローラで積層体を加圧する方式(特許文献3参照)が開示されている。また、触媒を含む拡散電極を作製するにあたり、拡散電極をクッション材で加圧する方法(特許文献4参照)も開示されている。   From the viewpoint of environmental problems represented by greenhouse gases, fuel cells as clean energy sources are being developed at a rapid pace. In particular, solid electrolyte fuel cells are being actively researched and developed because of their low-temperature operation, small size, and high power density. Among them, uniform bonding and high bonding strength between the electrode and the electrolyte are important for stable operation of the fuel cell. In addition, it is known that the electrolyte membrane around the electrode sandwiched by the separator is likely to be wrinkled when a general hot press method is used, and the generated wrinkle affects the gas sealing performance of the fuel cell. ing. Therefore, a method of selectively hot pressing the electrolyte membrane at the peripheral edge of the electrode (see Patent Document 1) with an elastic body interposed therebetween, or a method of hot pressing while holding the electrolyte membrane at the peripheral edge of the electrode with an electrode member (See Patent Document 2) and the like. Furthermore, a system (see Patent Document 3) in which the laminate is pressurized with a roller that moves by air pressure or the like is disclosed. In addition, a method of pressurizing a diffusion electrode with a cushion material (see Patent Document 4) is also disclosed for producing a diffusion electrode containing a catalyst.

特開2000−260684公報JP 2000-260684 A 特開2000−223134公報JP 2000-223134 A 特開2000−182632公報JP 2000-182632 A 特開昭59−21566号公報Japanese Unexamined Patent Publication No. 59-21565

しかしながら、特許文献1及び特許文献2においては、積層体の均一な加圧に関して詳細な記載はなく有効な手段を提供しておらず、さらに、使用している弾性体の変形(特に縦横の変形)に対する記載もされていない。   However, in Patent Document 1 and Patent Document 2, there is no detailed description regarding uniform pressurization of the laminated body and no effective means is provided, and further, deformation of the elastic body used (particularly longitudinal and lateral deformation). ) Is not described.

特許文献3においては、ローラを使用しているため本質的に積層体全面を均一の加圧することができず、積層体に歪みが発生しやすい。また、積層体に圧を加えるローラの材質の変形を考慮するような記載もされていない。   In Patent Document 3, since a roller is used, the entire surface of the laminated body cannot be essentially uniformly pressed, and the laminated body is likely to be distorted. Further, there is no description considering the deformation of the material of the roller that applies pressure to the laminate.

特許文献4においては、クッション材の変形が拡散電極に与える影響が考慮されていない。また、クッション材は使用しているものの、クッション材を被加圧物に接触加圧させる方法としてシリンダーを用いる機械加圧方式を用いていることから、加圧板の平面性が被加圧物に影響を与えてしまう欠点を有している。   In patent document 4, the influence which the deformation | transformation of a cushion material has on a diffusion electrode is not considered. In addition, although the cushion material is used, since the mechanical pressure method using a cylinder is used as a method for contacting and pressurizing the cushion material to the pressurized object, the flatness of the pressure plate is It has the disadvantage of affecting it.

本発明の目的は、電極や固体電解質膜の損傷及び変形を防止し、電極や固体電解質膜への加圧をその全面に均一かつ十分に行うことである。   An object of the present invention is to prevent damage and deformation of an electrode and a solid electrolyte membrane, and to apply pressure to the electrode and solid electrolyte membrane uniformly and sufficiently on the entire surface.

請求項1記載の発明の固体電解質膜及び電極の接合体の製造方法は、固体電解質膜とそれを挟持する電極とを有する積層体と、その積層体を挟持して外力により変形可能な第1変形部材とを載置台に積層する工程と、外力により変形可能な第2変形部材に加圧媒体により外力を加え、その第2変形部材を変形させ、前記載置台に積層された前記第1変形部材に当接させることによって、前記載置台に積層された前記第1変形部材及び前記積層体をその積層方向に加圧する工程と、を備える。   According to a first aspect of the present invention, there is provided a solid electrolyte membrane and electrode assembly manufacturing method comprising: a first laminate that has a solid electrolyte membrane and an electrode that sandwiches the solid electrolyte membrane; The step of laminating the deformable member on the mounting table, and applying the external force to the second deformable member that can be deformed by an external force with a pressure medium, deforming the second deformable member, and stacking the first deformed layer on the mounting table. And a step of pressing the first deformable member and the stacked body stacked on the mounting table in the stacking direction by contacting the member.

請求項2記載の発明は、請求項1記載の固体電解質膜及び電極の接合体の製造方法において、前記積層体と前記第1変形部材とを積層する工程は、複数の前記積層体及び複数の前記第1変形部材を積層する。   According to a second aspect of the present invention, in the method of manufacturing a solid electrolyte membrane and electrode assembly according to the first aspect, the step of laminating the multilayer body and the first deformable member includes a plurality of the multilayer body and a plurality of the multilayer body. The first deformation member is stacked.

請求項3記載の発明は、請求項1又は2記載の固体電解質膜及び電極の接合体の製造方法において、前記第1変形部材は、加圧方向への変形に対し、その加圧方向に対する垂直方向への変形が少ない部材である。   According to a third aspect of the present invention, in the method of manufacturing a solid electrolyte membrane / electrode assembly according to the first or second aspect, the first deformable member is perpendicular to the pressurizing direction with respect to the deformation in the pressurizing direction. It is a member with little deformation in the direction.

請求項4記載の発明は、請求項1、2又は3記載の固体電解質膜及び電極の接合体の製造方法において、前記第1変形部材は、多孔質性物質により形成された多孔質体である。   According to a fourth aspect of the present invention, in the method for manufacturing a solid electrolyte membrane / electrode assembly according to the first, second, or third aspect, the first deformable member is a porous body formed of a porous material. .

請求項5記載の発明は、請求項1、2、3又は4記載の固体電解質膜及び電極の接合体の製造方法において、前記積層体と前記第1変形部材とを積層する工程は、前記積層体と前記第1変形部材との間に滑りを良くするための滑り部材を積層する工程を具備する。   According to a fifth aspect of the present invention, in the method for manufacturing a solid electrolyte membrane and electrode assembly according to the first, second, third, or fourth aspect, the step of laminating the multilayer body and the first deformable member includes the lamination layer. A step of laminating a sliding member for improving slippage between the body and the first deformable member.

請求項6記載の発明は、請求項5記載の固体電解質膜及び電極の接合体の製造方法において、前記滑り部材は、可撓性を有し、加圧方向に対する垂直方向の伸び率が前記第1変形部材の加圧方向に対する垂直方向の伸び率より小さい部材である。   According to a sixth aspect of the present invention, in the method for manufacturing a solid electrolyte membrane / electrode assembly according to the fifth aspect of the present invention, the sliding member is flexible and has an elongation rate in a direction perpendicular to the pressing direction. It is a member having a smaller elongation rate in the direction perpendicular to the pressing direction of one deformable member.

請求項7記載の発明は、請求項5又は6記載の固体電解質膜及び電極の接合体の製造方法において、前記滑り部材は、前記第1変形部材より伸び率が小さい基材とその基材の表面に設けられた滑り層とを有している。   The invention according to claim 7 is the method of manufacturing the solid electrolyte membrane and electrode assembly according to claim 5 or 6, wherein the sliding member includes a base material having an elongation percentage smaller than that of the first deformable member and the base material. And a sliding layer provided on the surface.

請求項8記載の発明は、請求項1ないし7のいずれか一記載の固体電解質膜及び電極の接合体の製造方法において、前記加圧媒体は気体である。   According to an eighth aspect of the present invention, in the method for manufacturing a joined body of a solid electrolyte membrane and an electrode according to any one of the first to seventh aspects, the pressurizing medium is a gas.

請求項9記載の発明は、請求項8記載の固体電解質膜及び電極の接合体の製造方法において、前記気体は空気である。   According to a ninth aspect of the present invention, in the method for manufacturing a solid electrolyte membrane / electrode assembly according to the eighth aspect, the gas is air.

請求項10記載の発明は、請求項1ないし7のいずれか一記載の固体電解質膜及び電極の接合体の製造方法において、前記加圧媒体は液体である。   According to a tenth aspect of the present invention, in the method for manufacturing a solid electrolyte membrane / electrode assembly according to any one of the first to seventh aspects, the pressurizing medium is a liquid.

請求項11記載の発明は、請求項1ないし10のいずれか一記載の固体電解質膜及び電極の接合体の製造方法において、前記載置台に積層された前記積層体を加熱する工程をさらに備える。   An eleventh aspect of the present invention is the method for producing a joined body of a solid electrolyte membrane and an electrode according to any one of the first to tenth aspects, further comprising the step of heating the laminated body laminated on the mounting table.

請求項12記載の発明の固体電解質膜及び電極の接合体は、請求項1ないし11のいずれか一記載の固体電解質膜及び電極の接合体の製造方法により製造された。   A solid electrolyte membrane / electrode assembly according to a twelfth aspect of the present invention is manufactured by the method for manufacturing a solid electrolyte membrane / electrode assembly according to any one of the first to eleventh aspects.

請求項13記載の発明の燃料電池は、請求項12記載の固体電解質膜及び電極の接合体を備え、前記接合体に供給される燃料により発電する。   A fuel cell according to a thirteenth aspect of the present invention includes the solid electrolyte membrane-electrode assembly according to the twelfth aspect of the invention, and generates electric power using the fuel supplied to the assembly.

請求項14記載の発明は、請求項13記載の燃料電池において、前記燃料は、アルコールを含有する燃料である。   The invention according to claim 14 is the fuel cell according to claim 13, wherein the fuel is a fuel containing alcohol.

請求項15記載の発明は、請求項14記載の燃料電池において、前記アルコールはエタノールである。   According to a fifteenth aspect of the present invention, in the fuel cell according to the fourteenth aspect, the alcohol is ethanol.

請求項1記載の発明によれば、電極や固体電解質膜の損傷及び変形を防止し、電極や固体電解質膜への加圧をその全面に均一かつ十分に行うことができる。   According to the first aspect of the present invention, the electrode and the solid electrolyte membrane can be prevented from being damaged and deformed, and the pressure to the electrode and the solid electrolyte membrane can be uniformly and sufficiently applied to the entire surface.

請求項2記載の発明によれば、積層体を均一に加圧することができ、さらに、生産性を向上させることができる。   According to invention of Claim 2, a laminated body can be pressurized uniformly and productivity can be improved further.

請求項3又は4記載の発明によれば、シワの発生を確実に抑え、積層体の損傷及び変形を防止し、積層体を均一に加圧することができる。   According to invention of Claim 3 or 4, generation | occurrence | production of wrinkles can be suppressed reliably, damage and deformation | transformation of a laminated body can be prevented, and a laminated body can be pressurized uniformly.

請求項5、6又は7記載の発明によれば、シワの発生を確実に抑え、積層体の損傷及び変形を防止し、積層体を均一に加圧することができる。   According to invention of Claim 5, 6 or 7, generation | occurrence | production of a wrinkle is suppressed reliably, damage and deformation | transformation of a laminated body can be prevented, and a laminated body can be pressurized uniformly.

請求項8又は10記載の発明によれば、簡単に積層体を均一に加圧することができる。   According to invention of Claim 8 or 10, a laminated body can be pressurized uniformly easily.

請求項9記載の発明によれば、積層体に対する加圧をより簡便に低コストで行うことができる。   According to invention of Claim 9, the pressurization with respect to a laminated body can be performed more simply and at low cost.

請求項11記載の発明によれば、積層体の接合の強度をより高めることができる。   According to the eleventh aspect of the present invention, the bonding strength of the laminate can be further increased.

請求項12又は13記載の発明によれば、請求項1ないし11のいずれか一記載の発明と同様な効果を奏する。   According to invention of Claim 12 or 13, there exists an effect similar to invention of any one of Claim 1 thru | or 11.

請求項14記載の発明によれば、エネルギー密度の高い燃料を使用することにより、燃料電池の駆動時間を向上させることができる。   According to the fourteenth aspect of the present invention, the driving time of the fuel cell can be improved by using the fuel having a high energy density.

請求項15記載の発明によれば、環境保全性及び安全性の高い燃料を使用した燃料電池を提供することができる。   According to the fifteenth aspect of the present invention, it is possible to provide a fuel cell using a fuel having high environmental conservation and safety.

本発明を実施するための最良の形態を図1ないし図5に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to FIGS.

まず、プロトン伝導型固体高分子電解質を使用している燃料電池1を一例にして、その発電概念について図1を参照して説明する。図1は、燃料電池1の発電概念を説明するための説明図である。   First, taking a fuel cell 1 using a proton conducting solid polymer electrolyte as an example, the concept of power generation will be described with reference to FIG. FIG. 1 is an explanatory diagram for explaining a power generation concept of the fuel cell 1.

燃料電池1(単セル2)は、基本的構成要素として、その中心にイオン伝導体である電解質3(ここでは、例えばプロトン伝導体)が設けられ、その両側に電極4であるアノード4a及びカソード4bが配置されて構成されている。アノード4aとカソード4bとは、外部回路(負荷)5を介して接続されている。また、アノード4a及びカソード4bには、それぞれに燃料を供給するための燃料流路6aを有するセパレータ6がそれぞれ設けられている。2つのセパレータ6は、電解質3及びこれを介して対向する電極4を挟持している。   The fuel cell 1 (single cell 2) is provided with an electrolyte 3 (here, for example, proton conductor) as an ionic conductor at the center as basic components, and an anode 4a and a cathode as electrodes 4 on both sides thereof. 4b is arranged. The anode 4 a and the cathode 4 b are connected via an external circuit (load) 5. The anode 4a and the cathode 4b are provided with separators 6 each having a fuel flow path 6a for supplying fuel to each. The two separators 6 sandwich the electrolyte 3 and the electrode 4 opposed thereto.

ここで、プロトン伝導型の電解質3が使用される場合には、アノード4a側にプロトン源となる燃料(水素(H)やアルコール等)が供給され、アノード4a内の触媒作用により燃料から水素イオン(H)が発生する。このとき、発生する電子(e)は外部回路5に流れる。発生した水素イオンは電解質3中を伝搬してカソード4bに達する。カソード4b側に酸化剤(空気や酸素(O)等)が供給されることにより、水素イオンと酸素と外部回路5を通して流れてくる電子とが反応し、水(HO)が生成される。これが発電の概念であり、これを反応式として示すと以下のようになる。 Here, when the proton conductive electrolyte 3 is used, a fuel (hydrogen (H 2 ), alcohol, or the like) serving as a proton source is supplied to the anode 4a side, and hydrogen is generated from the fuel by the catalytic action in the anode 4a. Ions (H + ) are generated. At this time, the generated electrons (e ) flow to the external circuit 5. The generated hydrogen ions propagate through the electrolyte 3 and reach the cathode 4b. By supplying an oxidizing agent (air, oxygen (O 2 ), etc.) to the cathode 4b side, hydrogen ions, oxygen, and electrons flowing through the external circuit 5 react to generate water (H 2 O). The This is the concept of power generation, which can be expressed as the following reaction equation.

アノード反応:H→2H+2e (水素燃料の場合)
カソード反応:2H+1/2O+2e→H
全反応 :H+1/2O→H
ここで、発電要素とは、アノード4a、カソード4b及び電解質3を必須とする。燃料電池1の発電要素のうち、電解質3である膜状の電解質膜3aと電極4(アノード4a及びカソード4b)とは、積層された状態で積層体8であり、その積層体8が圧着され接合された状態で接合体8aになる。なお、燃料電池1の電解質膜3aと電極4との接合体8aにおいては、電極4と触媒と電解質膜3aとの界面が十分形成されていることが必要である。
Anode reaction: H 2 → 2H + + 2e (in the case of hydrogen fuel)
Cathode reaction: 2H + + 1 / 2O 2 + 2e → H 2 O
Total reaction: H 2 + 1 / 2O 2 → H 2 O
Here, the power generation element requires the anode 4a, the cathode 4b, and the electrolyte 3. Among the power generation elements of the fuel cell 1, the membrane electrolyte membrane 3 a that is the electrolyte 3 and the electrode 4 (the anode 4 a and the cathode 4 b) are a laminate 8 in a laminated state, and the laminate 8 is pressure-bonded. The joined body 8a is formed in the joined state. In addition, in the joined body 8a of the electrolyte membrane 3a and the electrode 4 of the fuel cell 1, it is necessary that the interface between the electrode 4, the catalyst, and the electrolyte membrane 3a is sufficiently formed.

本実施の形態では、固体の電解質膜3a(以下、固体電解質膜3aとする)と電極4とからなる接合体8aを製造する製造方法において、少なくとも固体電解質膜3aと、触媒を担持した電極4とからなる積層体8を外力により変形可能な変形部材15,16(後述する)を介して気体や液体等の加圧媒体Aにより加圧することによって、電極4の周辺にシワを発生させず積層体8を均一に加圧できるようにした。なお、本実施の形態でいう接合体8aとは、固体電解質膜3aと電極4とを重ねて接合したものを指し、例えば、一般的な接合体8aの形状、すなわち固体電解質膜3aの両面に電極4を重ねて接合された接合体8aを指す(固体電解質膜3aの面積>電極4の面積)。固体電解質膜3aと電極4との数の関係や両者の大きさの関係は、両者が重なりあう部分を有する限り、いかなる関係でも良い。   In the present embodiment, at least a solid electrolyte membrane 3a and an electrode 4 supporting a catalyst in a manufacturing method for manufacturing a joined body 8a composed of a solid electrolyte membrane 3a (hereinafter referred to as a solid electrolyte membrane 3a) and an electrode 4. The laminated body 8 is pressed with a pressurizing medium A such as gas or liquid through deformable members 15 and 16 (described later) that can be deformed by an external force, so that no wrinkles are generated around the electrode 4. The body 8 can be uniformly pressurized. Note that the joined body 8a in the present embodiment refers to a joined body of the solid electrolyte membrane 3a and the electrode 4 which are overlapped and joined, for example, on the general shape of the joined body 8a, that is, on both surfaces of the solid electrolyte membrane 3a. This refers to the joined body 8a joined by overlapping the electrodes 4 (area of the solid electrolyte membrane 3a> area of the electrode 4). The number relationship between the solid electrolyte membrane 3a and the electrode 4 and the size relationship between them may be any relationship as long as they have overlapping portions.

次に、接合体8aを製造するため積層体8を加圧する加圧装置10について図2及び図3を参照して説明する。図2は本実施の形態の加圧装置10を概略的に示す中央縦断側面図、図3はその平面図である。   Next, the pressurizing apparatus 10 that pressurizes the laminated body 8 in order to manufacture the joined body 8a will be described with reference to FIGS. FIG. 2 is a central longitudinal side view schematically showing the pressurizing apparatus 10 of the present embodiment, and FIG. 3 is a plan view thereof.

加圧装置10は、積層体8が載置される載置台である試料台11、その試料台11を支持する平板12、その試料台11に対向する平板13、試料台11と平板13との間に所定のギャップを形成するギャップ部材14等から構成されている。このとき、積層体8は、2つの第1変形部材15により挟持され、試料台11に載置されている。   The pressurizing device 10 includes a sample table 11 on which the stacked body 8 is mounted, a flat plate 12 that supports the sample table 11, a flat plate 13 that faces the sample table 11, and the sample table 11 and the flat plate 13. The gap member 14 is formed with a predetermined gap therebetween. At this time, the laminate 8 is sandwiched between the two first deformable members 15 and placed on the sample stage 11.

平板13の試料台11側には、外力により変形可能であって積層体8に圧力を加える第2変形部材16が設けられている。この第2変形部材16は固定部材17により固定されており、平板13と第2変形部材16との間は密封状態に保持されている。また、平板13には、加圧媒体Aを供給するための貫通孔である加圧媒体供給口18が第2変形部材16に対向して設けられている。この加圧媒体供給口18には、平板13と第2変形部材16との間に加圧媒体Aを供給するための加圧媒体供給パイプ19が接続されている。この加圧媒体供給パイプ19の他端は、加圧媒体Aを収容する加圧媒体収容部(図示せず)に接続されている。なお、この加圧媒体収容部には、例えば加圧媒体Aが空気である場合、空気を供給するための加圧力を発生させる加圧ポンプ等が設けられている。また、加圧媒体供給パイプ19の経路中には、それを開閉するバルブ20、加圧媒体供給パイプ19と他のパイプとを接続するためのジョイント21及び圧力を計測する圧力計22が設けられている。なお、バルブ20が開放されると、加圧媒体Aは加圧媒体収容部から加圧媒体供給パイプ19を介して平板13と第2変形部材16との間に供給される。これにより、第2変形部材16が、試料台11に載置された積層体8側に膨らみ、積層体8に圧力を加える。   A second deformation member 16 that can be deformed by an external force and applies pressure to the stacked body 8 is provided on the sample table 11 side of the flat plate 13. The second deformation member 16 is fixed by a fixing member 17, and the flat plate 13 and the second deformation member 16 are held in a sealed state. The flat plate 13 is provided with a pressurized medium supply port 18 that is a through hole for supplying the pressurized medium A so as to face the second deformable member 16. A pressurized medium supply pipe 19 for supplying the pressurized medium A is connected to the pressurized medium supply port 18 between the flat plate 13 and the second deformation member 16. The other end of the pressurized medium supply pipe 19 is connected to a pressurized medium accommodating portion (not shown) that accommodates the pressurized medium A. For example, when the pressure medium A is air, the pressure medium storage unit is provided with a pressure pump that generates a pressurizing force for supplying air. Further, in the path of the pressurized medium supply pipe 19, a valve 20 for opening and closing the pressurized medium supply pipe 19, a joint 21 for connecting the pressurized medium supply pipe 19 and another pipe, and a pressure gauge 22 for measuring pressure are provided. ing. When the valve 20 is opened, the pressurized medium A is supplied between the flat plate 13 and the second deformable member 16 via the pressurized medium supply pipe 19 from the pressurized medium accommodating portion. As a result, the second deformable member 16 swells toward the stacked body 8 placed on the sample stage 11 and applies pressure to the stacked body 8.

平板13には、加圧媒体Aを排出して積層体8に加える圧力を調節するための貫通孔である排出口23が第2変形部材16に対向して設けられている。この排出口23には、それを塞ぐ蓋材(図示せず)が設けられており、平板13と第2変形部材16との間の密封状態は保たれている。圧力計22により圧力が確認され、その圧力が必要以上の圧力になった場合には、排出口23が開放されて、第2変形部材16が積層体8に加える圧力は調整される。   The flat plate 13 is provided with a discharge port 23, which is a through hole for adjusting the pressure applied to the stacked body 8 by discharging the pressurized medium A and facing the second deformation member 16. The discharge port 23 is provided with a lid (not shown) that closes the discharge port 23, and the sealed state between the flat plate 13 and the second deformable member 16 is maintained. When the pressure is confirmed by the pressure gauge 22 and the pressure becomes higher than necessary, the discharge port 23 is opened, and the pressure applied to the laminate 8 by the second deformable member 16 is adjusted.

このような構成において、積層体8に対する加圧動作について図2及び図4を参照して説明する。図4は加圧状態の加圧装置10を概略的に示す中央縦断側面図である。   In such a configuration, the pressurizing operation on the stacked body 8 will be described with reference to FIGS. FIG. 4 is a central longitudinal sectional side view schematically showing the pressurizing apparatus 10 in a pressurized state.

まず、操作者は、試料台11の上に第1変形部材15を載置し、その上に積層体8を載置し、さらに、その上に第1変形部材15を載置する。ここに、積層体8と第1変形部材15とを試料台11に積層する工程が実行される。   First, the operator places the first deformable member 15 on the sample stage 11, places the laminated body 8 thereon, and further places the first deformable member 15 thereon. Here, the process of laminating the laminated body 8 and the first deformable member 15 on the sample stage 11 is executed.

その後、操作者は、バルブ20を開放し、加圧媒体収容部から加圧媒体供給パイプ19を介して平板13と第2変形部材16との間に加圧媒体Aを供給する。これにより、第2変形部材16は、加圧媒体Aにより積層体8側に膨らみ、第1変形部材15に完全に密着して積層体8を均一に加圧する。ここに、試料台11に積層された第1変形部材15及び積層体8をその積層方向に加圧する工程が実行される。このとき、積層体8に加える圧力は圧力計22により確認され、その圧力が過剰になった場合には、排出口23から空気を排出させることでその圧力は調節される。   Thereafter, the operator opens the valve 20 and supplies the pressurized medium A between the flat plate 13 and the second deformable member 16 via the pressurized medium supply pipe 19 from the pressurized medium accommodating portion. As a result, the second deformable member 16 swells toward the laminated body 8 by the pressurizing medium A, and comes into close contact with the first deformable member 15 to uniformly pressurize the laminated body 8. Here, a step of pressing the first deformable member 15 and the stacked body 8 stacked on the sample stage 11 in the stacking direction is executed. At this time, the pressure applied to the laminated body 8 is confirmed by the pressure gauge 22, and when the pressure becomes excessive, the pressure is adjusted by discharging air from the discharge port 23.

このような加圧動作において、積層体8と第2変形部材16との間には、第1変形部材15が存在し、さらに、試料台11と積層体8との間にも、第1変形部材15が存在している。これにより、第2変形部材16の横方向(水平方向)への変形を積層体8に伝え難くすることが可能になるため、電極4や固体電解質膜3aの損傷及び変形を防止することができ、さらに、均一に積層体8を加圧することができる。ここで、第2変形部材16の厚さがより厚くなれば、積層体8に均一に圧力を加えやすくなるが、厚くなるにしたがって、第2変形部材は変形し難くなるとともに、それを変形させる圧力も大きくなるため、第2変形部材16の厚さを厚くすることは好ましくない。また、第1変形部材16と積層体8との間に可撓性の離形層が設けられても良い。これにより、積層体8から第1変形部材16を簡単に取り外すことができる。   In such a pressing operation, the first deformation member 15 exists between the stacked body 8 and the second deformable member 16, and further, the first deformation is also formed between the sample stage 11 and the stacked body 8. Member 15 is present. This makes it difficult to transmit the deformation of the second deformable member 16 in the lateral direction (horizontal direction) to the stacked body 8, so that damage and deformation of the electrode 4 and the solid electrolyte membrane 3 a can be prevented. Furthermore, the laminate 8 can be uniformly pressurized. Here, if the thickness of the second deformable member 16 becomes thicker, it becomes easier to apply pressure uniformly to the laminate 8, but as the thickness increases, the second deformable member becomes difficult to deform and deforms it. Since the pressure also increases, it is not preferable to increase the thickness of the second deformation member 16. Further, a flexible release layer may be provided between the first deformable member 16 and the laminate 8. Thereby, the 1st deformation member 16 can be easily removed from the laminated body 8. FIG.

さらに、加圧媒体Aとして空気を用いた場合には、エアーコンプレッサ等により空気の供給及び排出を簡便に行うことができる。加圧媒体供給口18から必要な圧力が得られるまで空気を供給し続け、加圧終了後には、排出口23から排気を行うことで加圧は解除される。なお、空気は加圧媒体Aとして安価であり、取り扱いが容易である。   Further, when air is used as the pressurized medium A, air can be easily supplied and discharged by an air compressor or the like. Air is continuously supplied from the pressurizing medium supply port 18 until a necessary pressure is obtained, and after the pressurization is finished, the pressurization is released by exhausting from the discharge port 23. Air is inexpensive as the pressurized medium A and is easy to handle.

また、試料台11と第2変形部材16との間の空間に多数の積層体8を設置することによって生産性を向上させることができる。このとき、試料台11に対して水平方向に複数の積層体8を設置することも可能であるし、試料台11に対して垂直方向に複数の積層体8を設置することも可能である。特に、試料台11に対して垂直方向に複数の積層体8を積み重ねる場合には、積層体8の製造に対する占有床面積効率が良く、生産性が高くなる。しかしながら、複数の積層体8自身を積み重ねた場合には、積層体8自身の厚みムラ等により、各積層体8に対して均一な加圧を行うことが困難となる。そこで、複数の積層体を積層する場合には、それらの間に第1変形部材15を配置することにより、各積層体8への不均一な加圧を防ぐことができる。   Moreover, productivity can be improved by installing many laminated bodies 8 in the space between the sample stand 11 and the 2nd deformation member 16. FIG. At this time, it is possible to install a plurality of laminated bodies 8 in the horizontal direction with respect to the sample stage 11, and it is also possible to install a plurality of laminated bodies 8 in the vertical direction with respect to the sample stage 11. In particular, when a plurality of laminated bodies 8 are stacked in a direction perpendicular to the sample stage 11, the occupied floor area efficiency for the production of the laminated bodies 8 is good, and the productivity is increased. However, when a plurality of laminated bodies 8 themselves are stacked, it becomes difficult to uniformly pressurize each laminated body 8 due to uneven thickness of the laminated bodies 8 themselves. Therefore, when a plurality of stacked bodies are stacked, the first deformable member 15 is disposed between them to prevent uneven pressing on each stacked body 8.

ここで、第2変形部材16は、使用される気体や液体に対して不透過性である部材で形成されている。このような部材は、加圧媒体Aである気体や液体等の透過率が低く、外力により変形し積層体8に対して密着できるものであり、その変形が外力の大きな変化なしに維持できるものである。すなわち、本実施の形態では、第2変形部材16が気体圧力や液体圧力等を積層体8に伝えるため、加圧媒体Aの透過率が大きい部材を第2変形部材16として使用することはできない。具体的には、アルミや銅等の金属薄板、あるいは、天然ゴムや合成ゴム等が用いられ、さらには、ウレタンゴムやシリコンゴム、フッ素ゴム等の弾性樹脂が用いられる。なお、具体例からも判断されるように、本実施の形態での“不透過性”とは、まったく加圧媒体Aを透過しないという意味ではなく、ガスや液等の透過が実質的におこりにくい部材という意味である。   Here, the 2nd deformation member 16 is formed with the member which is impermeable with respect to the gas and liquid to be used. Such a member has a low permeability to the pressurized medium A such as gas or liquid, can be deformed by an external force and can be in close contact with the laminate 8, and the deformation can be maintained without a large change in the external force. It is. That is, in the present embodiment, since the second deformable member 16 transmits gas pressure, liquid pressure, and the like to the laminate 8, a member having a high permeability of the pressurized medium A cannot be used as the second deformable member 16. . Specifically, a metal thin plate such as aluminum or copper, or natural rubber or synthetic rubber is used, and further, an elastic resin such as urethane rubber, silicon rubber, or fluororubber is used. As judged from the specific example, “impermeable” in the present embodiment does not mean that the pressurized medium A is not transmitted at all, and gas, liquid, and the like are substantially transmitted. It means a difficult member.

また、第1変形部材15は、加圧方向への変形に対してその加圧方向に対する垂直方向への変形が少ない部材であることが好ましい。これは、第1変形部材15が積層体8に接している場合、積層体8の積層方向だけに圧力が加えられれば、本発明の目的は十分達成される。実際には、第1変形部材15は変形可能部材であるため、積層体8の積層方向への加圧による第1変形部材15自身の厚み方向への変形(厚みが薄くなる変形)を水平方向の変形(伸張する変形)として逃がそうとするため、積層体8の表面にそれを伸張させようとする力が加わってしまう。この力が大きい場合には、最悪、積層体8の電極4が破断してしまうことになる。これを防止するため、第1変形部材15は、その加圧方向への変形に対してその加圧方向に対する垂直方向への変形が少ない部材であることが好ましい。   Moreover, it is preferable that the 1st deformation member 15 is a member with few deformation | transformation to the orthogonal | vertical direction with respect to the pressurization direction with respect to the deformation | transformation to a pressurization direction. This is because, when the first deformable member 15 is in contact with the laminated body 8, the object of the present invention is sufficiently achieved if pressure is applied only in the laminating direction of the laminated body 8. Actually, since the first deformable member 15 is a deformable member, deformation in the thickness direction of the first deformable member 15 itself (deformation in which the thickness is reduced) due to pressurization in the stacking direction of the stacked body 8 is horizontal. Therefore, a force to extend the surface of the laminate 8 is applied to the surface of the laminate 8. When this force is large, the electrode 4 of the laminated body 8 is broken at worst. In order to prevent this, the first deformable member 15 is preferably a member that is less deformed in the direction perpendicular to the pressurizing direction than the deformed in the pressurizing direction.

そのような部材としては、多孔質性物質により形成された多孔質体であることが好ましい。第1変形部材15が多孔質であることにより、その厚み方向の変形による水平方向の伸びを孔の部分で吸収することができる。これにより、加圧方向への変形に対して加圧方向に対する垂直方向への変形を少なくすることが可能となる。さらに、その材質が弾性体であることが好ましい。   Such a member is preferably a porous body formed of a porous substance. Since the first deformable member 15 is porous, the elongation in the horizontal direction due to the deformation in the thickness direction can be absorbed by the hole portion. This makes it possible to reduce deformation in the direction perpendicular to the pressurizing direction with respect to deformation in the pressurizing direction. Furthermore, the material is preferably an elastic body.

さらに、積層体8の積層方向への加圧による第1変形部材15自身の厚み方向への変形(厚みが薄くなる変形)を水平方向の変形(伸張する変形)として逃がすことによる積層体8への不均一な加圧は、積層体8と第1変形部材15との間に滑りを良くするための滑り部材24を設けることによって、さらに効果的に防止される。この滑り部材24は、図5に示すように、第1変形部材15と積層体8との間に介在している。したがって、滑り部材24は、加圧されたときに厚み方向に押しつぶされ変形して加圧方向とその垂直方向へ延伸しようとする第1変形部材15と積層体8との密着を回避させ、さらに、第1変形部材15の水平方向への滑りを良くするため、積層体8は第1変形部材15の体積変化による影響を受け難くなる。   Furthermore, to the laminated body 8 by letting the deformation in the thickness direction of the first deformable member 15 itself (deformation in which the thickness is reduced) due to the pressurization in the laminating direction of the laminated body 8 as the horizontal deformation (deformation that extends). This non-uniform pressurization is further effectively prevented by providing a sliding member 24 for improving the sliding between the laminate 8 and the first deformation member 15. As shown in FIG. 5, the sliding member 24 is interposed between the first deformable member 15 and the laminated body 8. Therefore, the sliding member 24 is crushed and deformed in the thickness direction when pressed, and avoids the close contact between the first deformable member 15 and the laminated body 8 which is about to extend in the pressing direction and the vertical direction thereof, and In order to improve the sliding of the first deformation member 15 in the horizontal direction, the laminated body 8 is hardly affected by the volume change of the first deformation member 15.

ここで、滑り部材24の材料としては、密着がなく離型が容易である材料、すなわち離型性を有する材料を用いることも可能である。しかし、第1変形部材15又は積層体8の面との密着が無く離型が容易であっても、加圧・加熱条件によって第1変形部材15の延伸方向への変形に対して滑りが十分無く、それ自体が容易に延伸してしまう材料は本実施の形態の滑り部材24として適当でない。   Here, as the material of the sliding member 24, it is also possible to use a material that does not adhere and is easy to release, that is, a material having releasability. However, even if there is no close contact with the surface of the first deformable member 15 or the laminated body 8 and the mold release is easy, slippage is sufficient for deformation of the first deformable member 15 in the extending direction depending on the pressure and heating conditions. In addition, a material that itself easily stretches is not suitable as the sliding member 24 of the present embodiment.

また、滑り部材24の形態としては、粉体や液体であっても良く、第1変形部材15に滑り部材24を形成して一体となったものでも良い。さらに、シート状の部材も滑り部材24として用いることが可能である。また、滑りを付与する材料としては、具体的に、二硫化タングステンや窒化ホウ素等の無機材料、テフロン(登録商標)等のフッ素系材料、シリコーン、パラフィン及びグリシン等が用いられるが、これらに限定されるものではない。   Further, the form of the sliding member 24 may be powder or liquid, or may be one in which the sliding member 24 is formed on the first deformable member 15. Further, a sheet-like member can be used as the sliding member 24. Specific examples of the material for imparting slip include inorganic materials such as tungsten disulfide and boron nitride, fluorine-based materials such as Teflon (registered trademark), silicone, paraffin, glycine, and the like. Is not to be done.

なお、好適な滑り部材24としては、第1変形部材15による均一な加圧の効果を損なわないために可撓性を有しており、かつ、その加圧方向に対する垂直方向の伸び率が第1変形部材15の加圧方向に対する垂直方向の伸び率より小さいものが良い。これは、より水平方向の変形が小さいものが積層体8と接しているほうが、積層体8にあたえるストレスが少なくて済むためである。また、積層体8及び第1変形部材15の互いに接触するいずれかの面又は両方の面で滑り効果が起こるものであって、好ましくは両面において滑り効果があるものが良い。   Note that the preferred sliding member 24 has flexibility so as not to impair the effect of uniform pressurization by the first deformable member 15, and the elongation rate in the direction perpendicular to the pressurizing direction is the first. It is preferable that the deformation rate of the deformable member 15 is smaller than that in the direction perpendicular to the pressing direction. This is because the stress applied to the laminated body 8 can be reduced when the one having a smaller horizontal deformation is in contact with the laminated body 8. In addition, a sliding effect occurs on either or both surfaces of the laminate 8 and the first deformable member 15 that are in contact with each other, and preferably has a sliding effect on both surfaces.

ここで、滑り部材24が水平方向の変形が起こりやすい部材であるとき、第1変形部材15の延伸(水平方向の変形)と共に滑り部材24も変形をおこす。例えば、テフロン(登録商標)等の離型性を有する材料の厚みを薄く加工してフレキシブルにし、それ自体を担体で用いた場合には、加圧・加熱条件により延伸が起こり易いため、本実施の形態の効果は小さくなる。しかしながら、第1変形部材15の伸び率より滑り部材24の伸び率が小さければ、本実施の形態の効果は得られる。すなわち、電極4の面に対して滑りが十分起これば電極4の破損を防ぐことができる。より望ましくは、厚みが薄くフレキシブルで第1変形部材15の延伸に対して変形がほとんど起こらないものを基材として用い、その表面に滑り層を設ける形態が好ましい。シート状の基材としては、具体的には、植物繊維やガラス繊維、ポリマーシート、ポリマー繊維等が用いられる。その中でも、植物繊維(紙等)は第1変形部材15に対して延伸の変形が少なく、加熱時においても延伸が少なく、コストが安価であるため好適に用いられる。   Here, when the sliding member 24 is a member that is easily deformed in the horizontal direction, the sliding member 24 is also deformed along with the extension (horizontal deformation) of the first deforming member 15. For example, if the thickness of a releasable material such as Teflon (registered trademark) is thinned to make it flexible and used as a carrier, stretching is likely to occur depending on the pressure and heating conditions. The effect of this form becomes small. However, if the elongation rate of the sliding member 24 is smaller than the elongation rate of the first deformable member 15, the effect of the present embodiment can be obtained. That is, if the sliding occurs sufficiently with respect to the surface of the electrode 4, the electrode 4 can be prevented from being damaged. More desirably, a thin and flexible material that hardly deforms with respect to the stretching of the first deformable member 15 is used as a base material, and a sliding layer is provided on the surface thereof. Specifically, plant fibers, glass fibers, polymer sheets, polymer fibers, and the like are used as the sheet-like base material. Among them, vegetable fibers (paper or the like) are preferably used because they are less deformed by stretching with respect to the first deformable member 15, are less stretched even during heating, and are inexpensive.

さらに、熱を加えることにより固体電解質膜3aと電極4との密着力がより強固なものとなる。加熱する形態としては、加圧装置10を高温環境に置いて加熱する方法がある。この場合には、加圧装置10に加熱制御部(図示せず)を付加する必要が無いので、もっとも簡便に積層体8に対して加熱が行われる。この時、温度変化による加圧媒体Aの体積変化を調節するため、排出口23から加圧媒体Aを排出することができる。また、設定した温度条件で加圧力が得られるように設定してから、加圧装置10を加熱することもできる。別の形態としては、加圧媒体供給口18や第2変形部材16の内側、試料台11の上等に熱源(図示せず)を設置しておき、その熱源により各部材を加熱して積層体8を加熱しても良い。さらに、別の形態としては、加圧装置10の平板12,13を加熱し積層体8を加熱するようにしても良い。また、熱源(図示せず)により加圧媒体Aを加熱することにより、第2変形部材16により積層体8に加熱が行われるようにしても良い。いずれの場合においても、加熱において気体の体積膨張が起こるため、積層体8に対する圧力の変化を制御することが好ましい。   Furthermore, by applying heat, the adhesion between the solid electrolyte membrane 3a and the electrode 4 becomes stronger. As a form of heating, there is a method of heating the pressurizing device 10 in a high temperature environment. In this case, since it is not necessary to add a heating control unit (not shown) to the pressurizing device 10, the laminate 8 is most simply heated. At this time, the pressure medium A can be discharged from the discharge port 23 in order to adjust the volume change of the pressure medium A due to the temperature change. Moreover, after setting so that a pressurization force may be acquired on the set temperature conditions, the pressurization apparatus 10 can also be heated. As another form, a heat source (not shown) is installed on the inside of the pressurized medium supply port 18 and the second deformable member 16, on the sample table 11, etc., and each member is heated by the heat source and laminated. The body 8 may be heated. Furthermore, as another form, you may make it heat the flat plate 12 and 13 of the pressurization apparatus 10, and heat the laminated body 8. FIG. Alternatively, the laminate 8 may be heated by the second deformable member 16 by heating the pressure medium A with a heat source (not shown). In any case, since the volume expansion of the gas occurs during heating, it is preferable to control the change in pressure on the laminate 8.

このように本実施の形態の製造方法により形成された電解質膜3aと電極4との接合体8aは、均一な加圧により、固体電解質膜3a、電極4、触媒の界面が十分均一に形成されている。積層体8を均一な圧力で加圧することにより、電極4の周辺部の固体電解質膜3aに歪によるシワの発生が少なくシール性に優れた燃料電池1が得られる。燃料としては、気体燃料や液体燃料が用いられる。特に、本実施の形態の製造方法で製造された接合体8aは均一な加圧により接合状態にムラがないため、液体燃料による固体電解質膜3aの膨張による剥がれが起こりにくい。したがって、液体燃料の使用も可能であり、燃料電池1は、触媒部への燃料の拡散性が維持された優れた形態をとりうる。   Thus, in the joined body 8a of the electrolyte membrane 3a and the electrode 4 formed by the manufacturing method of the present embodiment, the interfaces of the solid electrolyte membrane 3a, the electrode 4 and the catalyst are sufficiently uniformly formed by uniform pressurization. ing. By pressurizing the laminated body 8 with a uniform pressure, the fuel cell 1 having excellent sealing properties with less generation of wrinkles due to distortion in the solid electrolyte membrane 3a around the electrode 4 can be obtained. As the fuel, gaseous fuel or liquid fuel is used. In particular, since the joined body 8a manufactured by the manufacturing method of the present embodiment has no unevenness in the bonded state due to uniform pressurization, peeling due to expansion of the solid electrolyte membrane 3a due to the liquid fuel hardly occurs. Accordingly, liquid fuel can be used, and the fuel cell 1 can take an excellent form in which the diffusibility of the fuel to the catalyst unit is maintained.

なお、本実施の形態で使用される燃料は、燃料電池1にあわせて適宜設定されるものであるが、基本的にはいかなる燃料も使用可能である。しかしながら、燃料は体積及び重量エネルギー密度に優れるもの使用することが好ましい。特に体積エネルギー密度に優れる燃料が好ましい。したがって、気体状燃料は体積エネルギー密度に劣るため好ましくなく、液体状燃料が好ましい。これは、例えば1分子の酸化反応により取り出せる電子数が水素であれば2個、メタノールであれば6個、エタノールであれば12個であることから、各々の分子1molから取り出せるクーロン量はそれぞれ理論値として、96500×2C、96500×6C、96500×12Cとなる。各々の密度や分子量を考慮し、1cm当たりのクーロン量に換算すると水素で約9C/cm、メタノールで約14400C/cm、エタノールで15200C/cmのエネルギー密度となる。常圧の気体としての水素は、単位体積あたりのエネルギー密度は著しく低くなる。メタノールとエタノールは酸化反応には水分子がそれぞれ、1分子、3分子必要であるが(以下の式参照)、これを加味しても液体燃料が優れることは明らかである。 The fuel used in the present embodiment is appropriately set in accordance with the fuel cell 1, but basically any fuel can be used. However, it is preferable to use a fuel excellent in volume and weight energy density. In particular, a fuel excellent in volume energy density is preferable. Therefore, gaseous fuel is not preferable because it is inferior in volumetric energy density, and liquid fuel is preferable. This is because, for example, the number of electrons that can be extracted by oxidation reaction of one molecule is 2 if hydrogen, 6 if methanol, and 12 if ethanol, so the amount of Coulomb that can be extracted from 1 mol of each molecule is theoretical. The values are 96500 × 2C, 96500 × 6C, and 96500 × 12C. Considering density and molecular weight of each, 1 cm 3 per coulomb amount converted to the about 9C / cm 3 with hydrogen, approximately methanol 14400C / cm 3, the energy density of 15200C / cm 3 with ethanol. Hydrogen as a normal pressure gas has a significantly low energy density per unit volume. Methanol and ethanol require one molecule and three molecules of water for the oxidation reaction (see the following formula), but it is clear that liquid fuel is excellent even when this is taken into account.

CHOH+HO→6H+6e+CO
OH+3HO→12H+12e+2CO
なお、高圧状態の水素あるいは液体水素を使用することも可能であるが、容器を堅牢にする必要が生じ、容器込みのエネルギー密度を考慮すると、常温常圧で液体あるいは固体状態の燃料が優れている。具体的には、水素吸蔵合金に蓄えた水素やガソリン、液体状炭化水素、液体状アルコール等の固体状燃料又は液体状燃料が使用できるが、本体燃料電池の小型化が可能な点、体積エネルギー密度に優れる点より、アルコール燃料を使用することが好ましい。アルコール燃料を使用することにより、駆動時間を向上させた携帯型の燃料電池1を形成することができる。なかでも、炭素数4以下のアルコールを使用することが好ましく、特に、安全性が高く、生合成が可能である点(環境面)からエタノールを使用することが好ましい。
CH 3 OH + H 2 O → 6H + + 6e + CO 2
C 2 H 5 OH + 3H 2 O → 12H + + 12e + 2CO 2
Although it is possible to use high-pressure hydrogen or liquid hydrogen, it is necessary to make the container robust, and considering the energy density of the container, liquid or solid fuel at room temperature and normal pressure is excellent. Yes. Specifically, hydrogen stored in the hydrogen storage alloy, solid fuel such as gasoline, liquid hydrocarbon, liquid alcohol, or liquid fuel can be used, but the main fuel cell can be downsized, volume energy From the viewpoint of excellent density, it is preferable to use an alcohol fuel. By using alcohol fuel, a portable fuel cell 1 with improved driving time can be formed. Among these, it is preferable to use an alcohol having 4 or less carbon atoms, and it is particularly preferable to use ethanol from the viewpoint of high safety and biosynthesis (environmental aspect).

<実施例1>
まず、触媒を担持したカーボンを付着させた電極(カーボン電極)4を固体電解質膜(ナフィオン115、Dupont社製)3aの両側に配置した積層体8を2組用意する。加圧装置10の試料台11の上に、厚さ1.6mmのポリウレタン(気孔径5〜7μm、気孔率80%)よりなる第1変形部材15を3枚設置し、その上に積層体8を1組重ねる。その後、その上に同様の第1変形部材15を重ねて置き、積層体8をもう1組重ね、同様の第1変形部材15をさらに重ねて設置する。続いて、加圧装置10の平板12と平板13とのギャップをギャップ部材14により所定のギャップに設定する。そして、窒素ガスボンベをジョイント21に接続する。ここで、窒素ガスが加圧媒体Aとなる。
<Example 1>
First, two sets of laminates 8 in which electrodes (carbon electrodes) 4 to which carbon carrying a catalyst is attached are arranged on both sides of a solid electrolyte membrane (Nafion 115, manufactured by Dupont) 3a are prepared. Three first deformable members 15 made of polyurethane (pore diameter: 5 to 7 μm, porosity: 80%) having a thickness of 1.6 mm are placed on the sample stage 11 of the pressurizing apparatus 10, and the laminate 8 is placed thereon. 1 set. Thereafter, the same first deformable member 15 is placed thereon, another stack of stacked bodies 8 is placed thereon, and the same first deformable member 15 is further placed thereon. Subsequently, the gap between the flat plate 12 and the flat plate 13 of the pressure device 10 is set to a predetermined gap by the gap member 14. Then, a nitrogen gas cylinder is connected to the joint 21. Here, the nitrogen gas becomes the pressurized medium A.

次に、このような状態でバルブ20を開放する。窒素ガスが加圧装置10の加圧媒体供給口18より平板13と第2変形部材16との間に供給され、シリコンゴムからなる第2変形部材16が積層体8側に膨らみ、積層体8を加圧する。圧力計22が50atmになったところで、バルブ20を閉じて加圧状態を1時間保持する。   Next, the valve 20 is opened in such a state. Nitrogen gas is supplied between the flat plate 13 and the second deformable member 16 from the pressurized medium supply port 18 of the pressurizer 10, and the second deformable member 16 made of silicon rubber swells toward the laminate 8, and the laminate 8. Pressurize. When the pressure gauge 22 reaches 50 atm, the valve 20 is closed and the pressurized state is maintained for 1 hour.

このようにして2組の接合体8aを形成した。第2変形部材16が接触している全ての点において均一な加圧が行なわれ、得られた固体電解質膜3aと電極4とからなる接合体8aには、電極4(積層部)及び電極4の周辺部に歪によるシワが発生しないことが確認された。   In this way, two sets of joined bodies 8a were formed. Uniform pressurization is performed at all points where the second deformable member 16 is in contact, and the obtained joined body 8a composed of the solid electrolyte membrane 3a and the electrode 4 includes the electrode 4 (laminated portion) and the electrode 4. It was confirmed that wrinkles due to distortion did not occur in the peripheral part of.

<実施例2>
まず、触媒を担持したカーボンを付着させた電極(カーボン電極)4を固体電解質膜(ナフィオン115、Dupont社製)3aの両側に配置した積層体8を2組用意する。加圧装置10の試料台11の上に、厚さ1.6mmのポリウレタン(気孔径5〜7μm、気孔率80%)よりなる第1変形部材15を3枚設置し、その上に発泡PETよりなる第1変形部材15を重ねて設置し、その上に積層体8を1組重ねる。さらに、その上に発泡PETよりなる第1変形部材15、同様のポリウレタンよりなる第1変形部材15及び発泡PETよりなる第1変形部材15をこの順番で重ねて置き、その上に積層体をもう1組重ねる。そして、その上に発泡PETよりなる第1変形部材15及び同様のポリウレタンよりなる第1変形部材15をその順番で重ねて設置する。続いて、加圧装置10の平板12と平板13とのギャップをギャップ部材14により所定のギャップに設定する。そして、窒素ガスボンベをジョイント21に接続する。ここで、窒素ガスが加圧媒体Aとなる。
<Example 2>
First, two sets of laminates 8 in which electrodes (carbon electrodes) 4 to which carbon carrying a catalyst is attached are arranged on both sides of a solid electrolyte membrane (Nafion 115, manufactured by Dupont) 3a are prepared. Three first deformable members 15 made of polyurethane having a thickness of 1.6 mm (pore diameter: 5 to 7 μm, porosity: 80%) are placed on the sample table 11 of the pressurizing apparatus 10, and foam PET is used on the first deformable member 15. The first deformable member 15 to be formed is placed on top of each other, and one set of the laminated bodies 8 is placed thereon. Further, a first deformable member 15 made of foamed PET, a first deformable member 15 made of similar polyurethane, and a first deformable member 15 made of foamed PET are placed on top of each other in this order, and the laminate is already placed on it. Stack one set. And the 1st deformation member 15 which consists of foaming PET, and the 1st deformation member 15 which consists of the same polyurethane are piled up in that order on it. Subsequently, the gap between the flat plate 12 and the flat plate 13 of the pressure device 10 is set to a predetermined gap by the gap member 14. Then, a nitrogen gas cylinder is connected to the joint 21. Here, the nitrogen gas becomes the pressurized medium A.

次に、このような状態でバルブ20を開放する。窒素ガスが加圧装置10の加圧媒体供給口18より平板13と第2変形部材16との間に供給され、シリコンゴムからなる第2変形部材16が積層体8側に膨らみ、積層体8を加圧する。圧力計22が50atmになったところで、バルブ20を閉じて加圧状態を1時間保持する。   Next, the valve 20 is opened in such a state. Nitrogen gas is supplied between the flat plate 13 and the second deformable member 16 from the pressurized medium supply port 18 of the pressurizer 10, and the second deformable member 16 made of silicon rubber swells toward the laminate 8, and the laminate 8. Pressurize. When the pressure gauge 22 reaches 50 atm, the valve 20 is closed and the pressurized state is maintained for 1 hour.

このようにして2組の接合体8aを形成した。第2変形部材16が接触している全ての点において均一な加圧が行なわれ、得られた固体電解質膜3aと電極4とからなる接合体8aには、電極4(積層部)及び電極4の周辺部に歪によるシワが発生しないことが確認された。   In this way, two sets of joined bodies 8a were formed. Uniform pressurization is performed at all points where the second deformable member 16 is in contact, and the obtained joined body 8a composed of the solid electrolyte membrane 3a and the electrode 4 includes the electrode 4 (laminated portion) and the electrode 4. It was confirmed that wrinkles due to distortion did not occur in the peripheral part of.

<実施例3>
まず、触媒を担持したカーボンを付着させた電極(カーボン電極)4を固体電解質膜(ナフィオン115、Dupont社製)3aの両側に配置した積層体8を2組用意する。加圧装置10の試料台11の上に、厚さ0.5mmのシリコンゴムよりなる第1変形部材15を設置し、その上に、紙基材表面にパラフィン処理を施した滑り部材24を重ねて設置した後、その上に積層体8を1組重ねる。さらに、その上に同様の滑り部材24、同様の第1変形部材15及び同様の滑り部材24をその順番で重ね、その上に積層体8をもう1組重ねる。そして、その上に同様の滑り部材24及び同様の第1変形部材15をその順番で重ねて設置する。続いて、加圧装置10の平板12と平板13とのギャップをギャップ部材14により所定のギャップに設定する。そして、窒素ガスボンベをジョイント21に接続する。なお、窒素ガスが加圧媒体Aとなる。
<Example 3>
First, two sets of laminates 8 in which electrodes (carbon electrodes) 4 to which carbon carrying a catalyst is attached are arranged on both sides of a solid electrolyte membrane (Nafion 115, manufactured by Dupont) 3a are prepared. A first deformable member 15 made of silicon rubber having a thickness of 0.5 mm is placed on the sample table 11 of the pressurizing device 10, and a sliding member 24 subjected to paraffin processing is superimposed on the paper base surface. Then, one set of the laminates 8 is stacked thereon. Further, the same sliding member 24, the same first deformation member 15 and the same sliding member 24 are stacked in that order, and another layered product 8 is stacked thereon. And the same sliding member 24 and the same 1st deformation member 15 are piled up and installed in that order on it. Subsequently, the gap between the flat plate 12 and the flat plate 13 of the pressure device 10 is set to a predetermined gap by the gap member 14. Then, a nitrogen gas cylinder is connected to the joint 21. Nitrogen gas becomes the pressurized medium A.

次に、このような状態でバルブ20を開放する。窒素ガスが加圧装置10の加圧媒体供給口18より平板13と第2変形部材16との間に供給され、シリコンゴムからなる第2変形部材16が積層体8側に膨らみ、積層体8を加圧する。圧力計22が50atmになったところで、バルブ20を閉じて加圧状態を1時間保持する。   Next, the valve 20 is opened in such a state. Nitrogen gas is supplied between the flat plate 13 and the second deformable member 16 from the pressurized medium supply port 18 of the pressurizer 10, and the second deformable member 16 made of silicon rubber swells toward the laminate 8, and the laminate 8. Pressurize. When the pressure gauge 22 reaches 50 atm, the valve 20 is closed and the pressurized state is maintained for 1 hour.

このようにして2組の接合体8aを形成した。第2変形部材16が接触している全ての点において均一な加圧が行なわれ、得られた固体電解質膜3aと電極4とからなる接合体8aには、電極4(積層部)及び電極4の周辺部に歪によるシワが発生しないことが確認された。   In this way, two sets of joined bodies 8a were formed. Uniform pressurization is performed at all points where the second deformable member 16 is in contact, and the obtained joined body 8a composed of the solid electrolyte membrane 3a and the electrode 4 includes the electrode 4 (laminated portion) and the electrode 4. It was confirmed that wrinkles due to distortion did not occur in the peripheral part of.

<実施例4>
まず、触媒を担持したカーボンを付着させた電極(カーボン電極)4を固体電解質膜(ナフィオン115、Dupont社製)3aの両側に配置した積層体8を2組用意する。
<Example 4>
First, two sets of laminates 8 in which electrodes (carbon electrodes) 4 to which carbon carrying a catalyst is attached are arranged on both sides of a solid electrolyte membrane (Nafion 115, manufactured by Dupont) 3a are prepared.

加圧装置10の試料台11の上に、厚さ1.6mmのポリウレタン(気孔径5〜7μm、気孔率80%)よりなる第1変形部材15を3枚設置し、その上に、紙基材表面にパラフィン処理を施した滑り部材24を重ねて設置し、その上に積層体8を1組重ねる。さらに、その上に同様の滑り部材24、同様の第1変形部材15及び同様の滑り部材24をその順番で重ね、その上に積層体8をもう1組重ねる。そして、その上に同様の滑り部材24及び同様の第1変形部材15をその順番で重ねて設置する。続いて、加圧装置10の平板12と平板13とのギャップをギャップ部材14により所定のギャップに設定する。そして、窒素ガスボンベをジョイント21に接続する。なお、窒素ガスが加圧媒体Aとなる。   Three first deformable members 15 made of polyurethane having a thickness of 1.6 mm (pore diameter 5 to 7 μm, porosity 80%) are placed on the sample table 11 of the pressurizing apparatus 10, and a paper base is placed thereon. A sliding member 24 that has been subjected to paraffin treatment is placed on the surface of the material, and one set of the laminates 8 is placed thereon. Further, the same sliding member 24, the same first deformation member 15 and the same sliding member 24 are stacked in that order, and another layered product 8 is stacked thereon. And the same sliding member 24 and the same 1st deformation member 15 are piled up and installed in that order on it. Subsequently, the gap between the flat plate 12 and the flat plate 13 of the pressure device 10 is set to a predetermined gap by the gap member 14. Then, a nitrogen gas cylinder is connected to the joint 21. Nitrogen gas becomes the pressurized medium A.

次に、このような状態でバルブ20を開放する。窒素ガスが加圧装置10の加圧媒体供給口18より平板13と第2変形部材16との間に供給され、シリコンゴムからなる第2変形部材16が積層体8側に膨らみ、積層体8を加圧する。圧力計22が50atmになったところで、バルブ20を閉じて加圧状態を1時間保持する。   Next, the valve 20 is opened in such a state. Nitrogen gas is supplied between the flat plate 13 and the second deformable member 16 from the pressurized medium supply port 18 of the pressurizer 10, and the second deformable member 16 made of silicon rubber swells toward the laminate 8, and the laminate 8. Pressurize. When the pressure gauge 22 reaches 50 atm, the valve 20 is closed and the pressurized state is maintained for 1 hour.

このようにして2組の接合体8aを形成した。第2変形部材16が接触している全ての点において均一な加圧が行なわれ、得られた固体電解質膜3aと電極4とからなる接合体8aには、電極4(積層部)及び電極4の周辺部に歪によるシワが発生しないことが確認された。   In this way, two sets of joined bodies 8a were formed. Uniform pressurization is performed at all points where the second deformable member 16 is in contact, and the obtained joined body 8a composed of the solid electrolyte membrane 3a and the electrode 4 includes the electrode 4 (laminated portion) and the electrode 4. It was confirmed that wrinkles due to distortion did not occur in the peripheral part of.

<実施例5>
まず、触媒を担持したカーボンを付着させた電極(カーボン電極)4を固体電解質膜(ナフィオン115、Dupont社製)3aの両側に配置した積層体8を2組用意する。加圧装置10の試料台11の上に、厚さ1.6mmのポリウレタン(気孔径5〜7μm、気孔率80%)よりなる第1変形部材15を3枚設置し、その上に発泡PETよりなる第1変形部材15を重ねて設置し、その上に積層体8を1組重ねる。さらに、その上に発泡PETよりなる第1変形部材15、同様のポリウレタンよりなる第1変形部材15及び発泡PETよりなる第1変形部材15をこの順番で重ねて置き、その上に積層体をもう1組重ねる。そして、その上に発泡PETよりなる第1変形部材15及び同様のポリウレタンよりなる第1変形部材15をその順番で重ねて設置する。続いて、加圧装置10の平板12と平板13とのギャップをギャップ部材14により所定のギャップに設定する。そして、エアーコンプレッサをジョイント21に接続する。ここで、空気が加圧媒体Aとなる。
<Example 5>
First, two sets of laminates 8 in which electrodes (carbon electrodes) 4 to which carbon carrying a catalyst is attached are arranged on both sides of a solid electrolyte membrane (Nafion 115, manufactured by Dupont) 3a are prepared. Three first deformable members 15 made of polyurethane having a thickness of 1.6 mm (pore diameter: 5 to 7 μm, porosity: 80%) are placed on the sample table 11 of the pressurizing apparatus 10, and foam PET is used on the first deformable member 15. The first deformable member 15 to be formed is placed on top of each other, and one set of the laminated bodies 8 is placed thereon. Furthermore, a first deformable member 15 made of foamed PET, a first deformable member 15 made of similar polyurethane, and a first deformable member 15 made of foamed PET are placed in this order on top of each other. Stack one set. And the 1st deformation member 15 which consists of foaming PET, and the 1st deformation member 15 which consists of the same polyurethane are piled up in that order on it. Subsequently, the gap between the flat plate 12 and the flat plate 13 of the pressure device 10 is set to a predetermined gap by the gap member 14. Then, the air compressor is connected to the joint 21. Here, air becomes the pressurized medium A.

次に、このような状態でエアーコンプレッサを稼動させてバルブ20を開放する。空気が加圧装置10の加圧媒体供給口18より平板13と第2変形部材16との間に供給され、シリコンゴムからなる第2変形部材16が積層体8側に膨らみ、積層体8を加圧する。圧力計22が50atmになったところで、バルブ20を閉じて加圧状態を1時間保持する。   Next, the air compressor is operated in such a state to open the valve 20. Air is supplied between the flat plate 13 and the second deformable member 16 from the pressurized medium supply port 18 of the pressurizing device 10, and the second deformable member 16 made of silicon rubber swells to the laminated body 8 side, and the laminated body 8 is Pressurize. When the pressure gauge 22 reaches 50 atm, the valve 20 is closed and the pressurized state is maintained for 1 hour.

このようにして2組の接合体8aを形成した。第2変形部材16が接触している全ての点において均一な加圧が行なわれ、得られた固体電解質膜3aと電極4とからなる接合体8aには、電極4(積層部)及び電極4の周辺部に歪によるシワが発生しないことが確認された。   In this way, two sets of joined bodies 8a were formed. Uniform pressurization is performed at all points where the second deformable member 16 is in contact, and the obtained joined body 8a composed of the solid electrolyte membrane 3a and the electrode 4 includes the electrode 4 (laminated portion) and the electrode 4. It was confirmed that wrinkles due to distortion did not occur in the peripheral part of.

<比較例1>
まず、触媒を担持したカーボンを付着させた電極(カーボン電極)4を固体電解質膜(ナフィオン115、Dupont社製)3aの両側に配置した積層体8を2組用意する。加圧装置10の試料台11の上に積層体8を載置する。続いて、加圧装置10の平板12と平板13とのギャップをギャップ部材14により所定のギャップに設定する。そして、窒素ガスボンベをジョイント21に接続する。ここで、窒素ガスが加圧媒体Aとなる。
<Comparative Example 1>
First, two sets of laminates 8 in which electrodes (carbon electrodes) 4 to which carbon carrying a catalyst is attached are arranged on both sides of a solid electrolyte membrane (Nafion 115, manufactured by Dupont) 3a are prepared. The stacked body 8 is placed on the sample stage 11 of the pressure device 10. Subsequently, the gap between the flat plate 12 and the flat plate 13 of the pressure device 10 is set to a predetermined gap by the gap member 14. Then, a nitrogen gas cylinder is connected to the joint 21. Here, the nitrogen gas becomes the pressurized medium A.

次に、このような状態でバルブ20を開放する。窒素ガスが加圧装置10の加圧媒体供給口18より平板13と第2変形部材16との間に供給され、シリコンゴムからなる第2変形部材16が積層体8側に膨らみ、積層体8を直接加圧する。圧力計22が50atmになったところで、バルブ20を閉じて加圧状態を1時間保持する。   Next, the valve 20 is opened in such a state. Nitrogen gas is supplied between the flat plate 13 and the second deformable member 16 from the pressurized medium supply port 18 of the pressurizer 10, and the second deformable member 16 made of silicon rubber swells toward the laminate 8, and the laminate 8. Pressurize directly. When the pressure gauge 22 reaches 50 atm, the valve 20 is closed and the pressurized state is maintained for 1 hour.

このようにして2組の接合体8aを形成した。その接合体8aの試料台11側の面には、シワが少なかったものの、その加圧側(第2変形部材16側)の面では、電極4の周辺部にシワが発生していたことが確認された。   In this way, two sets of joined bodies 8a were formed. Although the surface of the joined body 8a on the sample stage 11 side was less wrinkled, it was confirmed that wrinkles were generated in the periphery of the electrode 4 on the surface on the pressure side (second deformation member 16 side). It was done.

燃料電池の発電概念を説明するための説明図である。It is explanatory drawing for demonstrating the electric power generation concept of a fuel cell. 本発明の実施の一形態の加圧装置を概略的に示す中央縦断側面図である。It is a center longitudinal section side view showing roughly the pressurization device of one embodiment of the present invention. 本発明の実施の一形態の加圧装置を概略的に示す平面図である。It is a top view which shows roughly the pressurization apparatus of one Embodiment of this invention. 加圧状態の加圧装置を概略的に示す中央縦断側面図である。It is a center longitudinal cross-sectional side view which shows the pressurization apparatus of a pressurization state roughly. 第1変形部材及び滑り部材が積層された積層体を概略的に示す縦断側面図である。It is a vertical side view which shows roughly the laminated body on which the 1st deformation member and the sliding member were laminated | stacked.

符号の説明Explanation of symbols

1 燃料電池
3a 電解質膜(固体電解質膜)
4 電極
8 積層体
8a 接合体
11 載置台
15 第1変形部材
16 第2変形部材
A 加圧媒体

1 Fuel cell 3a Electrolyte membrane (solid electrolyte membrane)
4 Electrode 8 Laminate 8a Joint 11 Mounting Base 15 First Deformation Member 16 Second Deformation Member A Pressure Medium

Claims (15)

固体電解質膜とそれを挟持する電極とを有する積層体と、その積層体を挟持して外力により変形可能な第1変形部材とを載置台に積層する工程と、
外力により変形可能な第2変形部材に加圧媒体により外力を加え、その第2変形部材を変形させ、前記載置台に積層された前記第1変形部材に当接させることによって、前記載置台に積層された前記第1変形部材及び前記積層体をその積層方向に加圧する工程と、
を備える固体電解質膜及び電極の接合体の製造方法。
Laminating a laminated body having a solid electrolyte membrane and an electrode sandwiching the solid electrolyte membrane, and a first deformable member sandwiching the laminated body and deformable by an external force on the mounting table;
An external force is applied to the second deformable member that can be deformed by an external force by a pressure medium, the second deformable member is deformed, and brought into contact with the first deformable member stacked on the mount table. Pressurizing the laminated first deformable member and the laminated body in the lamination direction;
A method for producing a solid electrolyte membrane and electrode assembly.
前記積層体と前記第1変形部材とを積層する工程は、複数の前記積層体及び複数の前記第1変形部材を積層する請求項1記載の固体電解質膜及び電極の接合体の製造方法。   The method for producing a joined body of a solid electrolyte membrane and an electrode according to claim 1, wherein the step of laminating the laminate and the first deformable member comprises laminating the plurality of laminates and the plurality of first deformable members. 前記第1変形部材は、加圧方向への変形に対し、その加圧方向に対する垂直方向への変形が少ない部材である請求項1又は2記載の固体電解質膜及び電極の接合体の製造方法。   3. The method for manufacturing a joined body of a solid electrolyte membrane and an electrode according to claim 1, wherein the first deformable member is a member that is less deformed in a direction perpendicular to the pressurizing direction than deformed in the pressurizing direction. 前記第1変形部材は、多孔質性物質により形成された多孔質体である請求項1、2又は3記載の固体電解質膜及び電極の接合体の製造方法。   4. The method for producing a joined body of a solid electrolyte membrane and an electrode according to claim 1, wherein the first deformable member is a porous body formed of a porous material. 前記積層体と前記第1変形部材とを積層する工程は、前記積層体と前記第1変形部材との間に滑りを良くするための滑り部材を積層する工程を具備する請求項1、2、3又は4記載の固体電解質膜及び電極の接合体の製造方法。   The step of laminating the laminate and the first deformable member comprises the step of laminating a sliding member for improving slippage between the laminate and the first deformable member. A method for producing a joined body of a solid electrolyte membrane and an electrode according to 3 or 4. 前記滑り部材は、可撓性を有し、加圧方向に対する垂直方向の伸び率が前記第1変形部材の加圧方向に対する垂直方向の伸び率より小さい部材である請求項5記載の固体電解質膜及び電極の接合体の製造方法。   The solid electrolyte membrane according to claim 5, wherein the sliding member is a member having flexibility, and an elongation rate in a direction perpendicular to a pressing direction is smaller than an elongation rate in a direction perpendicular to the pressing direction of the first deformation member. And a method for producing an electrode assembly. 前記滑り部材は、前記第1変形部材より伸び率が小さい基材とその基材の表面に設けられた滑り層とを有している請求項5又は6記載の固体電解質膜及び電極の接合体の製造方法。   The solid electrolyte membrane / electrode assembly according to claim 5 or 6, wherein the sliding member includes a base material having a lower elongation rate than the first deformation member and a sliding layer provided on a surface of the base material. Manufacturing method. 前記加圧媒体は気体である請求項1ないし7のいずれか一記載の固体電解質膜及び電極の接合体の製造方法。   The method for producing a joined body of a solid electrolyte membrane and an electrode according to any one of claims 1 to 7, wherein the pressurizing medium is a gas. 前記気体は空気である請求項8記載の固体電解質膜及び電極の接合体の製造方法。   The method for producing a solid electrolyte membrane / electrode assembly according to claim 8, wherein the gas is air. 前記加圧媒体は液体である請求項1ないし7のいずれか一記載の固体電解質膜及び電極の接合体の製造方法。   The method for producing a joined body of a solid electrolyte membrane and an electrode according to any one of claims 1 to 7, wherein the pressurizing medium is a liquid. 前記載置台に積層された前記積層体を加熱する工程をさらに備える請求項1ないし10のいずれか一記載の固体電解質膜及び電極の接合体の製造方法。   The method for producing a joined body of a solid electrolyte membrane and an electrode according to any one of claims 1 to 10, further comprising a step of heating the laminated body laminated on the mounting table. 請求項1ないし11のいずれか一記載の固体電解質膜及び電極の接合体の製造方法により製造された固体電解質膜及び電極の接合体。   A solid electrolyte membrane / electrode assembly manufactured by the method for manufacturing a solid electrolyte membrane / electrode assembly according to claim 1. 請求項12記載の固体電解質膜及び電極の接合体を備え、前記接合体に供給される燃料により発電する燃料電池。   13. A fuel cell comprising the solid electrolyte membrane and electrode assembly according to claim 12 and generating electric power from fuel supplied to the assembly. 前記燃料は、アルコールを含有する燃料である請求項13記載の燃料電池。   The fuel cell according to claim 13, wherein the fuel is a fuel containing alcohol. 前記アルコールはエタノールである請求項14記載の燃料電池。   The fuel cell according to claim 14, wherein the alcohol is ethanol.
JP2004078173A 2004-03-18 2004-03-18 Manufacturing method of assembly of solid electrolyte membrane and electrode, assembly of solid electrolyte membrane and electrode, and fuel cell Pending JP2005268023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078173A JP2005268023A (en) 2004-03-18 2004-03-18 Manufacturing method of assembly of solid electrolyte membrane and electrode, assembly of solid electrolyte membrane and electrode, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078173A JP2005268023A (en) 2004-03-18 2004-03-18 Manufacturing method of assembly of solid electrolyte membrane and electrode, assembly of solid electrolyte membrane and electrode, and fuel cell

Publications (1)

Publication Number Publication Date
JP2005268023A true JP2005268023A (en) 2005-09-29

Family

ID=35092345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078173A Pending JP2005268023A (en) 2004-03-18 2004-03-18 Manufacturing method of assembly of solid electrolyte membrane and electrode, assembly of solid electrolyte membrane and electrode, and fuel cell

Country Status (1)

Country Link
JP (1) JP2005268023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207621A (en) * 2006-02-02 2007-08-16 Noritake Co Ltd Manufacturing method of membrane-electrode assembly
JP2008530728A (en) * 2005-02-07 2008-08-07 シーメンス アクチエンゲゼルシヤフト Method and apparatus for continuously bonding a polymer electrolyte membrane and at least one gas diffusion electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530728A (en) * 2005-02-07 2008-08-07 シーメンス アクチエンゲゼルシヤフト Method and apparatus for continuously bonding a polymer electrolyte membrane and at least one gas diffusion electrode
US9461325B2 (en) 2005-02-07 2016-10-04 Siemens Aktiengesellschaft Method and device for permanently bonding a polymer electrolyte membrane to at least one gas diffusion electrode
JP2007207621A (en) * 2006-02-02 2007-08-16 Noritake Co Ltd Manufacturing method of membrane-electrode assembly

Similar Documents

Publication Publication Date Title
JP5049121B2 (en) Lamination method for manufacturing integrated membrane electrode assemblies
JP5628105B2 (en) Fuel cell stack
EP2916376A1 (en) Cell module and fuel cell stack
JP2002367665A (en) Fuel cell stack and its pressurized support method
Kim Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding
KR101745114B1 (en) Manufacturing method for Membrane-electrode assembly
JP2010198948A (en) Membrane-electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
JP2004303627A (en) Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
JP2012074235A (en) Membrane electrode assembly and production method therefor
JP5304132B2 (en) Manufacturing method of membrane electrode assembly
JP2005268023A (en) Manufacturing method of assembly of solid electrolyte membrane and electrode, assembly of solid electrolyte membrane and electrode, and fuel cell
JP4085385B2 (en) Method for fixing and holding three-layer MEA membrane and bonding method
JP4496732B2 (en) Fuel cell and fuel cell manufacturing method
JPH09169501A (en) Hydrogen booster
JP2006147231A (en) Junction device for membrane electrode assembly and junction method for membrane electrode assembly
Mahmoodi et al. Fabrication and Characterization of a Thin, Double‐sided Air Breathing Micro Fuel Cell
KR100590041B1 (en) Fuel cell system and stack used thereto
JP2006172936A (en) Manufacturing method of electrolyte membrane and electrode assembly, and the electrolyte membrane and electrode assembly, and fuel cell
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP2006120519A (en) Electrolyte film/electrode pinching body and its manufacturing method, and fuel cell equipped with this electrolyte film/electrode pinching body
WO2022260829A2 (en) Nafion self-bonding for cost-effective rapid assembly of a thin flexible fuel cell by a template-based thermal sealing process
JP2012178231A (en) Joining method for gas diffusion layer, laminate, fuel battery, and fuel battery system
WO2008102578A1 (en) Fuel cell, laminate for fuel cell, and method of manufacturing the same
WO2009084380A1 (en) Fuel cell
JP2011258397A (en) Manufacturing catalyst layer of fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051021