JP2005267952A - Manufacturing method of electrode for nonaqueous electrolyte battery - Google Patents

Manufacturing method of electrode for nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2005267952A
JP2005267952A JP2004076314A JP2004076314A JP2005267952A JP 2005267952 A JP2005267952 A JP 2005267952A JP 2004076314 A JP2004076314 A JP 2004076314A JP 2004076314 A JP2004076314 A JP 2004076314A JP 2005267952 A JP2005267952 A JP 2005267952A
Authority
JP
Japan
Prior art keywords
electrode
rolling
active material
nonaqueous electrolyte
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004076314A
Other languages
Japanese (ja)
Other versions
JP4514484B2 (en
Inventor
Kumiko Kanai
久美子 金井
Takao Inoue
尊夫 井上
Masahisa Fujimoto
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004076314A priority Critical patent/JP4514484B2/en
Publication of JP2005267952A publication Critical patent/JP2005267952A/en
Application granted granted Critical
Publication of JP4514484B2 publication Critical patent/JP4514484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for nonaqueous electrolyte battery formed by arranging an activator layer on a porous body, capable of obtaining high charging/discharging capacity. <P>SOLUTION: The electrode for a nonaqueous electrolyte battery is manufactured by rolling the activator layer together with the porous body; after forming the activator layer by applying slurry containing electrode activating substance on a porous body which does not have electron conduction. The electrode is rolled so as to satisfy the equation; 0.5515Ln(x)+1.9859≤d≤0.5515Ln(x)+2.5859, if x is an integer fulfilling 2≤x≤11, denoting the frequency of rolling, d denotes the packing density of the activator layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池などの非水電解質電池に用いられる電極の製造方法に関するものである。   The present invention relates to a method for producing an electrode used in a non-aqueous electrolyte battery such as a lithium ion secondary battery.

現在、携帯用の小型電子機器においては、軽量で、かつ高い容量を有するリチウムイオン二次電池が一般に使用されている。   Currently, lithium ion secondary batteries that are lightweight and have a high capacity are generally used in portable small electronic devices.

リチウムイオン二次電池に用いる電極は、一般に、アルミニウム箔または銅箔などの集電体の上に、電極活物質を含むスラリーを塗布し活物質層を形成した後、圧延することにより製造されている。このような方法で正極及び負極を製造した後、正極及び負極の間にセパレータを配置した電池構造とすることにより、電池が作製されている。   An electrode used for a lithium ion secondary battery is generally manufactured by applying a slurry containing an electrode active material on a current collector such as an aluminum foil or a copper foil to form an active material layer, and then rolling it. Yes. After manufacturing the positive electrode and the negative electrode by such a method, the battery is manufactured by setting it as the battery structure which has arrange | positioned the separator between the positive electrode and the negative electrode.

上記のような構造を有するリチウムイオン二次電池において、体積容量密度をさらに高める方法として、セパレータの上に電極活物質を含むスラリーを塗布し活物質層を形成する方法が考えられる。特許文献1においては、セパレータに活物質を含むスラリーを塗布して活物質層を形成する方法が検討されている。しかしながら、活物質層を形成した後、どのような条件で圧延を行うかについては何ら検討されていない。
特開平6−140077号公報
In the lithium ion secondary battery having the above-described structure, as a method for further increasing the volume capacity density, a method of forming an active material layer by applying a slurry containing an electrode active material on a separator can be considered. In Patent Document 1, a method of forming an active material layer by applying a slurry containing an active material to a separator has been studied. However, no consideration has been given as to under what conditions the rolling is performed after the active material layer is formed.
JP-A-6-140077

本発明の目的は、多孔質体の上に活物質層を形成した非水電解質電池用電極において、高い充放電容量を得ることができる非水電解質電池用電極の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the electrode for nonaqueous electrolyte batteries which can obtain high charge / discharge capacity in the electrode for nonaqueous electrolyte batteries which formed the active material layer on the porous body. .

本発明は、電子伝導性を有しない多孔質体の上に、電極活物質を含むスラリーを塗布して活物質層を形成した後、多孔質体とともに活物質層を圧延する非水電解質電池用電極の製造方法であり、圧延回数をx、活物質層の充填密度をdとしたとき、充填密度dが、以下の式を満足するように圧延を行うことを特徴としている。
0.5515Ln(x)+1.9859≦d≦0.5515Ln(x)+2.5859
(ここで、xは2≦x≦11を満足する自然数である。)
The present invention is for a nonaqueous electrolyte battery in which an active material layer is formed by applying a slurry containing an electrode active material on a porous body having no electronic conductivity, and then rolling the active material layer together with the porous body. This is a method for manufacturing an electrode, wherein rolling is performed so that the packing density d satisfies the following formula, where x is the number of rolling cycles and d is the packing density of the active material layer.
0.5515Ln (x) + 1.90959 ≦ d ≦ 0.5515Ln (x) +2.5859
(Here, x is a natural number satisfying 2 ≦ x ≦ 11.)

本発明に従い、上記式を満足する圧延条件下で圧延を行うことにより、高い充放電容量を示す電極とすることができる。例えば、一対のロール間に通すことにより圧延するロール圧延の場合、ロール間の間隙などの圧延条件を調整しながら、上記式を満足するように2〜11の範囲内の圧延回数で圧延を行う。なお、上記の式におけるxは、トータルの圧延回数を意味している。従って、最終の圧延工程後に上記充填密度dとなっていればよい。例えば、圧延条件をロール間の間隙で制御する場合、徐々にロール間の間隙が小さくなるように、すなわち圧延の条件が厳しくなるように各回の圧延条件を設定してもよいし、各回で同じロール間隙で圧延してもよい。しかしながら、徐々にロール間隙を狭くしていく方が好ましい。   According to the present invention, an electrode exhibiting a high charge / discharge capacity can be obtained by rolling under the rolling conditions satisfying the above formula. For example, in the case of roll rolling that is rolled by passing between a pair of rolls, the rolling is performed at a number of rollings within a range of 2 to 11 so as to satisfy the above formula while adjusting rolling conditions such as a gap between the rolls. . In addition, x in said formula means the total number of rolling. Therefore, it is sufficient that the packing density d is reached after the final rolling step. For example, when the rolling conditions are controlled by the gap between the rolls, the rolling conditions may be set each time so that the gap between the rolls gradually decreases, that is, the rolling conditions become stricter. You may roll by a roll gap. However, it is preferable to gradually narrow the roll gap.

本発明における充填密度dは、以下のようにして算出することができる。すなわち、まず単位面積当たりの電極重量を測定し、この値から単位面積当たりの多孔質体の重量を引いて、単位面積当たりの活物質層の重量を算出する。この単位面積当たりの活物質層の重量を、活物質層の厚みで割ることにより活物質層の充填密度dを算出することができる。なお、活物質層の厚みは、圧延後の電極の厚みから多孔質体の厚みを引いて算出することができる。   The packing density d in the present invention can be calculated as follows. That is, the weight of the electrode per unit area is first measured, and the weight of the porous material per unit area is subtracted from this value to calculate the weight of the active material layer per unit area. The packing density d of the active material layer can be calculated by dividing the weight of the active material layer per unit area by the thickness of the active material layer. The thickness of the active material layer can be calculated by subtracting the thickness of the porous body from the thickness of the electrode after rolling.

本発明における多孔質体としては、非水電解質電池においてセパレータとして用いられているものを用いることができる。材質としては、ポリアミド、ポリオレフィン、ポリエチレンテレフタレート、ポリアクリロニトリルなどが挙げられる。これらの中でも、ポリエチレンやポリプロピレンなどのポリオレフィンが、化学的安定性、特に電解液に対して非常に安定であるため好ましく用いられる。セパレータの厚みとしては、集電体の厚みより薄いものが好ましく、このような観点から1〜30μmの範囲内であることが好ましく、さらに好ましくは5〜25μmの範囲内である。また、セパレータの孔径は、セパレータの孔の中に活物質粒子が充填されると短絡しやすくなるので、活物質粒子の粒子径よりも小さいことが好ましい。活物質の粒子径は、一般に3〜100μm程度であるので、セパレータの孔径は、3μm以下であることが好ましい。   As the porous body in the present invention, those used as a separator in a nonaqueous electrolyte battery can be used. Examples of the material include polyamide, polyolefin, polyethylene terephthalate, polyacrylonitrile and the like. Among these, polyolefins such as polyethylene and polypropylene are preferably used because they are chemically stable, particularly very stable with respect to the electrolytic solution. The thickness of the separator is preferably thinner than that of the current collector. From such a viewpoint, the thickness is preferably in the range of 1 to 30 μm, and more preferably in the range of 5 to 25 μm. Further, the pore diameter of the separator is preferably smaller than the particle diameter of the active material particles, since short-circuiting easily occurs when the active material particles are filled in the pores of the separator. Since the particle diameter of the active material is generally about 3 to 100 μm, the pore diameter of the separator is preferably 3 μm or less.

本発明の電極に用いる電極活物質としては、正極活物質及び負極活物質のいずれであってもよい。   The electrode active material used for the electrode of the present invention may be either a positive electrode active material or a negative electrode active material.

正極活物質としては、非水電解質電池に用いることができるものであれば特に限定されるものではない。例えば、コバルト、ニッケル、マンガン等の遷移金属を少なくとも1種用いたリチウム遷移金属酸化物などが挙げられる。   The positive electrode active material is not particularly limited as long as it can be used for a nonaqueous electrolyte battery. For example, a lithium transition metal oxide using at least one transition metal such as cobalt, nickel, or manganese can be used.

負極活物質としては、スラリー状態として塗布することができるものであれば特に限定されるものではなく、例えば、リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−シリコン合金、リチウム−錫合金などのリチウム合金、黒鉛、コークス、有機物焼成体などの炭素材料、並びにSnO2、SnO、TiO2などの金属酸化物が挙げられる。 The negative electrode active material is not particularly limited as long as it can be applied in a slurry state. For example, lithium such as lithium-aluminum alloy, lithium-lead alloy, lithium-silicon alloy, and lithium-tin alloy can be used. Examples thereof include carbon materials such as alloys, graphite, coke, and organic fired bodies, and metal oxides such as SnO 2 , SnO, and TiO 2 .

本発明の非水電解質電池は、上記本発明の方法で製造された電極を用いたことを特徴としている。   The non-aqueous electrolyte battery of the present invention is characterized by using the electrode manufactured by the method of the present invention.

本発明の電池において用いる溶媒としては、非水電解質電池に用いることができるものであれば特に限定されるものではないが、例えば、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネートなどの環状炭酸エステル、プロパンスルトンなどの環状エステル、メチルエチルカーボネート、ジエチルカーボネート、ジメチルカーボネートなどの鎖状炭酸エステル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチルメチルエーテルなどの鎖状エーテル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、アセトニトリルなどが挙げられる。   The solvent used in the battery of the present invention is not particularly limited as long as it can be used in a non-aqueous electrolyte battery. For example, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3 -Cyclic carbonates such as butylene carbonate, cyclic esters such as propane sultone, chain carbonates such as methyl ethyl carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, Examples include chain ethers such as ethyl methyl ether, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, acetonitrile, and the like. .

本発明の電池において用いられる溶質としては、非水電解質電池に用いることができるものであれば特に限定されるものではないが、例えば、LiBF4、LiPF6、LiCF3SO3、LiN(C12l+1SO2)(Cm2m+1SO2)(l,mは1以上の整数)、LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(p,q,rは1以上の整数)、Li[(C242B]、LiBF2(C24)、LiPF4(C24)、LiPF2(C242等が挙げられ、これらを複数組み合わせて使用してもよい。なお、この溶質は、非水電解質中に0.1〜1.5M(モル/リットル)、好ましくは0.5〜1.5M(モル/リットル)の濃度で溶解していることが好ましい。 The solute used in the battery of the present invention is not particularly limited as long as it can be used in a nonaqueous electrolyte battery. For example, LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (l and m are integers of 1 or more), LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) ( C r F 2r + 1 SO 2 ) (p, q, r are integers of 1 or more), Li [(C 2 O 4 ) 2 B], LiBF 2 (C 2 O 4 ), LiPF 4 (C 2 O 4 ), LiPF 2 (C 2 O 4 ) 2 or the like, and a plurality of these may be used in combination. The solute is preferably dissolved in the non-aqueous electrolyte at a concentration of 0.1 to 1.5 M (mol / liter), preferably 0.5 to 1.5 M (mol / liter).

本発明によれば、多孔質体の上に活物質層を形成した非水電解質電池用電極において、高い充放電容量を得ることができる非水電解質用電池を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the electrode for nonaqueous electrolyte batteries which formed the active material layer on the porous body, the battery for nonaqueous electrolytes which can obtain a high charging / discharging capacity | capacitance can be manufactured.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明は以下の実施例により何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is.

図1は、圧延回数と活物質層の充填密度との関係を示す図である。図1において、実線で示す線は、後述する実施例における圧延回数と充填密度との関係を示しており、以下の式で示される線である。
y=0.5515Ln(x)+2.2859
FIG. 1 is a diagram showing the relationship between the number of rolling operations and the packing density of the active material layer. In FIG. 1, the solid line indicates the relationship between the number of rollings and the packing density in the examples described later, and is a line represented by the following equation.
y = 0.5515Ln (x) +2.28859

図1において、下方の点線は、上記実線の式から0.3差し引いた、以下の式で示される線である。
y=0.5515Ln(x)+1.9859
In FIG. 1, the lower dotted line is a line represented by the following formula obtained by subtracting 0.3 from the formula of the solid line.
y = 0.5515Ln (x) +1.9859

すなわち、下方の点線は、本発明における下限値を示している。   That is, the lower dotted line indicates the lower limit value in the present invention.

図1において、上方の点線は、上記実線の式に0.3足した、以下の式で示される線である。
y=0.5515Ln(x)+2.5859
In FIG. 1, the upper dotted line is a line represented by the following formula obtained by adding 0.3 to the formula of the solid line.
y = 0.5515Ln (x) +2.5859

すなわち、本発明における上限値を示す線である。   That is, it is a line indicating the upper limit in the present invention.

従って、本発明においては、2〜11の圧延回数において、活物質層の充填密度が、図1に示す上方の点線と下方の点線の間の領域内に位置するように圧延条件を設定され、圧延がなされる。   Therefore, in the present invention, the rolling conditions are set so that the packing density of the active material layer is located in the region between the upper dotted line and the lower dotted line shown in FIG. Rolling is done.

圧延回数2〜11における活物質層の充填密度の下限値及び上限値を表1に示す。   Table 1 shows the lower limit value and the upper limit value of the packing density of the active material layer in the rolling times 2 to 11.

Figure 2005267952
Figure 2005267952

(実施例)
正極活物質としてコバルト酸リチウム(LiCoO2)を用い、導電剤として炭素材料(AB及びアセチレンブラック「SP300」)を用い、結着剤としてポリフッ化ビニリデン(PVdF)を用いた。コバルト酸リチウムは、層状岩塩型構造を有しており、その真密度は5g/mlである。
(Example)
Lithium cobaltate (LiCoO 2 ) was used as the positive electrode active material, carbon material (AB and acetylene black “SP300”) was used as the conductive agent, and polyvinylidene fluoride (PVdF) was used as the binder. Lithium cobaltate has a layered rock salt structure and its true density is 5 g / ml.

コバルト酸リチウム、炭素材料、及びポリフッ化ビニリデンを、コバルト酸リチウム:AB:SP300:ポリフッ化ビニリデンの質量比が、92.5:3:1.5:3となるように混合した。この混合物を、N−メチル−ピロリドンに添加混合し、正極合剤スラリーを調製した。   Lithium cobaltate, carbon material, and polyvinylidene fluoride were mixed so that the mass ratio of lithium cobaltate: AB: SP300: polyvinylidene fluoride was 92.5: 3: 1.5: 3. This mixture was added and mixed with N-methyl-pyrrolidone to prepare a positive electrode mixture slurry.

厚み22μmのポリプロピレン製セパレータ(孔径2μm)の上に、正極合剤スラリーを塗布し、乾燥した後、セパレータ及び正極活物質層を2.5cm角の正方形に切り出し、中心部分2×2cm角の部分を残して、その周囲部分の活物質層を剥離して除去した。このようにして正極活物質層を形成したセパレータのサンプルを5つ作製し、以下のようにしてそれぞれについて圧延処理を施した。   A positive electrode mixture slurry was applied on a 22 μm thick polypropylene separator (pore diameter 2 μm) and dried, and then the separator and the positive electrode active material layer were cut into 2.5 cm squares, and a central part 2 × 2 cm square part The active material layer in the surrounding area was peeled off and removed. Five separator samples in which the positive electrode active material layer was formed in this way were prepared, and each was subjected to a rolling treatment as follows.

上記サンプルについて、それぞれ圧延回数x=2、3、5、9、11の圧延処理を施した。具体的には、上記サンプルを厚み100μmの一対のステンレス板に挟み、圧延ロールのロール間の間隙(スリット幅)を、表2に示す値に設定して圧延を行った。表2に示すように、圧延は、回を重ねるごとにスリット幅を狭くして行った。なお、圧延前の上記サンプルの厚みは53μmである。   About the said sample, the rolling processing of rolling frequency x = 2, 3, 5, 9, and 11 was given, respectively. Specifically, the sample was sandwiched between a pair of stainless steel plates having a thickness of 100 μm, and rolling was performed with the gap (slit width) between the rolls of the rolling roll set to the values shown in Table 2. As shown in Table 2, rolling was performed with a narrow slit width each time the rolling was repeated. Note that the thickness of the sample before rolling is 53 μm.

Figure 2005267952
Figure 2005267952

圧延後の各サンプルを正極として用いて、図2に示すような試験セルを作製した。
図2に示すように、上記サンプルにおいては、セパレータ3の裏面に活物質層4が形成されている。活物質層4が形成されている側と反対側のセパレータ3の面の上には、対極としてのリチウム金属板2が積み重ねられる。リチウム金属板2にはニッケル製タブ1が取り付けられている。セパレータ3の活物質層4が形成されている側には、集電体としてのアルミニウム箔5が配置される。アルミニウム箔5の下にはセパレータ9を介して、参照極としてのリチウム金属板6が配置される。リチウム金属板6には、ニッケル製のタブ7が接続されている。
A test cell as shown in FIG. 2 was produced using each sample after rolling as a positive electrode.
As shown in FIG. 2, the active material layer 4 is formed on the back surface of the separator 3 in the sample. On the surface of the separator 3 opposite to the side on which the active material layer 4 is formed, a lithium metal plate 2 as a counter electrode is stacked. A nickel tab 1 is attached to the lithium metal plate 2. On the side of the separator 3 where the active material layer 4 is formed, an aluminum foil 5 as a current collector is disposed. A lithium metal plate 6 as a reference electrode is disposed under the aluminum foil 5 via a separator 9. A nickel tab 7 is connected to the lithium metal plate 6.

これらの電極群を外装体8内に挿入し、電解液を注入した後、シール部8aを封止する。次にこれを上下からガラス板10で挟み試験セルとする。   After these electrode groups are inserted into the outer package 8 and the electrolyte is injected, the seal portion 8a is sealed. Next, this is sandwiched between glass plates 10 from above and below to form a test cell.

なお、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比EC:DEC=50:50)に、溶質としての六フッ化リン酸リチウムを1モル/リットルの割合で溶解させたものを用いた。   In addition, as electrolyte solution, the ratio of 1 mol / liter of lithium hexafluorophosphate as a solute in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio EC: DEC = 50: 50) What was dissolved in was used.

図3は、圧延回数x=5のサンプルにおける充放電曲線を示す図である。このサンプルは、充填密度dが3.2g/mlであり、放電容量は160mAh/gであった。   FIG. 3 is a diagram showing a charge / discharge curve in a sample with the number of rolling times x = 5. This sample had a packing density d of 3.2 g / ml and a discharge capacity of 160 mAh / g.

図4は、圧延回数x=2のサンプルの充放電曲線を示している。このサンプルは、充填密度dが2.57g/mlであり、放電容量は154mAh/gであった。   FIG. 4 shows a charge / discharge curve of a sample with the number of rolling times x = 2. This sample had a packing density d of 2.57 g / ml and a discharge capacity of 154 mAh / g.

圧延回数x=3、9及び11のそれぞれの充填密度及び放電容量は以下の通りであった。
x=3:充填密度d=2.96g/ml、放電容量158mAh/g
x=9:充填密度d=3.45g/ml、放電容量152mAh/g
x=11:充填密度d=3.60g/ml、放電容量161mAh/g
The packing density and discharge capacity of each of the rolling times x = 3, 9 and 11 were as follows.
x = 3: packing density d = 2.96 g / ml, discharge capacity 158 mAh / g
x = 9: packing density d = 3.45 g / ml, discharge capacity 152 mAh / g
x = 11: packing density d = 3.60 g / ml, discharge capacity 161 mAh / g

(比較例1)
上記実施例において、圧延しないこと以外は同様にしてサンプルを作製し、このサンプルを用いて試験セルを作製した。圧延をしない場合、すなわち圧延回数=0の場合、充填密度dは1.1g/mlであった。
(Comparative Example 1)
In the above example, a sample was prepared in the same manner except that it was not rolled, and a test cell was prepared using this sample. When rolling was not performed, that is, when the number of rolling times was 0, the packing density d was 1.1 g / ml.

図5は、このサンプルを用いた充放電曲線を示す図である。図5に示すように、放電容量は8.47mAh/gであり、非常に低い放電容量しか得ることができなかった。   FIG. 5 is a diagram showing a charge / discharge curve using this sample. As shown in FIG. 5, the discharge capacity was 8.47 mAh / g, and only a very low discharge capacity could be obtained.

(比較例2)
上記実施例において、スリット幅を15(×10μm)と一定にし、この条件で8回圧延を行う以外は、上記実施例と同様にしてサンプルを作製し、このサンプルを用いて試験セルを作製した。充填密度dは2.1g/mlであった。
(Comparative Example 2)
In the above example, a sample was prepared in the same manner as in the above example except that the slit width was fixed at 15 (× 10 μm) and rolling was performed 8 times under this condition, and a test cell was prepared using this sample. . The packing density d was 2.1 g / ml.

図6は、このサンプルを用いた試験セルの充放電曲線を示す図である。図6に示すように、放電容量は約90mAh/gと低くなっていることがわかる。   FIG. 6 is a diagram showing a charge / discharge curve of a test cell using this sample. As shown in FIG. 6, it can be seen that the discharge capacity is as low as about 90 mAh / g.

(比較例3)
上記実施例において、スリット幅を7.5(×10μm)とし、この条件で4回圧延を行ったこと以外は、上記実施例と同様にしてサンプルを作製し、このサンプルを用いて試験セルを作製した。充填密度dは3.4g/mlであった。このサンプルを用いた試験セルにおいては、作用極と対極とが短絡してしまい、充放電することができなかった。
(Comparative Example 3)
In the above example, a sample was prepared in the same manner as in the above example except that the slit width was 7.5 (× 10 μm) and rolling was performed four times under this condition, and a test cell was prepared using this sample. Produced. The packing density d was 3.4 g / ml. In the test cell using this sample, the working electrode and the counter electrode were short-circuited and could not be charged / discharged.

以上のことから、各圧延回数において、充填密度dが図1に示す上方の点線と下方の点線の間の範囲内となるように圧延することにより、高い充放電容量を示す電極とすることができることがわかる。   From the above, by rolling so that the filling density d is within the range between the upper dotted line and the lower dotted line shown in FIG. I understand that I can do it.

圧延回数と活物質層の充填密度との関係を示す図。The figure which shows the relationship between the frequency | count of rolling and the packing density of an active material layer. 本発明の実施例において作製した試験セルを示す分解斜視図。The disassembled perspective view which shows the test cell produced in the Example of this invention. 本発明に従う一実施例における充放電曲線を示す図。The figure which shows the charging / discharging curve in one Example according to this invention. 本発明に従う他の実施例における充放電曲線を示す図。The figure which shows the charging / discharging curve in the other Example according to this invention. 比較例の充放電曲線を示す図。The figure which shows the charging / discharging curve of a comparative example. 比較例の充放電曲線を示す図。The figure which shows the charging / discharging curve of a comparative example.

符号の説明Explanation of symbols

1…ニッケル製タブ
2…リチウム金属板
3…セパレータ
4…活物質層
5…アルミニウム箔
6…リチウム金属板
7…ニッケル製タブ
8…外装体
8a…外装体のシール部
9…セパレータ
10…ガラス板
DESCRIPTION OF SYMBOLS 1 ... Nickel tab 2 ... Lithium metal plate 3 ... Separator 4 ... Active material layer 5 ... Aluminum foil 6 ... Lithium metal plate 7 ... Nickel tab 8 ... Exterior body 8a ... Sealing part of exterior body 9 ... Separator 10 ... Glass plate

Claims (4)

電子伝導性を有しない多孔質体の上に、電極活物質を含むスラリーを塗布して活物質層を形成した後、前記多孔質体とともに前記活物質層を圧延する非水電解質電池用電極の製造方法であって、
圧延回数をx、前記活物質層の充填密度をdとしたとき、充填密度dが、以下の式を満足するように前記圧延を行うことを特徴とする非水電解質電池用電極の製造方法。
0.5515Ln(x)+1.9859≦d≦0.5515Ln(x)+2.5859
(ここで、xは2≦x≦11を満足する自然数である。)
An electrode for a nonaqueous electrolyte battery in which an active material layer is formed by applying a slurry containing an electrode active material on a porous body having no electron conductivity, and then rolling the active material layer together with the porous body. A manufacturing method comprising:
A method for producing an electrode for a nonaqueous electrolyte battery, wherein the rolling is performed such that the number of rolling is x and the packing density of the active material layer is d, so that the packing density d satisfies the following formula.
0.5515Ln (x) + 1.90959 ≦ d ≦ 0.5515Ln (x) +2.5859
(Here, x is a natural number satisfying 2 ≦ x ≦ 11.)
前記多孔質体がセパレータであることを特徴とする請求項1に記載の非水電解質電池用電極の製造方法。   The method for producing an electrode for a nonaqueous electrolyte battery according to claim 1, wherein the porous body is a separator. 前記電極活物質がリチウム含有遷移金属酸化物であることを特徴とする請求項1または2に記載の非水電解質電池用電極の製造方法。   The method for producing an electrode for a nonaqueous electrolyte battery according to claim 1, wherein the electrode active material is a lithium-containing transition metal oxide. 請求項1〜3のいずれか1項に記載の方法で製造された電極を用いたことを特徴とする非水電解質電池。
A nonaqueous electrolyte battery using the electrode manufactured by the method according to claim 1.
JP2004076314A 2004-03-17 2004-03-17 Non-aqueous electrolyte battery manufacturing method and non-aqueous electrolyte battery Expired - Fee Related JP4514484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076314A JP4514484B2 (en) 2004-03-17 2004-03-17 Non-aqueous electrolyte battery manufacturing method and non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076314A JP4514484B2 (en) 2004-03-17 2004-03-17 Non-aqueous electrolyte battery manufacturing method and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2005267952A true JP2005267952A (en) 2005-09-29
JP4514484B2 JP4514484B2 (en) 2010-07-28

Family

ID=35092286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076314A Expired - Fee Related JP4514484B2 (en) 2004-03-17 2004-03-17 Non-aqueous electrolyte battery manufacturing method and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4514484B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154955A (en) * 2010-01-28 2011-08-11 Hitachi Ltd Lithium ion secondary battery
CN103493253A (en) * 2011-07-20 2014-01-01 株式会社Lg化学 Separator, manufacturing method thereof, and electrochemical device employing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927343A (en) * 1995-07-10 1997-01-28 Hitachi Ltd Nonaqueous secondary battery and manufacture thereof
JPH09259867A (en) * 1996-03-15 1997-10-03 Toshiba Corp Nonaqueous electrolyte secondary battery, and manufacture of nonaqueous electrolyte secondary battery
JP2000323129A (en) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd Manufacture of battery electrode
JP2002184394A (en) * 2000-12-12 2002-06-28 Matsushita Electric Ind Co Ltd Sheet material rolling method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927343A (en) * 1995-07-10 1997-01-28 Hitachi Ltd Nonaqueous secondary battery and manufacture thereof
JPH09259867A (en) * 1996-03-15 1997-10-03 Toshiba Corp Nonaqueous electrolyte secondary battery, and manufacture of nonaqueous electrolyte secondary battery
JP2000323129A (en) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd Manufacture of battery electrode
JP2002184394A (en) * 2000-12-12 2002-06-28 Matsushita Electric Ind Co Ltd Sheet material rolling method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154955A (en) * 2010-01-28 2011-08-11 Hitachi Ltd Lithium ion secondary battery
CN103493253A (en) * 2011-07-20 2014-01-01 株式会社Lg化学 Separator, manufacturing method thereof, and electrochemical device employing same
JP2014512650A (en) * 2011-07-20 2014-05-22 エルジー・ケム・リミテッド Separator, method for producing the same, and electrochemical device including the same
US9287545B2 (en) 2011-07-20 2016-03-15 Lg Chem, Ltd. Separator, manufacturing method of the same, and electrochemical device having the same

Also Published As

Publication number Publication date
JP4514484B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
US8815449B2 (en) Positive electrode and non-aqueous electrolyte secondary battery
US6511776B1 (en) Polymer electrolyte battery and polymer electrolyte
US20070072081A1 (en) Non-aqueous electrolyte secondary battery
US20130280600A1 (en) Secondary battery
US20060141359A1 (en) Lithium secondary battery
WO2017082083A1 (en) Lithium ion secondary battery and method for manufacturing same
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2008108689A (en) Nonaqueous electrolyte secondary battery
JP2010062113A (en) Lithium ion secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP4753593B2 (en) Nonaqueous electrolyte secondary battery
US10193144B2 (en) High capacity lithium ion batteries having oxides, peroxides, or superoxides as cathode active material
US20180198120A1 (en) Lithium secondary battery
JP2023001306A (en) Electrode for lithium secondary battery
JP6946694B2 (en) Lithium ion secondary battery
JP5372589B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2003123764A (en) Nonaqueous secondary battery
JPH10255767A (en) Set battery for use in electric vehicle
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
US20220052336A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2007134245A (en) Electrolyte solution and battery
EP3358652B1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees