JP2005267908A - External electrode type discharge lamp and its manufacturing method - Google Patents

External electrode type discharge lamp and its manufacturing method Download PDF

Info

Publication number
JP2005267908A
JP2005267908A JP2004075070A JP2004075070A JP2005267908A JP 2005267908 A JP2005267908 A JP 2005267908A JP 2004075070 A JP2004075070 A JP 2004075070A JP 2004075070 A JP2004075070 A JP 2004075070A JP 2005267908 A JP2005267908 A JP 2005267908A
Authority
JP
Japan
Prior art keywords
external electrode
glass container
discharge lamp
gas
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004075070A
Other languages
Japanese (ja)
Inventor
Maki Minamoto
真樹 皆本
Seiichiro Fujioka
誠一郎 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hotalux Ltd
Original Assignee
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lighting Ltd filed Critical NEC Lighting Ltd
Priority to JP2004075070A priority Critical patent/JP2005267908A/en
Priority to KR1020050017623A priority patent/KR100705095B1/en
Priority to TW094106649A priority patent/TW200535905A/en
Priority to US11/071,841 priority patent/US7215080B2/en
Publication of JP2005267908A publication Critical patent/JP2005267908A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent perforation from occurring in a part just below an external electrode on the inside surface of a glass vessel even when an external electrode type discharge lamp is lit with a voltage equal to that of a conventional one. <P>SOLUTION: For this external electrode type discharge lamp including the sealed glass vessel, a gas 4 of a discharge medium and the external electrodes 2A and 2B formed on the outside surface of the glass vessel for generating dielectric barrier discharge in the glass vessel 1, magnesium oxide films 5A and 5B are formed on parts of the inside surface of the glass vessel 1 including at least parts corresponding to the external electrodes 2A and 2B. The magnesium oxide films 5A and 5B are obtained from a solution containing one or more kinds of magnesium acetate and magnesium nitrate by means of baking. Since the magnesium film formed by this method has a continuous structure and denser than a film of metal oxide powder, its spatter prevention capability against ions of the gas 4 of a discharge medium is high in a part just below the electrode of the glass vessel. It is particularly effective when the gas 4 of the discharge medium contains mercury gas having large mass. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、外部電極方式の放電ランプに関し、特に、外部電極直下のガラス容器の穴明き防止に有効な技術に関する。   The present invention relates to an external electrode type discharge lamp, and more particularly, to a technique effective for preventing perforation of a glass container directly under an external electrode.

放電ランプは、透明な中空密閉の容器の中に気体を封入し、これを放電媒体として容器内に放電を生じさせ、放電によって放射された光を容器外に取り出して照明などの用途に用いるものである。そして、放電ランプを電極が設けられている場所という観点から分類した場合の形式の一つに、外部電極方式の放電ランプがある。   Discharge lamps are used for lighting and other purposes by enclosing gas in a transparent hollow sealed container, using this as a discharge medium to cause discharge in the container, and extracting the light emitted by the discharge outside the container. It is. An external electrode type discharge lamp is one of the types in which the discharge lamp is classified from the viewpoint of the location where the electrode is provided.

外部電極方式の放電ランプは、電極を容器の外部に設けた点が構造上の特徴になっており、容器内に電極をもたないことから無電極放電ランプとも呼ばれる。容器内に電極を設けた構造のランプに比べ、容器の外部から容器内の電極へ通じるリードの封止が不要であるので製造が容易である、容器を細管化したり薄型化することができるので小形化に有利である、点灯時の電子衝撃による電極の損傷や、電極のスパッタリングによる放電容器内部の汚れの発生がないので、点滅・点灯を繰り返したときの寿命が短くなる度合いが小さい等の多くの利点を持っていることから、例えば液晶表示装置のバックライトの光源や、複写機或いはファクシミリ装置その他イメージスキャナのような各種OA機器における、原稿照射用の光源などの用途に多く用いられている。   An external electrode type discharge lamp has a structural feature in that an electrode is provided outside the container, and is also referred to as an electrodeless discharge lamp because it does not have an electrode in the container. Compared to a lamp with a structure in which an electrode is provided in the container, it is not necessary to seal the lead that leads from the outside of the container to the electrode in the container, and therefore it is easy to manufacture. It is advantageous for downsizing, because there is no damage to the electrode due to electron impact at the time of lighting or contamination inside the discharge vessel due to sputtering of the electrode, so the degree of shortening the life when repeated blinking and lighting is small Since it has many advantages, it is often used for applications such as backlight light sources for liquid crystal display devices, light sources for irradiating documents in various office automation equipment such as copiers, facsimile machines, and image scanners. Yes.

放電容器には主にガラスが使われ、円筒状をしたものが多い。電極にはいろいろな種類の形状のものがあり、例えば特許文献1に例示されているように、円筒形のガラス容器の外側を円周に沿って取り巻くリング状の一対の電極を、ガラス容器の長手方向に間を空けて並べたもの(便宜上、リング形と記す)がある。或いは、ガラス容器の長手方向に沿う長い二本の帯状の電極を、ガラス容器の円周に沿ってスリットを空けて並べた、いわゆるアパーチャー形と称されるものがある。更には、平行な二本の細長い電極を円筒状のガラス容器に螺旋状に巻きつけたもの(同、螺旋形)なども考えられている。   Most of the discharge vessels are made of glass and cylindrical. There are various types of electrodes. For example, as exemplified in Patent Document 1, a pair of ring-shaped electrodes that surround the outer circumference of a cylindrical glass container along the circumference thereof are provided on the glass container. Some of them are arranged in the longitudinal direction with a gap (for the sake of convenience, referred to as a ring shape). Alternatively, there is a so-called aperture type in which two long strip-shaped electrodes along the longitudinal direction of the glass container are arranged with a slit along the circumference of the glass container. Furthermore, the thing which spirally wound two parallel elongate electrodes around the cylindrical glass container (same, spiral shape) etc. is also considered.

図2に、従来の外部電極方式放電ランプの斜視図及び断面図を、リング形の放電ランプを例にして示す。図2を参照して、密閉された円筒状のガラス容器1の両端近傍の外面に、ガラス容器をその円周に沿って取り巻く二つのリング状の外部電極2A,2Bが設けられている。電極の材質には、一般的には金属が用いられることが多いが、例えばITOのような透明の導電材を用いたり、これと金属とを併用したりすることもある。   FIG. 2 shows a perspective view and a cross-sectional view of a conventional external electrode type discharge lamp, taking a ring-shaped discharge lamp as an example. Referring to FIG. 2, two ring-shaped external electrodes 2 </ b> A and 2 </ b> B that surround the glass container along its circumference are provided on the outer surfaces in the vicinity of both ends of the sealed cylindrical glass container 1. In general, a metal is often used as the material of the electrode. However, a transparent conductive material such as ITO may be used, or a metal may be used in combination.

ガラス容器1の内部の空間には、放電媒体の気体4として、キセノン(Xe)やアルゴン(Ar)のような希ガスと水銀ガスとの混合ガスが、例えば2×10 〜15×10 Pa(15〜113Torr)程度の圧力で封入されている。ガラス容器1の内表面には、必要に応じて、蛍光体膜3が形成されている。尚、放電媒体の気体4には、水銀を含まない希ガスだけが用いられることもある。よく知られている、希ガス放電ランプである。 In the space inside the glass container 1, a mixed gas of a rare gas such as xenon (Xe) or argon (Ar) and mercury gas is used as the discharge medium gas 4, for example, 2 × 10 3 to 15 × 10 3. It is sealed at a pressure of about Pa (15 to 113 Torr). A phosphor film 3 is formed on the inner surface of the glass container 1 as necessary. In addition, only the rare gas which does not contain mercury may be used for the gas 4 of a discharge medium. It is a well-known rare gas discharge lamp.

この外部電極方式の放電ランプにおいて、図2(b)に示すように、二つの外部電極2A,2Bの間に、例えば周波数:25kHz、電圧:2500V程度の正弦波あるいはパルス波というような高周波、高電圧の交流電圧を印加する。すると、誘電体であるガラス容器1で、外部電極2A,2Bの直下のガラスに誘電分極が生じ、その部分の内表面が電極として作用する。これにより、ガラス容器1内に高電圧が導入されて、容器内に誘電体バリア放電が生じる。この誘電体バリア放電によって放電媒体の気体4中の水銀が紫外線を放射する。蛍光体膜3はその水銀が放射した紫外線によって励起されて、例えば可視光のような、励起紫外光とは波長の異なる光を発光する。そして、その蛍光体膜3が発した波長変換された光が、透明ガラス容器1を通して外部に放射される。例えば殺菌灯などのように、水銀輝線の紫外線をそのまま利用するときは、蛍光体膜3は設けないで、水銀が放射した紫外光をそのままガラス容器1を通して取り出す。   In this external electrode type discharge lamp, as shown in FIG. 2B, a high frequency such as a sine wave or a pulse wave with a frequency of about 25 kHz and a voltage of about 2500 V is provided between the two external electrodes 2A and 2B. Apply high voltage AC voltage. Then, in the glass container 1 that is a dielectric, dielectric polarization occurs in the glass immediately below the external electrodes 2A and 2B, and the inner surface of that portion acts as an electrode. As a result, a high voltage is introduced into the glass container 1, and dielectric barrier discharge is generated in the container. Due to this dielectric barrier discharge, mercury in the gas 4 of the discharge medium emits ultraviolet rays. The phosphor film 3 is excited by ultraviolet rays emitted from the mercury, and emits light having a wavelength different from that of the excitation ultraviolet light such as visible light. Then, the wavelength-converted light emitted from the phosphor film 3 is radiated to the outside through the transparent glass container 1. For example, when the ultraviolet ray of mercury emission line is used as it is like a germicidal lamp, the ultraviolet light emitted by mercury is taken out through the glass container 1 without providing the phosphor film 3.

このように、外部電極方式の放電ランプは、同じ放電ランプとはいえ、ランプ容器の内部の両端近傍に電極を設けたいわゆる冷陰極ランプや熱陰極ランプとは、単に電極の配設場所が異なるのみならず、特に、ガラス容器の内表面の外部電極2A,2B直下の部分が電極として作用するという点で、ガラス容器が果たす役割も大きく異なるランプである。   Thus, although the external electrode type discharge lamp is the same discharge lamp, the location of the electrodes is simply different from the so-called cold cathode lamp or hot cathode lamp in which electrodes are provided near both ends inside the lamp vessel. In addition, in particular, the role that the glass container plays is greatly different in that the portion immediately below the external electrodes 2A and 2B on the inner surface of the glass container acts as an electrode.

特開2002−216704号公報(図1〜図10)JP 2002-216704 A (FIGS. 1 to 10)

本発明者らは、従来の外部電極方式の放電ランプにおいて、点灯時間の経過につれて、ガラス容器1の外部電極2A,2B直下の部分に内側から穴が開き始め、進行してゆき、ついには外面にまで達してガラス容器の気密が保たれなくなる現象を見出した。この穴明き現象は、特に放電媒体の気体4に水銀ガスを含む場合に顕著で、早期に現れ進行速度も速かった。   In the conventional external electrode type discharge lamp, the inventors started to open a hole from the inside in the portion immediately below the external electrodes 2A and 2B of the glass container 1 as the lighting time passed, and finally proceeded to the outer surface. And found a phenomenon that the airtightness of the glass container is not maintained. This perforation phenomenon was remarkable especially when the gas 4 of the discharge medium contained mercury gas, and it appeared early and the traveling speed was high.

この現象は、外部電極2A,2B間に印加する高周波交流電圧の電圧を低下させることで軽減できることが分かったが、寿命特性はわずかに良くなるものの、その分、ランプ輝度が低下してしまう。   It has been found that this phenomenon can be reduced by reducing the voltage of the high-frequency AC voltage applied between the external electrodes 2A and 2B. However, although the life characteristics are slightly improved, the lamp brightness is reduced accordingly.

従って、本発明は、外部電極方式の放電ランプにおいて、従来と同じ電圧で点灯したときでも、ガラス容器の外部電極直下の部分に穴明きが生じないようにすることを目的とする。   Therefore, an object of the present invention is to prevent a hole from being generated in a portion of a glass container immediately below an external electrode even when the external electrode type discharge lamp is lit at the same voltage as the conventional one.

中空密閉のガラス容器と、前記ガラス容器内に封入した放電媒体の気体と、前記ガラス容器内に誘電体バリア放電を生じさせるための、ガラス容器の外面に設けた外部電極とを含んでなる外部電極方式の放電ランプにおいて、前記ガラス容器の内表面の、外部電極に相当する部分を少なくとも含む部分に、連続構造の酸化マグネシウム膜を設けたことを特徴とする。   An external comprising a hollow hermetically sealed glass container, a gas of a discharge medium enclosed in the glass container, and an external electrode provided on the outer surface of the glass container for generating a dielectric barrier discharge in the glass container An electrode type discharge lamp is characterized in that a magnesium oxide film having a continuous structure is provided on a portion including at least a portion corresponding to an external electrode on the inner surface of the glass container.

本発明によれば、外部電極方式の放電ランプにおいて、従来と同じ電圧で点灯した場合でも、ガラス容器の外部電極直下の部分に穴明きが生じることを防止できる。   According to the present invention, in an external electrode type discharge lamp, it is possible to prevent perforation from occurring in a portion immediately below the external electrode of the glass container even when the discharge lamp is lit at the same voltage as the conventional one.

次に、本発明の実施の形態について、図面を参照して説明する。本発明の一実施の形態に係るリング形外部電極方式の水銀蛍光ランプの断面図を示す図1を参照して、この図に示す水銀蛍光ランプは、外観は従来の水銀蛍光ランプと同じである(図2(a)参照)。また、ガラス容器内のガスの成分や圧力、蛍光体膜の組成なども同じである。しかし、図1に示すように、ガラス容器1の内表面の外部電極2A,2B直下の部分に、酸化マグネシウム(MgO)膜5A,5Bが形成されている点が異なっている。この酸化マグネシウム膜5A,5Bは、酢酸マグネシウム、硝酸マグネシウム又はそれらの混合溶液を焼成して得られたもので、ガラス容器1の内表面上にリング状に設けられている。   Next, embodiments of the present invention will be described with reference to the drawings. Referring to FIG. 1 showing a sectional view of a ring-type external electrode type mercury fluorescent lamp according to an embodiment of the present invention, the appearance of the mercury fluorescent lamp shown in this figure is the same as that of a conventional mercury fluorescent lamp. (See FIG. 2 (a)). Further, the gas components and pressure in the glass container, the composition of the phosphor film, and the like are the same. However, as shown in FIG. 1, the difference is that magnesium oxide (MgO) films 5A and 5B are formed on the inner surface of the glass container 1 immediately below the external electrodes 2A and 2B. The magnesium oxide films 5A and 5B are obtained by firing magnesium acetate, magnesium nitrate or a mixed solution thereof, and are provided in a ring shape on the inner surface of the glass container 1.

本発明者らは、図1に示す外部電極方式の水銀蛍光ランプの第1の実施例のもの(実施例1)を以下のようにして製作した。先ず、両端開放の円筒状のガラス容器を準備し、その両端側の外面に、従来公知の方法で、リング状の外部電極2A,2Bを形成する。   The inventors manufactured the first example (Example 1) of the external electrode type mercury fluorescent lamp shown in FIG. 1 as follows. First, a cylindrical glass container with both ends open is prepared, and ring-shaped external electrodes 2A and 2B are formed on the outer surfaces of both ends by a conventionally known method.

次に、酢酸マグネシウムを適当な溶媒に溶解させた溶液を、ガラス容器1の内表面の、外部電極2A,2Bに当たる部分に塗布し、熱を加えて溶媒を揮発させる。溶媒には、ブタノール、エタノール、或いはプロピルアルコールなどのアルコール系溶媒や純水のような水系溶媒が用いられる。その後、大気雰囲気中で500〜600℃程度の温度で焼成することにより、酸化マグネシウム膜5A,5Bを得る。この酸化マグネシウム膜5A,5Bは、被膜の構成物質が連続している構造をもつ緻密な連続膜であった。   Next, a solution in which magnesium acetate is dissolved in a suitable solvent is applied to the portion of the inner surface of the glass container 1 that contacts the external electrodes 2A and 2B, and heat is applied to volatilize the solvent. As the solvent, an alcohol solvent such as butanol, ethanol or propyl alcohol, or an aqueous solvent such as pure water is used. Thereafter, the magnesium oxide films 5A and 5B are obtained by baking at a temperature of about 500 to 600 ° C. in an air atmosphere. The magnesium oxide films 5A and 5B are dense continuous films having a structure in which the constituent materials of the film are continuous.

その後、従来公知の方法でガラス容器1の内側の面に蛍光体膜3を形成し、ガラス容器内をいったん真空に引いた後、放電媒体の気体4である水銀ガスを含むキセノンガスを封入して、本実施例に係る外部電極方式の水銀蛍光ランプを完成する。   Thereafter, the phosphor film 3 is formed on the inner surface of the glass container 1 by a conventionally known method, and after the inside of the glass container is evacuated, a xenon gas containing mercury gas as the gas 4 of the discharge medium is sealed. Thus, the external electrode type mercury fluorescent lamp according to this example is completed.

尚、外部電極2A,2Bの形成については、上に述べた例では、例えば導電性ペーストの焼成で形成するために、一番最初に形成してある。使用する蛍光体膜3によっては、加熱によって性質が変化するものもあることから、外部電極の形成に加熱を必要とするような方法を採るときは、蛍光体膜3の形成に先立って外部電極を形成しておくことが好ましい。外部電極2A,2Bに例えばアルミニウム箔を用い、これをガラス容器1の外面に接着などの方法で固着させるのであれば、蛍光体膜3の形成の後に外部電極を形成することもできる。すなわち、蛍光体膜3を形成した後、放電媒体の気体4を封入する前に外部電極を形成する、或いは、先に放電媒体の気体4を封入してから、一番最後に外部電極を形成してもよい。   The external electrodes 2A and 2B are formed first in the above-described example, for example, because they are formed by firing a conductive paste. Depending on the phosphor film 3 to be used, the property may be changed by heating. Therefore, when adopting a method that requires heating to form the external electrode, the external electrode is formed prior to the formation of the phosphor film 3. Is preferably formed. If, for example, an aluminum foil is used for the external electrodes 2A and 2B and is fixed to the outer surface of the glass container 1 by a method such as adhesion, the external electrode can be formed after the phosphor film 3 is formed. That is, after the phosphor film 3 is formed, the external electrode is formed before the discharge medium gas 4 is sealed, or the discharge electrode gas 4 is sealed first and the external electrode is formed last. May be.

次に、第2の実施例として、酸化マグネシウム膜5A,5Bを硝酸マグネシウムの焼成で形成した以外は実施例1と同じ外部電極方式水銀蛍光ランプ(実施例2)を制作した。本実施例において、酸化マグネシウム膜5A,5Bは、次のようにして形成した。すなわち、硝酸マグネシウムを適当な溶媒に溶解させ、これをガラス容器1の内表面の外部電極2A,2Bに当たる部分に塗布する。そして、熱を加えて溶媒を揮発させ、更に、大気雰囲気中で500〜600℃程度の温度で焼成することにより、酸化マグネシウム膜5A,5Bを得た。この酸化マグネシウム膜5A,5Bは、被膜の構成物質が連続している構造をもつ緻密な連続膜であった。   Next, as a second example, the same external electrode type mercury fluorescent lamp (Example 2) as in Example 1 was produced except that the magnesium oxide films 5A and 5B were formed by firing magnesium nitrate. In this embodiment, the magnesium oxide films 5A and 5B are formed as follows. That is, magnesium nitrate is dissolved in a suitable solvent, and this is applied to the portion of the inner surface of the glass container 1 that corresponds to the external electrodes 2A and 2B. Then, heat was applied to volatilize the solvent, and further, the magnesium oxide films 5A and 5B were obtained by firing at a temperature of about 500 to 600 ° C. in an air atmosphere. The magnesium oxide films 5A and 5B are dense continuous films having a structure in which the constituent materials of the film are continuous.

実施例1に係る外部電極方式水銀蛍光ランプも、実施例2に係る外部電極方式水銀蛍光ランプも、従来の水銀蛍光ランプと同様に、二つの外部電極2A,2Bの間に高周波、高電圧の交流電圧を加えることによって放電させる。しかしながら、どちらの実施例においても、ガラス容器1の外部電極2A,2B直下の部分に穴明きが生じることはなかった。従来、放電開始後約3000時間あたりから、ガラス容器の穴明きにより瞬発的に点灯不能になるものが発生し始めるのに対し、実施例1,2においては、この程度の時間ではガラス容器1の内表面に目視で確認できる程度の変化は認められなかった。これは、次のように考えられる。   Both the external electrode type mercury fluorescent lamp according to Example 1 and the external electrode type mercury fluorescent lamp according to Example 2 have a high frequency and high voltage between the two external electrodes 2A and 2B, as in the conventional mercury fluorescent lamp. Discharge by applying an alternating voltage. However, in either embodiment, no hole was generated in the portion of the glass container 1 immediately below the external electrodes 2A and 2B. Conventionally, from about 3000 hours after the start of discharge, a thing that cannot be turned on instantaneously due to the perforation of the glass container starts to occur, whereas in Examples 1 and 2, the glass container 1 is used in this degree of time. There was no change that could be visually confirmed on the inner surface. This is considered as follows.

先に述べたように、外部電極方式の放電ランプでは、ガラス容器1の内表面の外部電極2A,2Bの直下の部分は、放電の際、電極として作用する。そこで、点灯の最中には、その電極として作用しているガラス容器の内表面部分に、水銀のイオンが加速されて強く打ち込まれ、スパッタリングが生じる。保護膜が無くガラス容器1の内表面の上記部分が剥き出しのときや、内表面に直接蛍光体膜3が形成されている場合は、水銀イオンはスパッタによりガラスを削り、内部に浸透する。水銀イオンのスパッタ、浸透が繰り返されると、ガラスの厚さが減少すると同時に温度が上昇して耐電圧が低下するため、局部的に放電電流が増大する。以後、耐電圧の低下、放電電流の増大という正帰還により急激に熱暴走を起こして、最終的にガラスに穴が開いてしまう。実施例1及び実施例2で保護膜として用いた酸化マグネシウム膜5A,5Bが、加速水銀イオンのガラス容器へのスパッタを阻止しているのである。   As described above, in the external electrode type discharge lamp, the portion immediately below the external electrodes 2A and 2B on the inner surface of the glass container 1 acts as an electrode during discharge. Therefore, during lighting, mercury ions are accelerated and strongly implanted into the inner surface portion of the glass container acting as the electrode, and sputtering occurs. When there is no protective film and the above portion of the inner surface of the glass container 1 is exposed, or when the phosphor film 3 is formed directly on the inner surface, mercury ions scrape the glass by sputtering and penetrate into the interior. When the sputtering and penetration of mercury ions are repeated, the glass thickness decreases and at the same time the temperature rises and the withstand voltage decreases, so the discharge current increases locally. Thereafter, thermal runaway suddenly occurs due to positive feedback such as a decrease in withstand voltage and an increase in discharge current, and finally a hole is opened in the glass. Magnesium oxide films 5A and 5B used as protective films in Example 1 and Example 2 prevent acceleration mercury ions from being sputtered onto the glass container.

ここで、酸化マグネシウム膜5A,5Bが緻密な連続構造の膜であることが、重要である。すなわち、本発明者らは、金属酸化物の粉体からなる膜を保護膜に用いることを、いくつかの金属酸化物について試みた。例えば蛍光体膜を形成するときと同じような方法で、金属酸化物の粉体を溶媒に分散させ、バインダーなどを加えて泥漿を作り、その泥漿をガラス容器1の内表面に塗布、乾燥させて保護膜用の被膜を形成するのである。しかしながら、粉体の被膜からなる保護膜の場合は、水銀が被膜の粒子間の隙間に吸着されて、放電媒体の気体4中の水銀の量が放電時間の経過と共に減少し、この原因によるランプの短寿命化という副作用が現れた。また、粒子間の隙間に吸着された水銀がガラス容器1のアルカリ成分と反応してガラス侵蝕していくという好ましくない現象も認められた。   Here, it is important that the magnesium oxide films 5A and 5B have a dense continuous structure. That is, the present inventors have attempted to use a film made of metal oxide powder as a protective film for some metal oxides. For example, a metal oxide powder is dispersed in a solvent in the same manner as when forming a phosphor film, and a slurry is formed by adding a binder and the slurry is applied to the inner surface of the glass container 1 and dried. Thus, a protective film is formed. However, in the case of a protective film made of a powder film, mercury is adsorbed in the gaps between the particles of the film, and the amount of mercury in the gas 4 of the discharge medium decreases as the discharge time elapses. The side effect of shortening the lifespan appeared. In addition, an undesirable phenomenon was observed in which mercury adsorbed in the gaps between the particles reacted with the alkali component of the glass container 1 to cause glass erosion.

これに対し、実施例1,2においては、水銀の減少やガラス容器の侵蝕は起こらなかった。実施例1,2における酸化マグネシウム膜5A,5Bが緻密な連続構造の膜であるからであると考えられる。また、加速水銀イオンに対する阻止能力の観点から見た場合、粒子どうしの間に空間が多い粉体使用の保護膜より、連続構造の被膜のほうが阻止能力は高いと予測される。この点からも、連続構造の被膜が保護膜に適していると言える。   On the other hand, in Examples 1 and 2, mercury reduction and glass container erosion did not occur. This is considered to be because the magnesium oxide films 5A and 5B in Examples 1 and 2 are dense continuous structures. Further, from the viewpoint of the stopping ability against accelerated mercury ions, it is predicted that the blocking film having a continuous structure has a higher stopping ability than the protective film using powder having a large space between particles. Also from this point, it can be said that the continuous film is suitable for the protective film.

なお、外部電極方式の放電ランプにおいて、電極として作用しているガラス容器の内表面部分に対する放電媒体の気体のイオンによるスパッタは、水銀を含まない希ガスのみの場合であっても当然生じていることであるが、ガラスの穴明き現象が水銀ガスを含む場合に特に顕著であるのは、水銀イオンはXe,Kr,Ar,Neなどに代表される放電ランプ用の希ガスに比べて重く、スパッタ効果が大きいからであると推測される。   In the external electrode type discharge lamp, the sputtering of the discharge medium gas ions to the inner surface portion of the glass container acting as an electrode naturally occurs even in the case of only a rare gas not containing mercury. In particular, the phenomenon of glass drilling is particularly remarkable when mercury gas is included. Mercury ions are heavier than rare gases for discharge lamps typified by Xe, Kr, Ar, Ne, and the like. It is presumed that the sputtering effect is large.

本発明者らは、酢酸マグネシウムと硝酸マグネシウムとを共に溶媒に溶解させた溶液を用い、これをガラス容器の内表面に塗布、乾燥、焼成して、酸化マグネシウム膜5A,5Bを形成した(実施例3)。この実施例3の外部電極方式水銀蛍光ランプについてガラス容器の穴明きを調査した結果、実施例1及び実施例2と同様に、ガラス容器の穴明き防止効果が認められることを確認した。酢酸マグネシウムと硝酸マグネシウムの混合比率による効果の相違は認められなかった。   The present inventors used a solution in which magnesium acetate and magnesium nitrate were both dissolved in a solvent, and applied, dried and fired to the inner surface of the glass container to form the magnesium oxide films 5A and 5B (implementation). Example 3). As a result of investigating the perforation of the glass container for the external electrode type mercury fluorescent lamp of Example 3, it was confirmed that the effect of preventing perforation of the glass container was observed as in Example 1 and Example 2. The difference of the effect by the mixing ratio of magnesium acetate and magnesium nitrate was not recognized.

尚、保護膜(酢酸マグネシウム、或いは硝酸マグネシウム、或いは酢酸マグネシウムと硝酸マグネシウムの混合溶液の焼成による酸化マグネシウム膜)は、ガラス容器1の内表面の、少なくとも外部電極2A,2Bの直下に形成されていれば本発明の目的を達することはできるのであるが、この保護膜は透光性であるので、ランプ容器1の内表面の全域に渡って形成してもよい。このようにすると、保護膜形成工程でガラス容器1の内表面に酢酸マグネシウムや硝酸マグネシウムあるいはそれらの混合溶液を塗布する際に、外部電極2A,2Bに当たる部分以外をマスクする必要がないので、そのぶん保護膜形成工程が簡略化、簡素化され、製造コストを削減することができる。   The protective film (magnesium acetate, or magnesium nitrate, or a magnesium oxide film obtained by firing a mixed solution of magnesium acetate and magnesium nitrate) is formed on the inner surface of the glass container 1 immediately below at least the external electrodes 2A and 2B. Although the object of the present invention can be achieved, the protective film is translucent and may be formed over the entire inner surface of the lamp vessel 1. In this case, when applying magnesium acetate, magnesium nitrate, or a mixed solution thereof to the inner surface of the glass container 1 in the protective film forming step, it is not necessary to mask other than the portion that contacts the external electrodes 2A, 2B. Perhaps the protective film forming process is simplified and simplified, and the manufacturing cost can be reduced.

また、本発明は、蛍光体を用いない放電ランプにも適用できることはもちろんであるが、水銀ガスを含む気体と蛍光体膜3とを用いる、いわゆる水銀蛍光ランプの場合は、以下のようにするとより良い。すなわち、蛍光体膜3は、一般に、粒状の蛍光体からなり、蛍光体の粒子どうしの間には隙間が多い。そのため、水銀蛍光ランプでは、上記蛍光体粒子の間の隙間に水銀が凝集し、点灯時間の経過につれてガラス容器1内の水銀ガスの蒸気圧が低下してゆき、ランプの輝度が低下してしまうので、蛍光体膜3の面積はできるだけ小さい方が望ましい。そこで、外部電極方式の水銀蛍光ランプの場合は、外部電極2A,2Bに当たる部分には蛍光体膜を形成しない方が好ましい。   In addition, the present invention can be applied to a discharge lamp that does not use a phosphor, but in the case of a so-called mercury fluorescent lamp using a gas containing mercury gas and the phosphor film 3, the following is performed. Better. That is, the phosphor film 3 is generally made of a granular phosphor, and there are many gaps between the phosphor particles. Therefore, in the mercury fluorescent lamp, mercury aggregates in the gaps between the phosphor particles, and the vapor pressure of mercury gas in the glass container 1 decreases as the lighting time elapses, and the brightness of the lamp decreases. Therefore, it is desirable that the area of the phosphor film 3 is as small as possible. Therefore, in the case of an external electrode type mercury fluorescent lamp, it is preferable not to form a phosphor film on the portions corresponding to the external electrodes 2A and 2B.

尚また、外部電極については、リング状の二つの電極2A,2Bを形成した場合を例示したが、電極数は特に二つに限るわけではない。電位的に一対になればよいのであって、幾何学的な電極の数はいくつであってもよい。電極の形状についても、リング形のものに限らず、アパーチャー形や螺旋形のものでもよい。更に、ガラス容器は円筒状のものに限らず、平たい角筒状のガラス容器を用いた平板形の放電ランプであってもよい。   In addition, as for the external electrodes, the case where two ring-shaped electrodes 2A and 2B are formed is illustrated, but the number of electrodes is not limited to two. Any number of geometric electrodes may be used as long as they are paired in terms of potential. The shape of the electrode is not limited to the ring shape but may be an aperture shape or a spiral shape. Further, the glass container is not limited to a cylindrical one, and may be a flat discharge lamp using a flat rectangular glass container.

本発明は、放電媒体の気体に水銀ガスを含む外部電極方式の水銀放電ランプに用いて、特に有効である。   INDUSTRIAL APPLICABILITY The present invention is particularly effective when used for an external electrode type mercury discharge lamp in which mercury gas is contained in the discharge medium gas.

本発明の一実施の形態に係るリング形外部電極方式水銀蛍光ランプの断面図である。It is sectional drawing of the ring-shaped external electrode system mercury fluorescent lamp which concerns on one embodiment of this invention. 従来の外部電極方式水銀蛍光ランプの一例の斜視図及び断面図である。It is the perspective view and sectional drawing of an example of the conventional external electrode system mercury fluorescent lamp.

符号の説明Explanation of symbols

1 ガラス容器
2A,2B 外部電極
3 蛍光体膜
4 放電媒体の気体
5A,5B 酸化マグネシウム膜
DESCRIPTION OF SYMBOLS 1 Glass container 2A, 2B External electrode 3 Phosphor film 4 Gas of discharge medium 5A, 5B Magnesium oxide film

Claims (9)

中空密閉のガラス容器と、前記ガラス容器内に封入した放電媒体の気体と、前記ガラス容器内に誘電体バリア放電を生じさせるための、ガラス容器の外面に設けた外部電極とを含んでなる外部電極方式の放電ランプにおいて、
前記ガラス容器の内表面の、外部電極に相当する部分を少なくとも含む部分に、連続構造の酸化マグネシウム膜を設けたことを特徴とする外部電極方式放電ランプ。
An external comprising a hollow hermetically sealed glass container, a gas of a discharge medium enclosed in the glass container, and an external electrode provided on the outer surface of the glass container for generating a dielectric barrier discharge in the glass container In electrode-type discharge lamps,
An external electrode type discharge lamp, wherein a magnesium oxide film having a continuous structure is provided on a portion including at least a portion corresponding to an external electrode on an inner surface of the glass container.
前記酸化マグネシウム膜は、酢酸マグネシウム及び硝酸マグネシウムの少なくとも一種以上を含む溶液から焼成により形成したものであることを特徴とする、請求項1に記載の外部電極方式放電ランプ。   2. The external electrode discharge lamp according to claim 1, wherein the magnesium oxide film is formed by baking from a solution containing at least one of magnesium acetate and magnesium nitrate. 前記放電媒体の気体が水銀ガスを含むことを特徴とする、請求項1又は請求項2に記載の外部電極方式放電ランプ。   The external electrode discharge lamp according to claim 1 or 2, wherein the gas of the discharge medium contains mercury gas. 前記酸化マグネシウム膜を前記ガラス容器の内表面の全面に設けたことを特徴とする、請求項1乃至3のいずれか1項に記載の外部電極方式放電ランプ。   The external electrode type discharge lamp according to any one of claims 1 to 3, wherein the magnesium oxide film is provided on the entire inner surface of the glass container. 前記酸化マグネシウム膜の上及び酸化マグネシウム膜から露出するガラス容器の内表面の上に蛍光体膜を設けたことを特徴とする、請求項1乃至4のいずれか1項に記載の外部電極方式放電ランプ。   The external electrode system discharge according to any one of claims 1 to 4, wherein a phosphor film is provided on the magnesium oxide film and on an inner surface of a glass container exposed from the magnesium oxide film. lamp. 前記蛍光体膜を、外部電極に相当する部分を除く部分に形成したことを特徴とする、請求項5に記載の外部電極方式放電ランプ。   6. The external electrode discharge lamp according to claim 5, wherein the phosphor film is formed on a portion excluding a portion corresponding to the external electrode. 円筒状の密閉ガラス容器と、
前記円筒状のガラス容器をその円周に沿って取り巻く一対のリング状電極であって、前記ガラス容器の長手方向に沿って間を空けて並べて設けた電極と、
前記ガラス容器内に封入した、水銀ガスを含む放電媒体の気体と、
前記ガラス容器の内表面の外部電極に相当する部分を少なくとも含む部分に設けた、連続構造の酸化マグネシウム膜と、
前記酸化マグネシウム膜の上及び酸化マグネシウムから露出するガラス容器の内表面の上に設けた蛍光体膜であって、前記外部電極に相当する部分を除く部分に形成したた蛍光体膜とを含んでなる外部電極方式放電ランプ。
A cylindrical sealed glass container;
A pair of ring-shaped electrodes surrounding the cylindrical glass container along its circumference, and electrodes arranged side by side along the longitudinal direction of the glass container;
A discharge medium gas containing mercury gas enclosed in the glass container;
A magnesium oxide film having a continuous structure provided in a portion including at least a portion corresponding to an external electrode on the inner surface of the glass container;
A phosphor film provided on the magnesium oxide film and on the inner surface of the glass container exposed from the magnesium oxide, the phosphor film formed on a portion excluding a portion corresponding to the external electrode. External electrode type discharge lamp.
前記酸化マグネシウム膜は、酢酸マグネシウム及び硝酸マグネシウムの少なくとも一種以上を含む溶液から焼成により形成したものであることを特徴とする、請求項7に記載の外部電極方式放電ランプ。   The external electrode discharge lamp according to claim 7, wherein the magnesium oxide film is formed by baking from a solution containing at least one of magnesium acetate and magnesium nitrate. 請求項8に記載の外部電極方式放電ランプを製造する方法であって、
両端開放の円筒状のガラス容器の外面に、前記リング状の一対の外部電極を形成する過程と、
前記ガラス容器の内表面の、前記外部電極に相当する部分を少なくとも含む部分に酢酸マグネシウム及び硝酸マグネシウムの少なくとも一種以上を含む溶液を塗布する過程と、
前記溶液を焼成して前記酸化マグネシウム膜を得る過程と、
前記蛍光体膜を形成する過程と、
前記ガラス容器内に前記水銀ガスを含む放電媒体の気体を封入する過程とを少なくとも含むことを特徴とする外部電極方式放電ランプの製造方法。
A method of manufacturing an external electrode type discharge lamp according to claim 8,
Forming a pair of ring-shaped external electrodes on the outer surface of a cylindrical glass container open at both ends;
Applying a solution containing at least one of magnesium acetate and magnesium nitrate to a portion including at least a portion corresponding to the external electrode on the inner surface of the glass container;
Baking the solution to obtain the magnesium oxide film;
Forming the phosphor film;
A method of manufacturing an external electrode type discharge lamp comprising at least a step of enclosing a gas of a discharge medium containing mercury gas in the glass container.
JP2004075070A 2004-03-05 2004-03-16 External electrode type discharge lamp and its manufacturing method Pending JP2005267908A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004075070A JP2005267908A (en) 2004-03-16 2004-03-16 External electrode type discharge lamp and its manufacturing method
KR1020050017623A KR100705095B1 (en) 2004-03-05 2005-03-03 External electrode type discharge lamp and method of manufacturing the same
TW094106649A TW200535905A (en) 2004-03-05 2005-03-04 External electrode type discharge lamp and method of manufacturing the same
US11/071,841 US7215080B2 (en) 2004-03-05 2005-03-04 External electrode type discharge lamp and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075070A JP2005267908A (en) 2004-03-16 2004-03-16 External electrode type discharge lamp and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005267908A true JP2005267908A (en) 2005-09-29

Family

ID=35092248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075070A Pending JP2005267908A (en) 2004-03-05 2004-03-16 External electrode type discharge lamp and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005267908A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216996A (en) * 2006-02-15 2007-08-30 Toppan Printing Co Ltd Sterilization method and apparatus for hollow receptacle
JP2012064382A (en) * 2010-09-15 2012-03-29 Nec Lighting Ltd External electrode-type lamp and irradiation device using the same
JP2013062478A (en) * 2011-08-24 2013-04-04 Nippon Shokubai Co Ltd Organic electroluminescent element
WO2018200825A1 (en) * 2017-04-28 2018-11-01 Seongsik Chang Energy-efficient plasma processes of generating free charges, ozone, and light
WO2019236693A3 (en) * 2018-06-08 2020-02-06 Seongsik Chang Electrical potential energy to electrical kinetic energy converter, ozone generator, and light emitter
WO2020100733A1 (en) 2018-11-13 2020-05-22 ウシオ電機株式会社 Excimer lamp light source device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216996A (en) * 2006-02-15 2007-08-30 Toppan Printing Co Ltd Sterilization method and apparatus for hollow receptacle
JP2012064382A (en) * 2010-09-15 2012-03-29 Nec Lighting Ltd External electrode-type lamp and irradiation device using the same
JP2013062478A (en) * 2011-08-24 2013-04-04 Nippon Shokubai Co Ltd Organic electroluminescent element
WO2018200825A1 (en) * 2017-04-28 2018-11-01 Seongsik Chang Energy-efficient plasma processes of generating free charges, ozone, and light
US10262836B2 (en) 2017-04-28 2019-04-16 Seongsik Chang Energy-efficient plasma processes of generating free charges, ozone, and light
US10784084B2 (en) 2017-04-28 2020-09-22 Seongsik Chang Energy-efficient plasma processes of generating free charges, ozone, and light
WO2019236693A3 (en) * 2018-06-08 2020-02-06 Seongsik Chang Electrical potential energy to electrical kinetic energy converter, ozone generator, and light emitter
WO2020100733A1 (en) 2018-11-13 2020-05-22 ウシオ電機株式会社 Excimer lamp light source device
KR20210077784A (en) 2018-11-13 2021-06-25 우시오덴키 가부시키가이샤 Excimer lamp light source device
US11270879B2 (en) 2018-11-13 2022-03-08 Ushio Denki Kabushiki Kaisha Excimer lamp light source device

Similar Documents

Publication Publication Date Title
US7215080B2 (en) External electrode type discharge lamp and method of manufacturing the same
US7786661B2 (en) Emissive electrode materials for electric lamps and methods of making
JP2005267908A (en) External electrode type discharge lamp and its manufacturing method
JP3645897B2 (en) External electrode type discharge lamp and manufacturing method thereof
JP5891804B2 (en) Excimer lamp
JP4266855B2 (en) External electrode type discharge lamp and manufacturing method thereof
JP2008034211A (en) Rare gas fluorescent lamp
JP2002203513A (en) High pressure discharge lamp
US7391154B2 (en) Low-pressure gas discharge lamp with gas filling containing tin
JPH04284348A (en) Electrode-less type low pressure discharge lamp
JP2001102004A (en) Inert gas discharge lamp and the lighting apparatus
JP2000164171A (en) Discharge lamp
JP2006134584A (en) Discharge tube
JP2008277015A (en) Fluorescent lamp
JP2011134510A (en) Method of manufacturing electrodeless fluorescent lamp
JP2006024423A (en) Discharge tube
JP3117007B2 (en) Fluorescent lamp, lighting device and display device using the same
US20110266943A1 (en) Mercury dosing method for fluorescent lamps
TWI389164B (en) External electrode fluorescent lamp and apparatus utilizing the same
JP4258368B2 (en) Electrodeless discharge lamp
JP2005166556A (en) External electrode type fluorescent lamp
JP2009199734A (en) Rare gas fluorescent lamp
JPH06111764A (en) Saturation type high pressure metal vapor discharge lamp
JP2005032640A (en) Discharge tube
JP2000100383A (en) Fluorescent lamp and light source device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051215

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070126

A521 Written amendment

Effective date: 20070302

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002