JP2005266703A - Wavelength conversion device - Google Patents

Wavelength conversion device Download PDF

Info

Publication number
JP2005266703A
JP2005266703A JP2004083018A JP2004083018A JP2005266703A JP 2005266703 A JP2005266703 A JP 2005266703A JP 2004083018 A JP2004083018 A JP 2004083018A JP 2004083018 A JP2004083018 A JP 2004083018A JP 2005266703 A JP2005266703 A JP 2005266703A
Authority
JP
Japan
Prior art keywords
crystal
magnesium oxide
holder
doped
lithium tantalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083018A
Other languages
Japanese (ja)
Other versions
JP2005266703A5 (en
Inventor
Tomoshi Iriguchi
知史 入口
Katsuhiko Tokuda
勝彦 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004083018A priority Critical patent/JP2005266703A/en
Publication of JP2005266703A publication Critical patent/JP2005266703A/en
Publication of JP2005266703A5 publication Critical patent/JP2005266703A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make production stages efficient by preventing a variation in refractive index of a QPM element with temperature, instability of the output of an optical resonator, peeling of the QPM element from a holder, and characteristic deterioration. <P>SOLUTION: A polarization inversion type nonlinear optical element uses lithium tantalate crystal with magnesium-oxide doped stoichiometric composition after polarization inversion, and is bonded to an SL holder 21 using lithium tantalate crystal (SLT) with a stoichiometric composition very similar in coefficient of linear expansion to the converting SL element with ultraviolet-ray setting resin 22. This structure prevents the QPM element from deforming owing to temperature variation and the refractive index does not vary, so the output is stabilized. Further, neither peeling of the converting SL element 20 from the SL holder 21 due to strain nor characteristic deterioration is caused. Further, an efficient production stage is enabled that dicing is carried out after the holder material is bonded to a QPM element material wafer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は波長変換素子を用いて基本波光から高調波光を発生させて該高調波光を外方へ取り出すレーザダイオード励起固体レーザ装置に関する。なお以下、レーザダイオード励起固体レーザ装置を波長変換装置と称する。   The present invention relates to a laser diode-pumped solid-state laser device that generates harmonic light from fundamental light using a wavelength conversion element and extracts the harmonic light to the outside. Hereinafter, the laser diode pumped solid-state laser device is referred to as a wavelength converter.

従来より、波長変換装置に使用される疑位相整合(Quasi−Phase−Matching)型波長変換素子(以下、QPM素子)は、均一な分極反転を得るために厚さが0.3〜0.5mmと薄いため、波長変換装置の内方に備えられる光共振器内に配設する場合、取り扱いを容易にするために、QPM素子と同程度の面積を持ち、厚さの厚いホルダに接着される。ホルダの材料は一般に金属が使用されている。以下、図3(a)、(b)、(c)によって、光共振器および、光共振器内に配設される従来のQPM素子の構造および作動を説明する(たとえば特許文献1参照。)。   Conventionally, a quasi-phase-matching wavelength conversion element (hereinafter referred to as a QPM element) used in a wavelength conversion device has a thickness of 0.3 to 0.5 mm in order to obtain uniform polarization inversion. When placed in the optical resonator provided inside the wavelength conversion device, it is bonded to a thick holder having the same area as the QPM element for easy handling. . A metal is generally used as the material of the holder. Hereinafter, the structure and operation of an optical resonator and a conventional QPM element disposed in the optical resonator will be described with reference to FIGS. 3A, 3B, and 3C (see, for example, Patent Document 1). .

図3(a)は光共振器の概略構造を示している。図において、1は励起光を発生するレーザダイオード、2は励起光を集光するレンズ、3は励起光により高調波光を含む基本波光を発光するレーザ媒質である。4は基本波光から1/2の波長の第2高調波光を発生するための変換素子で、前記のQPM素子が使用される。6は変換素子4からの光の一部(基本波光)を変換素子4の方向に反射すると共に、一部(第2高調波光)を外方に透過する出力ミラーである。   FIG. 3A shows a schematic structure of the optical resonator. In the drawing, 1 is a laser diode that generates excitation light, 2 is a lens that collects the excitation light, and 3 is a laser medium that emits fundamental light including harmonic light by the excitation light. Reference numeral 4 denotes a conversion element for generating second harmonic light having a wavelength of ½ from the fundamental light, and the QPM element is used. Reference numeral 6 denotes an output mirror that reflects part of the light from the conversion element 4 (fundamental wave light) in the direction of the conversion element 4 and transmits part of the light (second harmonic light) outward.

レーザダイオード1はレーザ台7に、レンズ2はレンズ台8に固定されている。変換素子4はホルダ5に接着され、分極反転型非線形光学素子を構成している。なお以下、分極反転型非線形光学素子をQPMブロックと称する。   The laser diode 1 is fixed to the laser base 7 and the lens 2 is fixed to the lens base 8. The conversion element 4 is bonded to the holder 5 to constitute a polarization inversion type nonlinear optical element. Hereinafter, the polarization inversion type nonlinear optical element is referred to as a QPM block.

レーザ媒質3、ホルダ5、出力ミラー6はホルダ台9上に固定されている。ホルダ台9はペルチェ素子10上に固定され、ペルチェ素子10はレーザ台7と共にベース11上に固定されている。なおペルチェ素子10は、装置の作動に伴う発生熱の冷却用に挿入されている。レーザ媒質3の左面すなわちレンズ2からの励起光が入射する面には、励起光を効率よく透過させるとともに、基本波光および第2高調波光を高反射率で反射させる反射層(図示せず)が形成されている。   The laser medium 3, the holder 5, and the output mirror 6 are fixed on the holder base 9. The holder base 9 is fixed on the Peltier element 10, and the Peltier element 10 is fixed on the base 11 together with the laser base 7. The Peltier element 10 is inserted for cooling the generated heat accompanying the operation of the apparatus. On the left surface of the laser medium 3, that is, the surface on which the excitation light from the lens 2 is incident, a reflection layer (not shown) that efficiently transmits the excitation light and reflects the fundamental wave light and the second harmonic light with high reflectivity. Is formed.

レーザダイオード1で発生した励起光はレンズ2で収束され、レーザ媒質3を照射する。レーザ媒質3は励起光で励起されることにより、基本波光を含むレーザ光を誘導放出する。誘導放出されたレーザ光は変換素子4に入射し、変換素子4によって基本波光から第2高調波光(以後、高調波光)が発生する。高調波光は出力ミラー6を透過して右方外方に出力されるが、基本波光は出力ミラー6で左方に反射され、さらにレーザ媒質3で右方に反射されるので、レーザ媒質3と出力ミラー6は光共振器を構成し、基本波光はこの間で増幅・発振し、変換素子4によって高調波光に連続変換される。高調波光は出力ミラー6を透過し外方に取り出される。図3(b)はQPMブロックを示している。前記のように、ホルダ5の材料は従来金属が使用されている。固着には通常接着剤が使用される。   The excitation light generated by the laser diode 1 is converged by the lens 2 and irradiates the laser medium 3. The laser medium 3 is excited by excitation light to stimulate and emit laser light including fundamental wave light. The stimulated emission laser light is incident on the conversion element 4, and the conversion element 4 generates second harmonic light (hereinafter referred to as harmonic light) from the fundamental light. The harmonic light passes through the output mirror 6 and is output outward to the right, but the fundamental light is reflected leftward by the output mirror 6 and further reflected rightward by the laser medium 3. The output mirror 6 constitutes an optical resonator, and the fundamental wave light is amplified and oscillated during this period, and is continuously converted into harmonic light by the conversion element 4. The harmonic light passes through the output mirror 6 and is extracted outward. FIG. 3B shows a QPM block. As described above, the material of the holder 5 is conventionally a metal. An adhesive is usually used for fixing.

特開2003−304019号公報(第1頁、第1図)JP 2003-304019 A (first page, FIG. 1)

従来のQPMブロックの構造は以上のとおりであるが、この構造では温度変化によって光共振器の性能が変化し、QPMブロックの寿命を短縮する。さらに加工法も制限される。すなわちホルダ5の材料はたとえば線膨張係数が2.31×10−5の数値を持つアルミニウムであり、変換素子4の材料は線膨張係数がたとえばX軸方向に1.61×10−5、Y軸方向に1.54×10−5、Z軸方向に0.22×10−5の数値を持つタンタル酸リチウム結晶であり、変換素子4とホルダ5は線膨張係数が異なっているため、QPMブロックの使用時の温度が変換素子4をホルダ5に固着した時の温度と異なっている場合、変換素子4とホルダ5の固着界面はバイメタルに類似した力を受け、図3(c)に示すようにQPMブロックに変形を生じる。仮に固着時より高温の場合に図3(c)の変形が生じたとすると、低温の場合には逆の方向の変形が生じる。変形が生じると極微少の変形であっても変換素子4の屈折率が変化し取り出される出力が不安定になる。また歪みによって変換素子4のホルダ5からの剥離、変換素子4の特性劣化が生じる。仮にホルダ5に、ある温度で変換素子4と線膨張係数が等しい合金を製造し使用したとしても、変換素子4の各結晶軸方向の熱膨張係数の異方性に適合する合金を製造することは困難である。また金属では一般に温度上昇により熱膨張係数の数値が増加していくが、その温度依存傾向を変換素子4の各結晶軸方向の温度依存傾向と一致させることは不可能である。 The structure of the conventional QPM block is as described above. In this structure, the performance of the optical resonator changes due to temperature change, and the life of the QPM block is shortened. Furthermore, the processing method is also limited. That is, the material of the holder 5 is, for example, aluminum having a linear expansion coefficient of 2.31 × 10 −5 , and the material of the conversion element 4 is, for example, 1.61 × 10 −5 in the X-axis direction, Y Since it is a lithium tantalate crystal having a numerical value of 1.54 × 10 −5 in the axial direction and 0.22 × 10 −5 in the Z-axis direction, the conversion element 4 and the holder 5 have different linear expansion coefficients. When the temperature when the block is used is different from the temperature when the conversion element 4 is fixed to the holder 5, the fixing interface between the conversion element 4 and the holder 5 receives a force similar to that of the bimetal, and is shown in FIG. Thus, the QPM block is deformed. If the deformation shown in FIG. 3C occurs when the temperature is higher than that at the time of fixing, the deformation in the opposite direction occurs when the temperature is low. When the deformation occurs, even if the deformation is extremely small, the refractive index of the conversion element 4 changes and the output to be taken out becomes unstable. Moreover, peeling of the conversion element 4 from the holder 5 and deterioration of the characteristics of the conversion element 4 occur due to distortion. Even if an alloy having the same linear expansion coefficient as that of the conversion element 4 is manufactured and used in the holder 5 at a certain temperature, an alloy that conforms to the anisotropy of the thermal expansion coefficient in each crystal axis direction of the conversion element 4 is manufactured. It is difficult. In general, the numerical value of the thermal expansion coefficient of a metal increases as the temperature rises, but it is impossible to match the temperature dependency tendency with the temperature dependency tendency of the conversion element 4 in each crystal axis direction.

さらに、変換素子4とホルダ5は硬度が異なる。ホルダ5に使用されるアルミニウムのモース硬度はたとえば2.9であるが、変換素子4に使用されるタンタル酸リチウム結晶のモース硬度は5.5〜6である。このため、変換素子4とホルダ5を固着した状態で端面研磨を行うことに生産技術的に困難が生じ、変換素子4の最初の状態であるQPM素子材料ウェハにまずホルダ材を接着してからダイシング(チップ化)を行い、さらに端面研磨を行うという効率的な生産工程をとることが出来ない。本発明はこのような問題点を解決する波長変換素子および波長変換装置を提供することを目的とする。   Further, the conversion element 4 and the holder 5 are different in hardness. The Mohs hardness of aluminum used for the holder 5 is 2.9, for example, while the Mohs hardness of the lithium tantalate crystal used for the conversion element 4 is 5.5 to 6. For this reason, it is difficult in terms of production technology to perform end face polishing in a state where the conversion element 4 and the holder 5 are fixed, and the holder material is first bonded to the QPM element material wafer which is the initial state of the conversion element 4. Efficient production processes such as dicing (chip formation) and end face polishing cannot be performed. An object of this invention is to provide the wavelength conversion element and wavelength converter which solve such a problem.

本発明が提供する波長変換装置は上記課題を解決するために、ホルダとしてその線膨張係数および硬度がQPM素子の線膨張係数および硬度と同一または極めて近い材料を使用するものである。   In order to solve the above problems, the wavelength conversion device provided by the present invention uses a material having a linear expansion coefficient and hardness equal to or very close to those of the QPM element as a holder.

本発明の波長変換装置は、ホルダの線膨張係数がQPM素子の線膨張係数と同一または極めて近いため、QPM素子に温度変化があってもQPM素子には変形・歪みが殆ど無く、その屈折率が変化しないので出力が安定になる。また歪みによるQPM素子のホルダからの剥離、QPM素子の特性劣化が生じない。さらにホルダの硬度がQPM素子の硬度と同一または極めて近い材料を使用するため、QPM素子材料ウェハにまずホルダ材料を接着してからダイシング(チップ化)を行い、その後で端面研磨を行うという効率的な生産工程をとることが可能になる。   In the wavelength conversion device of the present invention, since the linear expansion coefficient of the holder is the same as or very close to the linear expansion coefficient of the QPM element, the QPM element is hardly deformed or distorted even if the temperature of the QPM element changes, and its refractive index. Since does not change, the output becomes stable. Further, peeling of the QPM element from the holder and deterioration of the characteristics of the QPM element due to strain do not occur. Furthermore, since the holder uses a material whose hardness is the same as or very close to that of the QPM element, the holder material is first bonded to the QPM element material wafer, and then dicing (chip formation) is performed, and then end face polishing is performed efficiently. It becomes possible to take a simple production process.

ホルダにQPM素子の線膨張係数と同一または極めて類似の線膨張係数を持つ材料を使用する。   A material having the same or very similar linear expansion coefficient as that of the QPM element is used for the holder.

図1(a)、(b)は本発明のQPMブロックの1実施例で、(a)は上面図、(b)は側面図を示している。図において変換SL素子20は、分極反転を施した酸化マグネシウムドープの化学量論組成(ストイキオメトリ組成)のタンタル酸リチウム結晶(以下MgO−SLT)をもってなるQPM素子で、紫外線硬化樹脂22によって、化学量論組成(ストイキオメトリ組成)のタンタル酸リチウム結晶(以下SLT)をもってなるSLホルダ21に接着され、QPMブロックを構成している。接着にあたっては、変換SL素子20とSLホルダ21の結晶の結晶軸方向を三次元方向(図のX軸、Y軸、Z軸方向)とも同一にする。   FIGS. 1A and 1B show an embodiment of a QPM block according to the present invention. FIG. 1A shows a top view and FIG. 1B shows a side view. In the figure, the conversion SL element 20 is a QPM element comprising a lithium tantalate crystal (hereinafter referred to as MgO-SLT) having a magnesium oxide-doped stoichiometric composition (stoichiometric composition) subjected to polarization reversal. It is adhered to an SL holder 21 having a lithium tantalate crystal (hereinafter referred to as SLT) having a stoichiometric composition (stoichiometric composition) to constitute a QPM block. In bonding, the crystal axis directions of the crystals of the conversion SL element 20 and the SL holder 21 are the same as the three-dimensional directions (X-axis, Y-axis, and Z-axis directions in the figure).

本発明は上記の実施例に限定されるものではなく、さらに種々の変形実施例を挙げることができる。たとえば変換SL素子20の材料に前記のMgO−SLTに代えて、分極反転を施した酸化マグネシウムドープのタンタル酸リチウム結晶(以下MgO−LT)、分極反転を施した酸化マグネシウムドープのニオブ酸リチウム結晶(以下MgO−LN)、分極反転を施した酸化マグネシウムドープの化学量論組成(ストイキオメトリ組成)のニオブ酸リチウム結晶(以下MgO−SLN)などを使用することができる。   The present invention is not limited to the above-described embodiments, and various modified embodiments can be given. For example, instead of the MgO-SLT, the material of the conversion SL element 20 is a magnesium oxide-doped lithium tantalate crystal (hereinafter referred to as MgO-LT) that has undergone polarization inversion, or a magnesium oxide-doped lithium niobate crystal that has undergone polarization inversion. (Hereinafter referred to as MgO-LN), magnesium oxide-doped lithium niobate crystal (hereinafter referred to as MgO-SLN) having a stoichiometric composition (stoichiometric composition) subjected to polarization inversion can be used.

またSLホルダ21の材料に前記のSLTに代えて、タンタル酸リチウム結晶(以下LT)、化学量論組成(ストイキオメトリ組成)のニオブ酸リチウム結晶(以下SLN)、ニオブ酸リチウム結晶(以下LN)、MgO−SLT、MgO−LT、MgO−SLN、MgO−LNなどを使用することができる。また図2(b)に示すように、変換SL素子20の両面にSLホルダ21を接着した構造により、温度変化によるSLホルダ21と変換SL素子20の界面に働く力は変換SL素子20の両面とも同一方向になるので、曲がりの力はうち消され変形は原則として伸長または短縮のみになる。したがって図2(b)の構造は、図2(a)の構造に比較して温度変化に対するQPMブロックの変形をさらに小さくする。   In place of the SLT, the SL holder 21 is made of lithium tantalate crystal (hereinafter LT), stoichiometric composition (stoichiometric composition) lithium niobate crystal (hereinafter SLN), lithium niobate crystal (hereinafter LN). ), MgO-SLT, MgO-LT, MgO-SLN, MgO-LN, and the like can be used. Further, as shown in FIG. 2B, due to the structure in which the SL holder 21 is bonded to both surfaces of the conversion SL element 20, the force acting on the interface between the SL holder 21 and the conversion SL element 20 due to temperature change is the both surfaces of the conversion SL element 20. Since both are in the same direction, the bending force is eliminated and the deformation is in principle only extended or shortened. Therefore, the structure of FIG. 2B further reduces the deformation of the QPM block with respect to the temperature change as compared with the structure of FIG.

さらに、本発明においては変換SL素子20とSLホルダ21の硬度が同一か殆ど同一であるため、変換SL素子20とSLホルダ21を固着した状態で端面研磨を行うことが生産技術的に可能となり、変換SL素子20の最初の状態であるQPM素子材料ウェハにまずホルダ材を接着してからダイシング(チップ化)を行い、さらに端面研磨、反射防止コーティング、ダイシングを行うという効率的な生産工程を経てQPM素子を作製することが可能となる。なお、図1(a)、(b)に示す実施例においては接着時に結晶軸方向を合致させているが、合致を完全に行わなくても従来の構造に比較してQPMブロックの熱歪みが格段に減少することは当然である。本発明はこれらをすべて包含する。   Furthermore, in the present invention, the hardness of the conversion SL element 20 and the SL holder 21 is the same or almost the same, so that it is possible in production technology to perform end face polishing with the conversion SL element 20 and the SL holder 21 fixed. First, the holder material is first bonded to the QPM element material wafer, which is the initial state of the conversion SL element 20, and then dicing (chip formation) is performed, and end face polishing, antireflection coating, and dicing are performed. After that, a QPM element can be manufactured. In the embodiment shown in FIGS. 1A and 1B, the crystal axis directions are matched at the time of bonding, but the thermal strain of the QPM block is less than that of the conventional structure even if the matching is not performed completely. It is natural that it will decrease dramatically. The present invention includes all of these.

(a)は本発明の実施例の上面図であり、(b)は側面図である。(A) is a top view of the Example of this invention, (b) is a side view. (a)は本発明の実施例の側面図であり、(b)は変形実施例の側面図である。(A) is a side view of the Example of this invention, (b) is a side view of a modification Example. (a)は従来の光共振器の概略構造図であり、(b)は従来のQPMブロックの側面図である。(A) is a schematic structure diagram of a conventional optical resonator, and (b) is a side view of a conventional QPM block.

符号の説明Explanation of symbols

1 レーザダイオード
2 レンズ
3 レーザ媒質
4 変換素子
5 ホルダ
6 出力ミラー
7 レーザ台
8 レンズ台
9 ホルダ台
10 ペルチェ素子
11 ベース
20 変換SL素子
21 SLホルダ
22 紫外線硬化樹脂
DESCRIPTION OF SYMBOLS 1 Laser diode 2 Lens 3 Laser medium 4 Conversion element 5 Holder 6 Output mirror 7 Laser stand 8 Lens stand 9 Holder stand 10 Peltier element 11 Base 20 Conversion SL element 21 SL holder 22 UV curable resin

Claims (4)

分極反転を施した酸化マグネシウムドープのタンタル酸リチウム結晶または酸化マグネシウムドープのニオブ酸リチウム結晶をもってなる疑似位相整合型波長変換素子を、タンタル酸リチウム結晶またはニオブ酸リチウム結晶または酸化マグネシウムドープのタンタル酸リチウム結晶またはマグネシウムドープのニオブ酸リチウム結晶をホルダとして接着したことを特徴とする分極反転型非線形光学素子。   A quasi-phase-matched wavelength conversion element comprising a domain-inverted magnesium oxide-doped lithium tantalate crystal or magnesium oxide-doped lithium niobate crystal is converted into a lithium tantalate crystal, lithium niobate crystal, or magnesium oxide-doped lithium tantalate. A domain-inverted nonlinear optical element comprising a crystal or a magnesium-doped lithium niobate crystal bonded as a holder. 請求項1記載の疑似位相整合型波長変換素子の両面に、タンタル酸リチウム結晶またはニオブ酸リチウム結晶または酸化マグネシウムドープのタンタル酸リチウム結晶または酸化マグネシウムドープのニオブ酸リチウム結晶をホルダとして接着したことを特徴とする分極反転型非線形光学素子。   A lithium tantalate crystal, a lithium niobate crystal, a magnesium oxide-doped lithium tantalate crystal, or a magnesium oxide-doped lithium niobate crystal is bonded to both sides of the quasi-phase matching wavelength conversion element according to claim 1. A domain-inverted nonlinear optical element. 分極反転を施したウェハ形状の酸化マグネシウムドープのタンタル酸リチウム結晶または酸化マグネシウムドープのニオブ酸リチウム結晶をもってなる疑似位相型整合波長変換素子材料を、タンタル酸リチウム結晶またはニオブ酸リチウム結晶または酸化マグネシウムドープのタンタル酸リチウム結晶または酸化マグネシウムドープのニオブ酸リチウム結晶をもってなるウェハ形状のホルダ材料に接着し、その後ダイシング→端面研磨→反射防止コーティング→ダイシングの工程を経て作製されたことを特徴とする分極反転型非線形光学素子。   A quasi-phase-matched wavelength conversion element material comprising a magnesium oxide-doped lithium tantalate crystal or magnesium oxide-doped lithium niobate crystal having a domain-inverted state, doped with lithium tantalate crystal, lithium niobate crystal or magnesium oxide It is bonded to a wafer-shaped holder material made of lithium tantalate crystal or magnesium oxide doped lithium niobate crystal, and then it is fabricated through the steps of dicing → end face polishing → antireflection coating → dicing Type nonlinear optical element. レーザダイオードからの出力光により固体レーザ媒質を励起するレーザダイオード励起固体レーザ装置内の、固体レーザ媒質を含む光共振器の内方に、ニオブ酸リチウム結晶またはタンタル酸リチウム結晶または酸化マグネシウムドープのタンタル酸リチウム結晶または酸化マグネシウムドープのニオブ酸リチウム結晶をホルダとして疑似位相型整合波長変換素子に接着した分極反転型非線形光学素子を配設し、固体レーザ媒質から誘導放出される基本波を分極反転型非線形光学素子によって第2高調波に波長変換し、この第2高調波を出力ミラーを介して外方に出力するように構成したことを特徴とするレーザダイオード励起固体レーザ装置。   In a laser diode-pumped solid-state laser device that pumps a solid-state laser medium with output light from a laser diode, a lithium niobate crystal, a lithium tantalate crystal, or a magnesium oxide-doped tantalum is placed inside an optical resonator including the solid-state laser medium A polarization-reversed nonlinear optical element bonded to a quasi-phase matched wavelength conversion element with a lithium oxide crystal or magnesium oxide-doped lithium niobate crystal as a holder is placed, and the fundamental wave stimulated and emitted from the solid-state laser medium is polarized. A laser diode-excited solid-state laser device, wherein the wavelength is converted into a second harmonic by a non-linear optical element, and the second harmonic is output to the outside through an output mirror.
JP2004083018A 2004-03-22 2004-03-22 Wavelength conversion device Pending JP2005266703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083018A JP2005266703A (en) 2004-03-22 2004-03-22 Wavelength conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083018A JP2005266703A (en) 2004-03-22 2004-03-22 Wavelength conversion device

Publications (2)

Publication Number Publication Date
JP2005266703A true JP2005266703A (en) 2005-09-29
JP2005266703A5 JP2005266703A5 (en) 2006-10-05

Family

ID=35091267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083018A Pending JP2005266703A (en) 2004-03-22 2004-03-22 Wavelength conversion device

Country Status (1)

Country Link
JP (1) JP2005266703A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183316A (en) * 2006-01-04 2007-07-19 Precise Gauges Co Ltd Wavelength conversion waveguide element and its manufacturing method
JP2007225786A (en) * 2006-02-22 2007-09-06 Shimadzu Corp Optical element and manufacturing method of optical element
JP2008102228A (en) * 2006-10-18 2008-05-01 Shimadzu Corp Optical element and manufacturing method of optical element
JP2009015039A (en) * 2007-07-05 2009-01-22 Shimadzu Corp Method for manufacturing optical element
JP2012058578A (en) * 2010-09-10 2012-03-22 Panasonic Corp Laser light source device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183316A (en) * 2006-01-04 2007-07-19 Precise Gauges Co Ltd Wavelength conversion waveguide element and its manufacturing method
JP2007225786A (en) * 2006-02-22 2007-09-06 Shimadzu Corp Optical element and manufacturing method of optical element
JP4640207B2 (en) * 2006-02-22 2011-03-02 株式会社島津製作所 Optical element manufacturing method
JP2008102228A (en) * 2006-10-18 2008-05-01 Shimadzu Corp Optical element and manufacturing method of optical element
JP2009015039A (en) * 2007-07-05 2009-01-22 Shimadzu Corp Method for manufacturing optical element
JP2012058578A (en) * 2010-09-10 2012-03-22 Panasonic Corp Laser light source device

Similar Documents

Publication Publication Date Title
EP1763116B1 (en) Mode control waveguide laser
CN1305183C (en) Optical element, laser light source, laser device and method for mfg. optical element
SE510442C2 (en) microchip Laser
JPWO2011074215A1 (en) Wavelength conversion laser light source, optical element, and image display device
US20060120415A1 (en) Blue laser beam oscillating method and system
CN102893465B (en) The method for packing of laser crystal and nonlinear crystal and the application in diode pumped solid state thereof
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
US6807210B2 (en) Systems and a method for generating blue laser beam
JP2005266703A (en) Wavelength conversion device
JP3221586B2 (en) Optical wavelength converter
JP2004295088A (en) Wavelength conversion element
JP2005057043A (en) Manufacturing method of solid-state laser apparatus and wavelength conversion optical member
JPH06130328A (en) Polarization control element and solid laser device
JP2007266120A (en) Solid-state laser device
JP4657228B2 (en) Wavelength conversion element
JP2006310743A (en) Laser oscillation device
JP4608346B2 (en) Solid-state laser device and laser device system
EP1864954A2 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
JP2754101B2 (en) Laser diode pumped solid state laser
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
JP2006286735A (en) Solid laser oscillation device
JP2000183433A (en) Solid-state shg laser
JP2006237530A (en) Light stimulation solid-state laser apparatus
JPH0669567A (en) Semiconductor laser-excited solid laser equipment
US20120087383A1 (en) Bonded periodically poled optical nonlinear crystals

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309