JP2005265456A - Wall thickness measuring device and method of high-temperature tank - Google Patents

Wall thickness measuring device and method of high-temperature tank Download PDF

Info

Publication number
JP2005265456A
JP2005265456A JP2004074657A JP2004074657A JP2005265456A JP 2005265456 A JP2005265456 A JP 2005265456A JP 2004074657 A JP2004074657 A JP 2004074657A JP 2004074657 A JP2004074657 A JP 2004074657A JP 2005265456 A JP2005265456 A JP 2005265456A
Authority
JP
Japan
Prior art keywords
temperature
wall thickness
reflected wave
wall
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004074657A
Other languages
Japanese (ja)
Inventor
Hideki Kakita
秀樹 垣田
Toshihiko Sasahara
利彦 笹原
Morio Kageyama
盛男 景山
Kikuo Furukawa
喜久男 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawajima Inspection and Instrumentation Co Ltd
Original Assignee
Ishikawajima Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Inspection and Instrumentation Co Ltd filed Critical Ishikawajima Inspection and Instrumentation Co Ltd
Priority to JP2004074657A priority Critical patent/JP2005265456A/en
Publication of JP2005265456A publication Critical patent/JP2005265456A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wall thickness measuring device and a method of a high-temperature tank capable of measuring the wall thickness (namely, thickness reduction) in a wide range of the high-temperature tank in a short time without peeling an insulating material of the high-temperature tank (oven), and measuring accurately the actual wall thickness (namely, the thickness reduction) excluding an alloy layer even when the hard alloy layer is formed on the inner surface of the high-temperature tank and the apparent wall thickness is increased. <P>SOLUTION: This device is equipped with a high-temperature ultrasonic sensor for emitting an ultrasonic wave at a higher temperature than high-temperature liquid and capable of detecting its reflected wave, a sensor holding fixture for dipping directly the high-temperature ultrasonic sensor into the high-temperature liquid and holding its test surface toward the wall inner surface of a part to be measured, and a waveform analysis device for analyzing the waveform of the reflected wave detected by the high-temperature ultrasonic sensor and calculating the wall thickness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶融めっき等に用いられる高温槽の壁厚測定装置および方法に関する。   The present invention relates to an apparatus and method for measuring a wall thickness of a high-temperature tank used for hot dipping and the like.

溶融めっき(hot dipping)とは、溶融金属中に処理しようとする素材を浸せきし、引き上げて表面に付着した溶融金属を凝固させ、被膜層を形成するめっき手段である。素材は主として鉄鋼で、めっき金属は亜鉛(融点約420℃)、すず(同:約232℃)、アルミニウム(同:約660℃)、鉛(同:約328℃)など比較的融点の低いものが用いられる。
このような溶融めっき等に用いられる高温槽(一般に釜と呼ぶ)の側壁は、溶融金属より融点の高い金属(例えば鉄)で構成される。しかし、長期間の使用により、高温槽の側壁は徐々に減肉するため、これを定期的に計測し、釜の交換時期を適切に判断することが従来から強く求められていた。
Hot dipping is a plating means for forming a coating layer by immersing a material to be processed in molten metal and solidifying the molten metal adhering to the surface by solidification. The material is mainly steel, and the plating metal is zinc (melting point: about 420 ° C), tin (same: about 232 ° C), aluminum (same: about 660 ° C), lead (same: about 328 ° C), etc. Is used.
A side wall of a high-temperature bath (generally called a kettle) used for such hot dipping is made of a metal (for example, iron) having a melting point higher than that of the molten metal. However, since the side wall of the high-temperature tank gradually becomes thinner as a result of long-term use, it has been strongly demanded to measure this periodically and appropriately determine the time for replacing the pot.

非破壊検査法の1つである超音波探傷試験(ultrasonic test:UT)は、内部欠陥の検査等に広く用いられており、これを用いて高温配管の減肉量を配管の外側から計測する手段が特許文献2に開示されている。
また、耐熱許容限界温度を550〜600℃まで高められる超音波探傷試験用の探触子として、特許文献1が開示されている。
Ultrasonic testing (UT), which is one of the nondestructive inspection methods, is widely used for inspection of internal defects and the like, and this is used to measure the thinning amount of a high-temperature pipe from the outside of the pipe. Means are disclosed in Patent Document 2.
Further, Patent Literature 1 is disclosed as a probe for an ultrasonic flaw detection test that can increase the allowable heat-resistant limit temperature to 550 to 600 ° C.

特許文献1の「超音波探傷装置の探触子」は、図6に示すように、被探傷物51に取り付けられる超音波伝達部材54に、一対の電極56a、56bの間に挟まれた振動子55を積層してなる超音波探傷装置の探触子52において、振動子55をニオブ酸リチウムで形成すると共に、この振動子55と超音波伝達部材54との間に、これらを直接アルミ系ろう材で接合してアルミ系の耐熱性電極層Aを形成し、これを電極としたものである。なおこの図で、53は接触媒体である。   As shown in FIG. 6, the “probe of an ultrasonic flaw detector” in Patent Document 1 is a vibration sandwiched between a pair of electrodes 56 a and 56 b on an ultrasonic transmission member 54 attached to a flaw detection object 51. In the probe 52 of the ultrasonic flaw detector formed by laminating the elements 55, the vibrator 55 is formed of lithium niobate, and these are directly placed between the vibrator 55 and the ultrasonic transmission member 54 in an aluminum system. An aluminum-based heat-resistant electrode layer A is formed by bonding with a brazing material, and this is used as an electrode. In this figure, reference numeral 53 denotes a contact medium.

特許文献2の「高温構造物への超音波センサーの取付方法及び装置」は、図7に示すように、高温構造物61の表面に、超音波センサー62のセンサーヘッド62aの先端面を、軟質緩衝金属板69を介して当接配置した後、センサーヘッド62aを高温構造物1の表面へ向けて押し付けることにより、軟質緩衝金属板69を塑性変形させ密着させた状態として、超音波センサー62を取り付けるものである。   As shown in FIG. 7, the “Method and apparatus for attaching an ultrasonic sensor to a high-temperature structure” in Patent Document 2 is configured such that the tip surface of the sensor head 62 a of the ultrasonic sensor 62 is softly attached to the surface of the high-temperature structure 61. The ultrasonic sensor 62 is placed in a state in which the soft buffer metal plate 69 is plastically deformed and brought into close contact by pressing the sensor head 62a toward the surface of the high temperature structure 1 after being placed in contact with the buffer metal plate 69. Attached.

特公平07−46095号公報、「超音波探傷装置の探触子」Japanese Examined Patent Publication No. 07-46095, “Probe for ultrasonic flaw detector” 特開平11−304777号公報、「高温構造物への超音波センサーの取付方法及び装置」Japanese Patent Application Laid-Open No. 11-304777, “Method and apparatus for attaching an ultrasonic sensor to a high-temperature structure”

上述したように、溶融めっき等に用いられる高温槽(釜)の側壁は、長期間の使用により徐々に減肉するため、これを定期的に計測し、釜の交換時期を適切に判断することが従来から強く求められていた。
この要望を満たすために、特許文献2に開示された手段を用いて、高温槽の外側から減肉量を計測することは、原理的には可能である。しかし、高温槽(釜)の外側は通常厚い断熱材で覆われているため、壁厚を測定するためには、断熱材を剥がす必要があり、計測準備に時間と手間がかかるばかりでなく、高温槽の広い範囲の壁厚(すなわち減肉量)を計測することが事実上できない問題点があった。
そのため、現在は高温槽の上部から細長い棒(触診棒)を槽内に挿入し、その下端を内面に接触させて、減肉状態を熟練者が経験により判断しているが、誤差が大きく釜の交換時期を正確に決定できなかった。
さらに、亜鉛めっきのように、溶融金属と側壁を構成する金属(例えば鉄)が合金を形成する場合、高温槽の内面に硬い合金層ができて見掛け上の壁厚が増大しているため、触診棒での判断では減肉量は過小評価され、釜の交換時期を逸するおそれさえもあった。
従って、高温槽(釜)の壁厚(すなわち減肉量)を正確に測ることはこれまでは夢に近い技術であった。
As mentioned above, the side walls of high-temperature tanks (pots) used for hot dipping, etc., gradually become thin with long-term use. Has been strongly demanded.
In order to satisfy this demand, it is possible in principle to measure the thinning amount from the outside of the high-temperature tank using the means disclosed in Patent Document 2. However, since the outside of the high-temperature bath (pot) is usually covered with a thick heat insulating material, it is necessary to peel off the heat insulating material to measure the wall thickness. There was a problem that it was practically impossible to measure a wide range of wall thickness (namely, thinning amount) of the high-temperature bath.
For this reason, a slender bar (palpation bar) is inserted into the tank from the top of the high-temperature tank and its lower end is brought into contact with the inner surface. It was not possible to accurately determine the replacement period.
Furthermore, as in the case of galvanization, when the molten metal and the metal constituting the side wall (for example, iron) form an alloy, a hard alloy layer is formed on the inner surface of the high-temperature tank, and the apparent wall thickness is increased. Judging with a palpation stick, the amount of thinning was underestimated, and there was even a risk of missing the pot replacement time.
Therefore, accurate measurement of the wall thickness (that is, the amount of thinning) of the high-temperature tank (kettle) has been a technology close to a dream until now.

本発明は、かかる要望を解決するために創案されたものである。すなわち、本発明の第1の目的は、高温槽(釜)の断熱材を剥がすことなく、高温槽の広い範囲の壁厚(すなわち減肉量)を短時間に計測することができる高温槽の壁厚測定方法および装置を提供することにある。
また第2の目的は、高温槽の内面に硬い合金層ができて見掛け上の壁厚が増大している場合でも、合金層を除く実際の壁厚(すなわち減肉量)を正確に計測することができる高温槽の壁厚測定装置および方法を提供することにある。
The present invention has been developed to solve such a demand. That is, the first object of the present invention is to provide a high-temperature tank capable of measuring a wide range of wall thicknesses (that is, thickness reduction) in a short time without peeling off the heat insulation material of the high-temperature tank (kettle). It is to provide a wall thickness measuring method and apparatus.
The second purpose is to accurately measure the actual wall thickness excluding the alloy layer (that is, the amount of thinning) even when a hard alloy layer is formed on the inner surface of the high-temperature bath and the apparent wall thickness is increased. An object of the present invention is to provide an apparatus and method for measuring the wall thickness of a high-temperature vessel.

本発明によれば、内部に高温液体を保有する高温槽の壁厚を測定する壁厚測定装置であって、
前記高温液体より高い温度で超音波を発しその反射波を検出可能な高温用超音波センサと、
該高温用超音波センサを前記高温液体中に直接浸漬しその探傷面を被計測部の壁内面に向けて保持するセンサ保持具と、
高温用超音波センサで検出した反射波の波形を解析し壁厚を算出する波形解析装置と、を備えたことを特徴とする高温槽の壁厚測定装置が提供される。
According to the present invention, a wall thickness measuring device for measuring the wall thickness of a high-temperature tank having a high-temperature liquid therein,
An ultrasonic sensor for high temperature capable of emitting an ultrasonic wave at a temperature higher than that of the high temperature liquid and detecting the reflected wave;
A sensor holder that directly immerses the high-temperature ultrasonic sensor in the high-temperature liquid and holds the flaw detection surface toward the wall inner surface of the measurement target part; and
There is provided a wall thickness measuring apparatus for a high-temperature tank, comprising: a waveform analyzing apparatus that analyzes a waveform of a reflected wave detected by a high-temperature ultrasonic sensor and calculates a wall thickness.

また、本発明によれば、内部に高温液体を保有する高温槽の壁厚を測定する壁厚測定方法であって、
高温用超音波センサを高温液体中に直接浸漬しその探傷面を被計測部の壁内面に向けて保持するセンサ保持ステップと、
高温用超音波センサで検出した反射波の波形を解析し壁厚を算出する波形解析ステップと、を備えたことを特徴とする高温槽の壁厚測定方法が提供される。
Moreover, according to the present invention, a wall thickness measuring method for measuring the wall thickness of a high-temperature tank having a high-temperature liquid therein,
A sensor holding step for directly immersing the ultrasonic sensor for high temperature in the high temperature liquid and holding the flaw detection surface toward the wall inner surface of the measurement target part;
There is provided a method for measuring a wall thickness of a high-temperature tank, comprising: a waveform analysis step for analyzing a waveform of a reflected wave detected by a high-temperature ultrasonic sensor and calculating a wall thickness.

上記本発明の装置及び方法によれば、センサ保持具を用いてセンサ保持ステップにおいて、高温用超音波センサを高温液体中に直接浸漬しその探傷面を被計測部の壁内面に向けて保持するので、高温槽(釜)の断熱材を剥がすことなく、高温液体中で超音波を発し、壁内面を通して高温槽の壁内に超音波を伝播させ、壁外面で反射した反射波をそのセンサで検出することができる。
また、波形解析装置により波形解析ステップにおいて、検出した反射波の波形を解析し壁厚を算出するので、高温槽の広い範囲の壁厚(すなわち減肉量)を短時間に計測することができる。
According to the apparatus and method of the present invention described above, in the sensor holding step using the sensor holder, the high-temperature ultrasonic sensor is directly immersed in the high-temperature liquid, and the flaw detection surface is held toward the wall inner surface of the measurement target portion. Therefore, without peeling off the heat insulation material of the high-temperature tank (kettle), ultrasonic waves are emitted in the high-temperature liquid, the ultrasonic waves are propagated through the wall inner surface into the wall of the high-temperature tank, and the reflected wave reflected from the outer surface of the wall is detected by the sensor. Can be detected.
Moreover, since the waveform analysis step analyzes the waveform of the reflected wave detected and calculates the wall thickness in the waveform analysis step, it is possible to measure the wall thickness (that is, the thickness reduction) in a wide range of the high-temperature tank in a short time. .

本発明の好ましい実施形態によれば、前記波形解析装置により、波形解析ステップにおいて、壁外面からの最初の第1反射波B1とこれが壁内面と壁外面で再反射した2回目の第2反射波B2とを検出し、その時間差と超音波伝播速度から壁厚を算出する。
この手段により、第1反射波B1と第2反射波B2は高いS/N比で検出でき、かつ高温槽を構成する壁の材質(例えば鉄)の温度−超音波伝播速度(すなわち音速)の関係から壁厚を容易に算出することができる。
According to a preferred embodiment of the present invention, in the waveform analysis step, the first reflected wave B1 from the wall outer surface and the second second reflected wave that is re-reflected by the wall inner surface and the wall outer surface in the waveform analysis step. B2 is detected, and the wall thickness is calculated from the time difference and the ultrasonic wave propagation velocity.
By this means, the first reflected wave B1 and the second reflected wave B2 can be detected with a high S / N ratio, and the temperature of the wall material (for example, iron) constituting the high-temperature tank (for example, the speed of ultrasonic propagation (that is, the speed of sound)). The wall thickness can be easily calculated from the relationship.

また、前記波形解析装置により、波形解析ステップにおいて、検出した反射波の波形を周波数解析して、合金反射波G1をノイズエコーから識別する、ことが好ましい。
この手段により、合金反射波G1のS/N比が低い場合でも、ノイズエコーから合金反射波G1を識別することができる。従って、高温槽の内面に硬い合金層ができて見掛け上の壁厚が増大している場合でも、合金層を除く実際の壁厚(すなわち減肉量)を正確に計測することができる。
In the waveform analysis step, it is preferable that the waveform of the reflected wave detected is frequency-analyzed and the alloy reflected wave G1 is identified from the noise echo in the waveform analysis step.
By this means, even when the S / N ratio of the alloy reflected wave G1 is low, the alloy reflected wave G1 can be identified from the noise echo. Therefore, even when a hard alloy layer is formed on the inner surface of the high-temperature tank and the apparent wall thickness is increased, the actual wall thickness (that is, the amount of thinning) excluding the alloy layer can be accurately measured.

また、前記波形解析装置により、波形解析ステップにおいて、第1反射波B1が合金層界面と壁外面で再反射した合金反射波G1を検出し、第2反射波B2と合金反射波G1の時間差で前記壁厚を補正する。
この手段により、高温槽の内面に成長する合金層の組成(例えばZn-Fe)とその温度−超音波伝播速度(すなわち音速)の関係から合金層厚を容易に算出することができる。
In addition, in the waveform analysis step, the waveform analysis apparatus detects the alloy reflected wave G1 in which the first reflected wave B1 is re-reflected at the alloy layer interface and the wall outer surface, and the time difference between the second reflected wave B2 and the alloy reflected wave G1 is detected. The wall thickness is corrected.
By this means, the thickness of the alloy layer can be easily calculated from the relationship between the composition of the alloy layer growing on the inner surface of the high-temperature tank (for example, Zn—Fe) and its temperature-ultrasonic propagation velocity (ie, sound velocity).

また本発明の好ましい実施形態によれば、前記高温用超音波センサは、超音波振動子と、これを挟んでろう付けされた1対の電極板と、その一方にろう付けされ高温液体の濡れ性の高いシュー板と、からなり、
前記電極に信号線が直付けされ、シュー板の探傷面に高温液体の濡れ性の高いメッキが施されている。
この構成により、高温用超音波センサを高温液体中に直接浸漬した場合のセンサ全体の耐熱温度を高めることができると共に、探傷面の高温液体の濡れ性を高め、超音波の透過性を高めることができる。
According to a preferred embodiment of the present invention, the high-temperature ultrasonic sensor includes an ultrasonic transducer, a pair of electrode plates brazed with the ultrasonic transducer interposed therebetween, and a wetted high-temperature liquid brazed to one of the electrodes. It consists of a shoe plate with high characteristics,
Signal lines are directly attached to the electrodes, and the flaw detection surface of the shoe plate is plated with high wettability of high temperature liquid.
With this configuration, the heat resistance temperature of the entire sensor when the ultrasonic sensor for high temperature is directly immersed in the high-temperature liquid can be increased, the wettability of the high-temperature liquid on the flaw detection surface can be increased, and the ultrasonic transmission can be increased. Can do.

前記センサ保持具は、高温用超音波センサを下端部に保持し上方に延びる鉛直棒部材と、該鉛直棒部材を水平軸を中心に揺動可能に吊り下げ高温槽の上部に取付可能な吊下保持部材とを備える。
この構成により、吊下保持部材を高温槽の上部に取付け、この吊下保持部材から鉛直棒部材を吊り下げ、鉛直棒部材を水平軸を中心に揺動させることにより、下端部に保持した高温用超音波センサを被計測部の壁内面に向けて押し付け、あるいは所定の間隔で保持することができる。
The sensor holder includes a vertical bar member that holds a high-temperature ultrasonic sensor at a lower end and extends upward, and the vertical bar member is suspended so as to be swingable about a horizontal axis, and can be attached to an upper portion of a high-temperature tank. A lower holding member.
With this configuration, the suspended holding member is attached to the upper part of the high-temperature tank, the vertical bar member is suspended from the suspended holding member, and the vertical bar member is swung around the horizontal axis to maintain the high temperature held at the lower end. The ultrasonic sensor can be pressed toward the wall inner surface of the measured part or held at a predetermined interval.

前記鉛直棒部材は、高温液体による浮力を低減するためのカウンタウエイト兼ドロス侵入防止ブロックを有する、ことが好ましい。
かかるカウンタウエイト兼ドロス侵入防止ブロックにより、高温液体による鉛直棒部材の浮力を低減または無くすことができ、高温用超音波センサの位置変更を容易に行うことができる。
It is preferable that the vertical bar member has a counterweight and dross intrusion prevention block for reducing buoyancy due to the high-temperature liquid.
With this counterweight / dross intrusion prevention block, the buoyancy of the vertical bar member due to the high-temperature liquid can be reduced or eliminated, and the position of the high-temperature ultrasonic sensor can be easily changed.

前記鉛直棒部材は、高温用超音波センサの探傷面を壁内面に向けて一定の距離で位置決めするための位置決め部材を有する、ことが好ましい。
この構成により、位置決め部材を壁内面に向けて押し付けるだけで、高温用超音波センサの探傷面を壁内面に向けて一定の距離で位置決めすることができる。
The vertical bar member preferably has a positioning member for positioning the flaw detection surface of the high-temperature ultrasonic sensor toward the wall inner surface at a certain distance.
With this configuration, the flaw detection surface of the high-temperature ultrasonic sensor can be positioned at a certain distance toward the wall inner surface simply by pressing the positioning member toward the wall inner surface.

上述したように、本発明の高温槽の壁厚測定装置および方法は、高温槽(釜)の断熱材を剥がすことなく、高温槽の広い範囲の壁厚(すなわち減肉量)を短時間に計測することができ、かつ、高温槽の内面に硬い合金層ができて見掛け上の壁厚が増大している場合でも、合金層を除く実際の壁厚(すなわち減肉量)を正確に計測することができる等の優れた効果を有する。   As described above, the apparatus and method for measuring the wall thickness of a high-temperature tank according to the present invention can increase the wall thickness (that is, the amount of thinning) in a wide range of the high-temperature tank in a short time without peeling off the heat insulating material of the high-temperature tank (kettle). Even if a hard alloy layer is formed on the inner surface of the high-temperature bath and the apparent wall thickness is increasing, the actual wall thickness excluding the alloy layer (that is, the amount of thinning) can be accurately measured. It has excellent effects such as being able to.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。
図1Aは、本発明の高温槽の壁厚測定装置の全体構成図である。この例において、高温液体1は、溶融亜鉛であり、約450℃の溶融状態に保持されている。また、高温槽2は、溶融めっき用の高温槽であり、この例では鉄製である。本発明の壁厚測定装置10は、内部に高温液体1を保有する溶融めっき用の高温槽2の壁厚を測定する装置である。
なお、高温槽2の内面に合金層3が成長する場合、高温槽2の内面2aは合金層の分だけ見掛け上厚くなる。この場合の合金層の界面を3aとする。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1A is an overall configuration diagram of a wall thickness measuring apparatus for a high-temperature tank according to the present invention. In this example, the high temperature liquid 1 is molten zinc and is maintained in a molten state of about 450 ° C. Moreover, the high temperature tank 2 is a high temperature tank for hot dipping, and is made of iron in this example. The wall thickness measuring apparatus 10 according to the present invention is an apparatus for measuring the wall thickness of a hot bath 2 for hot dipping that contains a high temperature liquid 1 therein.
When the alloy layer 3 grows on the inner surface of the high-temperature tank 2, the inner surface 2a of the high-temperature tank 2 is apparently thicker by the amount of the alloy layer. In this case, the interface of the alloy layer is 3a.

本発明の壁厚測定装置10は、高温用超音波センサ12、センサ保持具20、及び波形解析装置30を備える。   The wall thickness measurement apparatus 10 of the present invention includes a high-temperature ultrasonic sensor 12, a sensor holder 20, and a waveform analysis apparatus 30.

高温用超音波センサ12は、高温液体1より高い温度で超音波を発し、その反射波を検出する機能を有する。この高温用超音波センサ12は、図1Bに示すように、超音波振動子13と、これを挟んでろう付けされた1対の電極板14と、その一方にろう付けされ高温液体の濡れ性の高いシュー板15とからなる。また、電極14に信号線16(この例で白金リード線)が直付けされ、シュー板15の探傷面15aに高温液体の濡れ性の高いメッキ17(この例では亜鉛メッキ)が施されている。この場合のろう付け及び直付けは、高温液体よりも高い融点を有するろう材(例えばニッケル)を用いる。なお、高温用超音波センサ12は、全体を水密容器内に収容するのが好ましい。また信号線16は、耐熱性の保護管18の内部を通して波形解析装置30まで検出データを伝達する。更に、高温用超音波センサ12に熱電対を備え、高温液体1の温度を計測するのが好ましい。   The high-temperature ultrasonic sensor 12 has a function of emitting an ultrasonic wave at a temperature higher than that of the high-temperature liquid 1 and detecting the reflected wave. As shown in FIG. 1B, the high-temperature ultrasonic sensor 12 includes an ultrasonic transducer 13, a pair of electrode plates 14 brazed with the ultrasonic transducer 13, and a wettability of a high-temperature liquid brazed to one of them. And a high shoe plate 15. Further, the signal wire 16 (in this example, a platinum lead wire) is directly attached to the electrode 14, and the flaw detection surface 15a of the shoe plate 15 is plated with high wettability plating 17 (in this example, zinc plating). . In this case, brazing and direct soldering use a brazing material (for example, nickel) having a melting point higher than that of the high-temperature liquid. The high temperature ultrasonic sensor 12 is preferably housed entirely in a watertight container. The signal line 16 transmits detection data to the waveform analysis device 30 through the heat-resistant protective tube 18. Furthermore, it is preferable that the high-temperature ultrasonic sensor 12 is provided with a thermocouple and the temperature of the high-temperature liquid 1 is measured.

センサ保持具20は、高温用超音波センサ12を高温液体1中に直接浸漬し、その探傷面15aを被計測部の壁内面2aに向けて保持する機能を有する。
この例において、センサ保持具20は、鉛直棒部材22と吊下保持部材24とからなる。鉛直棒部材22は、高温用超音波センサ12を下端部に保持し上方に延びる細長い棒部材であり、例えばステンレスのアングル材で構成する。吊下保持部材24は、鉛直棒部材22を水平軸23を中心に揺動可能に吊り下げ、かつ高温槽の上部(例えば壁上端部)にボルト等の固定具25で取付られる。
The sensor holder 20 has a function of directly immersing the high-temperature ultrasonic sensor 12 in the high-temperature liquid 1 and holding the flaw detection surface 15a toward the wall inner surface 2a of the measured portion.
In this example, the sensor holder 20 includes a vertical bar member 22 and a suspended holding member 24. The vertical bar member 22 is an elongated bar member that holds the high-temperature ultrasonic sensor 12 at the lower end and extends upward, and is made of, for example, a stainless angle material. The suspension holding member 24 suspends the vertical bar member 22 so as to be swingable about a horizontal axis 23, and is attached to the upper portion (for example, the upper end portion of the wall) of the high-temperature tank with a fixture 25 such as a bolt.

この例において、鉛直棒部材22の下端には、カウンタウエイト兼ドロス侵入防止ブロック21が取り付けられ、高温液体1による浮力を低減するようになっている。
また、鉛直棒部材22は、高温用超音波センサ12の探傷面15aを壁内面2aに向けて一定の距離で位置決めするための位置決め部材26を有する。位置決め部材26は、この例では、高温用超音波センサ12を囲んで配置された3本(図では2本のみ示す)の棒材であり、その先端(図で右端)を通る平面が、探傷面15aと一致するか、一定の距離離して設定されている。
この構成により、位置決め部材26の先端を壁内面2aに向けて押し付けるだけで、高温用超音波センサ12の探傷面15aを壁内面に向けて一定の距離で位置決めすることができる。
In this example, a counterweight / dross intrusion prevention block 21 is attached to the lower end of the vertical bar member 22 to reduce buoyancy due to the high-temperature liquid 1.
The vertical bar member 22 has a positioning member 26 for positioning the flaw detection surface 15a of the high-temperature ultrasonic sensor 12 toward the wall inner surface 2a at a certain distance. In this example, the positioning member 26 is three bars (only two are shown in the figure) arranged so as to surround the high-temperature ultrasonic sensor 12, and a plane passing through the tip (right end in the figure) It is set to coincide with the surface 15a or separated by a certain distance.
With this configuration, the flaw detection surface 15a of the high-temperature ultrasonic sensor 12 can be positioned at a certain distance toward the wall inner surface simply by pressing the tip of the positioning member 26 toward the wall inner surface 2a.

波形解析装置30は、超音波センサ用の電源、記憶装置、演算装置等を内蔵し、高温用超音波センサ12で検出した反射波の波形を解析し壁厚を算出する。   The waveform analyzer 30 includes a power source, a storage device, an arithmetic device, and the like for the ultrasonic sensor, and analyzes the waveform of the reflected wave detected by the high-temperature ultrasonic sensor 12 to calculate the wall thickness.

図2は、本発明の高温槽の壁厚測定方法の全体フロー図である。この図に示すように、本発明の壁厚測定方法は、センサ保持ステップS1と波形解析ステップS2からなる。
センサ保持ステップS1では、上述したセンサ保持具20を用いて高温用超音波センサ12を高温液体1中に直接浸漬し、その探傷面15aを被計測部の壁内面2aに向けて保持する。
波形解析ステップS2では、高温用超音波センサ12で検出した反射波の波形を解析し壁厚を算出する。
FIG. 2 is an overall flowchart of the method for measuring the wall thickness of the high-temperature tank of the present invention. As shown in this figure, the wall thickness measuring method of the present invention comprises a sensor holding step S1 and a waveform analyzing step S2.
In the sensor holding step S1, the high-temperature ultrasonic sensor 12 is directly immersed in the high-temperature liquid 1 using the sensor holder 20 described above, and the flaw detection surface 15a is held toward the wall inner surface 2a of the measurement target portion.
In the waveform analysis step S2, the waveform of the reflected wave detected by the high temperature ultrasonic sensor 12 is analyzed to calculate the wall thickness.

波形解析ステップS2は、この例では壁厚算出ステップS21、合金層識別ステップS22、及び壁厚補正ステップS23からなる。
壁厚算出ステップS21では、壁外面からの最初の第1反射波B1とこれが壁内面と壁外面で再反射した2回目の第2反射波B2とを検出し、その時間差と超音波伝播速度から壁厚を算出する。
合金層識別ステップS22では、検出した反射波の波形を周波数解析して、合金反射波G1をノイズエコーから識別する。
壁厚補正ステップS23では、第1反射波B1が合金層界面と壁外面で再反射した合金反射波G1を検出し、第2反射波B2と合金反射波G1の時間差で前記壁厚を補正する。
In this example, the waveform analysis step S2 includes a wall thickness calculation step S21, an alloy layer identification step S22, and a wall thickness correction step S23.
In the wall thickness calculation step S21, the first first reflected wave B1 from the wall outer surface and the second second reflected wave B2 reflected again by the wall inner surface and the wall outer surface are detected, and the time difference and the ultrasonic wave propagation speed are detected. Calculate the wall thickness.
In the alloy layer identification step S22, the detected reflected wave waveform is frequency-analyzed to identify the alloy reflected wave G1 from the noise echo.
In the wall thickness correction step S23, the alloy reflected wave G1 that is reflected again by the first reflected wave B1 at the alloy layer interface and the wall outer surface is detected, and the wall thickness is corrected by the time difference between the second reflected wave B2 and the alloy reflected wave G1. .

図3は、本発明の第1実施例を示す図である。この図において、(A)は合金層が成長しないか無視できる場合の模式図であり、(B)は検出された検出反射波(エコー)である。なお図3Bにおいて、横軸は時間、縦軸は反射波音圧の波形であり、エコーは0を中心に上下に振動する波形となる。   FIG. 3 is a diagram showing a first embodiment of the present invention. In this figure, (A) is a schematic view when the alloy layer does not grow or can be ignored, and (B) is a detected reflected wave (echo) detected. 3B, the horizontal axis represents time, the vertical axis represents the waveform of the reflected wave sound pressure, and the echo has a waveform that oscillates up and down around zero.

図3A,Bにおいて、B1は壁外面からの最初の第1反射波であり、B2は第1反射波が壁内面と壁外面で再反射した2回目の第2反射波である。
図3Bから明らかなように、超音波を発した直後の検出反射波(エコー)は、変動が大きく壁内面からの反射波を識別するのが困難であるのに対して、第1反射波B1と第2反射波B2はS/N比が比較的高く、容易に検出できる。従って、 壁厚算出ステップS21において、壁外面からの最初の第1反射波B1とこれが壁内面と壁外面で再反射した2回目の第2反射波B2とを検出し、その時間差Δt1と壁(鉄)内の超音波伝播速度v1から壁厚L1を例えばL1=v1×Δt1/2・・・(式1)で算出することができる。
合金層が成長しないか無視できる場合には、式1で求めた値が被計測部の壁厚L1であり、新設時の厚さとの差ΔLが減肉量である。
3A and 3B, B1 is the first first reflected wave from the outer wall surface, and B2 is the second reflected wave for the second time when the first reflected wave is re-reflected by the inner wall surface and the outer wall surface.
As apparent from FIG. 3B, the detected reflected wave (echo) immediately after emitting the ultrasonic wave has a large fluctuation and it is difficult to identify the reflected wave from the inner surface of the wall, whereas the first reflected wave B1 The second reflected wave B2 has a relatively high S / N ratio and can be easily detected. Therefore, in the wall thickness calculation step S21, the first first reflected wave B1 from the wall outer surface and the second second reflected wave B2 reflected again by the wall inner surface and the wall outer surface are detected, and the time difference Δt1 and the wall ( The wall thickness L1 can be calculated from, for example, L1 = v1 × Δt1 / 2 (Equation 1) from the ultrasonic wave propagation velocity v1 in (iron).
When the alloy layer does not grow or can be ignored, the value obtained by Equation 1 is the wall thickness L1 of the measured portion, and the difference ΔL from the thickness at the time of new installation is the thickness reduction.

図4は、本発明の第2実施例を示す図である。この図において、(A)は合金層が無視できない場合の模式図であり、(B)は検出された検出反射波(エコー)である。なお図4Bは図3Bと同様に、横軸は時間、縦軸は反射波音圧の波形である。   FIG. 4 is a diagram showing a second embodiment of the present invention. In this figure, (A) is a schematic view when the alloy layer cannot be ignored, and (B) is a detected reflected wave (echo) detected. 4B, similarly to FIG. 3B, the horizontal axis represents time, and the vertical axis represents the waveform of the reflected wave sound pressure.

合金層3が無視できない場合、図4Bに示す合金反射波G1、すなわち第1反射波B1が合金層界面3aと壁外面で再反射した合金反射波G1は、S/N比が小さくノイズエコーからの識別が困難である。
そこで、この場合、合金層識別ステップS22において、検出した反射波の波形を周波数解析して、合金反射波G1をノイズエコーから識別する。すなわち、図4Bの波形にうち、第2反射波B2より前にある波形を狭い時間幅で周波数解析すると、それがノイズエコーである場合には不安定なピーク周波数を示し、合金界面でのエコーの場合には安定したピーク周波数(例えば超音波センサの固有周波数に近い値)を示す。従って、周波数解析する位置を徐々に変えることにより、合金反射波G1をノイズエコーから識別することができる。
When the alloy layer 3 cannot be ignored, the alloy reflected wave G1 shown in FIG. 4B, that is, the alloy reflected wave G1 in which the first reflected wave B1 is re-reflected at the alloy layer interface 3a and the outer wall surface has a small S / N ratio and is generated from noise echo. Is difficult to identify.
Therefore, in this case, in the alloy layer identifying step S22, the detected reflected wave waveform is subjected to frequency analysis, and the alloy reflected wave G1 is identified from the noise echo. 4B, when the frequency analysis of the waveform before the second reflected wave B2 is performed with a narrow time width, if it is a noise echo, it shows an unstable peak frequency, and the echo at the alloy interface In this case, a stable peak frequency (for example, a value close to the natural frequency of the ultrasonic sensor) is shown. Therefore, the alloy reflected wave G1 can be identified from the noise echo by gradually changing the frequency analysis position.

図4Aにおいて、第2反射波B2と合金反射波G1の時間差Δt2は、超音波が合金層を1回通過する時間である。従って、壁厚補正ステップS23において、第1反射波B1が合金層界面と壁外面で再反射した合金反射波G1を検出し、第2反射波B2と合金反射波G1の時間差Δt2を求め、この時間差Δt2で壁厚算出ステップS21で求めた壁厚L1を補正する。
例えば、L2=v1×(Δt1-Δt2)/2・・・(式2)で算出することができ、新設時の厚さとの差ΔLが減肉量である。
In FIG. 4A, the time difference Δt2 between the second reflected wave B2 and the alloy reflected wave G1 is the time for the ultrasonic wave to pass through the alloy layer once. Therefore, in the wall thickness correction step S23, the alloy reflected wave G1 that is reflected again by the first reflected wave B1 at the alloy layer interface and the wall outer surface is detected, and a time difference Δt2 between the second reflected wave B2 and the alloy reflected wave G1 is obtained. The wall thickness L1 obtained in the wall thickness calculation step S21 is corrected with the time difference Δt2.
For example, L2 = v1 × (Δt1−Δt2) / 2 (Equation 2) can be calculated, and the difference ΔL from the thickness at the time of new installation is the amount of thinning.

図5は、本発明の実施例1、2で得られた壁厚測定結果である。この図において、横軸は高温槽の壁厚、縦軸は深さ(液深)である。また、図中の△と○は合金層を無視した実施例1の結果、□は合金層を補正した実施例2の結果である。
またこの例は、溶融亜鉛(約450℃)の鉄製の壁厚を計測した結果である。
FIG. 5 shows the wall thickness measurement results obtained in Examples 1 and 2 of the present invention. In this figure, the horizontal axis is the wall thickness of the high-temperature tank, and the vertical axis is the depth (liquid depth). Further, Δ and ○ in the figure are the results of Example 1 in which the alloy layer is ignored, and □ are the results of Example 2 in which the alloy layer is corrected.
This example is the result of measuring the wall thickness of molten zinc (about 450 ° C.) made of iron.

図5の実施例1の結果から、本発明の装置及び方法により、高温槽(釜)の断熱材を剥がすことなく、高温槽の広い範囲の壁厚(すなわち減肉量)を短時間に計測することができることが確認された。   From the results of Example 1 in FIG. 5, the wall thickness (that is, the amount of thinning) in a wide range of the high-temperature tank is measured in a short time without peeling off the heat insulating material of the high-temperature tank (kettle) by the apparatus and method of the present invention. Confirmed that you can.

しかし、鉄製の壁厚は、新設時に60mmであり、実施例1の結果から内面に合金層が形成されていることが実施例1から新規に明らかとなった。そこで、上述した実施例2により合金層界面3aの位置を検出し、その分の補正を行った。この結果、図5の実施例2に示すように、合金層の厚さが約5〜6mmに達しており、壁厚の真の値は約58mmであり、新設時より約2mmの減肉量があることが分かった。   However, the wall thickness made of iron was 60 mm when newly installed, and from the results of Example 1, it was newly revealed from Example 1 that an alloy layer was formed on the inner surface. Therefore, the position of the alloy layer interface 3a was detected according to Example 2 described above, and the correction was made accordingly. As a result, as shown in Example 2 of FIG. 5, the thickness of the alloy layer has reached about 5 to 6 mm, the true value of the wall thickness is about 58 mm, and the thickness reduction is about 2 mm from the time of new installation. I found out that

上述したように、本発明によれば、従来の人の感覚に頼った定性的な計測方法に比べて、減肉量が定量的に計れるようになり、メッキ釜の寿命を正確に予測できるようになる。
また、白金リード線を高温用超音波センサに直付けしているので、冷却無しで約450℃の溶融亜鉛中にどぶ漬けして計測することができる。
その結果、上記実施例において、長時間(約7時間)連続で使用しても、センサの性能劣化は認められなかった。
また高温用超音波センサのシュー材質を鉄にして、探傷面に予め亜鉛メッキをしておくことにより、溶融亜鉛への超音波透過性が上がり肉厚測定が可能となった。
また超音波による肉厚計測の場合、計測対象物の温度によって音速が違い、見かけ上の肉厚値が厚くなるが、Feの温度と音速の関係を求め、温度・音速テーブルを作成して音速補正を行うことにより、正しい肉厚を計測することができた。
さらにZn-Fe合金の温度と音速との関係を求め、温度・音速テーブルを作成して音速補正を行い、肉厚計測値から合金層肉厚を差し引いて釜本体の肉厚を正しく割り出すことができた。
As described above, according to the present invention, compared with a qualitative measurement method that relies on the conventional human sense, the amount of thinning can be measured quantitatively, and the life of the plating pot can be accurately predicted. become.
Further, since the platinum lead wire is directly attached to the high-temperature ultrasonic sensor, it can be measured by being immersed in molten zinc at about 450 ° C. without cooling.
As a result, in the above examples, no deterioration in the sensor performance was observed even after continuous use for a long time (about 7 hours).
In addition, by making the shoe material of the ultrasonic sensor for high temperature iron and galvanizing the flaw detection surface in advance, the ultrasonic permeability to molten zinc is increased and the thickness can be measured.
In addition, in the case of ultrasonic wall thickness measurement, the sound speed varies depending on the temperature of the object to be measured, and the apparent wall thickness value increases, but the relationship between the temperature of Fe and the sound speed is obtained, and a temperature / sound speed table is created to create the sound speed. By performing the correction, the correct wall thickness could be measured.
Furthermore, the relationship between the temperature of the Zn-Fe alloy and the speed of sound is obtained, the temperature / sound speed table is created and the speed of sound is corrected, and the thickness of the pot body is correctly determined by subtracting the thickness of the alloy layer from the measured thickness. did it.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の高温槽の壁厚測定装置の全体構成図である。It is a whole block diagram of the wall thickness measuring apparatus of the high temperature tank of this invention. 本発明の高温槽の壁厚測定方法の全体フロー図である。It is a whole flowchart of the wall thickness measuring method of the high temperature tank of this invention. 本発明の第1実施例における検出反射波(エコー)である。It is a detection reflected wave (echo) in 1st Example of this invention. 本発明の第2実施例における検出反射波(エコー)である。It is a detection reflected wave (echo) in 2nd Example of this invention. 本発明の実施例で得られた壁厚測定結果である。It is the wall thickness measurement result obtained in the Example of this invention. 特許文献1の「超音波探傷装置の探触子」の模式図である。6 is a schematic diagram of “a probe of an ultrasonic flaw detector” in Patent Document 1. FIG. 特許文献2の「高温構造物への超音波センサーの取付方法及び装置」の模式図である。10 is a schematic diagram of “Method and apparatus for attaching ultrasonic sensor to high-temperature structure” in Patent Document 2. FIG.

符号の説明Explanation of symbols

1 高温液体、2 高温槽、2a 壁内面、3 合金層、3a合金層界面、
10 壁厚測定装置、12 高温用超音波センサ、
13 超音波振動子、14 電極板、15 シュー板、15a 探傷面、
16 信号線(白金リード線)、17 メッキ、18 保護管、
20 センサ保持具、21 カウンタウエイト兼ドロス侵入防止ブロック、
22 鉛直棒部材、23 水平軸、
24 吊下保持部材、25 固定具、26 位置決め部材、30 波形解析装置
1 high temperature liquid, 2 high temperature bath, 2a wall inner surface, 3 alloy layer, 3a alloy layer interface,
10 Wall thickness measuring device, 12 High temperature ultrasonic sensor,
13 ultrasonic transducer, 14 electrode plate, 15 shoe plate, 15a flaw detection surface,
16 signal wire (platinum lead wire), 17 plating, 18 protective tube,
20 sensor holder, 21 counterweight and dross prevention block,
22 vertical bar member, 23 horizontal axis,
24 suspension holding member, 25 fixture, 26 positioning member, 30 waveform analyzer

Claims (12)

内部に高温液体を保有する高温槽の壁厚を測定する壁厚測定装置であって、
前記高温液体より高い温度で超音波を発しその反射波を検出可能な高温用超音波センサと、
該高温用超音波センサを前記高温液体中に直接浸漬しその探傷面を被計測部の壁内面に向けて保持するセンサ保持具と、
高温用超音波センサで検出した反射波の波形を解析し壁厚を算出する波形解析装置と、を備えたことを特徴とする高温槽の壁厚測定装置。
A wall thickness measuring device for measuring the wall thickness of a high-temperature tank having a high-temperature liquid therein,
An ultrasonic sensor for high temperature capable of emitting an ultrasonic wave at a temperature higher than that of the high temperature liquid and detecting the reflected wave;
A sensor holder that directly immerses the high-temperature ultrasonic sensor in the high-temperature liquid and holds the flaw detection surface toward the wall inner surface of the measurement target part; and
A wall thickness measuring apparatus for a high-temperature tank, comprising: a waveform analyzing apparatus that analyzes a waveform of a reflected wave detected by an ultrasonic sensor for high temperature and calculates a wall thickness.
前記波形解析装置により、壁外面からの最初の第1反射波B1とこれが壁内面と壁外面で再反射した2回目の第2反射波B2とを検出し、その時間差と超音波伝播速度から壁厚を算出する、ことを特徴とする請求項1に記載の高温槽の壁厚測定装置。   The waveform analysis apparatus detects the first reflected wave B1 from the outer wall surface and the second reflected wave B2 which is reflected again by the inner wall surface and the outer wall surface, and determines the wall from the time difference and the ultrasonic propagation velocity. The apparatus for measuring a wall thickness of a high-temperature tank according to claim 1, wherein the thickness is calculated. 前記波形解析装置により、検出した反射波の波形を周波数解析して、合金反射波G1をノイズエコーから識別する、ことを特徴とする請求項1に記載の高温槽の壁厚測定装置。   The apparatus for measuring a wall thickness of a high-temperature tank according to claim 1, wherein the waveform analysis apparatus performs frequency analysis on the waveform of the detected reflected wave, and identifies the alloy reflected wave G1 from the noise echo. 前記波形解析装置により、第1反射波B1が合金層界面と壁外面で再反射した合金反射波G1を検出し、第2反射波B2と合金反射波G1の時間差で前記壁厚を補正する、ことを特徴とする請求項2に記載の高温槽の壁厚測定装置。   The waveform analysis apparatus detects the alloy reflected wave G1 in which the first reflected wave B1 is re-reflected at the alloy layer interface and the wall outer surface, and corrects the wall thickness by the time difference between the second reflected wave B2 and the alloy reflected wave G1. The apparatus for measuring a wall thickness of a high-temperature tank according to claim 2. 前記高温用超音波センサは、超音波振動子と、これを挟んでろう付けされた1対の電極板と、その一方にろう付けされ高温液体の濡れ性の高いシュー板と、からなり、
前記電極に信号線が直付けされ、シュー板の探傷面に高温液体の濡れ性の高いメッキが施されている、ことを特徴とする請求項1に記載の高温槽の壁厚測定装置。
The high-temperature ultrasonic sensor comprises an ultrasonic transducer, a pair of electrode plates brazed with the ultrasonic transducer interposed therebetween, and a shoe plate brazed to one of them and having high wettability with high-temperature liquid,
The apparatus for measuring a wall thickness of a high-temperature tank according to claim 1, wherein a signal line is directly attached to the electrode, and the flaw detection surface of the shoe plate is plated with high wettability of high-temperature liquid.
前記センサ保持具は、高温用超音波センサを下端部に保持し上方に延びる鉛直棒部材と、該鉛直棒部材を水平軸を中心に揺動可能に吊り下げ高温槽の上部に取付可能な吊下保持部材とを備える、ことを特徴とする請求項1に記載の高温槽の壁厚測定装置。   The sensor holder includes a vertical bar member that holds a high-temperature ultrasonic sensor at a lower end and extends upward, and the vertical bar member is suspended so as to be swingable about a horizontal axis and can be attached to an upper portion of a high-temperature tank. The apparatus for measuring a wall thickness of a high-temperature tank according to claim 1, further comprising a lower holding member. 前記鉛直棒部材は、高温液体による浮力を低減するためのカウンタウエイト兼ドロス侵入防止ブロックを有する、ことを特徴とする請求項6に記載の高温槽の壁厚測定装置。   The wall thickness measuring device for a high-temperature tank according to claim 6, wherein the vertical bar member has a counterweight and dross intrusion prevention block for reducing buoyancy due to high-temperature liquid. 前記鉛直棒部材は、高温用超音波センサの探傷面を壁内面に向けて一定の距離で位置決めするための位置決め部材を有する、ことを特徴とする請求項6に記載の高温槽の壁厚測定装置。   The wall thickness measurement of a high-temperature tank according to claim 6, wherein the vertical bar member has a positioning member for positioning the flaw detection surface of the high-temperature ultrasonic sensor toward the wall inner surface at a certain distance. apparatus. 内部に高温液体を保有する高温槽の壁厚を測定する壁厚測定方法であって、
高温用超音波センサを高温液体中に直接浸漬しその探傷面を被計測部の壁内面に向けて保持するセンサ保持ステップと、
高温用超音波センサで検出した反射波の波形を解析し壁厚を算出する波形解析ステップと、を備えたことを特徴とする高温槽の壁厚測定方法。
A wall thickness measurement method for measuring the wall thickness of a high-temperature tank having a high-temperature liquid therein,
A sensor holding step for directly immersing the ultrasonic sensor for high temperature in the high temperature liquid and holding the flaw detection surface toward the wall inner surface of the measurement target part;
A waveform analysis step of analyzing a waveform of a reflected wave detected by a high-temperature ultrasonic sensor and calculating a wall thickness, and a method for measuring a wall thickness of a high-temperature tank.
前記波形解析ステップにおいて、壁外面からの最初の第1反射波B1とこれが壁内面と壁外面で再反射した2回目の第2反射波B2とを検出し、その時間差と超音波伝播速度から壁厚を算出する、ことを特徴とする請求項9に記載の高温槽の壁厚測定方法。   In the waveform analysis step, the first reflected wave B1 from the wall outer surface and the second second reflected wave B2 reflected again by the wall inner surface and the wall outer surface are detected, and the wall is determined from the time difference and the ultrasonic propagation velocity. The method for measuring the wall thickness of a high-temperature tank according to claim 9, wherein the thickness is calculated. 前記波形解析ステップにおいて、検出した反射波の波形を周波数解析して、合金反射波G1をノイズエコーから識別する、ことを特徴とする9に記載の高温槽の壁厚測定方法。   10. The method for measuring a wall thickness of a high-temperature tank according to 9, wherein, in the waveform analysis step, the detected reflected wave waveform is frequency-analyzed to identify the alloy reflected wave G1 from a noise echo. 前記波形解析ステップにおいて、第1反射波B1が合金層界面と壁外面で再反射した合金反射波G1を検出し、第2反射波B2と合金反射波G1の時間差で前記壁厚を補正する、ことを特徴とする請求項10に記載の高温槽の壁厚測定方法。
In the waveform analysis step, the first reflected wave B1 detects the alloy reflected wave G1 re-reflected at the alloy layer interface and the wall outer surface, and the wall thickness is corrected by the time difference between the second reflected wave B2 and the alloy reflected wave G1. The method for measuring a wall thickness of a high-temperature tank according to claim 10.
JP2004074657A 2004-03-16 2004-03-16 Wall thickness measuring device and method of high-temperature tank Pending JP2005265456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074657A JP2005265456A (en) 2004-03-16 2004-03-16 Wall thickness measuring device and method of high-temperature tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074657A JP2005265456A (en) 2004-03-16 2004-03-16 Wall thickness measuring device and method of high-temperature tank

Publications (1)

Publication Number Publication Date
JP2005265456A true JP2005265456A (en) 2005-09-29

Family

ID=35090187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074657A Pending JP2005265456A (en) 2004-03-16 2004-03-16 Wall thickness measuring device and method of high-temperature tank

Country Status (1)

Country Link
JP (1) JP2005265456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025555A (en) * 2008-07-15 2010-02-04 Daikure Co Ltd Method and device for measuring wall thickness of high temperature vessel
CN106442727A (en) * 2016-09-30 2017-02-22 东北大学 Method and system for identifying mechanical characteristic parameters of hard coating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025555A (en) * 2008-07-15 2010-02-04 Daikure Co Ltd Method and device for measuring wall thickness of high temperature vessel
CN106442727A (en) * 2016-09-30 2017-02-22 东北大学 Method and system for identifying mechanical characteristic parameters of hard coating material
CN106442727B (en) * 2016-09-30 2019-02-26 东北大学 A kind of method and system recognizing hard coat material mechanics parameters

Similar Documents

Publication Publication Date Title
JP2006322749A (en) Ultrasonic transducer for liquid metal
CN111623913B (en) Nondestructive testing method and equipment for residual stress of aluminum alloy
JPH0152694B2 (en)
WO2021147681A1 (en) Intrinsic process signal-based online spatter detection method for resistance spot welding, and system
Zou et al. High-accuracy ultrasonic corrosion rate monitoring
Parker et al. Application of pulse‐echo ultrasonics to locate the solid/liquid interface during solidification and melting of steel and other metals
JP2005265456A (en) Wall thickness measuring device and method of high-temperature tank
KR101477962B1 (en) Apparatus and method for detecting pitting corrosion of metal using acoustic emission method
JP6109036B2 (en) Ultrasonic measuring device and calibration method thereof
US10563285B2 (en) Method for inspecting a liquid metal by ultrasounds
CN113983976B (en) Ultrasonic pipeline thickness measuring method based on FPGA
CN113084102B (en) Crystallizer protection slag liquid slag layer thickness testing device and method based on wettability
JP2002286623A (en) Corrosion measuring device
Viumdal et al. Beyond the dip stick: Level measurements in aluminum electrolysis
CN111060044B (en) Method for measuring thickness of welding type target by adopting water immersion type C-scan equipment
JP2001056309A (en) Conductivity detection electrode and conductivity measuring apparatus using the same
Oltra et al. Real-time monitoring of intergranular corrosion damage on AA2024
CZ359996A3 (en) Method of measuring electrochemical activity
Viumdal et al. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters
JP2005010139A (en) Residual thickness measuring method and device for furnace refractory using elastic wave
JP2002286678A (en) Corrosion control-supporting apparatus for metal material
GB2212919A (en) Probe for an ultrasonic flaw detector welded to a support
JP2004205502A (en) Film thickness measuring method
CN109489797A (en) A kind of corrosion-and high-temp-resistant sonic transducer, sound field measure system and method
CN212904689U (en) Long service life&#39;s metal nondestructive test appearance

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090413

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A02