JP2005265163A - Bearing - Google Patents

Bearing Download PDF

Info

Publication number
JP2005265163A
JP2005265163A JP2004082849A JP2004082849A JP2005265163A JP 2005265163 A JP2005265163 A JP 2005265163A JP 2004082849 A JP2004082849 A JP 2004082849A JP 2004082849 A JP2004082849 A JP 2004082849A JP 2005265163 A JP2005265163 A JP 2005265163A
Authority
JP
Japan
Prior art keywords
bearing
inner member
heat treatment
rolling shaft
dimensional change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004082849A
Other languages
Japanese (ja)
Other versions
JP4633375B2 (en
Inventor
Yasuyuki Watanabe
靖之 渡邊
Katsushi Abe
克史 阿部
Masahiko Kataoka
雅彦 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004082849A priority Critical patent/JP4633375B2/en
Publication of JP2005265163A publication Critical patent/JP2005265163A/en
Application granted granted Critical
Publication of JP4633375B2 publication Critical patent/JP4633375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • F16C13/006Guiding rollers, wheels or the like, formed by or on the outer element of a single bearing or bearing unit, e.g. two adjacent bearings, whose ratio of length to diameter is generally less than one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/18Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing capable of restraining peeling-off of a surface-damaged type in the bearing including a rotary shaft subjected to high-frequency hardening and caulking and exposed to high temperature. <P>SOLUTION: This bearing comprises the rotary shaft 1, an outer ring 2 and a roller 3 rolling in contact with the outer ring. The rotary shaft has a surface-hardened layer 1a by high-frequency hardening and is within 10 x 10<SP>-5</SP>to 50 x 10<SP>-5</SP>in a dimensional change rate of a central diameter before and after a heating process of 230 °C x 2h. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は軸受に関し、より具体的には、自動車のエンジンやトランスミッションなどのように高温雰囲気(100〜200℃)で用いられる軸受に関するものである。   The present invention relates to a bearing, and more specifically to a bearing used in a high temperature atmosphere (100 to 200 ° C.) such as an automobile engine or transmission.

軸受に使用される鋼(特に軸受鋼等)は高い表面硬さ(HRC58以上)を得るために、A1変態点以上の温度で加熱した後、油等に焼入れを行い、マルテンサイト組織を得る。次いで、内部応力除去のため200℃以下の低温焼戻を行う。このとき、上記焼入れ前の加熱によって生成するオーステナイトがすべてマルテンサイトに変態するわけではなく、オーステナイト相の一部はマルテンサイトの中に残留オーステナイトとして残留する。この残留オーステナイトは熱的に不安定なため、長時間常温に放置しておくと、徐々にマルテンサイトに変態して体積が膨張する。この結果、軸受部品の寸法が時間と共に変化することになる。この経時的な寸法変化は、軸受としての機能を劣化させる要因となる。   In order to obtain high surface hardness (HRC 58 or higher), steel used for the bearing (especially bearing steel or the like) is heated at a temperature equal to or higher than the A1 transformation point and then quenched into oil or the like to obtain a martensite structure. Next, low temperature tempering at 200 ° C. or lower is performed to remove internal stress. At this time, not all of the austenite generated by the heating before quenching is transformed into martensite, and a part of the austenite phase remains as retained austenite in the martensite. Since this retained austenite is thermally unstable, when left at room temperature for a long time, it gradually transforms into martensite and the volume expands. As a result, the dimensions of the bearing parts change with time. This dimensional change over time becomes a factor that deteriorates the function as a bearing.

機能劣化の代表例としては、寸法が規格外れになり、特に内方部材である内輪の内径の寸法が大きくなり、軸との間でクリープを発生させ場合を挙げることができる。また、軸受すき間(ラジアルすき間,円周方向すき間)が減少し、軸受内で温度上昇や金属同士の接触を助長する可能性がある。   As a typical example of the function deterioration, there is a case where the dimensions are out of specification, particularly the inner diameter of the inner ring which is an inner member is increased, and creep is generated between the inner ring and the shaft. In addition, the bearing clearance (radial clearance, circumferential clearance) is reduced, and there is a possibility of promoting temperature rise and contact between metals in the bearing.

上記の寸法の経年変化を抑えるために、焼入れ後に氷点以下に冷却して(サブゼロ処理)、残留オーステナイトをマルテンサイトに変態させる方法が実際に行われている。(非特許文献1参照)。   In order to suppress the secular change of the above dimensions, a method of cooling to below the freezing point after quenching (sub-zero treatment) and transforming residual austenite to martensite is actually performed. (Refer nonpatent literature 1).

軸または内輪などの内方部材の一部分(ころ軌道面)を高周波熱処理により硬化させ、かつ内方部材の端面をかしめて固定するころ軸受では、高周波熱処理を用いるので表面のみ硬化することができる。このため、光輝熱処理を行った軸受と比較し、残留オーステナイト量が少なく、経年変化が小さい。この結果、上記内方部材は自動車のエンジンやトランスミッション等の高温雰囲気(100〜200℃)で使用されても、経年変化が問題になることはほとんどなく、従来は、転動軸の表面硬さや硬化層深さを管理していればよかった。たとえば、転動軸など内方部材の端面をかしめるためにその軸長手方向に沿って硬さ管理を行うことが提案されている(特許文献1参照)。
特開平5−321616号公報 不二越熱処理研究会:新・知りたい熱処理(ジャパンマシニスト社)、140〜142頁
In a roller bearing in which a part (roller raceway surface) of an inner member such as a shaft or an inner ring is hardened by high-frequency heat treatment and the end face of the inner member is caulked and fixed, only the surface can be hardened because high-frequency heat treatment is used. For this reason, the amount of retained austenite is small and the secular change is small as compared with the bearing subjected to the bright heat treatment. As a result, even if the inner member is used in a high temperature atmosphere (100 to 200 ° C.) such as an automobile engine or transmission, there is almost no problem with aging, and conventionally, the surface hardness of the rolling shaft and It was only necessary to manage the depth of the hardened layer. For example, in order to caulk the end surface of an inner member such as a rolling shaft, it has been proposed to perform hardness management along the longitudinal direction of the shaft (see Patent Document 1).
JP-A-5-321616 Fujikoshi Heat Treatment Study Group: New heat treatment (Japan Machinist Co.), pages 140-142

自動車のエンジンやトランスミッション等の高温雰囲気(100〜200℃)には、軸受の部品の一部分に高周波熱処理によって硬化層を形成し、硬化しない端部をかしめた部品を含む軸受が用いられる。高周波熱処理を用いることから、表面のみ硬化することができ、光輝熱処理を行った軸受と比較し、上述のように残留オーステナイト量が少なく、経年変化が小さため、従来は経年変化がほとんど問題になることはなかった。   In high-temperature atmospheres (100 to 200 ° C.) such as automobile engines and transmissions, a bearing is used that includes a part in which a hardened layer is formed by high-frequency heat treatment on a part of the bearing part and the end part that is not hardened is caulked. Since high-frequency heat treatment is used, only the surface can be hardened, and the amount of retained austenite is small as described above and the secular change is small as compared with the bearing subjected to the bright heat treatment. It never happened.

しかし、最近のエンジンやトランスミッションの高機能化(高速化・高荷重化)や軽量コンパクト化に伴い、軸受にも高機能化および長寿命化が要求されている。最近の軸受の破損形態は、上記経年寸法変化による局部的な面圧の上昇により、機能劣化が発生し、とくに軸受すき間(ラジアルすきま)が減少し、軸受内の温度上昇や金属同士の接触を助長し、表面損傷型の剥離が発生する可能性がある。   However, with the recent enhancement of functions (higher speed and higher load) and lighter and more compact engines and transmissions, bearings are also required to have higher functions and longer life. Recent bearing failure modes include functional degradation due to the increase in local surface pressure due to the above-mentioned dimensional change, especially bearing clearance (radial clearance) is reduced, and temperature rise in the bearing and contact between metals are reduced. There is a possibility that surface damage type peeling will occur.

このため、軸受の内方部材の一部分、たとえば転動軸の表層部(軌道面)を高周波熱処理により硬化させ、非硬化部の端部をかしめて固定する軸受でも、経年変化抑制の対策が必要となっている。   For this reason, it is necessary to take measures to suppress secular change even in bearings in which a part of the inner member of the bearing, for example, the surface layer (orbital surface) of the rolling shaft is hardened by high-frequency heat treatment and the end of the non-hardened part is caulked and fixed. It has become.

本発明は、高周波焼入硬化層を有し、かしめ加工される内方部材を含み、自動車ミッション等のように高温にさらされる軸受において、表面損傷型の剥離を抑制することができる軸受を提供することを目的とする。   The present invention provides a bearing that includes an induction-hardened hardened layer, includes an inner member that is caulked, and is capable of suppressing surface damage-type peeling in a bearing that is exposed to high temperatures such as an automobile mission. The purpose is to do.

本発明の軸受は、内方部材と、その外側周囲に位置し内方部材と相対的に回動自由の関係にある外方部材とを有し、内方部材が高周波焼入れによる表面硬化層を有する軸受である。この軸受において、内方部材は、加熱処理230℃×2hの処理前と処理後とにおける中央の径の寸法変化率が10×10-5〜50×10-5の範囲にある。 The bearing of the present invention has an inner member and an outer member located around the outer side of the inner member and relatively free to rotate relative to the inner member. The inner member has a surface hardened layer formed by induction hardening. Bearing. In this bearing, the inner member has a dimensional change rate of the center diameter in the range of 10 × 10 −5 to 50 × 10 −5 before and after the heat treatment of 230 ° C. × 2 h.

この構成により、軸または内輪などの内方部材の一部分を高周波熱処理により硬化させ、非硬化部の端部をかしめる軸受では、経年寸法変化する部分を、高周波熱処理の影響がある部分に限定することができる。局部的な面圧の上昇により機能劣化が発生し、とくに軸受すき間(ラジアルすきま)の減少に起因する軸受内の温度上昇や金属同士の接触によって助長される表面損傷型の剥離を防止することが可能になる。また、その限定された部分における経年寸法変化を有効に活用することにより、上記の範囲の寸法変化により、たとえばころのエッジロードを解消し、かつ内方部材の形状を時間および温度とともに凸形状(太鼓状)に変形させ、緩やかなクラウニング形状を形成させることができる。この結果、ころのエッジ部との接触応力を緩和させることが可能となる。   With this configuration, in a bearing in which a part of an inner member such as a shaft or an inner ring is hardened by high-frequency heat treatment and the end portion of the non-hardened portion is caulked, the part that changes over time is limited to the part affected by high-frequency heat treatment. be able to. Deterioration of function due to local increase in surface pressure, especially to prevent surface damage-type peeling promoted by contact between metal and temperature rise due to decrease in bearing clearance (radial clearance) It becomes possible. Moreover, by effectively utilizing the aging change in the limited portion, for example, the edge load of the roller is eliminated by the dimensional change in the above range, and the shape of the inner member is convex with time and temperature ( It is possible to form a gentle crowning shape. As a result, the contact stress with the edge portion of the roller can be relaxed.

(実施の形態1)
図1〜図3は、本発明の実施の形態1における軸受であるロッカーアーム用軸受10を示す断面図である。図1〜図3を参照して、いずれのロッカーアーム用軸受10も、図示していないカムと接触する外方部材(外輪)2と、ころ3と、ロッカーアーム部5と、ロッカーアーム部にかしめ加工により固定される内方部材(内輪または転動軸)1とを備えている。
(Embodiment 1)
FIGS. 1-3 is sectional drawing which shows the bearing 10 for rocker arms which is a bearing in Embodiment 1 of this invention. 1 to 3, any of the rocker arm bearings 10 includes an outer member (outer ring) 2 that contacts a cam (not shown), a roller 3, a rocker arm portion 5, and a rocker arm portion. And an inner member (inner ring or rolling shaft) 1 fixed by caulking.

転動軸1は、ころと接触する転走面に高周波焼入処理が施され、残留オーステナイト量が調整された高周波焼入層1aが形成されている。高周波焼入による硬化層は、かしめ部1bには及ばないようにされ、このためかしめ部1bは、高周波焼入層よりは大幅に低い硬度を有している。転動軸1は、JISG4805 SUJ2(C:0.95〜1.10重量%、Si:0.15〜0.35重量%、Mn:0.50重量%、P:0.025重量%以下、S:0.025重量%以下、Cr:1.30〜1.60重量%)を用いて形成されている。   In the rolling shaft 1, induction hardening is applied to the rolling surface in contact with the roller, and an induction hardening layer 1 a in which the amount of retained austenite is adjusted is formed. The hardened layer by induction hardening does not reach the caulking portion 1b. For this reason, the caulking portion 1b has a hardness significantly lower than that of the induction hardening layer. The rolling shaft 1 is composed of JIS G4805 SUJ2 (C: 0.95 to 1.10 wt%, Si: 0.15 to 0.35 wt%, Mn: 0.50 wt%, P: 0.025 wt% or less, S: 0.025 wt% or less, Cr: 1.30 to 1.60 wt%).

図1に示す軸受の転動軸の高周波焼入層1aでは、ほぼ一定の深さで高周波焼入層が形成されており、その深さは図2〜図3に示す高周波焼入層よりも浅い。図2に示す転動軸の高周波焼入層1aは、中央部で深くなる形状を有している。図3に示す転動軸の高周波焼入層1aは、転動軸の中心軸にまで及び、転動軸全断面にわたって形成されている。   In the induction hardened layer 1a of the rolling shaft of the bearing shown in FIG. 1, the induction hardened layer is formed with a substantially constant depth, and the depth is higher than that of the induction hardened layer shown in FIGS. shallow. The induction hardening layer 1a of the rolling shaft shown in FIG. 2 has a shape that becomes deep at the center. The induction hardening layer 1a of the rolling shaft shown in FIG. 3 extends to the central axis of the rolling shaft and extends over the entire cross section of the rolling shaft.

本発明の実施の形態におけるロッカーアーム用軸受10の転動軸1は、加熱処理230℃×2hの処理前と処理後とにおける中央の径の寸法変化率が10×10-5〜50×10-5の範囲にあるようにする。上記寸法変化率を実現するために、上記軸受10の転動軸1の高周波焼入層1aでは、高周波焼入処理(焼戻を含む)を行ったあと、その表面において硬度はHRC59〜65の範囲に調整され、またその表面において残留オーステナイト量は30%以下に調整されることが望ましい。上記残留オーステナイトは、耐転動疲労性の向上に有効なので、10%以上含むことが望ましい。 The rolling shaft 1 of the rocker arm bearing 10 according to the embodiment of the present invention has a dimensional change rate of the center diameter of 10 × 10 −5 to 50 × 10 before and after the heat treatment of 230 ° C. × 2 h. Be in the range of -5 . In order to achieve the above dimensional change rate, the induction hardening layer 1a of the rolling shaft 1 of the bearing 10 is subjected to induction hardening (including tempering), and then the surface has a hardness of HRC 59 to 65. It is desirable that the amount of retained austenite is adjusted to 30% or less. Since the retained austenite is effective for improving rolling fatigue resistance, it is desirable to contain 10% or more.

図4〜図6は、図1〜図3に示す転動軸1の使用後の形状を示す図である。図4〜図6を参照して分かるように、一般に、高周波焼入層が深く、その体積率が大きいほど、使用後の寸法変化率も大きい。図6に示す転動軸にのみ寸法変化率の定義式を示すが、図4および図5に示す転動軸においても同様の定義式が適用されることはいうまでもない。Doは230℃×2時間加熱処理前の径を表し、転動軸の端部での径にほぼ等しい。D1は上記加熱処理後の転動軸中央部での径である。図4〜図6の転動軸について、加熱処理230℃×2時間の処理前後における寸法変化率が10×10-5〜50×10-5の範囲にある。 4-6 is a figure which shows the shape after use of the rolling shaft 1 shown in FIGS. 1-3. As can be seen with reference to FIGS. 4 to 6, generally, the deeper the induction-hardened layer and the larger the volume ratio, the greater the dimensional change rate after use. Although the definition formula of the dimensional change rate is shown only for the rolling shaft shown in FIG. 6, it goes without saying that the same defining formula is applied to the rolling shaft shown in FIGS. 4 and 5. Do represents the diameter before heat treatment at 230 ° C. for 2 hours, and is approximately equal to the diameter at the end of the rolling shaft. D1 is the diameter at the center of the rolling shaft after the heat treatment. The rolling axis of FIGS. 4 to 6, the dimensional change rate in the process before and after heat treatment 230 ° C. × 2 hours is in a range of 10 × 10 -5 ~50 × 10 -5 .

図1〜図3に示す転動軸の高周波焼入層1aの形状は、高周波熱処理の条件設定によって、硬化層パターン(熱影響層)は自由に変化させることができる。高周波焼入条件は、周波数、加熱時間、電力量、ヒートパターンによって決められる。さらに、コイル形状(高周波コイルの変更を伴う場合もある)、冷却剤の種類、冷却時間、サブゼロ処理、製品の焼戻前温度、焼戻温度等の要件が重要である。その他に鋼素材の成分、表面硬化層の分布形状等を制御することによって、上記経年寸法変化をある一定範囲に抑制することが可能となる。   The shape of the induction hardening layer 1a of the rolling shaft shown in FIGS. 1 to 3 can be freely changed in the hardened layer pattern (heat-affected layer) by setting the conditions for the induction heat treatment. Induction hardening conditions are determined by frequency, heating time, electric energy, and heat pattern. Furthermore, requirements such as coil shape (which may be accompanied by changes in the high frequency coil), type of coolant, cooling time, sub-zero treatment, pre-tempering temperature of the product, tempering temperature, etc. are important. In addition, by controlling the components of the steel material, the distribution shape of the surface hardened layer, etc., it is possible to suppress the above-mentioned aging change to a certain range.

上記転動軸において、熱影響範囲が最も大きい図3に示す軸受では、残留オーステナイト量が多い傾向であり、寸法変化率も大きくなる。高周波焼入層において、図3→図2→図1の順に、残留オーステナイト量は順に少なくなり、寸法変化率も小さくなる。したがって、自動車のエンジンやトランスミッション等の高温雰囲気(100〜200℃)で使用される軸受としては、寸法変化率を上記範囲の低い範囲内に抑制しようとする場合、図1の硬化層パターンが望ましい。しかし、図2および図3に示す高周波焼入層パターンであっても熱処理条件を制御することで残留オーステナイト量を減らすことができ、寸法変化率を小さくすることができる。また、図2および図3に示す高周波焼入層パターンの場合、軌道面中央部が軌道面端部に比べ残留オーステナイトの体積が多いため、軌道面中央部が膨らむ緩やかな形状に変形させることができるため、ローラのクラウニング効果と同様にエッジ応力を効率よく回避することができる。   In the rolling shaft shown in FIG. 3 having the largest heat-affected range, the amount of retained austenite tends to be large, and the dimensional change rate also increases. In the induction hardened layer, the amount of retained austenite decreases in order from FIG. 3 to FIG. 2 to FIG. 1, and the dimensional change rate also decreases. Therefore, as a bearing used in a high-temperature atmosphere (100 to 200 ° C.) such as an automobile engine or transmission, the cured layer pattern shown in FIG. 1 is desirable when the dimensional change rate is to be suppressed within the low range. . However, even in the induction-hardened layer pattern shown in FIGS. 2 and 3, the amount of retained austenite can be reduced by controlling the heat treatment conditions, and the dimensional change rate can be reduced. In the case of the induction hardened layer pattern shown in FIGS. 2 and 3, since the volume of retained austenite is larger in the center portion of the raceway surface than in the end portion of the raceway surface, it can be deformed into a gentle shape in which the center portion of the raceway surface swells. Therefore, the edge stress can be avoided efficiently as in the crowning effect of the roller.

ころのエッジロードを解消するための経年変化は、例えば、上記軸径又は内輪外径がφ10mmの場合、軌道面中央部の経年変化量は+2〜+6μmであることが軸受の面圧計算より分かっている。上記内方部材の経年寸法変化を制御するためには、上述のように高周波熱処理における高周波焼入条件を制御する必要がある。   It is understood from the calculation of the bearing surface pressure that the secular change for eliminating the roller edge load is, for example, when the shaft diameter or the inner ring outer diameter is φ10 mm, the secular variation at the center of the raceway surface is +2 to +6 μm. ing. In order to control the aging change of the inner member, it is necessary to control the induction hardening conditions in the induction heat treatment as described above.

図7および図8に高周波焼入処理の条件を示す。図7に示す条件では、50kHzという比較的低い周波数を用いるので電力は、表面電流で遮蔽されることなく比較的深い位置にまで投入される。このため図2または図3に示す高周波焼入層を形成するのに適している。加熱温度は850〜900℃と低目にすることにより、未固溶の炭化物を多くして焼入後の残留オーステナイト量を抑制することができる。最高温度までの加熱時間は、1.2秒という短時間で行うため、オーステナイト粒径は比較的微細にすることができる。上記、高周波焼入の後に焼戻を行う。高周波焼入のあと焼戻を行う場合もあるし、行わない場合もある。どちらの場合も高周波焼入処理と呼ぶこととする。図7の場合は、180℃というやや高い温度にする。この焼戻温度を高めにすることによっても残留オーステナイトの分解量をそれほど多くはないが増やして、残留オーステナイト量の調整をすることができる。   7 and 8 show the conditions of the induction hardening process. In the condition shown in FIG. 7, since a relatively low frequency of 50 kHz is used, the electric power is input to a relatively deep position without being shielded by the surface current. For this reason, it is suitable for forming the induction hardening layer shown in FIG. 2 or FIG. By lowering the heating temperature to 850 to 900 ° C., the amount of undissolved carbide can be increased and the amount of retained austenite after quenching can be suppressed. Since the heating time to the maximum temperature is as short as 1.2 seconds, the austenite grain size can be made relatively fine. Tempering is performed after induction hardening. Tempering may or may not be performed after induction hardening. Both cases are called induction hardening. In the case of FIG. By increasing the tempering temperature, the amount of residual austenite decomposed can be increased, but the amount of residual austenite can be adjusted.

図8では、150kHzという高い周波数を用いるので、電力が浸透する深さは図7の場合よりも浅くなり、図1または図2に示す高周波焼入層を形成するのに適している。この場合、最高温度までは1.0秒という短時間で加熱する。焼戻温度は、高周波焼入の条件が残留オーステナイトを抑制する条件であるため、160℃という低目の温度にする。   In FIG. 8, since a high frequency of 150 kHz is used, the penetration depth of the electric power is shallower than that in the case of FIG. 7, which is suitable for forming the induction hardening layer shown in FIG. In this case, heating is performed in a short time of 1.0 seconds up to the maximum temperature. The tempering temperature is set to a low temperature of 160 ° C. because induction hardening is a condition for suppressing retained austenite.

上記のように、焼戻条件を含む高周波焼入条件を調整することにより、任意の形状および任意の残留オーステナイト量の高周波焼入層を形成することができる。このような製造条件を目標とする残留オーステナイト量、硬さまたは寸法変化率、硬さとなるように設定する。この結果、高温環境で使用して高耐久性を示す軸受を提供することが可能になる。   As described above, by adjusting the induction hardening conditions including the tempering conditions, an induction hardening layer having any shape and any amount of retained austenite can be formed. Such production conditions are set so as to be the amount of retained austenite, hardness or dimensional change rate, and hardness. As a result, it is possible to provide a bearing that exhibits high durability when used in a high temperature environment.

経年寸法変化は、上記要因がそれぞれ相互に影響を及ぼし合って決定される。また上記経年寸法変化は、軸の形状,高周波熱処理設備等によって変化するため、演繹的に高周波焼入条件を設定することは難しい。このため、製品のできあがり具合に基づいて、トライアルエラーによって調整する。   Aging dimension change is determined by the above factors affecting each other. In addition, since the aging change varies depending on the shape of the shaft, induction heat treatment equipment, etc., it is difficult to set induction hardening conditions a priori. For this reason, adjustment is made by trial error based on the finished product.

図9は、経年寸法変化の加速試験である230℃×2時間加熱処理の処理前後のころの寸法変化率と、150℃、120℃および100℃にそれぞれ2500時間保持の前後のころの寸法変化率との関係を示す図である。150℃、120℃および100℃にそれぞれ2500時間保持後の縦軸における寸法変化率は、軸受を長時間使用した場合の寸法変化率と解することができる。また、230℃×2時間の加熱処理では、残留オーステナイトがマルテンサイトとε炭化物とにほとんど分解される加速試験(経年寸法変化の短時間評価試験)と解することができる。これらはいずれも光輝熱処理品である。   FIG. 9 shows the dimensional change rate of the roller before and after the heat treatment at 230 ° C. for 2 hours, which is an accelerated test of dimensional change, and the dimensional change of the roller before and after holding for 2500 hours at 150 ° C., 120 ° C. and 100 ° C. It is a figure which shows the relationship with a rate. The dimensional change rate on the vertical axis after holding at 150 ° C., 120 ° C. and 100 ° C. for 2500 hours can be interpreted as the dimensional change rate when the bearing is used for a long time. Further, the heat treatment at 230 ° C. × 2 hours can be interpreted as an accelerated test (short-term evaluation test of aging dimensional change) in which retained austenite is almost decomposed into martensite and ε carbide. These are all bright heat-treated products.

図9より、軸受を長時間使用した場合の経年変化を簡易的に短時間で推測することができる。本発明の実施の形態における軸受では、軸受の面圧計算および図9より、次のように管理する。   From FIG. 9, it is possible to easily and easily estimate the secular change when the bearing is used for a long time. The bearing according to the embodiment of the present invention is managed as follows from the calculation of the bearing surface pressure and FIG.

230℃×2h加熱処理前後の軌道面中央部寸法変化率((加熱処理後の寸法−加熱処理前の寸法)/加熱処理前の寸法):10×10-5〜50×10-5
上記のように管理した内方部材(軸又は内輪)を製作することにより、ころのエッジロードを解消し、かつ、軸受にとって適正な転動面圧下で使用できる軸受を提供する。また、高周波焼入処理の硬化層パターン(熱影響層)としては、転動軸の長手方向に沿って均一な深さの硬化層パターンではなく、中央部の硬化層を深くする。このような中央部で深い硬化層パターンを用いることで、より緩やかなクラウニング形状ができる。この結果、ころエッジ部の応力を緩和させることができローラのクラウニングを廃止及び少量のドロップ量にすることができ、コスト低減が可能となる。ただし、初期では軸の軌道面はストレートなため、エッジ応力の発生が予測される。これを避けるために、軸受として使用する前に熱影響にて経年変化させたものを組み込むことも可能である。
230 ° C. × 2 h dimensional change rate at center of raceway surface before and after heat treatment ((size after heat treatment−size before heat treatment) / size before heat treatment): 10 × 10 −5 to 50 × 10 −5
By producing an inner member (shaft or inner ring) managed as described above, a bearing that eliminates the edge load of the roller and can be used under a rolling surface pressure appropriate for the bearing is provided. Moreover, as a hardening layer pattern (heat influence layer) of induction hardening processing, the hardening layer of the center part is made deep rather than the hardening layer pattern of uniform depth along the longitudinal direction of a rolling shaft. By using such a deep hardened layer pattern at the center, a more gentle crowning shape can be obtained. As a result, the stress at the roller edge portion can be relieved, the crowning of the roller can be eliminated and a small amount of drop can be achieved, and the cost can be reduced. However, since the shaft raceway surface is straight at the beginning, the occurrence of edge stress is predicted. In order to avoid this, it is also possible to incorporate a product that has been aged under the influence of heat before being used as a bearing.

図10は、本発明の実施の形態1の変形例の軸受を示す図である。図10において、上記のロッカーアーム用軸受において、ころを含まず、外輪と内輪である転動軸とが接触するタイプの滑り軸受を示す図である。このような軸受10において、転動軸1の高周波焼入層を上記の範囲に設定することにより、高温環境で高い耐久性を確保できる軸受を提供することができる。   FIG. 10 is a diagram showing a bearing according to a modification of the first embodiment of the present invention. FIG. 10 is a view showing a slide bearing of a type in which the outer ring and the rolling shaft as the inner ring are in contact with each other in the rocker arm bearing shown in FIG. In such a bearing 10, by setting the induction hardening layer of the rolling shaft 1 in the above range, a bearing that can ensure high durability in a high temperature environment can be provided.

(実施の形態2)
図11は、本発明の実施の形態2における軸受を示す図である。このATミッション50に用いられる遊星歯車の軸受である。図11において、この軸受は、遊星歯車である外輪42と、内輪である転動軸48と、外輪と転動軸との間に介在するころ46とを含む。外輪42に設けた歯車の歯は、太陽歯車軸41に固定されその太陽歯車軸と連動する太陽歯車と、互いにかみ合うように配置される。内輪48は、その端部においてかしめ加工され、キャリア44に固定される。
(Embodiment 2)
FIG. 11 is a diagram showing a bearing in the second embodiment of the present invention. This is a planetary gear bearing used in the AT mission 50. In FIG. 11, the bearing includes an outer ring 42 that is a planetary gear, a rolling shaft 48 that is an inner ring, and rollers 46 that are interposed between the outer ring and the rolling shaft. Gear teeth provided on the outer ring 42 are arranged so as to mesh with a sun gear fixed to the sun gear shaft 41 and interlocking with the sun gear shaft. The inner ring 48 is caulked at its end and is fixed to the carrier 44.

図11に示す転動軸は、JISG4805 SUJ2(C:0.95〜1.10重量%、Si:0.15〜0.35重量%、Mn:0.50重量%、P:0.025重量%以下、S:0.025重量%以下、Cr:1.30〜1.60重量%)を用いて形成されている。   The rolling shaft shown in FIG. 11 is JISG4805 SUJ2 (C: 0.95 to 1.10 wt%, Si: 0.15 to 0.35 wt%, Mn: 0.50 wt%, P: 0.025 wt%). %, S: 0.025% by weight or less, Cr: 1.30 to 1.60% by weight).

上記の遊星歯車の転動軸48の高周波焼入層では、上述したように高周波焼入処理(焼戻を含む)が施されている。この転動軸48において、230℃×2時間の加熱処理前後の寸法変化率は、10×10-5〜50×10-5の範囲にある。上記寸法変化率を実現するための高周波焼入などについては、本発明の実施の形態1に説明した方法を用いることができる。 In the induction hardening layer of the rolling shaft 48 of the planetary gear described above, induction hardening treatment (including tempering) is performed as described above. In this rolling shaft 48, the dimensional change rate before and after the heat treatment at 230 ° C. for 2 hours is in the range of 10 × 10 −5 to 50 × 10 −5 . For induction hardening for realizing the above dimensional change rate, the method described in the first embodiment of the present invention can be used.

高周波熱処理ヒートパターンとして図7および図8に示すパターンを用いて転動軸の高周波焼入を行ない、図1〜図3に示す軸受の転動軸1に高周波焼入硬化層を設けた。鋼素材には、上記のSUJ2を用いた。高周波熱処理条件は高周波熱処理設備(特に、周波数,コイル形状等)により、高周波出力、加熱時間等は大きく変化するため、代表的な条件のみを記載したが、本発明は製品のできあがり具合で判定しているため、高周波熱処理条件を限定するものではない。同様に、焼戻しについても、焼戻回数,焼戻温度,焼戻時間等の条件を限定するものではない。また、経年変化を抑制するために、高周波熱処理後にサブゼロ処理を入れることは可能である。結果を表1に示す。   7 and 8 was used as the induction heat treatment heat pattern, and the induction shaft was induction hardened, and an induction hardening hardened layer was provided on the rolling shaft 1 of the bearing shown in FIGS. The above-mentioned SUJ2 was used as the steel material. The high-frequency heat treatment conditions vary depending on the high-frequency heat treatment equipment (especially frequency, coil shape, etc.), so that the high-frequency output, heating time, etc. vary greatly. Therefore, only typical conditions have been described, but the present invention is judged based on how the product is finished. Therefore, the high-frequency heat treatment conditions are not limited. Similarly, for tempering, conditions such as the number of tempering, tempering temperature, and tempering time are not limited. Further, in order to suppress the secular change, it is possible to insert a sub-zero treatment after the high-frequency heat treatment. The results are shown in Table 1.

Figure 2005265163
Figure 2005265163

表1によれば、本発明の範囲の経年寸法変化率の軸受では、温度上昇が比較例に比べて小さく、温度上昇が抑制されていることが明瞭である。高周波焼入硬化層の形状は、図3→図2→図1の順に残留オーステナイト相は少なくなり、寸法変化率も小さくなる。自動車のエンジンやトランスミッション等の100℃〜200℃の高温雰囲気で使用される軸受としては図1に示す転動軸が望ましい。   According to Table 1, it is clear that the temperature rise is smaller than that of the comparative example and the temperature rise is suppressed in the bearing having a aging rate of change within the range of the present invention. As for the shape of the induction hardening layer, the retained austenite phase decreases in the order of FIG. 3 → FIG. 2 → FIG. 1, and the dimensional change rate also decreases. A rolling shaft shown in FIG. 1 is desirable as a bearing used in a high temperature atmosphere of 100 ° C. to 200 ° C. such as an automobile engine or transmission.

しかし、図2および図3の硬化層形状であっても熱処理条件を制御することにより残留オーステナイト量を減らすことができ、寸法変化率を小さくすることができる。また、図2および図3に示す転動軸の場合、転動軸中央部が端部に比べて残留オーステナイト量は多いため、中央部が緩やかに膨らむ形状に変形させることができる。この結果、ローラのクラウニング効果と同様にエッジ応力を効率よく回避することができる。   However, even with the hardened layer shape of FIGS. 2 and 3, the amount of retained austenite can be reduced by controlling the heat treatment conditions, and the dimensional change rate can be reduced. In the case of the rolling shafts shown in FIGS. 2 and 3, since the amount of retained austenite is larger in the central portion of the rolling shaft than in the end portion, the central portion can be deformed into a shape that gently swells. As a result, the edge stress can be efficiently avoided similarly to the crowning effect of the roller.

次に上記本発明の実施の形態に例示されたものも含めて、本発明の実施の形態を羅列的に説明する。   Next, embodiments of the present invention will be enumerated, including those exemplified in the embodiments of the present invention.

上記内方部材の表層部に窒素富化層を有してよい。表層部に窒素富化層を形成することにより安定な残留オーステナイトを形成し、表面損傷型の剥離を抑制しながら経年寸法変化を調整してクラウニング形状を調整し、エッジ部の応力調整を容易化することができる
上述したように、軸受がロッカアーム用のローラフォロア軸受であり、内方部材の端部がロッカアームにかしめ固定されてもよい。
You may have a nitrogen enriched layer in the surface layer part of the said inner member. Stable retained austenite is formed by forming a nitrogen-enriched layer on the surface layer, and the crowning shape is adjusted by adjusting the aging change while suppressing surface damage type peeling, facilitating stress adjustment at the edge As described above, the bearing may be a roller follower bearing for a rocker arm, and the end of the inner member may be caulked and fixed to the rocker arm.

また、上記の軸受がトランスミッション用の遊星用の軸受であり、内方部材がキャリアにかしめ固定されていてもよい。   Further, the bearing may be a planetary bearing for a transmission, and the inner member may be caulked and fixed to the carrier.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の軸受を用いることにより、内方部材の径中央の寸法変化率を10×10-5〜50×10-5の範囲内に入れ、ころのエッジロードを解消し、かつ、軸受にとって適正な転動面圧下で使用できる軸受を提供することができる。 By using the bearing of the present invention, the dimensional change rate at the center of the diameter of the inner member is within the range of 10 × 10 −5 to 50 × 10 −5 , eliminating the edge load of the roller, and suitable for the bearing It is possible to provide a bearing that can be used under various rolling contact pressures.

本発明の実施の形態1における軸受を示す図である。It is a figure which shows the bearing in Embodiment 1 of this invention. 本発明の実施の形態1における他の軸受を示す図である。It is a figure which shows the other bearing in Embodiment 1 of this invention. 本発明の実施の形態1におけるさらに別の軸受を示す図である。It is a figure which shows another bearing in Embodiment 1 of this invention. 図1の軸受の使用後の転動軸を示す図である。It is a figure which shows the rolling shaft after use of the bearing of FIG. 図2の軸受の使用後の転動軸を示す図である。It is a figure which shows the rolling shaft after use of the bearing of FIG. 図3の軸受の使用後の転動軸を示す図である。It is a figure which shows the rolling shaft after use of the bearing of FIG. 本発明の実施の形態1における転動軸への高周波焼入条件を示す図である。It is a figure which shows the induction hardening conditions to the rolling shaft in Embodiment 1 of this invention. 本発明の実施の形態1における転動軸への他の高周波焼入条件を示す図である。It is a figure which shows the other induction hardening conditions to the rolling shaft in Embodiment 1 of this invention. 加熱処理230℃×2時間における寸法変化率と、100、120、150℃×2500時間における寸法変化率との関係を示す図である。It is a figure which shows the relationship between the dimensional change rate in heat processing 230 degreeC x 2 hours, and the dimensional change rate in 100, 120, 150 degreeC x 2500 hours. 本発明の実施の形態1における変形例を示す図である。It is a figure which shows the modification in Embodiment 1 of this invention. 本発明の実施の形態2における軸受を示す図である。It is a figure which shows the bearing in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 転動軸(内方部材)、1a 高周波焼入硬化層、1b かしめ部、2 外輪(外方部材)、3 ころ(転動体)、5 ロッカーアーム、10 ロッカーアーム用軸受。   DESCRIPTION OF SYMBOLS 1 Rolling shaft (inner member), 1a Induction hardening hardening layer, 1b Caulking part, 2 Outer ring (outer member), 3 Roller (rolling element), 5 Rocker arm, 10 Rocker arm bearing.

Claims (4)

内方部材と、その外側周囲に位置し前記内方部材と相対的に回動自由の関係にある外方部材とを有し、前記内方部材が高周波焼入れによる表面硬化層を有する軸受において、
前記内方部材は、加熱処理230℃×2hの処理前と処理後とにおける中央の径の寸法変化率が10×10-5〜50×10-5の範囲にある、軸受。
In a bearing having an inner member and an outer member positioned around the outer side of the inner member and in a freely rotatable relationship with the inner member, the inner member has a surface hardened layer by induction hardening.
The inner member is a bearing having a dimensional change rate of a center diameter in a range of 10 × 10 −5 to 50 × 10 −5 before and after heat treatment at 230 ° C. × 2 h.
前記内方部材の表層部に窒素富化層を有する、請求項1に記載の軸受。   The bearing according to claim 1, further comprising a nitrogen-enriched layer in a surface layer portion of the inner member. 前記軸受がロッカアーム用のローラフォロア軸受であり、前記内方部材の端部がロッカアームにかしめ固定される、請求項1または2に記載の軸受。   The bearing according to claim 1, wherein the bearing is a roller follower bearing for a rocker arm, and an end portion of the inner member is caulked and fixed to the rocker arm. 前記軸受がトランスミッション用の遊星用の軸受であり、前記内方部材がキャリアにかしめ固定される、請求項1または2に記載の軸受。   The bearing according to claim 1, wherein the bearing is a planetary bearing for a transmission, and the inner member is caulked and fixed to a carrier.
JP2004082849A 2004-03-22 2004-03-22 bearing Expired - Fee Related JP4633375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082849A JP4633375B2 (en) 2004-03-22 2004-03-22 bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082849A JP4633375B2 (en) 2004-03-22 2004-03-22 bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009232692A Division JP4802273B2 (en) 2009-10-06 2009-10-06 bearing

Publications (2)

Publication Number Publication Date
JP2005265163A true JP2005265163A (en) 2005-09-29
JP4633375B2 JP4633375B2 (en) 2011-02-16

Family

ID=35089927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082849A Expired - Fee Related JP4633375B2 (en) 2004-03-22 2004-03-22 bearing

Country Status (1)

Country Link
JP (1) JP4633375B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271023A (en) * 2006-03-31 2007-10-18 Aisin Aw Co Ltd Rotary unit
JP2009019670A (en) * 2007-07-11 2009-01-29 Nsk Ltd Rolling bearing
JP2010101185A (en) * 2008-10-21 2010-05-06 Ntn Corp Rocker arm assembly
JP2010112341A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly
JP2010112342A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly
JP2010112339A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly
JP2010112340A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly
JP2010112343A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271023A (en) * 2006-03-31 2007-10-18 Aisin Aw Co Ltd Rotary unit
JP2009019670A (en) * 2007-07-11 2009-01-29 Nsk Ltd Rolling bearing
JP2010101185A (en) * 2008-10-21 2010-05-06 Ntn Corp Rocker arm assembly
JP2010112341A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly
JP2010112342A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly
JP2010112339A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly
JP2010112340A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly
JP2010112343A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assembly and its manufacturing method

Also Published As

Publication number Publication date
JP4633375B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4560141B2 (en) Surface hardening machine structural steel and machine structural steel parts
EP1484517B1 (en) Rolling bearing, cam follower with roller, and cam
JP4802273B2 (en) bearing
JP4566036B2 (en) Rolling bearing
WO2011013559A1 (en) Method of combined heat treatment and quench-hardened steel member
JP2008020003A (en) Process for producing track member and valve gear, and track member
JP4633375B2 (en) bearing
JP6410613B2 (en) Carburized material with excellent seizure resistance
JP2004137553A (en) Whole roller type rolling bearing
JP2005030569A (en) Cam follower
JP2009228829A (en) Manufacturing method of stem, manufacturing method of bearing, stem, and bearing
JP2008019482A (en) Method for manufacturing orbital member, method for manufacturing dynamic valve, and orbital member
JP2002212642A (en) Gas carburized hardening method of rolling-formed parts and rolling-formed parts obtained with this method
KR20240012362A (en) raceway and shaft
JP2010031307A (en) Roller bearing
JP2005314794A (en) Rolling bearing
JP2008063603A (en) Method for manufacturing track member, method for manufacturing valve device, and track member
JP4421334B2 (en) bearing
JP2001187921A (en) Needle roller bearing parts
JP2008064159A (en) Method of manufacturing track member, method of manufacturing valve gear, and track member
JP3895668B2 (en) Rolling sliding member and manufacturing method thereof
JPWO2019193772A1 (en) Rolling bearing race ring manufacturing method and rolling bearing manufacturing method
JP2004060807A (en) Rolling bearing
US20180119243A1 (en) Method for producing a planetary gear shaft having increased hardness
WO2022153770A1 (en) Shaft member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091014

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees