JP2005264226A - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
JP2005264226A
JP2005264226A JP2004078097A JP2004078097A JP2005264226A JP 2005264226 A JP2005264226 A JP 2005264226A JP 2004078097 A JP2004078097 A JP 2004078097A JP 2004078097 A JP2004078097 A JP 2004078097A JP 2005264226 A JP2005264226 A JP 2005264226A
Authority
JP
Japan
Prior art keywords
substrate
temperature
plasma processing
plasma
mounting table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004078097A
Other languages
Japanese (ja)
Inventor
Takanobu Oishi
孝信 大石
Hisashi Nobunaga
尚志 延永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004078097A priority Critical patent/JP2005264226A/en
Publication of JP2005264226A publication Critical patent/JP2005264226A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment device by which a substrate such as a glass substrate having a thermal conductivity lower than that of a silicon substrate is subjected to uniform plasma treatment, by accurately measuring the temperature distribution of the substrate during plasma treatment and further, uniformly keeping the substrate at the target temperature based on the measured result. <P>SOLUTION: The plasma treatment device 10 comprises: a mounting stand 16 for mounting the substrate to be plasma-treated; and a substrate elevating/lowering apparatus 22 with a plurality of supporting pins 40 of freely projecting to the mounting face of the mounting stand 16 from the mounting face, supporting a substrate 17 from the side of the mounting stand 16 and elevating/lowering. Each supporting pin 40 is a cylindrical member, and a temperature detecting means for detecting the temperature of the substrate is arranged in a space of the cylindrical member. During process treatment where the supporting pins 40 are stored into arrangement holes 44 provided at the mounting stand 16, the temperature distribution of the substrate 17 mounted on the mounting stand is measured from the side opposite to the plasma treatment face in the substrate 17. Using the measured result, control is performed in such a manner that the temperature distribution is made uniform. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プラズマを用いて基板等を処理(エッチング、薄膜形成)するプラズマ処理装置であって、プラズマ処理中の基板の温度分布を正確に計測し、プラズマ処理中の基板の基板温度を制御するプラズマ処理装置に関する。   The present invention is a plasma processing apparatus that processes a substrate or the like using plasma (etching, thin film formation), accurately measures the temperature distribution of the substrate during the plasma processing, and controls the substrate temperature of the substrate during the plasma processing. The present invention relates to a plasma processing apparatus.

大規模集積回路(LSI)や平面型表示装置(フラットパネルディスプレイ,FDP)の半導体プロセス処理において、基板をエッチングしたり、基板に薄膜を形成するためにプラズマ処理装置を用いたプラズマ処理が多く用いられている。プラズマ処理において基板を均一にエッチングしたり基板に均一に薄膜を形成する加工処理が望まれており、この加工処理に大きな影響を与えるプラズマを均一に形成することが望まれている。   In semiconductor processing of large scale integrated circuits (LSIs) and flat panel displays (flat panel displays, FDP), plasma processing using a plasma processing apparatus is often used to etch a substrate or form a thin film on a substrate. It has been. In plasma processing, a processing process that uniformly etches the substrate or forms a thin film uniformly on the substrate is desired, and it is desired to uniformly form plasma that has a great influence on the processing process.

下記特許文献1では、ウエハが処理されるチャンバ内に温度センサを設置してチャンバ内の温度を測定し、これをチャンバ内の温度のフィードバック制御に用いることでチャンバ内の温度を均一に保持する製造方法が提案されている。
しかし、特許文献1における温度測定によりチャンバ内の温度を均一にする場合、必ずしもプラズマ処理中の基板温度を正確に制御しているわけではなく、エッチングや薄膜形成が必ずしも均一に行われないといった問題があった。特に、熱伝導率がシリコン基板に比べて低いガラス基板等では大きな問題である。さらに、シリコン基板のサイズに比べて極めて大きなガラス基板をプラズマ処理対象とする場合、この問題は大きい。
In Patent Document 1 below, a temperature sensor is installed in a chamber in which a wafer is processed, the temperature in the chamber is measured, and this is used for feedback control of the temperature in the chamber to keep the temperature in the chamber uniform. Manufacturing methods have been proposed.
However, when the temperature in the chamber is made uniform by temperature measurement in Patent Document 1, the substrate temperature during plasma processing is not necessarily controlled accurately, and etching and thin film formation are not necessarily performed uniformly. was there. In particular, it is a serious problem in a glass substrate having a thermal conductivity lower than that of a silicon substrate. Further, when a glass substrate that is extremely large compared to the size of the silicon substrate is a plasma processing target, this problem is great.

一方、下記特許文献2では、プラズマ処理中に半導体ウエハの基板温度を連続的に監視するために、ウエハリフトピンのうちの1つに設けた空隙に光ファイバを含む光温度センサまたは蛍光・光温度センサを埋め込んで基板の温度の時間的変化を連続して計測することで、基板温度を制御することが提案されている。
しかし、特許文献2では、半導体ウエハの温度測定を1箇所で行い、これを半導体ウエハの基板温度としているため、基板サイズが大きく、しかも半導体ウエハ(シリコン基板)に比べて熱伝導率の低いガラス基板等の基板温度を正確に制御して、均一な処理を基板に施すことはできない。
On the other hand, in Patent Document 2 below, in order to continuously monitor the substrate temperature of a semiconductor wafer during plasma processing, an optical temperature sensor or an optical / optical temperature that includes an optical fiber in a gap provided in one of the wafer lift pins. It has been proposed to control a substrate temperature by embedding a sensor and continuously measuring a temporal change in the temperature of the substrate.
However, in Patent Document 2, since the temperature of the semiconductor wafer is measured at one location and used as the substrate temperature of the semiconductor wafer, the glass has a large substrate size and lower thermal conductivity than the semiconductor wafer (silicon substrate). The substrate temperature of the substrate or the like cannot be accurately controlled to perform uniform processing on the substrate.

下記特許文献3では、炉内温度測定用の温度測定装置の指向方向を移動させて、加工処理する基板等の所望の位置の温度を測定する半導体製造装置による製造方法が提案されている。また、下記特許文献4では、プラズマ中の測定対象基板からの放射光強度から測定対象物の温度を測定する方法が提案されている。
特許文献3の温度測定のように、温度測定装置の指向方向を移動させて加工対象の基板の温度を測定しようとしても、基板の表面に堆積した堆積物層の影響により正確に温度を計測できない。また、大型の基板では測定範囲にも限界がある。特許文献3のように、プラズマ中の測定対象基板からの放射光強度から測定対象物の温度を測定する場合、チャンバから温度計測用窓を介して放射光を計測するため、温度計測用窓に堆積物が付着して正確な温度を計測することができない。
Patent Document 3 below proposes a manufacturing method using a semiconductor manufacturing apparatus that measures the temperature at a desired position, such as a substrate to be processed, by moving the pointing direction of a temperature measuring apparatus for measuring the temperature in the furnace. Patent Document 4 below proposes a method for measuring the temperature of a measurement object from the intensity of radiated light from the measurement object substrate in plasma.
Even if an attempt is made to measure the temperature of the substrate to be processed by moving the pointing direction of the temperature measuring device as in the temperature measurement of Patent Document 3, the temperature cannot be accurately measured due to the influence of the deposit layer deposited on the surface of the substrate. . In addition, the measurement range is limited for large substrates. When measuring the temperature of an object to be measured from the intensity of radiated light from a substrate to be measured in plasma as in Patent Document 3, the radiated light is measured from the chamber through the temperature measuring window. Accurate temperature cannot be measured due to deposits.

このように、従来の技術では、熱伝導率の低い、サイズの大きな基板に対して均一なプラズマ処理を行うことができないといった問題がある。   As described above, the conventional technique has a problem that uniform plasma treatment cannot be performed on a substrate having a low thermal conductivity and a large size.

特開昭59―48931号公報JP 59-48931 A 特開2001−358121号公報JP 2001-358121 A 特開平9―24360号公報Japanese Patent Laid-Open No. 9-24360 特開平4−116433号公報JP-A-4-116433

そこで、本発明は、従来技術の問題を解決するために、ガラス基板等の熱伝導率がシリコン基板に比べて低い基板について、プラズマ処理中の基板の温度分布を正確に測定するとともに、さらにこの測定結果を基にして基板を目標温度に均一に保持することによって、プラズマ処理を均一に行うプラズマ処理装置を提供することを目的とする。   Therefore, in order to solve the problems of the prior art, the present invention accurately measures the temperature distribution of the substrate during plasma processing for a substrate having a low thermal conductivity, such as a glass substrate, as compared with a silicon substrate. An object of the present invention is to provide a plasma processing apparatus for uniformly performing plasma processing by uniformly holding a substrate at a target temperature based on a measurement result.

上記目的を達成するために、本発明は、熱伝導率が50(W/m/K)以下の基板にプラズマ処理を施すプラズマ処理装置であって、供給されたガスを用いてプラズマを生成するプラズマ生成手段と、プラズマ処理を施すための電極を備え、プラズマ処理する基板を載置する載置台と、前記載置台の載置面から自在に突出して前記載置台の側から基板を支持して昇降する複数の基板支持ピンを備える基板昇降手段と、を有し、前記基板支持ピンのそれぞれは、内部に空隙を有する筒状部材であって、この筒状部材の空隙に基板温度を検知する温度検知手段を備え、前記載置台に設けられた配置孔に前記基板支持ピンが格納されたプロセス処理中に、基板のプラズマ処理面と反対側から前記温度検知手段を用いて前記載置台に載置された基板の温度分布を計測することを特徴とするプラズマ処理装置を提供する。   In order to achieve the above object, the present invention is a plasma processing apparatus for performing plasma processing on a substrate having a thermal conductivity of 50 (W / m / K) or less, and generates plasma using a supplied gas. A plasma generating means, an electrode for performing plasma processing, a mounting table on which a substrate to be plasma-processed is mounted, and a substrate that protrudes freely from the mounting surface of the mounting table and supports the substrate from the mounting table side. A substrate lifting / lowering means having a plurality of substrate support pins that move up and down, and each of the substrate support pins is a cylindrical member having a gap inside, and the substrate temperature is detected in the gap of the cylindrical member. A temperature detection unit is provided, and the substrate support pin is stored in the placement hole provided in the mounting table, and the substrate is mounted on the mounting table using the temperature detection unit from the side opposite to the plasma processing surface of the substrate. Placed board To provide a plasma processing apparatus characterized by measuring the degree distribution.

その際、前記載置台には基板を冷却・加熱する冷却・加熱手段が前記基板支持ピンのそれぞれに対応して設けられ、前記基板支持ピンの配置位置に応じた領域を前記冷却・加熱手段により別々に温度制御させる制御装置を有するのが好ましい。   At that time, the mounting table is provided with cooling / heating means for cooling / heating the substrate corresponding to each of the substrate support pins, and an area corresponding to the arrangement position of the substrate support pins is defined by the cooling / heating means. It is preferable to have a control device for controlling the temperature separately.

また、前記プラズマ処理を施す基板の基板厚さ(mm)に対するプラズマ処理面の面積(mm2)の比は、80000(mm)以上であるのが好ましい。 Further, the ratio of the area (mm 2 ) of the plasma processing surface to the substrate thickness (mm) of the substrate to be subjected to the plasma processing is preferably 80000 (mm) or more.

本発明は、シリコン基板に比べて熱伝導率が低い基板の載置面に対して自在に突出して載置台の側から基板を支持する複数の基板支持ピンのそれぞれに温度検知手段を内蔵し、基板の温度分布を計測する。このため、プラズマ処理中の基板の温度分布を正確に取得することができる。したがって、この温度分布を用いて基板の温度を均一に制御することができ、プラズマ処理を均一に行うことができる。
例えば、エッチング処理を行う場合、基板温度が高くなるとエッチングレートが増大する。このため均一な温度分布に維持されない場合、エッチング量が異なり均一なエッチング処理を行うことができない。特に、FPD用ガラス基板等の大型で、かつ熱伝導率の低い基板において、基板処理面上の不均一な温度分布は均一なプラズマ処理にとって大きな障害である。この大型の基板に対して均一な薄膜を形成する際、あるいは均一なエッチング処理を行う際、基板の温度分布を均一に制御して維持することは特に有効である。
The present invention has a built-in temperature detection means in each of a plurality of substrate support pins that protrude freely with respect to the mounting surface of the substrate having a lower thermal conductivity than the silicon substrate and support the substrate from the mounting table side, Measure the temperature distribution of the substrate. For this reason, the temperature distribution of the substrate during the plasma processing can be obtained accurately. Therefore, the temperature of the substrate can be uniformly controlled using this temperature distribution, and the plasma treatment can be performed uniformly.
For example, when performing the etching process, the etching rate increases as the substrate temperature increases. Therefore, when the uniform temperature distribution is not maintained, the etching amount is different and uniform etching processing cannot be performed. In particular, in a large-sized substrate having a low thermal conductivity such as an FPD glass substrate, the non-uniform temperature distribution on the substrate processing surface is a major obstacle to uniform plasma processing. When forming a uniform thin film on this large substrate or performing a uniform etching process, it is particularly effective to maintain and control the temperature distribution of the substrate uniformly.

以下、本発明のプラズマ処理装置について、添付の図面に示される好適実施例を基に詳細に説明する。   Hereinafter, the plasma processing apparatus of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.

図1は、本発明のプラズマ処理装置の一形態であるプラズマ処理装置(以降、装置という)10の断面を模式的に示した図である。
装置10は、熱伝導率が50(W/m/K)以下、好ましくは5(W/m/K)以下の基板にプラズマ処理を施す平行平板型の処理装置である。このような基板として、FPD用ガラス基板や樹脂基板が例示される。
FIG. 1 is a diagram schematically showing a cross section of a plasma processing apparatus (hereinafter referred to as an apparatus) 10 which is an embodiment of the plasma processing apparatus of the present invention.
The apparatus 10 is a parallel plate type processing apparatus that performs plasma processing on a substrate having a thermal conductivity of 50 (W / m / K) or less, preferably 5 (W / m / K) or less. Examples of such a substrate include an FPD glass substrate and a resin substrate.

装置10は、主にチャンバ(処理室)12、高周波電極14、載置台16、下部電極18、ガス供給口20、基板板昇降機構22、加熱冷却駆動装置24、制御装置26および真空排気装置27を主に有する。   The apparatus 10 mainly includes a chamber (processing chamber) 12, a high-frequency electrode 14, a mounting table 16, a lower electrode 18, a gas supply port 20, a substrate plate lifting mechanism 22, a heating / cooling driving device 24, a control device 26, and a vacuum exhaust device 27. It has mainly.

チャンバ12は反応ガスを導入してプラズマを生成保持する減圧容器である。
高周波電極14は、チャンバ12内の上部に設けられた電極で、下部電極18と対向するように配置されている。高周波電極14はマッチングボックス28を介して高周波電源30と接続されている。
The chamber 12 is a decompression vessel that introduces a reaction gas and generates and holds plasma.
The high-frequency electrode 14 is an electrode provided in the upper part in the chamber 12 and is disposed so as to face the lower electrode 18. The high frequency electrode 14 is connected to a high frequency power supply 30 via a matching box 28.

載置台16は、プラズマ処理しようとする基板17を載置して保持する部分で、載置台16の上面に矩形形状の下部電極18が備えられている。載置台16の下部には高周波電源34が設けられ、マッチングボックス32を介して下部電極18と接続されている。下部電極48の形状を矩形形状とするのは、例えばフラットパネルディスプレイ等の矩形形状の大型のガラス基板をプラズマ処理対象の基板17とするためである。
ガス供給口20は反応ガスをチャンバ12に供給する部分で、反応性ガス供給装置33と接続されている。また、チャンバ12には、図示されない排気口があり、真空排気装置27と接続され、処理中チャンバ12内の反応ガスを排気して所定の気圧に減圧する。
The mounting table 16 is a portion for mounting and holding the substrate 17 to be plasma-processed, and a rectangular lower electrode 18 is provided on the upper surface of the mounting table 16. A high-frequency power source 34 is provided at the lower portion of the mounting table 16 and is connected to the lower electrode 18 through a matching box 32. The reason why the shape of the lower electrode 48 is rectangular is that, for example, a rectangular large glass substrate such as a flat panel display is used as the substrate 17 to be plasma-processed.
The gas supply port 20 is a part that supplies the reaction gas to the chamber 12 and is connected to the reactive gas supply device 33. In addition, the chamber 12 has an exhaust port (not shown), and is connected to the vacuum exhaust device 27 to exhaust the reaction gas in the chamber 12 during processing and reduce the pressure to a predetermined atmospheric pressure.

チャンバ12には、例えばアルゴンガスとともにシラン(SiH4)やフルオロカーボン等の反応ガスが導入されて、減圧雰囲気中で高周波電極14および下部電極18に所定の印加条件で高周波電力が与えられて反応性ガス成分のラジカルやイオンからなるプラズマ流体が生成され、載置台16に載せられた基板17にプラズマ処理を施す。 A reactive gas such as silane (SiH 4 ) or fluorocarbon is introduced into the chamber 12 together with, for example, argon gas, and high-frequency power is applied to the high-frequency electrode 14 and the lower electrode 18 under a predetermined application condition in a reduced-pressure atmosphere. A plasma fluid composed of radicals and ions of gas components is generated, and a plasma treatment is performed on the substrate 17 placed on the mounting table 16.

基板昇降機構21は、プラズマ処理のためにチャンバ12外部から搬送された基板17を下方から支持する複数の支持ピン40と、この支持ピン40を昇降させる支持アーム42と、支持アーム42と接続され、支持ピン40を自在に昇降するための駆動装置42とを有して構成される。
支持ピン40は、下部電極18および載置台16に穿孔された支持ピン用の配置孔44に配されており、この配置孔44を駆動装置42の駆動により上方および下方に自在に移動することによって、基板17を自在に昇降するように構成されている。
すなわち、支持ピン40は、図示されない搬送ロボットによってチャンバ12内の載置台16の上方に基板17が搬送される際、支持ピン40が下部電極18から突出して、基板17を支持して図示されない搬送ロボットから受け、受けた基板17を支持ピン40は支持しながら下降し、下部電極18の上面に載せるように構成されている。
The substrate lifting mechanism 21 is connected to a plurality of support pins 40 that support the substrate 17 conveyed from the outside of the chamber 12 for plasma processing from below, a support arm 42 that lifts and lowers the support pins 40, and the support arm 42. And a drive device 42 for freely raising and lowering the support pin 40.
The support pin 40 is arranged in a support pin arrangement hole 44 drilled in the lower electrode 18 and the mounting table 16, and the arrangement hole 44 is freely moved upward and downward by driving of the drive device 42. The substrate 17 is configured to move up and down freely.
That is, when the substrate 17 is transported above the mounting table 16 in the chamber 12 by a transport robot (not shown), the support pin 40 protrudes from the lower electrode 18 to support the substrate 17 and transport (not shown). The substrate 17 received from the robot is lowered while supporting the substrate 17 while supporting the substrate 17, and is placed on the upper surface of the lower electrode 18.

図2は、基板17を支持する支持ピン40の配置の一例を図1中のチャンバ12内の上方から見た図である。
支持ピン40は、下部電極17の面に均等に分散して6箇所設けられている。このように設けることで、大型の基板17を安定して支持することができる。特に、FPDに用いるガラス基板は、基板の厚さの割に基板面積が大きく重量もあるため、支持ピン40は安定して基板17を支持できるように、均等に分散して配置されている。
このように分散配置された支持ピン40のそれぞれは、内部に空隙を有する筒状部材となっており、この筒状部材の内部の空隙に図3に示すように温度検知センサ50が設けられている。
FIG. 2 is a view of an example of the arrangement of the support pins 40 that support the substrate 17 as viewed from above in the chamber 12 in FIG.
The support pins 40 are provided at six locations evenly distributed on the surface of the lower electrode 17. By providing in this way, the large substrate 17 can be stably supported. In particular, since the glass substrate used for the FPD has a large substrate area and a large weight with respect to the thickness of the substrate, the support pins 40 are uniformly distributed so as to support the substrate 17 stably.
Each of the support pins 40 distributed in this way is a cylindrical member having a gap inside, and a temperature detection sensor 50 is provided in the gap inside the cylindrical member as shown in FIG. Yes.

温度検知センサ50は、基板温度を検知するデバイスであり、例えば、蛍光式光ファイバ温度計や熱電対の感温部が例示される。蛍光式光ファイバ温度計は、光ファイバの先端に蛍光物質を備える温度測定用の感温部が設けられ、他端から入射した光を先端の蛍光物質に照射してその時発する蛍光の緩和時間を測定することにより、ファイバ先端の温度を測定するものである。このような温度検知センサの蛍光物質を備えた感温部が支持ピン40の先端に面一になって設けられる。これによって、基板17と感温部が接触し、基板温度と同一の温度となった蛍光物質の発する蛍光の緩和時間を測定して基板温度を知ることができる。すなわち、支持ピン40には、蛍光物質を備えた感温部が設けられて、温度検知センサが構成される。感温部において発する蛍光は、支持ピン40を通る光ファイバを介して制御装置26に組み込まれた図示されない半導体レーザ素子から射出されるレーザ光の照射によって行われ、この蛍光が、光ファイバを介して制御装置26に組み込まれた図示されない温度算出部に導かれるように構成されている。温度算出部は、蛍光を受光する光検出器と演算装置とを有して構成される。このような蛍光式光ファイバ温度計は公知であり、説明は省略する。   The temperature detection sensor 50 is a device that detects the substrate temperature, and examples thereof include a fluorescent optical fiber thermometer and a thermocouple temperature sensor. The fluorescence type optical fiber thermometer is provided with a temperature measuring temperature sensing unit equipped with a fluorescent material at the tip of the optical fiber, and irradiates the fluorescent material at the tip with the light incident from the other end to reduce the relaxation time of the emitted fluorescence. By measuring, the temperature of the fiber tip is measured. A temperature sensing part having such a fluorescent material of the temperature detection sensor is provided flush with the tip of the support pin 40. Thus, the substrate temperature can be known by measuring the relaxation time of the fluorescence emitted by the fluorescent material that is in contact with the substrate 17 and the temperature of the substrate and having the same temperature as the substrate temperature. In other words, the support pin 40 is provided with a temperature sensing unit including a fluorescent material, and a temperature detection sensor is configured. Fluorescence emitted from the temperature sensing unit is generated by irradiation of a laser beam emitted from a semiconductor laser element (not shown) incorporated in the control device 26 through an optical fiber passing through the support pin 40, and this fluorescence is transmitted through the optical fiber. Thus, it is configured to be guided to a temperature calculation unit (not shown) incorporated in the control device 26. The temperature calculation unit includes a photodetector that receives fluorescence and an arithmetic unit. Such fluorescent optical fiber thermometers are well known and will not be described.

温度検知センサ50の感温部は、支持ピン40の先端と面一になって設けられ、基板17と感温部とが接触する構成であるが、本発明では必ずしも面一に設けられて基板17と感温部とが接触する必要はない。基板17と感温部とが非接触であっても、感温部で得られた温度の情報を制御装置26の温度算出部にて補正を行って基板温度を算出するように構成することもできる。   The temperature sensing part of the temperature detection sensor 50 is provided so as to be flush with the tip of the support pin 40, and the substrate 17 and the temperature sensing part are in contact with each other. However, in the present invention, the temperature sensing part is not necessarily provided flush with the substrate. It is not necessary for 17 and a temperature sensing part to contact. Even if the substrate 17 and the temperature sensing unit are not in contact with each other, the temperature information obtained by the temperature sensing unit may be corrected by the temperature calculation unit of the control device 26 to calculate the substrate temperature. it can.

また、温度検知センサ50は熱電対であってもよい。この場合、熱電対の感温部は、蛍光式光ファイバ温度計と同様に、支持ピン40の先端に面一になって設けられる。これによって、基板17と感温部が接触し、基板温度と同一の温度となった検知信号が、支持ピン40を通る信号線を介して制御装置26に組み込まれた図示されない温度算出部に導かれるように構成される。温度算出部は、この検知信号から演算装置を用いて基板温度を算出するように構成される。このような熱電対温度計は公知であり、説明は省略する。   The temperature detection sensor 50 may be a thermocouple. In this case, the thermocouple's temperature sensing part is provided flush with the tip of the support pin 40 as in the case of the fluorescent optical fiber thermometer. As a result, the substrate 17 and the temperature sensing unit come into contact with each other, and the detection signal having the same temperature as the substrate temperature is guided to a temperature calculation unit (not shown) incorporated in the control device 26 via a signal line passing through the support pins 40. Configured to be. The temperature calculation unit is configured to calculate the substrate temperature from the detection signal using an arithmetic device. Such thermocouple thermometers are well known and will not be described.

なお、温度検知センサ50の感温部が支持ピン40に内蔵され、温度算出部は制御装置26に組み込まれた構成であるが、本発明では、温度算出部が支持ピン40に組み込まれた構成であってもよい。   In addition, although the temperature sensing part of the temperature detection sensor 50 is built in the support pin 40 and the temperature calculation part is built in the control device 26, in the present invention, the temperature calculation part is built in the support pin 40. It may be.

一方、載置台16には、プロセス処理中の基板17の温度を調整するための図示されない加熱冷却手段が、支持ピン40のそれぞれの配置位置に対応して設けられている。すなわち、支持ピン40の配置位置に対応して載置台16の領域がブロック化されて、各ブロック毎に異なる冷却・加熱手段が設けられている。
この冷却・加熱手段は、例えば載置台16の内部に流路が設けられ冷却媒体や加熱媒体が循環する構成が例示される。あるいは、冷却媒体を循環させる流路を冷却手段とし、抵抗体に電流を流して発熱させる加熱素子(ヒータ)を加熱手段とすることもできる。
この冷却・加熱手段の温度調整は、加熱冷却駆動装置24によって行われる。加熱冷却駆動装置24は制御装置26と接続され、制御装置26から供給される制御信号によって冷却・加熱手段の冷却、加熱温度が制御される。
On the other hand, the mounting table 16 is provided with heating / cooling means (not shown) for adjusting the temperature of the substrate 17 during the process, corresponding to the arrangement positions of the support pins 40. That is, the area of the mounting table 16 is made into a block corresponding to the arrangement position of the support pins 40, and different cooling / heating means are provided for each block.
The cooling / heating means is exemplified by a configuration in which a flow path is provided inside the mounting table 16 and the cooling medium and the heating medium circulate. Alternatively, a flow path for circulating the cooling medium can be used as the cooling means, and a heating element (heater) that generates heat by flowing an electric current through the resistor can also be used as the heating means.
The temperature adjustment of the cooling / heating means is performed by the heating / cooling driving device 24. The heating / cooling driving device 24 is connected to the control device 26, and the cooling and heating temperature of the cooling / heating means are controlled by a control signal supplied from the control device 26.

制御装置26は、6箇所の支持ピン40から光ファイバを介して送られてくる蛍光の情報から6箇所の支持ピン40のそれぞれの基板温度を求めて温度分布を求め、これらの温度分布が均一に保持されているか否かを判断し、均一に保持されていないと判断された場合には、均一になるように制御信号を生成する部分である。すなわち、制御装置26は、基板17のプラズマ処理面と反対側から載置台16に載置された基板17の温度分布を温度検知センサを用いて計測した結果から、支持ピン40の配置位置に応じた領域を冷却加熱手段により別々に温度制御させる。
装置10は以上のように構成される。
The control device 26 obtains the temperature distribution by obtaining the substrate temperature of each of the six support pins 40 from the fluorescence information sent from the six support pins 40 via the optical fiber, and these temperature distributions are uniform. It is a part for generating a control signal so as to be uniform when it is determined whether or not it is held uniformly. That is, the control device 26 determines the temperature distribution of the substrate 17 mounted on the mounting table 16 from the side opposite to the plasma processing surface of the substrate 17 using the temperature detection sensor, and according to the arrangement position of the support pins 40. The temperature is controlled separately by the cooling and heating means.
The apparatus 10 is configured as described above.

装置10では、このように基板17を支持する支持ピン40のすべてに内蔵された温度検知センサを用いてプロセス処理中の基板処理面と反対側から基板温度を測定し、基板17の温度分布を求めるので、この温度分布を用いてプラズマ処理中の基板17の温度を均一に制御することができる。特に、プラズマ処理を施す基板の基板厚さ(mm)に対するプラズマ処理面の面積(mm2)の比が80000(mm)以上である基板、例えばサイズが200mm×200mm×0.5mm(縦、横、高さ)の基板の場合、基板17の処理面の温度分布に比べて基板厚さ方向の温度分布は無視できる程度に変動が小さい。このため、基板処理面と反対側から基板温度を測定しても、正確な温度を測定することができる。
また、温度検知センサは、載置台16に設けられた配置孔44に配されるので、プラズマ処理中、基板17に遮蔽されてプラズマ処理中に堆積する堆積物の影響を受けることはない。このため、プラズマ処理中の基板温度を正確に測定することができる。
In the apparatus 10, the temperature of the substrate 17 is measured by measuring the substrate temperature from the side opposite to the substrate processing surface during the process using the temperature detection sensors incorporated in all of the support pins 40 that support the substrate 17 as described above. Therefore, the temperature of the substrate 17 during the plasma processing can be uniformly controlled using this temperature distribution. In particular, a substrate in which the ratio of the area (mm 2 ) of the plasma processing surface to the substrate thickness (mm) of the substrate subjected to plasma processing is 80000 (mm) or more, for example, the size is 200 mm × 200 mm × 0.5 mm (vertical, horizontal) In the case of a substrate of (height), the temperature distribution in the substrate thickness direction is small enough to be ignored compared to the temperature distribution of the processing surface of the substrate 17. For this reason, even if the substrate temperature is measured from the side opposite to the substrate processing surface, the accurate temperature can be measured.
Further, since the temperature detection sensor is disposed in the arrangement hole 44 provided in the mounting table 16, the temperature detection sensor is not affected by deposits shielded by the substrate 17 and deposited during the plasma processing during the plasma processing. For this reason, the substrate temperature during plasma processing can be measured accurately.

このように装置10では、図示されない搬送ロボットにより基板17が、下部電極18の表面から突出した支持ピン40に受け渡された後、支持ピン40の下降により、基板17は下部電極18の表面に載置される。
この後、減圧状態となったチャンバ12内に反応ガスが導入され、高周波電極14および下部電極18に所定の条件で電力が印加され、反応ガスからプラズマが生成され、このプラズマが基板17に作用してプラズマ処理が行われる。
その際、載置台16に設けられた配置孔44に支持ピン40が格納された状態で、基板17のプラズマ処理面と反対側から基板17の温度分布が温度検知センサ50を用いて測定される。
As described above, in the apparatus 10, after the substrate 17 is transferred to the support pins 40 protruding from the surface of the lower electrode 18 by a transfer robot (not shown), the substrate 17 is moved to the surface of the lower electrode 18 by the lowering of the support pins 40. Placed.
Thereafter, the reaction gas is introduced into the chamber 12 in a reduced pressure state, power is applied to the high-frequency electrode 14 and the lower electrode 18 under predetermined conditions, plasma is generated from the reaction gas, and this plasma acts on the substrate 17. Then, plasma processing is performed.
At that time, the temperature distribution of the substrate 17 is measured using the temperature detection sensor 50 from the side opposite to the plasma processing surface of the substrate 17 in a state where the support pins 40 are stored in the arrangement holes 44 provided in the mounting table 16. .

測定された温度分布は、制御装置26にて均一な温度分布となっているか判定され、均一でないと判定された場合、調整しようとする支持ピン40の配置位置に対応した領域の温度調整が加熱冷却駆動装置24によって行われる。
こうして、基板処理面の温度分布を均一に制御することで、プラズマ処理を均一に行うことができる。
The measured temperature distribution is determined by the control device 26 to determine whether the temperature distribution is uniform. If it is determined that the temperature distribution is not uniform, the temperature adjustment in the region corresponding to the position where the support pin 40 to be adjusted is heated. This is performed by the cooling drive unit 24.
Thus, by uniformly controlling the temperature distribution on the substrate processing surface, the plasma processing can be performed uniformly.

以上、本発明のプラズマ処理装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   The plasma processing apparatus of the present invention has been described in detail above. However, the present invention is not limited to the above embodiment, and various modifications and changes may be made without departing from the spirit of the present invention. is there.

本発明のプラズマ処理装置の一実施形態であるプラズマ処理装置の断面を模式的に示した図である。It is the figure which showed typically the cross section of the plasma processing apparatus which is one Embodiment of the plasma processing apparatus of this invention. 図1に示すプラズマ処理装置に用いられる支持ピンの配置を示した図である。It is the figure which showed arrangement | positioning of the support pin used for the plasma processing apparatus shown in FIG. 図1に示すプラズマ処理装置の支持ピン周りを詳細に説明した図である。It is the figure explaining the surroundings of the support pin of the plasma processing apparatus shown in FIG. 1 in detail.

符号の説明Explanation of symbols

10 プラズマ処理装置
12 チャンバ
14 高周波電極
16 載置台
18 下部電極
20 ガス供給口
22 基板板昇降機構
24 加熱冷却駆動装置
26 制御装置
27 真空排気装置
28,32 マッチングボックス
30,34 高周波電源
40 支持ピン
44 配置孔
50 温度検知センサ
DESCRIPTION OF SYMBOLS 10 Plasma processing apparatus 12 Chamber 14 High frequency electrode 16 Mounting base 18 Lower electrode 20 Gas supply port 22 Substrate board raising / lowering mechanism 24 Heating / cooling drive apparatus 26 Control apparatus 27 Evacuation apparatus 28, 32 Matching box 30, 34 High frequency power supply 40 Support pin 44 Arrangement hole 50 Temperature sensor

Claims (3)

熱伝導率が50(W/m/K)以下の基板にプラズマ処理を施すプラズマ処理装置であって、
供給されたガスを用いてプラズマを生成するプラズマ生成手段と、
プラズマ処理を施すための電極を備え、プラズマ処理する基板を載置する載置台と、
前記載置台の載置面から自在に突出して前記載置台の側から基板を支持して昇降する複数の基板支持ピンを備える基板昇降手段と、を有し、
前記基板支持ピンのそれぞれは、内部に空隙を有する筒状部材であって、この筒状部材の空隙に基板温度を検知する温度検知手段を備え、前記載置台に設けられた配置孔に前記基板支持ピンが格納されたプロセス処理中に、基板のプラズマ処理面と反対側から前記温度検知手段を用いて前記載置台に載置された基板の温度分布を計測することを特徴とするプラズマ処理装置。
A plasma processing apparatus for performing plasma processing on a substrate having a thermal conductivity of 50 (W / m / K) or less,
Plasma generating means for generating plasma using the supplied gas;
An electrode for performing plasma treatment, and a mounting table on which a substrate to be plasma-treated is placed;
A substrate lifting means comprising a plurality of substrate support pins that freely protrude from the mounting surface of the mounting table and support the substrate from the mounting table side to move up and down;
Each of the substrate support pins is a cylindrical member having a gap inside, and is provided with temperature detecting means for detecting a substrate temperature in the gap of the cylindrical member, and the substrate is provided in the arrangement hole provided in the mounting table. A plasma processing apparatus for measuring a temperature distribution of a substrate placed on the mounting table from the side opposite to the plasma processing surface of the substrate using the temperature detecting means during the process processing in which the support pins are stored. .
前記載置台には基板を冷却・加熱する冷却・加熱手段が前記基板支持ピンのそれぞれに対応して設けられ、前記基板支持ピンの配置位置に応じた領域を前記冷却・加熱手段により別々に温度制御させる制御装置を有する請求項1に記載のプラズマ処理装置。   The mounting table is provided with cooling / heating means for cooling / heating the substrate corresponding to each of the substrate support pins, and an area corresponding to the arrangement position of the substrate support pins is separately heated by the cooling / heating means. The plasma processing apparatus according to claim 1, further comprising a control device to be controlled. 前記プラズマ処理を施す基板の基板厚さ(mm)に対するプラズマ処理面の面積(mm2)の比は、80000(mm)以上である請求項1または2に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein a ratio of an area (mm 2 ) of the plasma processing surface to a substrate thickness (mm) of the substrate subjected to the plasma processing is 80000 (mm) or more.
JP2004078097A 2004-03-18 2004-03-18 Plasma treatment device Pending JP2005264226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078097A JP2005264226A (en) 2004-03-18 2004-03-18 Plasma treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078097A JP2005264226A (en) 2004-03-18 2004-03-18 Plasma treatment device

Publications (1)

Publication Number Publication Date
JP2005264226A true JP2005264226A (en) 2005-09-29

Family

ID=35089081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078097A Pending JP2005264226A (en) 2004-03-18 2004-03-18 Plasma treatment device

Country Status (1)

Country Link
JP (1) JP2005264226A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131900A (en) * 2007-11-30 2009-06-18 Komax Holding Ag Hotplate with lifting element
WO2009155508A2 (en) * 2008-06-20 2009-12-23 Varian Semiconductor Equipment Associates A platen for reducing particle contamination on a substrate and a method thereof
JP2011204813A (en) * 2010-03-25 2011-10-13 Tokyo Electron Ltd Substrate placement table
JP2016129183A (en) * 2015-01-09 2016-07-14 住友大阪セメント株式会社 Electrostatic chuck device
US10658207B2 (en) 2008-06-20 2020-05-19 Varian Semiconductor Equipment Associates, Inc. Platen for reducing particle contamination on a substrate and a method thereof
KR20210110688A (en) * 2019-06-11 2021-09-08 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. Semiconductor processing equipment and magnetron sputtering equipment
KR20220100737A (en) * 2017-07-14 2022-07-15 마이크로머티어리얼즈 엘엘씨 Gas delivery system for high pressure processing chamber
JP2023505764A (en) * 2019-12-10 2023-02-13 アプライド マテリアルズ インコーポレイテッド Apparatus for measuring temperature in vacuum and microwave environments

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131900A (en) * 2007-11-30 2009-06-18 Komax Holding Ag Hotplate with lifting element
WO2009155508A2 (en) * 2008-06-20 2009-12-23 Varian Semiconductor Equipment Associates A platen for reducing particle contamination on a substrate and a method thereof
WO2009155508A3 (en) * 2008-06-20 2010-03-25 Varian Semiconductor Equipment Associates A platen for reducing particle contamination on a substrate and a method thereof
US10658207B2 (en) 2008-06-20 2020-05-19 Varian Semiconductor Equipment Associates, Inc. Platen for reducing particle contamination on a substrate and a method thereof
US8681472B2 (en) 2008-06-20 2014-03-25 Varian Semiconductor Equipment Associates, Inc. Platen ground pin for connecting substrate to ground
KR101798607B1 (en) * 2010-03-25 2017-11-16 도쿄엘렉트론가부시키가이샤 Substrate mounting table
JP2011204813A (en) * 2010-03-25 2011-10-13 Tokyo Electron Ltd Substrate placement table
JP2016129183A (en) * 2015-01-09 2016-07-14 住友大阪セメント株式会社 Electrostatic chuck device
KR20220100737A (en) * 2017-07-14 2022-07-15 마이크로머티어리얼즈 엘엘씨 Gas delivery system for high pressure processing chamber
KR102545208B1 (en) * 2017-07-14 2023-06-20 마이크로머티어리얼즈 엘엘씨 Gas delivery system for high pressure processing chamber
KR20210110688A (en) * 2019-06-11 2021-09-08 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. Semiconductor processing equipment and magnetron sputtering equipment
KR102636473B1 (en) * 2019-06-11 2024-02-14 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. Semiconductor processing equipment and magnetron sputtering equipment
JP2023505764A (en) * 2019-12-10 2023-02-13 アプライド マテリアルズ インコーポレイテッド Apparatus for measuring temperature in vacuum and microwave environments
JP7473647B2 (en) 2019-12-10 2024-04-23 アプライド マテリアルズ インコーポレイテッド Apparatus for measuring temperature in vacuum and microwave environments

Similar Documents

Publication Publication Date Title
JP5374521B2 (en) Temperature detection device, heating device, substrate heating method
US20100163183A1 (en) Mounting table structure and heat treatment apparatus
KR101624984B1 (en) Temperature measurement and control of wafer support in thermal processing chamber
US20060228818A1 (en) Edge temperature compensation in thermal processing particularly useful for SOI wafers
KR20110084524A (en) Rapid thermal processing chamber with micro-positioning system
JP2001230239A (en) Apparatus and method for treating
TW202205485A (en) Rapid and precise temperature control for thermal etching
KR20020033425A (en) Heat treatment device and method
KR102715906B1 (en) Substrate processing system and method of estimating height of annular member
JP6564764B2 (en) Modular substrate heater for efficient thermal cycling
TWI791093B (en) Plasma processing method
KR102419803B1 (en) Leveling apparatus of substrate treating equipment
JP2005264226A (en) Plasma treatment device
US6976782B1 (en) Methods and apparatus for in situ substrate temperature monitoring
CN112349587A (en) Heat treatment method
JP4829833B2 (en) Temperature estimation method and temperature estimation device
JP5173225B2 (en) Heating system
TWI421945B (en) Rapid thermal processing chamber with micro-positioning system
CN115722425B (en) Heating treatment device
JP2002261154A (en) Alignment method of substrate in substrate treating device and the substrate treating device
TW202204050A (en) Edge flattening equipment and coating drying system including the same reducing the surface tension of the coating liquid film in the edge part and thus suppressing protrusions in the edge part of the coating liquid film
KR20170051438A (en) Heat treatment method and heat treatment apparatus
KR20190106671A (en) Substrate processing apparatus
KR20200005356A (en) Rapid Thermal Processing Apparatus using passive element
JP2004179355A (en) Vacuum equipment and heat treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203