JP2005264125A - Composition for preventing cure inhibition of radically curable resin with air - Google Patents
Composition for preventing cure inhibition of radically curable resin with air Download PDFInfo
- Publication number
- JP2005264125A JP2005264125A JP2004117339A JP2004117339A JP2005264125A JP 2005264125 A JP2005264125 A JP 2005264125A JP 2004117339 A JP2004117339 A JP 2004117339A JP 2004117339 A JP2004117339 A JP 2004117339A JP 2005264125 A JP2005264125 A JP 2005264125A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- curable resin
- air
- oil
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Macromonomer-Based Addition Polymer (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
本発明は、すべてのラジカル硬化型樹脂に共通の欠点である、空気による樹脂表面の硬化阻害作用、実際問題として現れる現象は表面樹脂の未硬化、又は不完全硬化によるベタツキを防止する方法に関するものである。The present invention relates to a method for preventing sticking due to uncured or incomplete curing of the surface resin, which is a drawback common to all radical curable resins, and is a phenomenon that inhibits the curing of the resin surface by air, and the phenomenon that appears as an actual problem It is.
ラジカル硬化型樹脂には、不飽和ポリエステル樹脂を始め、(メタ)アクリロイル基を有する各種のオリゴマ−、例えばエポキシ樹脂と(メタ)アクリル酸との反応により合成されるビニルエステル樹脂、1分子中に1個又は以上の(メタ)アクリロイル基とウレタン結合とを共有する(不飽和)ウレタン−アクリル樹脂(以下 不飽和を省略)、(メタ)アクリロイル基を1分子中に1個又は以上を有するポリエステル−アクリレ−ト、さらにはポリマ−を含むメタクリル酸メチル並びに共重合可能なモノマ−を含有するか、或いはせずに製造される、いわゆる熱硬化アクリル樹脂などがあげられる。Radical curable resins include unsaturated polyester resins and various oligomers having (meth) acryloyl groups, such as vinyl ester resins synthesized by reaction of epoxy resins with (meth) acrylic acid, in one molecule. Polyester having one or more (meth) acryloyl groups in one molecule (unsaturated) urethane-acrylic resin (hereinafter referred to as unsaturation) sharing one or more (meth) acryloyl groups and a urethane bond Examples thereof include so-called thermosetting acrylic resins that contain or are produced without or containing acrylate, methyl methacrylate containing polymer, and copolymerizable monomer.
然し、これらラジカル硬化型樹脂は、大小の差こそあれ工業的に生産されており、その用途は著しく多く、各方面に利用されている。However, these radically curable resins are produced industrially, regardless of their size, and their applications are remarkably large and are used in various fields.
本発明が解決しようとする問題点は、これらラジカル硬化型樹脂を常温もしくはこれに近い温度で、特に薄膜状態で硬化させる時に生ずる、空気の硬化阻害作用に起因する樹脂表面層の未硬化、ないし不完全硬化によるベタツキの発生であり、実用的には大きな障壁となり、特に(メタ)アクリロイル基を有する樹脂系に著しい。The problem to be solved by the present invention is that the resin surface layer is uncured due to the effect of inhibiting the curing of air, which occurs when these radical curable resins are cured at room temperature or a temperature close thereto, particularly in a thin film state, or It is the occurrence of stickiness due to incomplete curing, which is a large barrier in practical use, and is particularly remarkable for resin systems having a (meth) acryloyl group.
従来、これらの欠点を是正するためには、各種の方法が提案され、その一部は広く利用されている。例えば、最も一般的で有効な方法としてはワックス類の少量(0.1phr前後の)添加がある。
即ち、ワックスを含む樹脂が硬化する際、ワックスが樹脂表面に押出され、硬化樹脂の表面を覆って、空気の阻害作用を防止する。
その他には、アリルエ−テル構造、CH2=CH−CH2−O−を樹脂中に取り込む方法もあり、スチレンモノマ−を併用したポリエステル樹脂系には効果がある。Conventionally, various methods have been proposed to correct these drawbacks, and some of them have been widely used. For example, the most common and effective method is the addition of a small amount of wax (around 0.1 phr).
That is, when the resin containing the wax is cured, the wax is extruded onto the surface of the resin and covers the surface of the cured resin, thereby preventing the air inhibiting action.
In addition, there is a method of incorporating an allyl ether structure and CH 2 ═CH—CH 2 —O— into the resin, which is effective for a polyester resin system using a styrene monomer.
然し、(メタ)アクリロイル基を有する前記オリゴマ−類には、ワックスの添加はやはり有用ではあるものの、スチレンを含むポリエステル樹脂に比較すると、数倍〜10倍位の使用をしなければ効果がない上、乾燥に必要な時間も著しく長くなり、ポリエステル樹脂であれば数十分でタックフリ−となる配合もあるが、(メタ)アクリロイル基を含むオリゴマ−系はダックフリ−となるのに2〜3日を要することとなり、場合によっては完全に乾き切らないこともある。However, although the addition of wax is still useful for the above-mentioned oligomers having a (meth) acryloyl group, it is ineffective unless used several times to about 10 times compared to a polyester resin containing styrene. In addition, the time required for drying is remarkably long, and some polyester resins have several tens of minutes to be tack-free, but the oligomer system containing a (meth) acryloyl group is 2 to 3 to become duck-free. It will take days, and in some cases it may not dry out completely.
ポリエステル樹脂にしても、エ−テル結合を含むグリコ−ル或いは脂肪族ジカルボン酸を変性酸に用いる配合では、やはりワックスの効果が甚だしく減殺され、完全に乾燥しないことも知られている。It is also known that even if a polyester resin is used, the effect of the wax is greatly diminished when the glycol or aliphatic dicarboxylic acid containing an ether bond is used as the modified acid, and the polyester resin is not completely dried.
また、アリルエ−テルを樹脂構造に組み込む場合、スチレンを含まないラジカル硬化型樹脂では、多量のアリルエ−テル化合物が必要で、コスト並びに物性上、時には製造工程でのゲル化の危険性等の問題があり、乾燥性も充分でないことから、必ずしも本発明の目的とは合致しない。In addition, when allyl ether is incorporated into the resin structure, radically curable resins that do not contain styrene require a large amount of allyl ether compounds, which are problematic in terms of cost, physical properties, and sometimes the risk of gelation in the manufacturing process. And the dryness is not sufficient, it does not necessarily meet the object of the present invention.
また、既知の知見として、乾性油を併用することも知られている。
然し、乾性油の代表としてあげられ、空気乾燥性のアルキッド塗料として一般に用いられている亜麻仁油はまったく効果が認められない。Moreover, using dry oil together is also known as known knowledge.
However, linseed oil, which is mentioned as a representative of drying oil and is generally used as an air-drying alkyd paint, has no effect.
また、桐油などは乾燥性向上には有効であるが、ラジカル硬化型樹脂との相溶性に乏しく、分離し易いので、結果として硬化樹脂の表面に分離析出し、桐油のみの乾燥となる結果、著しい“ちりめん皺”が発生する。
従って、乾性油を用いることは公知ではあるが、実用的にはまったく行われていない。In addition, although tung oil and the like are effective in improving the drying property, they are poorly compatible with the radical curable resin and are easy to separate. As a result, they are separated and deposited on the surface of the cured resin, resulting in drying only of tung oil. Significant “chirimen” occurs.
Therefore, it is known to use dry oil, but it has not been carried out practically at all.
ラジカル硬化型樹脂に多価イソシアナ−ト化合物を反応させ、その物性の向上をはかることは一般に行われている。
例えば、ポリエステル樹脂に数パ−セントのジイソシアナ−トをポリエステル樹脂の末端基であるヒドロキシル基と反応させ、主として靭性の向上を実現させることなどである。但し、この方法は空気硬化性の向上とは何の関係もない。即ち、イソシアナ−ト化合物を併用しても、空気の硬化阻害作用を防止する力はまったくない。In general, a radical curable resin is reacted with a polyvalent isocyanate compound to improve its physical properties.
For example, a polyester resin is allowed to react with several percent of diisocyanate with a hydroxyl group which is a terminal group of the polyester resin to mainly improve toughness. However, this method has nothing to do with improving air curability. That is, even when the isocyanate compound is used in combination, there is no power to prevent the air curing inhibiting action.
本発明者らは、ラジカル硬化型樹脂の空気阻害作用を解消するために、種々検討した結果、
(1)ラジカル硬化型樹脂
(2)多価イソシアナ−ト化合物
(3)桐油
の3成分を同時に併用、反応させることにより、従来、それぞれが抱えていた問題点を解決出来ることを知り、本発明を完成することが出来た。As a result of various studies in order to eliminate the air-inhibiting action of radical curable resins,
(1) Radical curable resin (2) Polyvalent isocyanate compound (3) By simultaneously using and reacting the three components of tung oil, it has been found that each of the conventional problems can be solved. Was able to be completed.
即ち、桐油は公表されている化学構造は、エレオステイリン酸のグリセリドが主成分であり、イソシアナ−ト化合物との反応点は有しないと思われるにも拘らず、前記3成分の併用により混合系よりの分離は充分に防止され、桐油使用時に発生する致命的な欠点であった“ちりめん皺”は完全に消失し、結果として、系の空気の硬化阻害作用を解消するに至る。In other words, Tung Oil's published chemical structure is based on the combination of the above three components, although it is thought that the main component is glycerides of eleostayric acid and there is no reaction point with the isocyanate compound. Separation from the system is sufficiently prevented, and “chirimen rice cake”, which is a fatal defect that occurs when using paulownia oil, disappears completely, and as a result, the air hardening inhibition action of the system is eliminated.
桐油以外の乾性油の利用は、単独では実用的な時間内に好結果を得ることは困難であるが、桐油との併用で目的を達成できる場合もある。
特に脱水ヒマシ油、オイチシカ油等がこの目的には合致する。The use of dry oils other than tung oil is difficult to achieve good results within a practical time by itself, but the purpose may be achieved in combination with tung oil.
In particular, dehydrated castor oil and oil deer oil meet this purpose.
前述した様に、ラジカル硬化型樹脂の空気の硬化阻害による表面部分のベタツキは、同樹脂を実用化する際の大きな障壁となるが、これを防止するために、
多価イソシアナ−ト化合物
桐油
を併用することにより、空気の硬化阻害作用を完全に防止することが出来る。
この時、多価イソシアナ−ト化合物のみ、或いは桐油のみを単独で添加しても効果の得られないことは前述した通りである。As described above, the stickiness of the surface portion due to the air curing inhibition of the radical curable resin is a big barrier when putting the resin into practical use, but in order to prevent this,
Polyvalent isocyanate compound
By using paulownia oil in combination, the effect of inhibiting the curing of air can be completely prevented.
At this time, as described above, the effect cannot be obtained by adding only the polyvalent isocyanate compound or only the tung oil alone.
本発明を最も効果あらしめる方法は、空気の硬化阻害作用を強く受ける(メタ)アクリロイル基を1分子中に1個又は以上有する、いわゆる硬化型アクリレ−ト樹脂が特に適しており、利用価値も大きい。
それらの種類としては
(i)エポキシ樹脂と(メタ)アクリル酸とを反応させて得られるビニルエステル樹脂。
(ii)(メタ)アクリロイル基とウレタン結合とを同一分子中に共有する(不飽和)ウレタン−アクリレ−ト樹脂。
(iii)(メタ)アクリロイル基を有するポリエステル。いわゆるポリエステルアクリレ−ト。
(iv)メチルメタクリレ−トに可溶なポリマ−を含むラジカル硬化可能ないわゆる熱硬化アクリル樹脂
(v)不飽和ポリエステル樹脂
などがあげられる。The most effective method of the present invention is a so-called curable acrylate resin having one or more (meth) acryloyl groups in one molecule that is strongly affected by air curing inhibition, and also has utility value. large.
As the types thereof, vinyl ester resins obtained by reacting (i) epoxy resins with (meth) acrylic acid.
(Ii) A (unsaturated) urethane-acrylate resin sharing a (meth) acryloyl group and a urethane bond in the same molecule.
(Iii) Polyester having a (meth) acryloyl group. So-called polyester acrylate.
(Iv) Radical curable so-called thermosetting acrylic resins containing a polymer soluble in methyl methacrylate (v) unsaturated polyester resins and the like.
これら樹脂100重量部当り、多価イソシアナ−ト化合物は0.1重量部以上20重量部以下、より望ましくは0.5重量部以上10重量部以下である。
0.1重量部以下では添加の効果が乏しく、20重量部以上では粘度が増大して取扱い困難となるか、或いはゲル化するに至る。The polyvalent isocyanate compound is 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight per 100 parts by weight of these resins.
If the amount is 0.1 parts by weight or less, the effect of addition is poor, and if it is 20 parts by weight or more, the viscosity increases and handling becomes difficult, or gelation occurs.
本発明に利用可能な多価イソシアナ−ト類には特に制限を加える必要はないが、例えば以下の種類があげられる。
2,4トリレンジイソシアナ−ト、2,4体と2,6体の混合トリレンジイソシアナ−ト、ジフェニルメタンジイソシアナ−ト、ヘキサメチレンジイソシアナ−ト、イソホロンジイソシアナ−ト、キシリレンジイソシアナ−ト、水素化ビスフェノ−ルジイソシアナ−ト、更にはこれらイソシアナ−ト類の3量体There are no particular restrictions on the polyvalent isocyanates that can be used in the present invention, but examples include the following types.
2,4 tolylene diisocyanate, 2,4 and 2,6 mixed tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, Xylylene diisocyanate, hydrogenated bisphenol diisocyanate, and trimers of these isocyanates
以上の成分に加えて、空気阻害作用を防止するための乾性油、代表的には桐油の使用量は、ラジカル硬化型樹脂と多価イソシアナ−ト化合物との合計量100重量部に対して、0.1重量部以上20重量部以下、より望ましくは、1重量部以上10重量部以下である。0.1重量部以下では、乾性油を添加してもほとんど効果が認められれず、また20重量部以上加えても、乾燥性向上の効果は増さないばかりか、逆に物性上も可塑剤的な働きが強まって望ましくない。In addition to the above components, the amount of drying oil, typically tung oil, used to prevent air-inhibiting action is based on 100 parts by weight of the total amount of radical curable resin and polyvalent isocyanate compound. 0.1 parts by weight or more and 20 parts by weight or less, more preferably 1 part by weight or more and 10 parts by weight or less. At 0.1 parts by weight or less, almost no effect is observed even when a drying oil is added, and when 20 parts by weight or more is added, the effect of improving the drying property is not increased. It is not desirable because the work is strengthened.
本発明は更に必要に応じてワックス類を併用し、更に空気阻害作用の防止に有用な系とすることも出来る。In the present invention, if necessary, waxes can be used in combination, and a system useful for preventing air inhibition can be obtained.
本発明の組成物はその実用化に当って、有機無機の補強材、フィラ−、着色剤、離型剤、各種のポリマ−等を必要に応じて併用出来ることはもちろんである。
次に本発明の理解を助けるために、以下に実施例を示す。It goes without saying that the organic / inorganic reinforcing material, filler, colorant, mold release agent, various polymers, and the like can be used in combination as necessary when the composition of the present invention is put to practical use.
Next, in order to help understanding of the present invention, examples will be shown below.
不飽和ポリエステル樹脂(A)の合成
攪拌機、分溜コンデンサ−、温度計、ガス導入管を付した1リットルセパラブルフラスコに、ジエチレングリコ−ル160g、プロピレングリコ−ル53g、無水マレイン酸98g、無水フタル酸148gを仕込み、窒素気流中、190〜205℃でエステル化を行い、酸価29.9で中止。温度を160℃迄下げハイドロキノン0.08gを加え、更に温度150℃でスチレン230gを加え、均一溶液として不飽和ポリエステル樹脂(A)を合成した。淡黄色、粘度約5ポイズであった。Into a 1 liter separable flask equipped with a synthetic stirrer of a unsaturated polyester resin (A), a distillation condenser, a thermometer and a gas introduction tube, 160 g of diethylene glycol, 53 g of propylene glycol, 98 g of maleic anhydride, phthalic anhydride 148 g of acid was charged, esterified at 190 to 205 ° C. in a nitrogen stream, and stopped at an acid value of 29.9. The temperature was lowered to 160 ° C., 0.08 g of hydroquinone was added, and 230 g of styrene was further added at a temperature of 150 ° C. to synthesize an unsaturated polyester resin (A) as a uniform solution. It was pale yellow and had a viscosity of about 5 poise.
空気硬化型組成物(B)の製造
250CCのポリエチレン瓶に、不飽和ポリエステル樹脂(A)95重量部、2,4−トリレンジイソシアナ−ト5重量部、桐油4重量部を秤取し、密栓してよく振盪、攪拌して均一溶液とした後、70〜75℃の恒温槽に5時間放置した。赤外分析によりイソシアナ−ト基の吸収は消失したことが確認された。これを組成物(B)とした。
組成物(B)50重量部に、メチルエチルケトン0.8重量部、ナフテン酸コバルト(6%Co)0.4重量部を加え、バ−コ−タ−でボンデライト鋼板上に0.5m/m厚になる様に塗装した。
約1時間後に塗膜はゲル化し、6時間後にはほぼタックフリ−となった。
1夜放置後の塗膜硬度はBであった。Production of air-curable composition (B) In a 250 cc polyethylene bottle, 95 parts by weight of unsaturated polyester resin (A), 5 parts by weight of 2,4-tolylene diisocyanate, and 4 parts by weight of tung oil are weighed. After sealing tightly and shaking and stirring to make a uniform solution, it was left in a thermostat at 70 to 75 ° C. for 5 hours. It was confirmed by infrared analysis that the absorption of the isocyanate group disappeared. This was designated as composition (B).
To 50 parts by weight of the composition (B), 0.8 parts by weight of methyl ethyl ketone and 0.4 parts by weight of cobalt naphthenate (6% Co) are added, and 0.5 m / m thick on a bonderite steel plate with a bar coater. Painted to become.
The coating film gelled after about 1 hour and became almost tack-free after 6 hours.
The coating film hardness after standing overnight was B.
i)不飽和ポリエステル(A)のみで同様に硬化剤を配合し、塗装を行った。塗膜ゲル化はほぼ1時間〜1時間半であったが、表面は硬化乾燥せず、3日後もベタツキが残っていた。
ii)不飽和ポリエステル(A)95重量部にトリレンジイソシアナ−ト5重量部を加え、70〜75℃に5時間加熱後、スチレン5重量部を加えて同様に塗装、硬化させた。結果はi)とほぼ同様になり、塗膜のベタツキは3日後も残っていた。i) A curing agent was similarly blended only with the unsaturated polyester (A), and coating was performed. The gelation of the coating film was approximately 1 hour to 1 and a half hours, but the surface was not cured and dried, and the stickiness remained after 3 days.
ii) 5 parts by weight of tolylene diisocyanate was added to 95 parts by weight of the unsaturated polyester (A), heated to 70 to 75 ° C. for 5 hours, and then 5 parts by weight of styrene was added and coated and cured in the same manner. The result was almost the same as i), and the stickiness of the coating film remained after 3 days.
不飽和イソシアナ−ト(C)の調整
2,4トリレンジイソシアナ−ト174g、2−ヒドロキシエチルメタクリレ−ト130gを500CCのポリエチレン瓶に仕込み、無加温で激しく振盪、攪拌すると内温は56℃に達した。更に70〜75℃で3時間加温すると、赤外分析の結果、イソシアナ−ト基の約50(%)は反応したものとみられ、不飽和イソシアナ−ト(C)がほぼ無色の液状で得られた。Preparation of unsaturated isocyanate (C) 174 g of 2,4-tolylene diisocyanate and 130 g of 2-hydroxyethyl methacrylate were charged into a 500 CC polyethylene bottle, and the internal temperature was It reached 56 ° C. Furthermore, when heated at 70 to 75 ° C. for 3 hours, as a result of infrared analysis, about 50 (%) of the isocyanate group is considered to have reacted, and the unsaturated isocyanate (C) is obtained in an almost colorless liquid state. It was.
不飽和ウレタン−アクリレ−ト(D)の合成
攪拌機、還流コンデンサ−、温度計、ガス導入管を付した1リットルセパラブルフラスコに、ポリテトラメチレングリコ−ル(Mn=1980)を500g、不飽和イソシアナ−ト(C)76g、パラベンゾキノン0.03g、桐油1gを仕込み、乾燥空気中70〜75℃に5時間反応すると、赤外分析の結果、遊離のイソシアナ−ト基は消失したことが認められた。
淡黄褐色、粘度約210ポイズに不飽和ウレタン−アクリレ−ト(D)が得られた。Unsaturated urethane acrylate (D) synthesis stirrer, reflux condenser, thermometer, 1 liter separable flask equipped with gas inlet tube, 500 g of polytetramethylene glycol (Mn = 1980), unsaturated When 76 g of isocyanato (C), 0.03 g of parabenzoquinone and 1 g of tung oil were charged and reacted at 70 to 75 ° C. in dry air for 5 hours, infrared analysis revealed that the free isocyanate group had disappeared. It was.
Unsaturated urethane acrylate (D) was obtained with a pale yellowish brown color and a viscosity of about 210 poise.
不飽和ウレタン−アクリレ−ト(D)90重量部、トリメチロ−ルプロパントリメタクリレ−ト10重量部、メチルエチルケトンパ−オキシド2重量部、ナフテン酸コバルト0.5重量部、ピロリジンアセトアセトアミド0.2重量部を均一に混合し、直径6cmのアルミ製カップに深さ約5m/m厚になるように注型した。一夜放置後、表面のベタツキのない軟らかいゴム状硬化樹脂が得られた。90 parts by weight of unsaturated urethane acrylate (D), 10 parts by weight of trimethylolpropane trimethacrylate, 2 parts by weight of methyl ethyl ketone peroxide, 0.5 part by weight of cobalt naphthenate, 0.2 part of pyrrolidineacetoacetamide The parts by weight were uniformly mixed and cast into an aluminum cup having a diameter of 6 cm so as to have a depth of about 5 m / m. After standing overnight, a soft rubber-like cured resin having no surface stickiness was obtained.
熱硬化アクリレ−ト(E)の調整
攪拌機、還流コンデンサ−、温度計、ガス導入管を付した1リットルセパラブルフラスコにメタクリル酸メチルモノマ−270g、2−ヒドロキシエチルメタクリレ−ト30g、ラウリルメルカプタン1.5g、アゾビスイソブチロニトリル3gを仕込み、窒素気流中、徐々に昇温させ80〜85℃で、常温の粘度が10ポイズ程度になる迄重合した後、ハイドロキノン0.1gを加え、更に桐油12g、脱水ヒマシ油3g、イソシアナ−トエチルメタクリレ−ト(昭和電工(株)製商品名“MOI”)25gを加え、ガスを空気に切り替え70〜75℃で5時間反応すると、赤外分析の結果、遊離のイソシアナ−ト基は消失したことが認められた。
淡黄褐色の熱硬化アクリレ−ト(E)が得られた。Heat-curing acrylate (E) adjusted 1-liter separable flask equipped with a stirrer, reflux condenser, thermometer, gas introduction tube, methyl methacrylate monomer-270 g, 2-hydroxyethyl methacrylate 30 g, lauryl mercaptan 1 0.5 g and 3 g of azobisisobutyronitrile, polymerized in a nitrogen stream and gradually heated to 80-85 ° C. until the viscosity at room temperature reaches about 10 poises, and then 0.1 g of hydroquinone was added. When 12 g of paulownia oil, 3 g of dehydrated castor oil, 25 g of isocyanatoethyl methacrylate (trade name “MOI” manufactured by Showa Denko KK) are added, the gas is switched to air and reacted at 70 to 75 ° C. for 5 hours. As a result of the analysis, it was confirmed that the free isocyanate group had disappeared.
A light yellowish brown thermosetting acrylate (E) was obtained.
熱硬化アクリレ−ト(E)100重量部に、融点52〜54℃のパラフィンを0.5重量部加温溶解させ、室温に戻して、更にメチルエチルケトンパ−オキサイド2重量部、ナフテン酸コバルト(6%Co)1重量部、ピロリジンアセトアセトアミド0.2重量部を加え均一化して、ボンデライト鋼板上に0.5〜0.6m/m厚になるように塗装した。塗膜は約1時間後に表面にパラフィン層が形成され、タックフリ−となり、一夜放置後は完全に硬化し、硬度2Hを示した。In 100 parts by weight of thermosetting acrylate (E), 0.5 parts by weight of paraffin having a melting point of 52 to 54 ° C. is heated and dissolved, and returned to room temperature. Further, 2 parts by weight of methyl ethyl ketone peroxide, cobalt naphthenate (6 % Co) and 1 part by weight of pyrrolidine acetoacetamide were added and the mixture was homogenized and coated on a bonderite steel sheet to a thickness of 0.5 to 0.6 m / m. The coating film had a paraffin layer formed on the surface after about 1 hour, became tack-free, completely cured after standing overnight, and showed a hardness of 2H.
(i)桐油と脱水ヒマシ油を使用しない他は同一配合の塗膜の場合は、ワックス量が不充分なために3日間放置後も表面のベタツキはとれなかった。
(ii)イソシアナ−トエチルメタクルレ−トを使用しない他は同一配合の塗膜の場合は、桐油と脱水ヒマシ油の混合油が分離析出し、表面に大小の“ちりめん状”の皺が発生した。(I) In the case of a coating film having the same composition except that paulownia oil and dehydrated castor oil were not used, the amount of wax was insufficient, so that the surface was not sticky after being left for 3 days.
(Ii) In the case of a coating film having the same composition except that isocyanatoethyl methacrylate is not used, a mixed oil of paulownia oil and dehydrated castor oil is separated and deposited, and large and small “crepe-like” wrinkles are formed on the surface. Occurred.
ビニルエステル樹脂(F)の合成
攪拌機、還流コンデンサ−、温度計、ガス導入管を付した1リットルセパラブルフラスコに、エポキシ当量186のビスフェノ−ル型エポキシ樹脂80g、メタクリル酸172g、トリフェニルホスフィン1.5g、ハイドロキノン0.25gを仕込み。空気気流下130〜135℃に3時間反応すると酸価は5.9となったので中止。
淡黄色、常温では粘調なシラップ状ノビニルエステル樹脂(F)が得られた。Synthetic stirrer of vinyl ester resin (F), reflux condenser, thermometer, gas introduction tube, 1 liter separable flask, 80 g of bisphenol type epoxy resin with epoxy equivalent of 186, 172 g of methacrylic acid, triphenylphosphine 1 .5g and hydroquinone 0.25g are charged. When the reaction was carried out at 130 to 135 ° C. for 3 hours under an air stream, the acid value became 5.9, so it was discontinued.
A light yellow, viscous syrup-like novinyl ester resin (F) was obtained at room temperature.
ビニルエステル樹脂(F)を100g、ビスフェノ−ルAエチレンオキシド付加物(各1モルのエチレンオキシド付加型)モノメタクリレ−トを60g、メタクリル酸メチル40g、ヘキサメチレンジイソシアナ−ト35g、桐油10g、ジブチル錫ジラウレ−ト0.5gを500ccポリエチレン瓶にとり、全体をよく振盪攪拌して均一化した後、70〜75℃に3時間加温すると、赤外分析の結果、遊離のイソシアナ−ト基は消失してことが確認された。
この混合樹脂50重量部に、メチルエチルケトンパ−オキシド1重量部、ナフテン酸コバルト(6%Co)0.5重量部、ピロリジンアセトアセトアミド0.2重量部を均一に加え混合し、ボンデライト鋼板上に0.5〜0.6m/m厚になるように塗装して室温で放置したサンプルは、約5時間後にタックフリ−となり、一夜放置後の硬度はF〜Hを示した。100 g of vinyl ester resin (F), 60 g of bisphenol A ethylene oxide adduct (each 1 mol of ethylene oxide addition type) monomethacrylate, 40 g of methyl methacrylate, 35 g of hexamethylene diisocyanate, 10 g of tung oil, dibutyltin Take 0.5 g of dilaurate in a 500 cc polyethylene bottle, homogenize by shaking well, and then warm to 70-75 ° C for 3 hours. As a result of infrared analysis, the free isocyanate group disappears. It was confirmed.
To 50 parts by weight of this mixed resin, 1 part by weight of methyl ethyl ketone peroxide, 0.5 part by weight of cobalt naphthenate (6% Co) and 0.2 part by weight of pyrrolidineacetoacetamide were uniformly added and mixed. The sample coated at a thickness of 0.5 to 0.6 m / m and allowed to stand at room temperature became tack-free after about 5 hours, and the hardness after standing overnight showed F to H.
桐油を加えない他は、同一配合の塗膜の場合は、3日放置後もベタツキが残り、硬度測定は不可能であった。In the case of the coating film having the same composition except that no tung oil was added, the stickiness remained even after standing for 3 days, and the hardness measurement was impossible.
フタル酸ジヒドロキシエチルメタクリレ−トエステル約70重量(%)、フタル酸モノヒドロキシエチルメタクリレ−ト約25重量(%)、2−ヒドロキシエチルメタクリレ−ト約5重量(%)の混合ポリエステル−オリゴアクリレ−ト(ポリエステル−アクリレ−トと略記する)を200重量部、ジフェニルメタンジイソシアナ−ト20重量部、桐油10重量部の混合体を500ccポリエチレン瓶に入れ、激しく振盪して均一化にた後、70〜75℃の恒温槽にて6時間加温した。淡赤褐色、粘度約29ポイズのポリエステルアクリレ−ト(G)が得られた。
ポリエステルアクリレ−ト(G)100重量部にメチルエチルケトンパ−オキシド1.5重量部、ナフテン酸コバルト(6%Co)0.5重量部、ピロリジンアセトアセトアミド0.2重量部を均一に混合後、0.3〜0.4m/m厚にボンデライト鋼板上に塗装、直ちに60℃の恒温槽にて加温、硬化させた。
ゲル化は8分後に起こり、表面がタックフリ−となったのは、ほぼ20分後であった。室温で一夜放置後の硬度は2〜3Hとなった。また、ポリエチレン瓶中の樹脂は、1週間後も均一で、桐油の分離は認められなかった。Mixed polyester-oligoacrylate of about 70% by weight (dihydroxyethyl methacrylate) phthalate, about 25% (%) monohydroxyethyl methacrylate phthalate, about 5% (%) 2-hydroxyethyl methacrylate -A mixture of 200 parts by weight (abbreviated as polyester-acrylate), 20 parts by weight of diphenylmethane diisocyanate, and 10 parts by weight of paulownia oil was placed in a 500 cc polyethylene bottle and homogenized by shaking vigorously. , And heated in a constant temperature bath at 70 to 75 ° C. for 6 hours. A polyester acrylate (G) having a light reddish brown color and a viscosity of about 29 poise was obtained.
After 100 parts by weight of polyester acrylate (G) is uniformly mixed with 1.5 parts by weight of methyl ethyl ketone peroxide, 0.5 parts by weight of cobalt naphthenate (6% Co) and 0.2 parts by weight of pyrrolidineacetoacetamide, It was coated on a bonderite steel sheet at a thickness of 0.3 to 0.4 m / m, and immediately heated and cured in a thermostatic bath at 60 ° C.
Gelation occurred after 8 minutes and the surface was tack free approximately 20 minutes later. The hardness after standing overnight at room temperature was 2-3H. Further, the resin in the polyethylene bottle was uniform even after one week, and no separation of tung oil was observed.
(i)桐油を除いた他は同一配合の樹脂では、60℃の加温でも8時間経過しても、表面のベタツキはとれなかった。
(ii)ジフェニルメタンジイソシアナ−トを除いた他は同一配合の樹脂では、一夜放置後、ポリエチレン瓶中で桐油とポリエステル−アクリレ−ト(G)が分離し、桐油が表面層に浮いているのが認められた。(I) With the resin having the same composition except for tung oil, the surface was not sticky even when heated at 60 ° C. or even after 8 hours.
(Ii) In the resin of the same composition except for diphenylmethane diisocyanate, after standing overnight, tung oil and polyester acrylate (G) are separated in a polyethylene bottle, and tung oil is floating on the surface layer. It was recognized.
Claims (7)
(1)ジカル硬化型樹脂
(2)多価インシアナ−ト
(3)乾性油
を共に使用することよりなる、ラジカル硬化型樹脂の空気による硬化阻害作用を防止する組成物。When the radical curable resin is cured in the presence of air, (1) dical curable resin (2) polyvalent isocyanate (3) dry oil is used together in order to prevent the surface from inhibiting the curing of air. The composition which prevents the hardening inhibitory effect by the air of radical curable resin which consists of this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004117339A JP2005264125A (en) | 2004-03-17 | 2004-03-17 | Composition for preventing cure inhibition of radically curable resin with air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004117339A JP2005264125A (en) | 2004-03-17 | 2004-03-17 | Composition for preventing cure inhibition of radically curable resin with air |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005264125A true JP2005264125A (en) | 2005-09-29 |
Family
ID=35088994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004117339A Pending JP2005264125A (en) | 2004-03-17 | 2004-03-17 | Composition for preventing cure inhibition of radically curable resin with air |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005264125A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006274194A (en) * | 2005-03-30 | 2006-10-12 | Sanyo Chem Ind Ltd | Active energy ray-curable urethane-(meth)acrylate composition |
-
2004
- 2004-03-17 JP JP2004117339A patent/JP2005264125A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006274194A (en) * | 2005-03-30 | 2006-10-12 | Sanyo Chem Ind Ltd | Active energy ray-curable urethane-(meth)acrylate composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2873482B2 (en) | Photocrosslinkable resin composition | |
EP0357110A1 (en) | Two component coating curable at ambient temperature via a Diels-Alder reaction | |
CA2822527C (en) | Radiation curable coating compositions for metal | |
CA2563360A1 (en) | Radiation curable high gloss overprint varnish compositions | |
JPS6241982B2 (en) | ||
CN106519182A (en) | Organic silicon modified polyurethane acrylate oligomer, and preparation method thereof | |
JPH07286138A (en) | Coating composition | |
CN101445585A (en) | Ethylenically unsaturated polyisocyanate addition compounds based on lysine triisocyanate, their use in coating compositions and processes for their preparation | |
TW570935B (en) | Curable unsaturated resin composition | |
DE10224380A1 (en) | Coating material, process for its production and its use for the production of adhesive coatings | |
JP2001002742A (en) | Photosetting resin composition and coating material | |
JP2005264125A (en) | Composition for preventing cure inhibition of radically curable resin with air | |
JP4374990B2 (en) | Radical polymerizable resin composition | |
JP3064463B2 (en) | Room temperature curable resin composition | |
JPH01230603A (en) | Photocurable composition | |
JP2002069317A (en) | Polymerizable resin composition | |
JP4861603B2 (en) | Putty composition | |
JPH0411858B2 (en) | ||
JP2006241393A (en) | Coating composition and coating method | |
US4482691A (en) | Air-drying fatty acid-modified acrylic resins | |
JPH10316923A (en) | Water-based coating material for recoating and process for recoating therewith | |
JPS63305177A (en) | Curable resin composition | |
JPH029609B2 (en) | ||
JPS5974116A (en) | Production of radical-polymerizable prepolymer | |
JPS62153340A (en) | Curable composition |