JP2005263943A - Conductor composition and conductive article - Google Patents

Conductor composition and conductive article Download PDF

Info

Publication number
JP2005263943A
JP2005263943A JP2004077451A JP2004077451A JP2005263943A JP 2005263943 A JP2005263943 A JP 2005263943A JP 2004077451 A JP2004077451 A JP 2004077451A JP 2004077451 A JP2004077451 A JP 2004077451A JP 2005263943 A JP2005263943 A JP 2005263943A
Authority
JP
Japan
Prior art keywords
resin
conductive
conductor
base material
conductor composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004077451A
Other languages
Japanese (ja)
Inventor
Masayuki Miyairi
正幸 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2004077451A priority Critical patent/JP2005263943A/en
Publication of JP2005263943A publication Critical patent/JP2005263943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductor composition used for forming, in a substrate made of resins, a conductor section which has good adhesiveness, flexibility and plasticity and in which reduction of conductivity due to bending or creasing is suppressed, and to provide a conductive article. <P>SOLUTION: The conductor composition used for forming a conductor section in a substrate made of resins comprises a conductive material powder, the same type of resin as the resin composing the substrate made of resins and/or a cellulose-based resin, and a solvent. The conductive material powder is gold; the resin is a polyamide-based resin; and the cellulose-based resin is ethyl cellulose. The conductive article is obtained by arranging the conductor section resulting from the conductor composition in all or part of the region of the substrate made of resins. The substrate made of resins has the shape of a tube or a film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導体組成物に係り、更に詳細には、樹脂製チューブや樹脂製フィルムなどの樹脂製基材に、密着性が良好で可撓性や柔軟性を有する導体部位を形成するのに用いられる導体組成物、及びこれを用いて成る導電性物品に関する。   The present invention relates to a conductor composition, and more specifically, to form a conductor portion having good adhesion and flexibility and flexibility on a resin substrate such as a resin tube or a resin film. The present invention relates to a conductive composition used and a conductive article using the same.

従来、樹脂製基板に電気リードなどの導電部位を形成することは、プリント配線基板などで代表されるように、電子業界などで盛んに行われている。
また、近時では、カテーテルや医療チューブ等の体内挿入具として、柔軟性を有する樹脂製チューブの外周部に導電性被膜を被覆し、これをレーザー加工で除去して所定形状の電気リードを形成したものが提案されている(例えば、特許文献1参照)。
特開平8−131545号公報
2. Description of the Related Art Conventionally, formation of a conductive portion such as an electric lead on a resin substrate has been actively performed in the electronic industry and the like as represented by a printed wiring board.
In recent years, a conductive coating is applied to the outer periphery of a flexible resin tube as an internal insertion tool such as a catheter or medical tube, and this is removed by laser processing to form an electrical lead of a predetermined shape. Have been proposed (see, for example, Patent Document 1).
JP-A-8-131545

しかしながら、このような従来技術にあって、プリント配線基板などの各種電子基板では、基板自体に柔軟性が要求されることは通常あり得ず、従って、柔軟性と基板との密着性を兼備し、基板の湾曲や折り曲げなどによって剥離せずに導電性を維持し得る導電性被膜については考慮されていなかった。   However, in such a conventional technique, in various electronic boards such as a printed wiring board, the board itself usually cannot be required to have flexibility, and therefore, both flexibility and adhesion to the board are provided. No consideration has been given to a conductive film that can maintain conductivity without being peeled off by bending or bending the substrate.

一方、上述のような体内挿入部では、導電性被膜を各種蒸着法によって被覆するため、真空蒸着装置などの大型装置が必要であり、またその蒸着作業も繁雑であった。
更に、蒸着による導電性被膜、及びこれから形成した電気リードは、可撓性や柔軟性に劣るため、柔軟性を有する樹脂製チューブの変化に追従できず、湾曲や折り曲げによって樹脂製チューブ外周面から剥離したり、導電性の低下を免れることができないという問題点があった。
On the other hand, in the in-vivo insertion portion as described above, a conductive film is coated by various vapor deposition methods, so that a large-scale device such as a vacuum vapor deposition device is required, and the vapor deposition operation is complicated.
Furthermore, the conductive film formed by vapor deposition and the electric lead formed therefrom are inferior in flexibility and flexibility, and therefore cannot follow the change of the resin tube having flexibility, and can be bent or bent from the outer peripheral surface of the resin tube. There was a problem that peeling or a decrease in conductivity could not be avoided.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、密着性が良好で可撓性や柔軟性を有し、且つ湾曲や折り曲げなどによる導電性低下が抑制された導体部位を樹脂製基材に形成するのに用いられる導体組成物、及びこれを用いて成る導電性物品を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to have good adhesion, flexibility and flexibility, and conductivity by bending or bending. An object of the present invention is to provide a conductor composition used for forming a conductor portion in which deterioration in property is suppressed on a resin base material, and a conductive article using the same.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、基材を構成する樹脂と同種の樹脂を用いることなどにより、上記課題が解決されることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using the same kind of resin as the resin constituting the substrate, and the present invention is completed. It came to.

即ち、本発明の導体組成物は、樹脂製基材に導体部位を形成するのに用いられる導体組成物であって、導電性材料粉末と、上記樹脂製基材の構成樹脂と同種の樹脂及び/又はセルロース系樹脂と、溶剤とを含有して成ることを特徴とする。   That is, the conductor composition of the present invention is a conductor composition used for forming a conductor portion on a resin base material, and is composed of a conductive material powder, the same type of resin as the constituent resin of the resin base material, and It is characterized by comprising a cellulose resin and / or a solvent.

また、本発明の導体組成物の好適形態は、上記導電性材料粉末が、金、銀、銅及びカーボンから成る群より選ばれた少なくとも1種の材料の粉末で、上記樹脂がポリアミド系樹脂で、上記セルロース系樹脂がエチルセルロースであることを特徴とする。   In a preferred embodiment of the conductor composition of the present invention, the conductive material powder is a powder of at least one material selected from the group consisting of gold, silver, copper and carbon, and the resin is a polyamide resin. The cellulosic resin is ethyl cellulose.

更に、本発明の導体組成物の他の好適形態は、上記導電性材料粉末が金で、上記樹脂がポリアミド系樹脂であり、金100重量部に対してポリアミド系樹脂を2〜12重量部、エチルセルロースを0.5〜2重量部配合して成ることを特徴とする。   Furthermore, in another preferred embodiment of the conductor composition of the present invention, the conductive material powder is gold, the resin is a polyamide resin, and the polyamide resin is 2 to 12 parts by weight with respect to 100 parts by weight of gold. It is characterized by comprising 0.5 to 2 parts by weight of ethyl cellulose.

一方、本発明の導電性物品は、上述の如き導体組成物に起因する導体部位を、樹脂製基材の全部又は一部の領域に配置して成ることを特徴とする。
また、本発明の導電性物品の好適形態は、上記樹脂製基材の形状が、チューブ状又はフィルム状であることを特徴とする。
On the other hand, the conductive article of the present invention is characterized in that the conductor portion resulting from the conductor composition as described above is disposed in the whole or a part of the resin base material.
Moreover, the suitable form of the electroconductive article of this invention is characterized by the shape of the said resin-made base materials being a tube form or a film form.

更に、本発明の導電性物品の他の好適形態は、上記樹脂製基材がチューブ状をなし、上記導体部位が、このチューブ状樹脂製基材の周方向に所定間隔で配置されるとともに、その長手方向に延在していることを特徴とする。
更にまた、本発明の導電性物品の更に他の好適形態は、上記導電性基材がフィルム状をなし、上記導体部位がスクリーン印刷法によってこのフィルム状導電性基材の表面上に所望パターンで形成されていることを特徴とする。
Furthermore, in another preferred embodiment of the conductive article of the present invention, the resin base material has a tubular shape, and the conductor portions are arranged at predetermined intervals in the circumferential direction of the tubular resin base material, It extends in the longitudinal direction.
Furthermore, in another preferred embodiment of the conductive article of the present invention, the conductive substrate is in the form of a film, and the conductor portion is formed in a desired pattern on the surface of the film-shaped conductive substrate by a screen printing method. It is formed.

本発明によれば、基材を構成する樹脂と同種の樹脂を用いることなどとしたため、密着性が良好で可撓性や柔軟性を有し、且つ湾曲や折り曲げなどによる導電性低下が抑制された導体部位を樹脂製基材に形成するのに用いられる導体組成物、及びこれを用いて成る導電性物品を提供することができる。   According to the present invention, since the same kind of resin as that constituting the base material is used, the adhesiveness is good, the flexibility and flexibility are provided, and the decrease in conductivity due to bending, bending, etc. is suppressed. In addition, a conductive composition used for forming a conductive portion on a resin base material, and a conductive article using the conductive composition can be provided.

以下、本発明の導体組成物について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表す。
上述の如く、本発明の導体組成物は、樹脂基材に導体部位(典型的には導電性被膜)を形成するのに用いられるものであって、代表的にはペースト状をなす。また、導電性材料粉末と、上記樹脂基材の構成樹脂と同種の樹脂若しくはセルロース系樹脂又は両樹脂の混合物と、溶剤を含有するものである。
Hereinafter, the conductor composition of the present invention will be described in detail. In the present specification, “%” represents a mass percentage unless otherwise specified.
As described above, the conductor composition of the present invention is used to form a conductor portion (typically a conductive film) on a resin substrate, and typically forms a paste. Moreover, it contains a conductive material powder, the same kind of resin as the constituent resin of the resin base material, a cellulose resin, or a mixture of both resins, and a solvent.

ここで、導電性材料粉末としては、導電性を有する材料の粉末である限り、特に限定されるものではなく、金(Au)、銀(Ag)、銅(Cu)などの貴金属やその他の金属、カーボンなどの粉末を例示でき、これらを単独で又は2種以上を任意に組み合わせて用いることができる。
かかる導電性材料粉末としては、耐酸化性に優れ、マイグレーションが起きにくく、抵抗値の低い(電気伝導率の大きい)ものが好適であり、この観点からはAu及び/又はAgの粉末を好適に用いることができる。更に、カテーテルや医療用チューブなどに用いる観点からは、生体安全性を考慮してAu粉末が最適である。
なお、導電性材料粉末の粒子径は、樹脂基材の大きさや用途によっても適宜選定することができるが、代表的には、SEM(走査型電子顕微鏡)観察で0.05〜2.0μmである。
Here, the conductive material powder is not particularly limited as long as it is a powder of a conductive material. Noble metals such as gold (Au), silver (Ag), copper (Cu), and other metals And powders such as carbon can be exemplified, and these can be used alone or in any combination of two or more.
As such a conductive material powder, a powder having excellent oxidation resistance, hardly causing migration, and having a low resistance value (high electric conductivity) is preferable. From this viewpoint, Au and / or Ag powder is preferable. Can be used. Furthermore, from the viewpoint of use for catheters, medical tubes, and the like, Au powder is optimal in consideration of biological safety.
The particle diameter of the conductive material powder can be appropriately selected depending on the size and use of the resin base material, but is typically 0.05 to 2.0 μm by SEM (scanning electron microscope) observation. is there.

また、この導体組成物の樹脂成分のうち、樹脂製基材の構成樹脂と同種の樹脂(以下、「基材系樹脂」という)における、「同種」とは樹脂成分が完全に一致することを要求されるわけではなく、例えばポリアミド系の樹脂基材に対して基材系樹脂にはポリアミド系の樹脂を、ポリエチレン系の樹脂(基材)にはポリエチレン系の基材系樹脂を選定すべきことを意味しており、多少の変性などは不問である。
本発明では、かかる基材系樹脂を樹脂成分として採用することにより、この導体組成物を乾燥させた後において、導電性材料粉末と樹脂基材との密着状態を良好な状態に保つことができる。
Also, among the resin components of this conductor composition, “same type” in the same type of resin as the constituent resin of the resin base material (hereinafter referred to as “base type resin”) means that the resin component is completely identical. For example, a polyamide resin should be selected for the base resin and a polyethylene base resin should be selected for the polyethylene resin (base material). This means that some modification is not required.
In the present invention, by employing such a base resin as a resin component, after the conductor composition is dried, the adhesive state between the conductive material powder and the resin base material can be kept in a good state. .

本発明における典型的な樹脂の組合せ例としては、ポリアミド系樹脂の基材と、ポリアミド系樹脂の基材系樹脂との組合せを挙げることができ、基材系樹脂として用いるポリアミド系樹脂としては、次式(1)   As a typical resin combination example in the present invention, a combination of a polyamide-based resin base material and a polyamide-based resin base material resin can be given. The following formula (1)

Figure 2005263943
Figure 2005263943

(式中のPAはポリアミド残基、PEはポリエーテル残基、nは自然数を示す)で表されるポリアミドエラストマーを挙げることができる。
なお、かかるポリアミドエラストマーは、ぺバックス(ATOCHOM社、東レ(株)製;登録商標名)として入手することができる。
(Wherein PA represents a polyamide residue, PE represents a polyether residue, and n represents a natural number).
In addition, this polyamide elastomer can be obtained as Pebax (ATOCHOM, Toray Industries, Inc .; registered trademark name).

一方、樹脂成分のうちのセルロース系樹脂としては、特に限定されるものではなく、エチルセルロース、メチルセルロース、ベンジルセルロース、トリチルセルロース、シアンエチルセルロース、カルボキシメチルセルロース、アミノエチルセルロース及びオキシエチルセルロースなどを例示できるが、上記ポリアミドエラストマーとの関係ではエチルセルロースを混入するのが望ましく、この添加樹脂の混入により、導体組成物ペーストの安定性を向上し、得られる導電体被膜の柔軟性や可撓性を向上することができる外、表面平滑性も改善することができる。   On the other hand, the cellulose resin in the resin component is not particularly limited, and examples thereof include ethyl cellulose, methyl cellulose, benzyl cellulose, trityl cellulose, cyanethyl cellulose, carboxymethyl cellulose, aminoethyl cellulose, and oxyethyl cellulose. In relation to the elastomer, it is desirable to mix ethyl cellulose. By adding this additive resin, the stability of the conductor composition paste can be improved, and the flexibility and flexibility of the resulting conductor film can be improved. The surface smoothness can also be improved.

また、用いる溶剤としては、上述の導電性材料粉末の分散性に悪影響を及ぼさず、基材系樹脂及び/又はセルロース系樹脂を若干溶解させる能力を有し、しかも使用態様を考慮して70℃程度で蒸発可能なものがよいが、代表的に、Au、ポリアミドエラストマー及びエチルセルロースを選択した場合には、1−ブタノール(n−ブチルアルコール)を好適に使用することができる。   Moreover, as a solvent to be used, there is no adverse effect on the dispersibility of the above-mentioned conductive material powder, and it has the ability to slightly dissolve the base resin and / or the cellulose resin, and 70 ° C. in consideration of the use mode. Although it can be evaporated to a certain degree, typically, when Au, polyamide elastomer and ethyl cellulose are selected, 1-butanol (n-butyl alcohol) can be preferably used.

本発明の導体組成物における上記各成分の配合比は、使用する成分の種類や、樹脂基材の種類、目的とする導電性物品(後述)の種類などに応じて適宜変更することができ、一義的ではないが、導電性材料粉末としてAu、基材系樹脂としてポリアミドエラストマー、セルロース系樹脂としてエチルセルロース、溶剤としてブタノールを選択した場合には、Au100重量部に対し、ポリアミドエラストマーを2〜12重量部、好ましくは4〜8重量部、エチルセルロースを0.5〜2重量部、ブタノールを20〜100重量部とすることができる。
ポリアミドエラストマーの配合量が多ければ多いほど、得られる導電性被膜の樹脂基材に対する密着性を向上できるが、その一方で電気抵抗値が大きくなってしまう。よって、通常は上記範囲の配合量が適切である。
また、エチルセルロースもその配合量が多ければ多いほど、ペーストの安定性、導電性被膜の柔軟性及び表面平滑性などを向上できるが、電気抵抗値を増大してしまうので、通常は上記範囲の配合量が適切である。
更に、ブタノールの配合量は、本発明の導体組成物の適用方法、即ち塗布方法や被覆方法などに応じて作業効率の良い粘度、及び具体的用途により必要とされる膜厚などを考慮して変更可能であるが、通常は上記範囲が適切である。
The blending ratio of the above components in the conductor composition of the present invention can be appropriately changed according to the type of the component used, the type of the resin base material, the type of the target conductive article (described later), and the like. Although it is not unambiguous, in the case where Au is selected as the conductive material powder, polyamide elastomer is selected as the base resin, ethyl cellulose is selected as the cellulose resin, and butanol is selected as the solvent, 2-12 wt. Parts, preferably 4 to 8 parts by weight, 0.5 to 2 parts by weight of ethyl cellulose, and 20 to 100 parts by weight of butanol.
The greater the amount of polyamide elastomer blended, the better the adhesion of the resulting conductive coating to the resin substrate, but the greater the electrical resistance. Therefore, the blending amount in the above range is usually appropriate.
In addition, as the amount of ethyl cellulose is increased, the stability of the paste, the flexibility of the conductive film and the surface smoothness can be improved, but the electrical resistance value is increased. The amount is appropriate.
Furthermore, the amount of butanol blended takes into account the application method of the conductor composition of the present invention, that is, the viscosity with good work efficiency according to the coating method and coating method, and the film thickness required for the specific application. Although it can be changed, the above range is usually appropriate.

本発明の導体組成物を用いた導体部位や導電性被膜の形成は、代表的には、ペースト状の導体組成物を樹脂基材の必要部位に被覆し、70〜120℃程度で乾燥させて硬化させるだけで行うことができる。
よって、従来の蒸着法などに比し簡易且つ短時間で導体部位や導電性被膜を形成することができる。
なお、被覆方法としては、従来公知の各種方法を採用することができ、例えば浸漬法、塗布法、印刷法、転写法、ディスペンス法及びドッティング法などを行うことができる。また、導体部位を所望形状に加工する方法についても、レーザートリミング、エッチング、サンドブラスト及びカッティングその他の方法を採用できる。
Formation of the conductor part and the conductive film using the conductor composition of the present invention is typically performed by covering the necessary part of the resin base material with a paste-like conductor composition and drying at about 70 to 120 ° C. It can be done simply by curing.
Therefore, a conductor part and a conductive film can be formed easily and in a short time as compared with the conventional vapor deposition method.
In addition, as a coating method, conventionally well-known various methods can be employ | adopted, for example, the immersion method, the apply | coating method, the printing method, the transfer method, the dispensing method, the dotting method etc. can be performed. In addition, laser trimming, etching, sand blasting, cutting, and other methods can be employed as a method for processing the conductor portion into a desired shape.

上述のような本発明の導体組成物によって形成された導体部位や導電性被膜は、樹脂基材との密着性、可撓性や柔軟性に優れたものであり、樹脂基材の形状変形に追従して変形可能であり、しかもそのような変形を繰り返し経た後であっても、その導電性は殆ど低下することがない。
例えば、樹脂製チューブや樹脂製フィルムに形成した導体部位は、このチューブやフィルムをほぼ2つ折にした後であっても、チューブ表面やフィルム表面から剥離することがなく、導電率も低下することがない。
更に、例えばチューブ軸方向又はフィルム面の方向に対して90゜程度湾曲させる変形であれば、100回程度繰り返しても剥離や導電率低下を生ずることはない。
The conductor part and conductive film formed by the conductor composition of the present invention as described above are excellent in adhesiveness, flexibility and flexibility to the resin base material, and can be used for shape deformation of the resin base material. It can be deformed following it, and even after such deformation is repeated, its conductivity hardly decreases.
For example, a conductor part formed on a resin tube or a resin film does not peel off from the tube surface or film surface even after the tube or film is folded in approximately two parts, and the conductivity is reduced. There is no.
Further, for example, if the deformation is curved by about 90 ° with respect to the tube axis direction or the film surface direction, peeling and conductivity reduction will not occur even if it is repeated about 100 times.

次に、本発明の導電性物品について説明する。
本発明の導電性物品は、上述した本発明の導体組成物を樹脂製基材の全部又は一部の領域に被覆して配置したものである。なお、導体組成物に含まれる基材系樹脂と同種の樹脂を含有して成る樹脂基材であることを要する。
この場合、樹脂製基材の形状は、特に限定されるものではないが、好適形状としてはチューブ状とフィルム状を例示することができる。
Next, the conductive article of the present invention will be described.
The conductive article of the present invention is the one in which the above-described conductor composition of the present invention is disposed so as to cover all or a part of the resin base material. In addition, it is required that it is a resin base material containing the same kind of resin as the base resin contained in the conductor composition.
In this case, the shape of the resin substrate is not particularly limited, but examples of suitable shapes include a tube shape and a film shape.

チューブ状の樹脂基材に導体部位を形成した場合、その用途としては上述のようなカテーテルや医療チューブを挙げることができ、その場合、チューブの外形は0.5〜3mm程度、内径は0.3〜2mm程度となる。
また、導電体の形状としては、チューブの円周方向に所定間隔で配置され、且つそのチューブの長手方向(軸方向)に延在する形状(いわば短冊形)を採用することが可能であり、このような導電体は、樹脂製チューブを有するカテーテルや内視鏡において電気配線として機能することができる。
When the conductor part is formed on the tube-shaped resin base material, the above-mentioned catheter and medical tube can be used as the application. In this case, the outer shape of the tube is about 0.5 to 3 mm, and the inner diameter is about 0.3 mm. It is about 3 to 2 mm.
In addition, as the shape of the conductor, it is possible to adopt a shape (so-called strip shape) that is arranged at a predetermined interval in the circumferential direction of the tube and extends in the longitudinal direction (axial direction) of the tube, Such a conductor can function as electrical wiring in a catheter or endoscope having a resin tube.

なお、かかる短冊形の導体部位は、樹脂製チューブの外周面に本発明の導体組成物を塗布して乾燥・硬化させて導電性被膜を形成し、次いで、エキシマレーザーなどのレーザ光を樹脂製チューブの長手方向に繰り返し走査させて、導電性被膜を部分的に除去することにより形成できる。
この際、導電性被膜には、熱衝撃、伸縮及びクランプ等が作用するが、本発明による導電性被膜は、上述の如く樹脂基材との密着性や可撓性に極めて優れるものであるため、上述のようなレーザー加工によって悪影響を著しく低減し得るものである。
一方、樹脂製基材がフィルム状の場合、導体部位の形成はスクリーン印刷法など公知の方法により簡易に行うことができる。
The strip-shaped conductor portion is formed by applying the conductor composition of the present invention to the outer peripheral surface of a resin tube and drying and curing it to form a conductive film, and then excimer laser or other laser light is made of resin. It can be formed by repeatedly scanning in the longitudinal direction of the tube and partially removing the conductive coating.
At this time, thermal shock, expansion and contraction, and the like act on the conductive coating, but the conductive coating according to the present invention is extremely excellent in adhesion and flexibility to the resin base as described above. The adverse effects can be remarkably reduced by the laser processing as described above.
On the other hand, when the resin substrate is in the form of a film, the conductor portion can be easily formed by a known method such as a screen printing method.

以下、本発明を若干の実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to some examples and comparative examples, but the present invention is not limited to these examples.

(実施例1〜18、比較例1)
湿式還元法で得られたSEM粒径0.1〜0.3μmの球状Au粉末と、所定の樹脂をブタノールに加熱・攪拌・溶解したビークルとを、所定の配合量で調合し、攪拌機で攪拌して均一に分散させて、各例の導電体ペーストを得た。樹脂の種類、Au粉末や樹脂の配合組成を表1に示す。なお、表1中の配合量は重量部で示されている。また、ペースト中のAu粉末量が約50〜60%となるようにブタノール量を調整した。
(Examples 1-18, Comparative Example 1)
A spherical Au powder having a SEM particle size of 0.1 to 0.3 μm obtained by a wet reduction method and a vehicle in which a predetermined resin is heated, stirred and dissolved in butanol are prepared in a predetermined blending amount and stirred with a stirrer. And uniformly dispersed to obtain a conductor paste of each example. Table 1 shows the types of resin and the composition of Au powder and resin. In addition, the compounding quantity in Table 1 is shown by the weight part. The amount of butanol was adjusted so that the amount of Au powder in the paste was about 50 to 60%.

[性能評価]
各例のペーストに外径0.8mm、長さ10cmの変性ポリアミド樹脂製チューブを浸漬して、このチューブの外周に各例のペーストをディップ塗布し、次いで、120℃で1時間乾燥したものを各例の導電性チューブ(試料)とした。
なお、樹脂製チューブを構成する変性ポリアミドは実施例1などで用いたものと同じものである。
(比抵抗)
上記各例の導電性チューブの両端間の抵抗値を測定し、導電体ペーストによる塗膜の重量と長さからその比抵抗を算出した。得られた結果を表1に併記する。
また、抵抗値測定後の導電性チューブの中央部を、その軸方向に対して約90゜程度100回折り曲げた後、再度抵抗値を測定し、比抵抗の変化を調べた。この変化が小さい方が、良好な可撓性や柔軟性を有していると言える。得られた結果を表1に併記する。
(密着強度)
各例の導電性チューブの中央部を、その軸方向に対して約180゜程度折り曲げ、塗膜の密着強度を目視にて観察した。この性能評価で割れ(クラック)が生じにくければ、塗膜の柔軟性は良好であり、導電性チューブ自体の加工性も良好であると言い得る。得られた結果を表1に併記する。
なお、表1中の記号の意味は下記の通りである。
○;クラック発生なし
△;折り曲げ時に小クラック発生するも、復元すると痕跡が見えない程度のもの
×;復元してもクラックが残るか又は、剥離が発生するもの
(表面平滑性)
各例の導電性チューブにつき、上記折り曲げ後の塗膜表面を顕微鏡観察し、凹凸や光沢等の状態から、表面平滑性を評価した。得られた結果を表1に併記する。
なお、表1中の記号の意味は下記の通りである。
○;光沢があり、凹凸がない
△;光沢があるも、凹凸あり
×;光沢なし
[Performance evaluation]
A tube made of modified polyamide resin having an outer diameter of 0.8 mm and a length of 10 cm is immersed in the paste of each example, and the paste of each example is dip coated on the outer periphery of this tube, and then dried at 120 ° C. for 1 hour. The conductive tube (sample) of each example was used.
The modified polyamide constituting the resin tube is the same as that used in Example 1 or the like.
(Resistivity)
The resistance value between the both ends of the conductive tube of each said example was measured, and the specific resistance was computed from the weight and length of the coating film by a conductor paste. The obtained results are also shown in Table 1.
Further, after bending the central portion of the conductive tube after measuring the resistance value by about 90 ° with respect to the axial direction, the resistance value was measured again to examine the change in the specific resistance. It can be said that the smaller this change, the better the flexibility and flexibility. The obtained results are also shown in Table 1.
(Adhesion strength)
The central portion of the conductive tube of each example was bent about 180 ° with respect to the axial direction, and the adhesion strength of the coating film was visually observed. If it is difficult to generate cracks in this performance evaluation, it can be said that the flexibility of the coating film is good and the workability of the conductive tube itself is also good. The obtained results are also shown in Table 1.
In addition, the meaning of the symbol in Table 1 is as follows.
○: No cracks Δ: Small cracks are generated when bent, but no marks are visible after restoration ×: Cracks remain or peeling occurs even after restoration (surface smoothness)
About the conductive tube of each example, the coating film surface after the said bending was observed with the microscope, and surface smoothness was evaluated from states, such as an unevenness | corrugation and glossiness. The obtained results are also shown in Table 1.
The meanings of symbols in Table 1 are as follows.
○: Glossy, no irregularity △: Glossy, but irregularity ×: No glossiness

Figure 2005263943
Figure 2005263943

表1の結果より、変性ポリアミドの配合によって基本的な密着強度が確保され、剥離などは発生しないが、屈曲後の抵抗値変化・表面平滑性が若干不十分となる(実施例1〜4)。これに対し、エチルセルロースを配合すると、屈曲後の抵抗値変化・表面平滑性が改善されることが分かる(実施例9〜18)。
また、エチルセルロースの配合だけでは、密着強度が不十分になり易いことも分かる(実施例5〜8)。
From the results of Table 1, the basic adhesion strength is ensured by the blending of the modified polyamide and no peeling or the like occurs, but the resistance value change and the surface smoothness after bending become slightly insufficient (Examples 1 to 4). . On the other hand, when ethyl cellulose is mix | blended, it turns out that the resistance value change and surface smoothness after bending are improved (Examples 9-18).
Moreover, it turns out that adhesion | attachment intensity | strength tends to become inadequate only by mixing | blending ethylcellulose (Examples 5-8).

Claims (10)

樹脂製基材に導体部位を形成するのに用いられる導体組成物であって、導電性材料粉末と、上記樹脂製基材の構成樹脂と同種の樹脂及び/又はセルロース系樹脂と、溶剤とを含有して成ることを特徴とする導体組成物。   A conductive composition used for forming a conductor part on a resin base material, comprising a conductive material powder, a resin of the same type as the constituent resin of the resin base material and / or a cellulose resin, and a solvent. A conductor composition comprising the conductor composition. 上記導電性材料粉末が、金、銀、銅及びカーボンから成る群より選ばれた少なくとも1種の材料の粉末であることを特徴とする請求項1に記載の導体組成物。   2. The conductor composition according to claim 1, wherein the conductive material powder is a powder of at least one material selected from the group consisting of gold, silver, copper and carbon. 上記樹脂がポリアミド系樹脂であることを特徴とする請求項1又は2に記載の導体組成物。   The conductor composition according to claim 1, wherein the resin is a polyamide-based resin. 上記セルロース系樹脂がエチルセルロースであることを特徴とする請求項1〜3のいずれか1つの項に記載の導体組成物。   The conductor composition according to any one of claims 1 to 3, wherein the cellulose resin is ethyl cellulose. 上記導電性材料粉末が金で、上記樹脂がポリアミド系樹脂であり、金100重量部に対してポリアミド系樹脂を2〜12重量部配合して成ることを特徴とする請求項1〜3のいずれか1つの項に記載の導体組成物。   The conductive material powder is gold, the resin is a polyamide resin, and 2 to 12 parts by weight of a polyamide resin is blended with 100 parts by weight of gold. The conductor composition as described in one term. 上記セルロース系樹脂がエチルセルロースであり、0.5〜2重量部のエチルセルロースを配合して成ることを特徴とする請求項5に記載の導体組成物。   6. The conductor composition according to claim 5, wherein the cellulosic resin is ethyl cellulose and is blended with 0.5 to 2 parts by weight of ethyl cellulose. 請求項1〜6のいずれか1つの項に記載の導体組成物に起因する導体部位を、樹脂製基材の全部又は一部の領域に配置して成ることを特徴とする導電性物品。   A conductive article comprising a conductor portion resulting from the conductor composition according to any one of claims 1 to 6 arranged in the whole or a part of a resin base material. 上記樹脂製基材の形状が、チューブ状又はフィルム状であることを特徴とする請求項7に記載の導電性物品。   The conductive article according to claim 7, wherein the resin base material has a tube shape or a film shape. 上記樹脂製基材がチューブ状をなし、上記導体部位が、このチューブ状樹脂製基材の周方向に所定間隔で配置されるとともに、その長手方向に延在していることを特徴とする請求項8に記載の導電性物品。   The resin base material has a tubular shape, and the conductor portions are arranged at predetermined intervals in the circumferential direction of the tubular resin base material and extend in the longitudinal direction thereof. Item 9. A conductive article according to Item 8. 上記導電性基材がフィルム状をなし、上記導体部位がスクリーン印刷法によってこのフィルム状導電性基材の表面上に所望パターンで形成されていることを特徴とする請求項8に記載の導電性物品。   The conductive material according to claim 8, wherein the conductive substrate is formed in a film shape, and the conductor portion is formed in a desired pattern on the surface of the film-shaped conductive substrate by a screen printing method. Goods.
JP2004077451A 2004-03-18 2004-03-18 Conductor composition and conductive article Pending JP2005263943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077451A JP2005263943A (en) 2004-03-18 2004-03-18 Conductor composition and conductive article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077451A JP2005263943A (en) 2004-03-18 2004-03-18 Conductor composition and conductive article

Publications (1)

Publication Number Publication Date
JP2005263943A true JP2005263943A (en) 2005-09-29

Family

ID=35088820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077451A Pending JP2005263943A (en) 2004-03-18 2004-03-18 Conductor composition and conductive article

Country Status (1)

Country Link
JP (1) JP2005263943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907305B1 (en) * 2015-09-10 2016-04-26 東洋インキScホールディングス株式会社 Conductive paste for laser processing
WO2023145702A1 (en) * 2022-01-27 2023-08-03 田中貴金属工業株式会社 Gold paste suitable for dip coating and dip coating method using said gold paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907305B1 (en) * 2015-09-10 2016-04-26 東洋インキScホールディングス株式会社 Conductive paste for laser processing
JP2017054726A (en) * 2015-09-10 2017-03-16 東洋インキScホールディングス株式会社 Conductive paste for laser processing
WO2023145702A1 (en) * 2022-01-27 2023-08-03 田中貴金属工業株式会社 Gold paste suitable for dip coating and dip coating method using said gold paste

Similar Documents

Publication Publication Date Title
Williams et al. Silver nanowire inks for direct-write electronic tattoo applications
JP6901549B2 (en) Copper ink and conductive solderable copper traces made from it
JP6574746B2 (en) Conductive paste and wiring board using the same
JP2016527665A (en) Photosintering of polymer thick film copper conductor composition
JPWO2006126614A1 (en) Pasty silver composition, its production method, solid silver production method, solid silver, adhesion method and circuit board production method
US20150175817A1 (en) Thermosetting conductive paste
US11479686B2 (en) Conductive composition and wiring board using the same
WO2015050252A1 (en) Conductive paste
JP2009170277A (en) Conductive paste
JP6277751B2 (en) Copper particle dispersion paste and method for producing conductive substrate
JP2007051272A (en) Heat-resistant conductive adhesive
JP2005263943A (en) Conductor composition and conductive article
JP2013149618A (en) Polymer thick film solder alloy conductor composition
JP5272290B2 (en) Method for producing substrate with conductive coating
JP2013168375A (en) Dendrite-like copper powder
JP2005200604A (en) Particulate silver compound and use of the same
JP2010090264A (en) Functional electroconductive coating and method for production of printed circuit board using the same
JP2010165594A (en) Conductive paste and manufacturing method thereof, and circuit wiring using the same and manufacturing method thereof
JP6737873B2 (en) Photo-sintering of polymer thick film copper conductor composition
JP2009070650A (en) Functional conductive coating, its manufacturing method, and printed wiring board
JP2012102178A (en) Conductive composition
EP3863385A1 (en) Printed circuit board and method of manufacturing printed circuit board
JP2007116181A (en) Circuit board
TW201120162A (en) Polymer thick film silver electrode composition for use as a plating link
JP2006310022A (en) Electrically conductive paste, and flexible printed wiring board obtained using the same