JP2005263867A - Roast dextrin with high content of dietary fiber and its preparation method - Google Patents

Roast dextrin with high content of dietary fiber and its preparation method Download PDF

Info

Publication number
JP2005263867A
JP2005263867A JP2004075032A JP2004075032A JP2005263867A JP 2005263867 A JP2005263867 A JP 2005263867A JP 2004075032 A JP2004075032 A JP 2004075032A JP 2004075032 A JP2004075032 A JP 2004075032A JP 2005263867 A JP2005263867 A JP 2005263867A
Authority
JP
Japan
Prior art keywords
dietary fiber
starch
dextrin
roasted dextrin
fiber content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004075032A
Other languages
Japanese (ja)
Inventor
Naoki Oka
直樹 岡
Koji Kato
孝治 加藤
Hiroshi Sada
洋 佐田
Reiichiro Sakamoto
禮一郎 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Cornstarch Co Ltd
Original Assignee
Oji Cornstarch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Cornstarch Co Ltd filed Critical Oji Cornstarch Co Ltd
Priority to JP2004075032A priority Critical patent/JP2005263867A/en
Publication of JP2005263867A publication Critical patent/JP2005263867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roast dextrin which has a dietary fiber content of ≥55%, preferably ≥60% and a whiteness of ≥60%. <P>SOLUTION: The roast dextrin having a dietary fiber content of ≥55% and a whiteness of ≥60% is obtained through heat-treatment of starch. The preparation method of the roast dextrin comprises a step wherein the starch is treated at 130-170°C in the presence of an acid and subsequently cooled to ≤120°C within 30 min. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、食物繊維を55%以上含む食物繊維高含有焙焼デキストリン及びその製造方法に関する。   The present invention relates to a dietary fiber-rich roasted dextrin containing 55% or more dietary fiber and a method for producing the same.

焙焼デキストリンは澱粉を酸の存在下又は非存在下において、水分1〜5%の低水分下で加熱処理して得られるものであり、人間の消化酵素で分解されない難消化性の食物繊維を含むことが知られている。焙焼デキストリンの製造方法の従来技術としては、非特許文献1に焙焼デキストリンの最新の総説が記載されている。一般に澱粉の加熱条件は、酸を添加して79〜121℃の比較的低温領域で3〜8時間処理して得られるものが白色デキストリンと呼ばれている。同様に酸を添加して150〜220℃の高温度領域で6〜18時間加熱処理されたものが黄色デキストリンと言われている。更に、酸を添加しないで135〜218℃の高温領域で10〜20時間以上加熱されて得られるものがブリティッシュガムと言われている。   Roasted dextrin is obtained by heat-treating starch in the presence or absence of acid in a low water content of 1 to 5% water, and it contains indigestible dietary fiber that is not degraded by human digestive enzymes. It is known to contain. As the prior art of the production method of roasted dextrin, Non-Patent Document 1 describes the latest review of roasted dextrin. In general, starch is heated under a relatively low temperature range of 79 to 121 ° C. for 3 to 8 hours by adding an acid and is called white dextrin. Similarly, yellow dextrin is said to be heat-treated for 6 to 18 hours in a high temperature region of 150 to 220 ° C. with addition of an acid. Furthermore, what is obtained by heating in a high temperature region of 135 to 218 ° C. for 10 to 20 hours without adding an acid is said to be British gum.

このようにして得られる焙焼デキストリンは周知の通り、高温処理により澱粉分子は一度加水分解されて低分子化されるが、更に加熱が進むと、一旦低分子化したぶどう糖やオリゴ糖が再重合を起こし、水溶性になると共に複雑な分子構造を有した難消化性の食物繊維分に相当する画分を多く含んだ糖質に変化する。   As is well known, the roasted dextrin thus obtained is once hydrolyzed to reduce the molecular weight of starch molecules by high-temperature treatment, but once heated further, the low-molecular weight glucose and oligosaccharide are repolymerized. It becomes water-soluble and changes to a carbohydrate containing a lot of fractions corresponding to indigestible dietary fiber having a complicated molecular structure.

焙焼デキストリンをα−アミラーゼ、グルコアミラーゼにより加水分解すると、食物繊維に相当する部分は酵素分解されずに残存する。このように澱粉から製造される焙焼デキストリンで酵素分解を受けない、即ち人間の消化酵素で分解されない多糖部分を難消化性デキストリンと称している。したがって、焙焼デキストリンの食物繊維が多ければ多い程、より多くの難消化性デキストリンが生成することになる。   When the roasted dextrin is hydrolyzed with α-amylase or glucoamylase, the portion corresponding to dietary fiber remains without being enzymatically decomposed. Thus, the polysaccharide part which does not receive enzymatic degradation with the baking dextrin manufactured from starch, ie, is not decomposed | disassembled by a human digestive enzyme, is called indigestible dextrin. Therefore, the more dietary fiber of roasted dextrin, the more indigestible dextrin is produced.

近年、日本においても生活水準の向上に伴い、和食中心から欧米の食文化を取り入れた食生活に変化してきた。一方、平均寿命が大きく伸びて、急速な高齢化現象が起きており、疾病構造が変化しつつある。糖尿病などの生活習慣病が著しく増加しており、人々の健康志向が益々大きくなってきている。このように健康への関心が高まる中で、生体調節機能を有する食品素材の一つとして、難消化性デキストリンが注目されている。難消化性デキストリン等の食物繊維素材は便秘の改善、糖尿病の予防、大腸癌や結腸癌の予防、コレステロール低下作用、血圧降下作用、血糖値増加の抑制、高脂血症の抑制などの生体調節機能を有することが見出されており、食品や飼料の機能性を高める素材として注目を集めている。   In recent years, with the improvement of living standards in Japan, the eating habits have changed from Japanese food center to Western food culture. On the other hand, the average lifespan has greatly increased, and a rapid aging phenomenon has occurred, and the disease structure is changing. Lifestyle-related diseases such as diabetes have increased remarkably, and people's health consciousness has been increasing. In this way, with increasing interest in health, indigestible dextrin has attracted attention as one of food materials having a bioregulatory function. Dietary fiber materials such as indigestible dextrin improve constipation, prevent diabetes, prevent colon cancer and colon cancer, lower cholesterol, lower blood pressure, suppress blood glucose increase, and control hyperlipidemia It has been found to have a function, and has attracted attention as a material that enhances the functionality of food and feed.

ところで、従来の焙焼デキストリンの食物繊維含有率はいずれも55%未満と低く、焙焼デキストリンから得られる難消化性デキストリンの収率も55%未満とならざるを得ない。55%以上の食物繊維含有率を得ようとすれば加熱処理条件を強化することになる。しかしながら、加熱処理条件を強化すると、食物繊維含有率は増加するものの、焙焼デキストリンの着色物質が増加する。焙焼デキストリンから難消化性デキストリンを得るには、酵素分解、濾過・脱色・脱塩、ぶどう糖分離の精製工程を経る。着色物質の多い難消化性デキストリンは前記の精製工程が著しく困難となり、製造コストの上昇、排水負荷の増加の問題が生じる。したがって、精製負荷が少なく、難消化性デキストリンの生産に適した焙焼デキストリンの製造法が期待されている。   By the way, the dietary fiber content of conventional roasted dextrin is low, less than 55%, and the yield of indigestible dextrin obtained from roasted dextrin must be less than 55%. If an attempt is made to obtain a dietary fiber content of 55% or more, the heat treatment conditions will be strengthened. However, when the heat treatment conditions are strengthened, although the dietary fiber content increases, the coloring matter of the roasted dextrin increases. In order to obtain indigestible dextrin from roasted dextrin, it undergoes purification steps of enzymatic decomposition, filtration / decolorization / desalting, and glucose separation. The indigestible dextrin having a large amount of coloring substances makes the above purification process extremely difficult, resulting in an increase in production cost and an increase in drainage load. Therefore, a method for producing a roasted dextrin is expected that has a small purification load and is suitable for producing an indigestible dextrin.

Tomasik, P. & Wiejak, S., Advance in Carbohydrate Chemistry, Vol.47, 279-343 (1990)Tomasik, P. & Wiejak, S., Advance in Carbohydrate Chemistry, Vol. 47, 279-343 (1990)

本発明の課題は、食物繊維含有率が55%以上、好ましくは60%以上であり、かつ白度が60%以上である焙焼デキストリンを提供することであり、精製負荷が少なく、より安価な難消化性デキストリンの製造に寄与することである。   An object of the present invention is to provide a roasted dextrin having a dietary fiber content of 55% or more, preferably 60% or more and a whiteness of 60% or more, and has a small purification load and is less expensive. It contributes to the production of indigestible dextrin.

本発明は以下の発明を包含する。
(1)100kg以上の澱粉を加熱処理する工業的規模における焙焼デキストリンの製造において、食物繊維含有率が55%以上であり、かつ白度が60%以上である焙焼デキストリンの製造方法。
(2)食物繊維含有率が60%以上である前記(1)に記載の焙焼デキストリンの製造方法。
(3)澱粉を酸の存在下、130〜170℃で処理した後、30分以内に120℃以下に冷却することを特徴とする前記(1)又は(2)に記載の焙焼デキストリンの製造方法。
(4)流動層加熱機を用いて加熱処理することを特徴とする前記(1)〜(3)のいずれかに記載の焙焼デキストリンの製造方法。
(5)前記(1)〜(4)のいずれかに記載の製造方法により得られ、食物繊維含有率が55%以上であり、かつ白度が60%以上である焙焼デキストリン。
(6)食物繊維含有率が60%以上である前記(5)に記載の焙焼デキストリン。
The present invention includes the following inventions.
(1) A method for producing a roasted dextrin having a dietary fiber content of 55% or more and a whiteness of 60% or more in the production of a roasted dextrin on an industrial scale in which 100 kg or more of starch is heat-treated.
(2) The method for producing a roasted dextrin according to (1), wherein the dietary fiber content is 60% or more.
(3) Production of roasted dextrin according to (1) or (2) above, wherein the starch is treated at 130-170 ° C in the presence of an acid and then cooled to 120 ° C or lower within 30 minutes. Method.
(4) The method for producing a roasted dextrin according to any one of (1) to (3), wherein heat treatment is performed using a fluidized bed heater.
(5) A roasted dextrin obtained by the production method according to any one of (1) to (4), having a dietary fiber content of 55% or more and a whiteness of 60% or more.
(6) The roasted dextrin according to (5), wherein the dietary fiber content is 60% or more.

本発明によれば、食物繊維含有率が55%以上、好ましくは60%以上であり、かつ白度が60%以上である焙焼デキストリンを提供することができる。本発明の焙焼デキストリンを原料とすれば、難消化性デキストリンの生産性が高められ、精製負荷が少なく、より安価な難消化性デキストリンの生産につながる。   According to the present invention, it is possible to provide a roasted dextrin having a dietary fiber content of 55% or more, preferably 60% or more and a whiteness of 60% or more. When the roasted dextrin of the present invention is used as a raw material, the productivity of indigestible dextrin is increased, and the purification load is reduced, leading to the production of less expensive indigestible dextrin.

以下、本発明を詳細に説明する。
本発明において原料として使用される澱粉は、特に限定されず、例えば馬鈴薯澱粉、コーンスターチ、ハイアミロース・コーンスターチ、ワキシー・コーンスターチ、甘藷澱粉、タピオカ澱粉、小麦澱粉、米澱粉、サゴ澱粉等が使用され、更にはこれらを物理的又は化学的に処理した澱粉も使用できる。
Hereinafter, the present invention will be described in detail.
Starch used as a raw material in the present invention is not particularly limited, for example, potato starch, corn starch, high amylose corn starch, waxy corn starch, sweet potato starch, tapioca starch, wheat starch, rice starch, sago starch, etc. Furthermore, the starch which processed these physically or chemically can also be used.

使用される酸としては、通常塩酸、硫酸、硝酸、リン酸、亜硫酸などの鉱酸が用いられ、好ましくは塩酸が用いられる。塩酸の添加率は澱粉に対し、100〜3000ppmが好ましい。添加方法としては、均一に酸が分散して添加・撹拌される方法を選択すべきである。塩酸は0.1〜10重量%の水溶液として、より小さい水滴で散布又は噴霧により添加され、必要に応じてミキサー等により混合する必要がある。次いで、80〜100℃で予備乾燥を行い、澱粉の水分が3〜7%となるまで乾燥してから加熱処理を行うことが好ましい。   As the acid used, mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and sulfurous acid are usually used, and hydrochloric acid is preferably used. The addition rate of hydrochloric acid is preferably 100 to 3000 ppm with respect to starch. As an addition method, a method in which an acid is uniformly dispersed and added and stirred should be selected. Hydrochloric acid is added as a 0.1 to 10% by weight aqueous solution by spraying or spraying with smaller water droplets, and needs to be mixed with a mixer or the like as necessary. Next, it is preferable to perform pre-drying at 80 to 100 ° C. and dry the starch until the water content becomes 3 to 7%, and then perform heat treatment.

加熱条件は酸の種類や添加量によって大きく異なるため、それぞれの添加条件によって最適な条件が設定され得る。例えば塩酸を用いた場合、130〜170℃、好ましくは140〜160℃で焙焼を行う。通常昇温に10〜60分を要し、昇温した後、通常10〜60分、好ましくは20〜40分と短時間で加熱することにより、食物繊維含有率が55%以上の焙焼デキストリンが得られる。   Since the heating conditions vary greatly depending on the type of acid and the amount added, optimum conditions can be set depending on the respective addition conditions. For example, when hydrochloric acid is used, roasting is performed at 130 to 170 ° C, preferably 140 to 160 ° C. Usually, it takes 10 to 60 minutes for temperature rise, and after heating, it is heated for 10 to 60 minutes, preferably 20 to 40 minutes in a short time, and the roasted dextrin having a dietary fiber content of 55% or more Is obtained.

100g程度の澱粉を焙焼する実験室の小型加熱装置を用いて焙焼すると、白度を60%以上に維持しながら食物繊維含有率を55%以上に高くすることは比較的容易であった。しかしながら、100kg以上の澱粉を一度に加熱処理する工業的な焙焼デキストリンの生産においては、食物繊維含有率を55%以上に高くすることはできても、白度を60%以上に維持することは、極めて困難であることが判明した。   When roasted using a small laboratory heating apparatus that roasts about 100 g of starch, it was relatively easy to increase the dietary fiber content to 55% or higher while maintaining the whiteness at 60% or higher. . However, in the production of industrial roasted dextrin that heat-treats starch of 100 kg or more at once, even if the dietary fiber content can be increased to 55% or higher, the whiteness should be maintained at 60% or higher. Proved to be extremely difficult.

本発明の目的は、食物繊維含有率が55%以上、好ましくは60%以上であり、かつ白度が60%以上である焙焼デキストリンの工業規模における製造法を提供することにある。前述のように、工業的な生産においては加熱条件だけでは、食物繊維含有率を55%以上に高められても、白度を60%以上に維持することは困難である。そこで、加熱装置の選択が問題となる。例えば、従来のリボン型加熱混合装置のような間接加熱型の装置では、加熱媒体面の温度は必要な澱粉の加熱温度より高温にしなければ、澱粉は設定の温度に達しない。そのため、媒体面付近の澱粉は設定以上の高温にさらされ、装置内での澱粉の品温は不均一状態になる。また、水分の除去効率が悪いため、装置内に水蒸気がこもり、水分の多い条件で加熱される。水分の多い条件は澱粉の加水分解には好都合な条件であるが、分解物の再重合には不都合な条件である。したがって、食物繊維含量の増加に伴い、焙焼デキストリンの着色が激しくなるという欠点がある。   The objective of this invention is providing the manufacturing method in the industrial scale of the dietary fiber content rate of 55% or more, Preferably it is 60% or more, and whiteness is 60% or more. As described above, in industrial production, even if the dietary fiber content can be increased to 55% or higher only by heating conditions, it is difficult to maintain whiteness at 60% or higher. Therefore, the selection of the heating device becomes a problem. For example, in an indirect heating type apparatus such as a conventional ribbon type heating and mixing apparatus, the starch does not reach the set temperature unless the temperature of the heating medium surface is higher than the required heating temperature of the starch. Therefore, the starch in the vicinity of the medium surface is exposed to a higher temperature than set, and the starch temperature in the apparatus becomes non-uniform. Moreover, since the moisture removal efficiency is poor, water vapor is trapped in the apparatus, and the apparatus is heated under conditions with a lot of moisture. Conditions with high moisture content are favorable conditions for starch hydrolysis, but are unfavorable conditions for repolymerization of the degradation products. Therefore, there is a drawback that the coloring of the roasted dextrin becomes intense with an increase in the dietary fiber content.

焙焼方法について種々検討を行った結果、本発明者らは加熱装置として流動層加熱機を用いることに着目した。本発明に用いる流動層加熱機は澱粉量に対し多量の熱風を加熱装置下部より送り込み、澱粉を均一に混合しつつ加熱、焙焼できる装置である。装置内では、熱風による加熱、混合のため、澱粉の品温は均一な温度で速やかに上昇し、低水分の状態にすることが可能である。   As a result of various studies on the roasting method, the present inventors have focused on using a fluidized bed heater as a heating device. The fluidized bed heater used in the present invention is an apparatus that can feed and heat a large amount of hot air from the lower part of the heating apparatus to heat and roast the starch while uniformly mixing the starch. In the apparatus, because of heating and mixing with hot air, the temperature of the starch quickly rises to a uniform temperature and can be in a low moisture state.

更には、酸として塩酸等の揮発性の酸を用いた場合、流動層加熱機では酸が流失するが、排気ガスを再循環することで触媒となる酸の流失を防ぎ、酸の使用量を低減できる利点がある。   Furthermore, when a volatile acid such as hydrochloric acid is used as the acid, the acid is lost in the fluidized bed heater, but the exhaust gas is recirculated to prevent the acid from being lost and reduce the amount of acid used. There is an advantage that can be reduced.

流動層加熱機としては、王子コーンスターチ(株)にて設計、建設されたものを使用した。この装置は熱風を装置下部より送り込み、加熱、混合を行うと同時に、排気を循環又は開放に切り替えることができる。仕込み量は澱粉として通常風乾500〜750kgであり、15〜25分で澱粉の品温が150℃に達する。   As the fluidized bed heater, the one designed and constructed by Oji Cornstarch Co., Ltd. was used. In this apparatus, hot air is sent from the lower part of the apparatus, heating and mixing are performed, and at the same time, the exhaust can be switched to circulation or open. The amount charged is usually 500 to 750 kg of air-dried starch, and the starch temperature reaches 150 ° C. in 15 to 25 minutes.

加熱条件は酸の種類や添加量によって大きく異なるため、それぞれの添加条件によって最適な条件が設定され得る。例えば塩酸を用いた場合、その濃度を0.1〜10重量%、好ましくは0.5〜2重量%、より好ましくは1重量%程度として、原料澱粉に対し3〜10重量%添加する。1段処理加熱の場合、昇温に15〜30分を要して、通常品温が130〜170℃、好ましくは140〜160℃となるまで加熱し、通常10〜60分焙焼する。加熱処理後、通常5〜30分、好ましくは10〜20分で速やかに品温を低下させることで、白度が60%以上と着色が少なく、食物繊維含有率が55%以上、好ましくは60%以上の焙焼デキストリンが得られた。   Since the heating conditions vary greatly depending on the type of acid and the amount added, optimum conditions can be set depending on the respective addition conditions. For example, when hydrochloric acid is used, its concentration is 0.1 to 10% by weight, preferably 0.5 to 2% by weight, more preferably about 1% by weight, and 3 to 10% by weight is added to the raw starch. In the case of the one-step treatment heating, it takes 15 to 30 minutes to raise the temperature, and is heated until the normal product temperature is 130 to 170 ° C., preferably 140 to 160 ° C., and usually roasted for 10 to 60 minutes. After the heat treatment, the product temperature is usually lowered in 5 to 30 minutes, preferably 10 to 20 minutes, so that the whiteness is 60% or more and coloring is low, and the dietary fiber content is 55% or more, preferably 60 % Or more of roasted dextrin was obtained.

本発明においては、その加熱条件を2段処理化することにより更に効率よく所定の焙焼デキストリンを得ることができる。1段目の低温処理では加水分解を進め、2段目の高温処理で重合反応を促進させる方法である。   In the present invention, a predetermined roasted dextrin can be obtained more efficiently by subjecting the heating condition to a two-stage treatment. In the first stage low temperature treatment, hydrolysis is advanced, and in the second stage high temperature treatment, the polymerization reaction is promoted.

即ち、加熱処理工程での1段目として80〜110℃での低温領域において、澱粉の酸加水分解を進め再重合に関与する低分子糖をより多く生成させる。次に2段目として130〜170℃での高温領域で、加熱による再重合を生起させる。このようにして白度が60%以上と着色が少なく、かつ食物繊維含有率が55%以上、好ましくは60%以上である焙焼デキストリンを製造することができる。   That is, in the low temperature region at 80 to 110 ° C. as the first step in the heat treatment step, starch is hydrolyzed to generate more low molecular sugars involved in repolymerization. Next, repolymerization by heating is caused in the high temperature region at 130 to 170 ° C. as the second stage. In this way, it is possible to produce a roasted dextrin having a whiteness of 60% or more and little coloring, and a dietary fiber content of 55% or more, preferably 60% or more.

更に、高温加熱領域では加熱時間の経過に伴い、焙焼デキストリンの着色が増加するため、所定の加熱処理時間終了後は、速やかに品温を低下させることが望まれる。冷却に要する時間は短ければ短い方が着色の増加を防ぐことになるが、実機では装置上の制約が大きい。加熱終了後、品温を30分以内、より好ましくは10〜20分で、120℃以下に冷却することにより着色の増加を防ぐことを見出した。その方法は、流動層加熱機で熱風の代わりに冷風を送風すると同時に排気循環ラインを開放に切り替えることで、速やかに120℃以下に品温を下げることができる。また、空送配管移送にて品温を下げることも可能であり、これらの方法には限られるものではない。   Furthermore, since the coloring of the roasted dextrin increases with the elapse of the heating time in the high-temperature heating region, it is desirable to quickly reduce the product temperature after the end of the predetermined heat treatment time. The shorter the time required for cooling, the more the coloring will be prevented. However, in the actual machine, there are more restrictions on the apparatus. It was found that after heating, the product temperature was kept within 30 minutes, more preferably 10 to 20 minutes, and cooling to 120 ° C. or less prevented an increase in coloring. The method can quickly lower the product temperature to 120 ° C. or less by switching the exhaust circulation line to open at the same time as blowing cold air instead of hot air with a fluidized bed heater. Moreover, it is also possible to lower the product temperature by air pipe transfer, and these methods are not limited.

製造時に生成する着色物質は得られる焙焼デキストリンの白度と関連があり、白度が低いほど着色物質が多いことを意味する。以下の実施例では、着色の度合いを焙焼デキストリンの白度で表すこととした。   The colored substance produced at the time of production is related to the whiteness of the obtained roasted dextrin, and the lower the whiteness, the more colored substance. In the following examples, the degree of coloring was expressed by the whiteness of roasted dextrin.

本発明の製造方法により得られる焙焼デキストリンは、食物繊維含有率が55%以上、好ましくは60%以上であり、白度が60%以上である。本発明の製造方法により得られる焙焼デキストリンは、難消化性デキストリンの原料として有用である。   The roasted dextrin obtained by the production method of the present invention has a dietary fiber content of 55% or more, preferably 60% or more, and a whiteness of 60% or more. The roasted dextrin obtained by the production method of the present invention is useful as a raw material for indigestible dextrin.

以下、参考例、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また以下の参考例、実施例及び比較例において、(a)食物繊維含有率の測定、(b)白度の測定、(c)水分の測定は以下の方法で行った。   Hereinafter, although a reference example, an example, and a comparative example are given and the present invention is explained still more concretely, the present invention is not limited to these examples. Moreover, in the following reference examples, examples and comparative examples, (a) measurement of dietary fiber content, (b) measurement of whiteness, and (c) measurement of moisture were performed by the following methods.

(a)食物繊維含有率の測定
「難消化性成分の定量法」(澱粉科学、第37巻、第2号、107頁、平成2年)の改良法により測定した。
サンプル1gを精秤し、水50mlを加えpH6.0とした後、α−アミラーゼ(ターマミル120L,ノボ社製)0.1mlを添加し、95℃で30分反応させた。次に、冷却後、pH4.5に調整し、アミログルコシダーゼ(シグマ社製)0.1mlを添加し50℃で60分反応させた後、90℃まで加熱し反応を終了させた。反応終了液は、ろ過後、グルコースオキシダーゼ法(和光純薬社製測定キット「グルコースCII−テストワコー」使用)にて生成グルコース量を測定した。次の式より食物繊維含有率を求めた。
食物繊維含有率(%)=[1−(生成グルコース量×0.9)/サンプル採取量]
×100(%)
(b)白度の測定
白度は、ケット白度計(ケット科学製)にて測定した。
(c)水分の測定
水分は試料約5gを105℃で4時間乾燥し、乾燥前後の試料重量より水分を算出する常圧加熱乾燥法により測定した。
(A) Measurement of dietary fiber content The dietary fiber content was measured by the improved method of “Quantitative method for indigestible components” (Starch Science, Vol. 37, No. 2, page 107, 1990).
1 g of the sample was precisely weighed and 50 ml of water was added to adjust the pH to 6.0, and then 0.1 ml of α-amylase (Termamyl 120L, Novo) was added and reacted at 95 ° C. for 30 minutes. Next, after cooling, the pH was adjusted to 4.5, 0.1 ml of amyloglucosidase (Sigma) was added and reacted at 50 ° C. for 60 minutes, and then heated to 90 ° C. to complete the reaction. After the reaction was completed, the amount of glucose produced was measured by the glucose oxidase method (using a measurement kit “glucose CII-Test Wako” manufactured by Wako Pure Chemical Industries, Ltd.). The dietary fiber content was determined from the following formula.
Dietary fiber content (%) = [1− (Amount of produced glucose × 0.9) / Sample collection amount]
× 100 (%)
(B) Measurement of whiteness Whiteness was measured with a Kett whiteness meter (manufactured by Kett Science).
(C) Measurement of moisture The moisture was measured by a normal pressure heating drying method in which about 5 g of a sample was dried at 105 ° C for 4 hours, and the moisture was calculated from the sample weight before and after drying.

参考例1
コーンスターチ(王子コーンスターチ社製)100gに1%塩酸水溶液5mlを噴霧添加し、ヘンシェル型混合機にて20分均一に混ぜ、気流乾燥機で100℃水分5%に乾燥した。次いで、回転するガラス製なす型フラスコに外部から赤外線ヒーターで加熱する焙焼装置(王子コーンスターチ社製)を用いて、150℃で30分加熱反応させ焙焼デキストリンを得た。得られた焙焼デキストリンの食物繊維含有率は65%、白度は62%であった。
Reference example 1
To 100 g of cornstarch (manufactured by Oji Cornstarch), 5 ml of a 1% hydrochloric acid aqueous solution was added by spraying, and the mixture was uniformly mixed for 20 minutes with a Henschel mixer, and dried to 100 ° C. and 5% moisture with an air dryer. Next, using a roasting apparatus (manufactured by Oji Cornstarch Co., Ltd.) that heats the rotating glass eggplant flask with an infrared heater from the outside, the reaction was performed by heating at 150 ° C. for 30 minutes to obtain roasted dextrin. The obtained roasted dextrin had a dietary fiber content of 65% and a whiteness of 62%.

実施例1
コーンスターチ(王子コーンスターチ社製)750kgに1%塩酸水溶液75Lをフロージェットミキサーにて均一に添加混合し、これをフラッシュドライヤーによって80℃で水分5%となるように乾燥した。次いで、流動層加熱機(王子コーンスターチ社製)を用いて送風循環しながら18分で150℃まで昇温し、150℃で30分加熱反応させた。加熱反応終了後、送風を冷風に切り替えて、更に送風循環を排気に切り替えることにより、10分で120℃まで品温を下げ、焙焼デキストリンを得た。得られた焙焼デキストリンの食物繊維含有率は66%、白度は63%であった。
Example 1
To 750 kg of corn starch (manufactured by Oji Cornstarch), 75 L of 1% hydrochloric acid aqueous solution was uniformly added and mixed with a flow jet mixer, and this was dried with a flash dryer at 80 ° C. so that the water content became 5%. Subsequently, it heated up to 150 degreeC in 18 minutes, carrying out ventilation circulation using the fluidized bed heating machine (made by Oji Cornstarch), and was made to heat-react at 150 degreeC for 30 minutes. After completion of the heating reaction, the air temperature was switched to cold air, and the air circulation was switched to exhaust, whereby the product temperature was lowered to 120 ° C. in 10 minutes to obtain roasted dextrin. The obtained roasted dextrin had a dietary fiber content of 66% and a whiteness of 63%.

比較例1
実施例1と同条件にて、加熱機としてリボンミキサーを使用した以外は同条件で加熱反応を実施した。加熱反応後、自然冷却にて品温が120℃に下がるまで60分を要し、焙焼デキストリンを得た。その食物繊維含有率は48%、白度は60%であった。
Comparative Example 1
The heating reaction was carried out under the same conditions as in Example 1 except that a ribbon mixer was used as a heater. After the heating reaction, it took 60 minutes for the product temperature to drop to 120 ° C. by natural cooling to obtain roasted dextrin. Its dietary fiber content was 48% and whiteness was 60%.

参考例1、比較例1から明らかなように、100g程度の澱粉を焙焼する実験室の小型加熱装置を用いた焙焼では、白度を60%以上に維持しながら食物繊維含有率を55%以上に高くすることは比較的容易であるが、100kg以上の澱粉を一度に加熱処理する工業的な焙焼デキストリンの生産においては、食物繊維含有率を55%以上に高くすることはできても、白度を60%以上に維持することは、極めて困難であることを確認した。   As is clear from Reference Example 1 and Comparative Example 1, in the roasting using a small laboratory heating apparatus for roasting about 100 g of starch, the dietary fiber content is 55 while maintaining the whiteness at 60% or more. It is relatively easy to increase the content to over 50%, but in the production of industrial roasted dextrin in which 100 kg of starch is heat-treated at once, the dietary fiber content cannot be increased to over 55%. However, it was confirmed that it was extremely difficult to maintain the whiteness at 60% or more.

実施例2
コーンスターチ(王子コーンスターチ社製)750kgに0.5%塩酸水溶液45Lをフロージェットミキサーにて均一に添加混合し、これをフラッシュドライヤーによって80℃で水分5%となるように乾燥した。次いで、流動層加熱機(王子コーンスターチ社製)を用いて送風循環しながら18分で155℃まで昇温し、155℃で40分加熱反応させた。加熱反応後、送風を冷風に切り替えて、更に送風循環を排気に切り替えることにより、10分で120℃まで品温を下げ、焙焼デキストリンを得た。得られた焙焼デキストリンの食物繊維含有率は55%、白度は75%であった。
Example 2
To 750 kg of corn starch (manufactured by Oji Corn Starch Co., Ltd.), 45 L of a 0.5% hydrochloric acid aqueous solution was uniformly added and mixed with a flow jet mixer, and this was dried with a flash dryer at 80 ° C. to a moisture content of 5%. Subsequently, it heated up to 155 degreeC in 18 minutes, and made it heat-react at 155 degreeC for 40 minutes, carrying out ventilation circulation using the fluidized-bed heating machine (made by Oji Cornstarch). After the heating reaction, the air temperature was switched to cold air, and the air circulation was switched to exhaust, whereby the product temperature was lowered to 120 ° C. in 10 minutes to obtain roasted dextrin. The obtained roasted dextrin had a dietary fiber content of 55% and a whiteness of 75%.

実施例3
タピオカ澱粉500kgに1%塩酸水溶液30Lをフロージェットミキサーにて均一に添加混合し、これをフラッシュドライヤーによって80℃で水分5%となるように乾燥した。次いで、流動層加熱機(王子コーンスターチ社製)を用いて送風循環しながら18分で150℃まで昇温し、150℃で40分加熱反応させた。加熱反応後、送風を冷風に切り替えて、更に送風循環を排気に切り替えることにより、10分で120℃まで品温を下げ、焙焼デキストリンを得た。得られた焙焼デキストリンの食物繊維含有率は56%、白度は67%であった。
Example 3
To 500 kg of tapioca starch, 30 L of 1% hydrochloric acid aqueous solution was uniformly added and mixed with a flow jet mixer, and this was dried with a flash dryer at 80 ° C. so as to have a moisture content of 5%. Subsequently, it heated up to 150 degreeC in 18 minutes, carrying out ventilation circulation using the fluidized bed heating machine (made by Oji Cornstarch), and was made to heat-react at 150 degreeC for 40 minutes. After the heating reaction, the air temperature was switched to cold air, and the air circulation was switched to exhaust, whereby the product temperature was lowered to 120 ° C. in 10 minutes to obtain roasted dextrin. The obtained roasted dextrin had a dietary fiber content of 56% and a whiteness of 67%.

Claims (6)

100kg以上の澱粉を加熱処理する工業的規模における焙焼デキストリンの製造において、食物繊維含有率が55%以上であり、かつ白度が60%以上である焙焼デキストリンの製造方法。   A method for producing a roasted dextrin having a dietary fiber content of 55% or more and a whiteness of 60% or more in the production of roasted dextrin on an industrial scale in which starch of 100 kg or more is heat-treated. 食物繊維含有率が60%以上である請求項1記載の焙焼デキストリンの製造方法。   The method for producing roasted dextrin according to claim 1, wherein the dietary fiber content is 60% or more. 澱粉を酸の存在下、130〜170℃で処理した後、30分以内に120℃以下に冷却することを特徴とする請求項1又は2記載の焙焼デキストリンの製造方法。   The method for producing roasted dextrin according to claim 1 or 2, wherein the starch is treated at 130 to 170 ° C in the presence of an acid and then cooled to 120 ° C or lower within 30 minutes. 流動層加熱機を用いて加熱処理することを特徴とする請求項1〜3のいずれか1項に記載の焙焼デキストリンの製造方法。   The method for producing a roasted dextrin according to any one of claims 1 to 3, wherein the heat treatment is performed using a fluidized bed heater. 請求項1〜4のいずれか1項に記載の製造方法により得られ、食物繊維含有率が55%以上であり、かつ白度が60%以上である焙焼デキストリン。   A roasted dextrin obtained by the production method according to any one of claims 1 to 4, having a dietary fiber content of 55% or more and a whiteness of 60% or more. 食物繊維含有率が60%以上である請求項5記載の焙焼デキストリン。   The roasted dextrin according to claim 5, wherein the dietary fiber content is 60% or more.
JP2004075032A 2004-03-16 2004-03-16 Roast dextrin with high content of dietary fiber and its preparation method Pending JP2005263867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075032A JP2005263867A (en) 2004-03-16 2004-03-16 Roast dextrin with high content of dietary fiber and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075032A JP2005263867A (en) 2004-03-16 2004-03-16 Roast dextrin with high content of dietary fiber and its preparation method

Publications (1)

Publication Number Publication Date
JP2005263867A true JP2005263867A (en) 2005-09-29

Family

ID=35088750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075032A Pending JP2005263867A (en) 2004-03-16 2004-03-16 Roast dextrin with high content of dietary fiber and its preparation method

Country Status (1)

Country Link
JP (1) JP2005263867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524439A (en) * 2006-01-25 2009-07-02 テイト アンド ライル イングレディエンツ アメリカス インコーポレイテッド A food product comprising a slow or digestible carbohydrate composition
US9868969B2 (en) 2006-01-25 2018-01-16 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
EP3128860B1 (en) 2014-03-26 2019-08-07 Cargill, Incorporated Carbohydrate composition and process for making a carbohydrate composition
US10479840B2 (en) 2016-01-27 2019-11-19 Shandong Bailong Chuangyuan Bio-Tech Co., Ltd Resistant dextrin and method for preparing the same
US11540549B2 (en) 2019-11-28 2023-01-03 Tate & Lyle Solutions Usa Llc High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274789A (en) * 1939-07-27 1942-03-03 Corn Prod Refining Co Production of dextrine
US2845368A (en) * 1954-05-27 1958-07-29 Staley Mfg Co A E Dextrinization process
JPS5177579A (en) * 1974-11-25 1976-07-05 Cpc International Inc RYUDOKAHO
JPS5581739A (en) * 1978-12-15 1980-06-20 Cpc International Inc Device for performing fluidizing operation and its fluidizing method
JPH03137102A (en) * 1989-10-20 1991-06-11 Nippon Koonsutaac Kk Baked dextrin and production thereof
JPH05148301A (en) * 1991-09-30 1993-06-15 Matsutani Kagaku Kogyo Kk Difficultly digestible dextrin
JPH05255402A (en) * 1991-10-17 1993-10-05 Matsutani Chem Ind Ltd Slightly digestible dextrin
JPH0632802A (en) * 1992-07-10 1994-02-08 Matsutani Chem Ind Ltd Hardly digestible dextrin
JP2000026502A (en) * 1998-04-27 2000-01-25 Natl Starch & Chem Investment Holding Corp Highly soluble, wettable and viscous roasted dextrin having stability in solution, its production and use

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274789A (en) * 1939-07-27 1942-03-03 Corn Prod Refining Co Production of dextrine
US2845368A (en) * 1954-05-27 1958-07-29 Staley Mfg Co A E Dextrinization process
JPS5177579A (en) * 1974-11-25 1976-07-05 Cpc International Inc RYUDOKAHO
JPS5581739A (en) * 1978-12-15 1980-06-20 Cpc International Inc Device for performing fluidizing operation and its fluidizing method
JPH03137102A (en) * 1989-10-20 1991-06-11 Nippon Koonsutaac Kk Baked dextrin and production thereof
JPH05148301A (en) * 1991-09-30 1993-06-15 Matsutani Kagaku Kogyo Kk Difficultly digestible dextrin
JPH05255402A (en) * 1991-10-17 1993-10-05 Matsutani Chem Ind Ltd Slightly digestible dextrin
JPH0632802A (en) * 1992-07-10 1994-02-08 Matsutani Chem Ind Ltd Hardly digestible dextrin
JP2000026502A (en) * 1998-04-27 2000-01-25 Natl Starch & Chem Investment Holding Corp Highly soluble, wettable and viscous roasted dextrin having stability in solution, its production and use

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524439A (en) * 2006-01-25 2009-07-02 テイト アンド ライル イングレディエンツ アメリカス インコーポレイテッド A food product comprising a slow or digestible carbohydrate composition
JP2013066476A (en) * 2006-01-25 2013-04-18 Tate & Lyle Ingredients Americas Llc Food product comprising slowly digestible or digestion resistant carbohydrate composition
JP2015057065A (en) * 2006-01-25 2015-03-26 テイト アンド ライル イングレディエンツ アメリカス リミテッド ライアビリティ カンパニーTate & Lyle Ingredients Americas Llc Food products comprising slowly digestible or digestion resistant carbohydrate composition
US9868969B2 (en) 2006-01-25 2018-01-16 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US9957537B2 (en) 2006-01-25 2018-05-01 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US9963726B2 (en) 2006-01-25 2018-05-08 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US10344308B2 (en) 2006-01-25 2019-07-09 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
JP2019213543A (en) * 2006-01-25 2019-12-19 テイト アンド ライル イングレディエンツ アメリカス リミテッド ライアビリティ カンパニーTate & Lyle Ingredients Americas Llc Food products comprising slowly digestible or digestion resistant carbohydrate composition
EP3128860B1 (en) 2014-03-26 2019-08-07 Cargill, Incorporated Carbohydrate composition and process for making a carbohydrate composition
US10844139B2 (en) 2014-03-26 2020-11-24 Cargill, Incorporated Carbohydrate composition and process for making a carbohydrate composition
US10479840B2 (en) 2016-01-27 2019-11-19 Shandong Bailong Chuangyuan Bio-Tech Co., Ltd Resistant dextrin and method for preparing the same
US11540549B2 (en) 2019-11-28 2023-01-03 Tate & Lyle Solutions Usa Llc High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them

Similar Documents

Publication Publication Date Title
Bhatt et al. Structural modifications and strategies for native starch for applications in advanced drug delivery
CN1310950C (en) Telerance starch made of starch of de-amylopectin by iso-anylase
US5281276A (en) Process for making amylase resistant starch from high amylose starch
US20080286410A1 (en) Production of Resistant Starch Product
JPH069705A (en) Amylase-resistant starch
JP2008542503A (en) Production of enzyme resistant starch by extrusion.
CN106755203A (en) A kind of preparation method of resistant dextrin
CN1225482C (en) Alpha amylase resistant polysaccharides, production method and use thereof and food products containing said polysaccharides
CN105693871A (en) Preparation method of resistant dextrin
CN110257455B (en) Preparation process of resistant dextrin
KR101145375B1 (en) Resistant starch with high viscosity and manufacturing method of the same
CN112852906B (en) Method for synergistically preparing slowly digestible maltodextrin by using two starch branching enzymes
KR100936590B1 (en) Continuous Process for Modifying Starch and Its Derivatives by Branching Enzymes
JP2005263867A (en) Roast dextrin with high content of dietary fiber and its preparation method
Wong et al. Enzymatic production of linear long-chain dextrin from sago (Metroxylon sagu) starch
JPH02100695A (en) Production of indigestible dextrin
KR101068986B1 (en) Resistant starch with pasting properties and manufacturing method of the same
Djabali et al. Relationship between potato starch isolation methods and kinetic parameters of hydrolysis by free and immobilised α-amylase on alginate (from Laminaria digitata algae)
JP2006249316A (en) Producing method of starch phosphate
US20080280332A1 (en) Production of Resistant Starch Product Having Tailored Degree of Polymerization
KR101700343B1 (en) Manufacturing method of resistant starch with improved processability
KR101426805B1 (en) Resistant starch with improved processability and manufacturing method of the same
KR101928549B1 (en) Method for production of resistance starch with combined treatment of physical and chemical procedure
Onyango et al. Synthesis and in vitro digestion of resistant starch type III from enzymatically hydrolysed cassava starch
KR100294252B1 (en) How to increase the content of enzyme resistance starch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130