JP2005261806A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2005261806A
JP2005261806A JP2004082116A JP2004082116A JP2005261806A JP 2005261806 A JP2005261806 A JP 2005261806A JP 2004082116 A JP2004082116 A JP 2004082116A JP 2004082116 A JP2004082116 A JP 2004082116A JP 2005261806 A JP2005261806 A JP 2005261806A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
frequency
shim member
shim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004082116A
Other languages
Japanese (ja)
Other versions
JP2005261806A5 (en
Inventor
Hirotaka Takeshima
弘隆 竹島
Hiroyuki Takeuchi
博幸 竹内
Tatsuya Ando
竜弥 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2004082116A priority Critical patent/JP2005261806A/en
Publication of JP2005261806A publication Critical patent/JP2005261806A/en
Publication of JP2005261806A5 publication Critical patent/JP2005261806A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shimming structure permitting facilitating the shimming work, achieving a high uniformity coefficient of magnetic fields, and improving the efficiency in generation of magnetic fields of a gradient magnetic field coil and RF coil. <P>SOLUTION: A high-frequency magnetic field generating means consists of a base plate and a coil mounting plate. A plurality of shim attaching structures are disposed on the base plate, and an electric circuit for generating a high-frequency magnetic field is mounted on the coil mounting plate. The base plate and the coil mounting plate are easily attached to/detached from each other, and a shim material can be attached to/detached from the shim attaching structures with the coil mounting plate being detached. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気共鳴イメージング(以下、MRIと略記する)装置に係り、特に静磁場の均一性を高めるためのシム部材を配置する領域を高周波コイル(以下、RFコイルと略記する)構成体内部に設けることで、静磁場を均一化する作業を容易化し、及び傾斜磁場コイルとRFコイルの磁場発生効率を高めることを可能とする技術に関する。  The present invention relates to a magnetic resonance imaging (hereinafter abbreviated as MRI) apparatus, and in particular, a region in which a shim member for increasing the uniformity of a static magnetic field is disposed within a high-frequency coil (hereinafter abbreviated as RF coil) structure. It is related with the technique which makes it easy to make the operation | work which makes a static magnetic field uniform, and can improve the magnetic field generation efficiency of a gradient magnetic field coil and RF coil.

一般にMRI装置は、計測空間に均一な静磁場を発生させる静磁場発生手段と、前記静磁場に重ねて線形な傾斜磁場を発生させる傾斜磁場コイルと、高周波電磁場を送信・受信するRFコイルを備えている。撮像時には、所望のパルスシーケンスに従い、均一な静磁場中に置かれた被検体にX,Y,Z軸方向に線形傾斜磁場が重ねられ、被検体の原子核スピンがラーモア周波数の高周波磁場パルスで磁気的に励起される。この励起に伴い、核磁気共鳴(以下、NMRと略記する)信号が検出され、被検体の例えば2次元断層画像が再構成される。   In general, an MRI apparatus includes a static magnetic field generating means for generating a uniform static magnetic field in a measurement space, a gradient magnetic field coil for generating a linear gradient magnetic field superimposed on the static magnetic field, and an RF coil for transmitting and receiving a high-frequency electromagnetic field. ing. At the time of imaging, a linear gradient magnetic field is superimposed on the subject placed in a uniform static magnetic field in the X, Y, and Z axis directions according to the desired pulse sequence, and the subject's nuclear spin is magnetized with a high frequency magnetic field pulse of Larmor frequency. Excited. With this excitation, a nuclear magnetic resonance (hereinafter abbreviated as NMR) signal is detected, and for example, a two-dimensional tomographic image of the subject is reconstructed.

このようなMRI装置において、静磁場の空間的均一性は画質を左右する重要な特性であり、例えば、直径40cmの球空間内において1ppm前後といった非常に高い均質性を要求される。これを実現するために、所定空間内の磁場分布を測定し、鉄片や磁石片などのシム部材の配置位置を調整することによって静磁場の空間的均質性を改善する、所謂シミングを実施することが公知である(例えば、[特許文献3],[特許文献5])。   In such an MRI apparatus, the spatial uniformity of the static magnetic field is an important characteristic that affects the image quality. For example, a very high homogeneity of about 1 ppm is required in a spherical space with a diameter of 40 cm. To achieve this, so-called shimming is performed in which the spatial homogeneity of the static magnetic field is improved by measuring the magnetic field distribution in a predetermined space and adjusting the position of shim members such as iron pieces and magnet pieces. Are known (for example, [Patent Document 3] and [Patent Document 5]).

ところで、現在、MRI装置に使用されている磁石装置は、形態の面から大別すると2種類がある。一つは、水平磁場装置であり、もう一つは対向型装置(所謂オープン型装置)である。水平磁場装置の場合には、傾斜磁場コイルを構成する主コイルとシールドコイルとの間にシム部材を配置する領域を設け、ここにシム部材を配置する事が一般に行われている(例えば、[特許文献1])。  By the way, there are two types of magnet devices that are currently used in MRI apparatuses in terms of form. One is a horizontal magnetic field device, and the other is a counter device (so-called open device). In the case of a horizontal magnetic field device, a region for disposing a shim member is provided between a main coil and a shield coil that constitute a gradient magnetic field coil, and the shim member is generally disposed here (for example, [ Patent Document 1]).

一方、対向型装置の場合には、以下の特許文献に示すような技術が知られている。
[特許文献2]では、高周波シールド(以下、RFシールドと略記する)、シムプレート、RFコイルの順に積層され、RFシールドとRFコイルを一体成型することにより、RFコイルとRFシールド間の距離を一定に保つようにしている。
[特許文献3]では、シム部材をRFコイル支持体で支持する構造としている。
[特許文献4]では、シム部材を傾斜磁場コイルとRFコイルとの間に配置する構造としている。
[特許文献5]では、シム部材を傾斜磁場コイルと磁石との間に配置する構造としている。
On the other hand, in the case of a counter-type device, techniques as shown in the following patent documents are known.
In [Patent Document 2], a high-frequency shield (hereinafter abbreviated as RF shield), a shim plate, and an RF coil are laminated in this order, and the RF shield and the RF coil are integrally molded, whereby the distance between the RF coil and the RF shield is increased. I try to keep it constant.
[Patent Document 3] has a structure in which a shim member is supported by an RF coil support.
[Patent Document 4] has a structure in which a shim member is disposed between a gradient magnetic field coil and an RF coil.
[Patent Document 5] has a structure in which a shim member is disposed between a gradient coil and a magnet.

特開平5-329129号公報JP-A-5-329129 特開2002-336214号公報JP 2002-336214 A 特開2000-333932号公報JP 2000-333932 A 特開平9-238913号公報Japanese Patent Laid-Open No. 9-238913 特開2001-68327号公報JP 2001-68327 A

しかし、対向型装置における上記の公知技術には、以下のような問題がある。
[特許文献2] に開示されている構成では、磁石の側面からシムプレートを出し入れすることになり、横からのシムプレートへのアクセスが必須となる。従って、磁石の計測空間側の中央部付近に凹部を設け、その凹部の中にシム部材を配置する構造においては、[特許文献2]に記載の構成を採用することは困難となる。さらに、シムプレートを横から出し入れできるようにするために幾らかのクリアランスが必要となり、その結果、装置の構造的強度が低下して、装置全体としてねじれなどの変形を生じやすくなる等、解決すべき問題が残されている。
However, the above-described known technique in the opposed device has the following problems.
In the configuration disclosed in [Patent Document 2], the shim plate is taken in and out from the side surface of the magnet, and access to the shim plate from the side is essential. Therefore, it is difficult to adopt the configuration described in [Patent Document 2] in a structure in which a recess is provided near the center of the magnet on the measurement space side and a shim member is disposed in the recess. Furthermore, some clearance is required to allow the shim plate to be inserted and removed from the side. As a result, the structural strength of the device is reduced, and the entire device is likely to be deformed such as torsion. There are still problems to be solved.

[特許文献3]に開示されている構成では、RFコイルの実体を配置している面と同じ面にシム部材を配置する構造となっているため、RFコイルの電気回路がない部分にしかシム部材を配置できない。そのため、静磁場均一度を調整する際には、シム部材の配置に関して大きな制限が課されてしまい、その結果、高い静磁場均一度を達成するには更に工夫が必要となる場合がある。    In the configuration disclosed in [Patent Document 3], since the shim member is arranged on the same surface as the surface on which the RF coil is arranged, the shim is formed only in a portion where there is no electric circuit of the RF coil. The member cannot be placed. Therefore, when adjusting the static magnetic field uniformity, a great restriction is imposed on the arrangement of the shim members, and as a result, it may be necessary to further devise to achieve high static magnetic field uniformity.

[特許文献4]の構成は、水平磁場装置における円筒形状の磁石、傾斜磁場コイル、RFコイルをベースに考案されたものである。このため、円筒の軸方向からのシム部材へのアクセスについては容易となる。しかし、磁石の計測空間側の中央部付近に凹部を設け、その凹部の中にシム部材を配置する対向型装置においては、横方向からシム部材へのアクセスが困難となるため、このような対向型装置には[特許文献2] と同様に[特許文献4]の構成も適用することができない。    The configuration of [Patent Document 4] is devised based on a cylindrical magnet, a gradient coil, and an RF coil in a horizontal magnetic field device. This facilitates access to the shim member from the axial direction of the cylinder. However, in a counter-type device in which a recess is provided near the center of the measurement space side of the magnet and a shim member is disposed in the recess, it is difficult to access the shim member from the lateral direction. Similarly to [Patent Document 2], the configuration of [Patent Document 4] cannot be applied to the mold apparatus.

[特許文献5]の構成は、傾斜磁場コイルを取り付けた際に傾斜磁場コイルの重みや、傾斜磁場コイルや固定具内に僅かに含まれる磁性体の影響等により均一度に変化が生じる場合があり、この課題への対応が開示されていない。    In the configuration of [Patent Document 5], when the gradient magnetic field coil is attached, the uniformity may change due to the weight of the gradient magnetic field coil or the influence of the magnetic substance slightly contained in the gradient magnetic field coil or fixture. Yes, no response to this issue is disclosed.

また、[特許文献4]や[特許文献5]では、シム部材を配置するスペースが必要であるため、RFコイルユニットや傾斜磁場コイルユニットを配置するスペースが狭くなる。そのため、RFコイルユニットや傾斜磁場コイルユニットの厚みを厚くすることが困難となる。一般に、RFコイルユニットの計測空間側にはRFコイルが、その裏側には高周波磁場をシールドするRFシールドが配置され、RFコイルとRFシールド間の距離が離れているほど高周波磁場発生効率が高くなる。また、傾斜磁場コイルユニットの計測空間側には傾斜磁場を発生する主コイルが、その裏側には傾斜磁場をシールドするシールドコイルが配置され、主コイルとシールドコイル間の距離が離れているほど傾斜磁場発生効率が高くなる。従って、[特許文献4]や[特許文献5]の構成では、高周波磁場や傾斜磁場発生効率の点で改善されるべき余地が残されている。   [Patent Document 4] and [Patent Document 5] require a space for disposing a shim member, so that a space for disposing an RF coil unit and a gradient coil unit becomes narrow. For this reason, it is difficult to increase the thickness of the RF coil unit or gradient magnetic field coil unit. Generally, an RF coil is placed on the measurement space side of the RF coil unit, and an RF shield that shields the high-frequency magnetic field is placed on the back side. The higher the distance between the RF coil and the RF shield, the higher the high-frequency magnetic field generation efficiency. . In addition, a main coil that generates a gradient magnetic field is arranged on the measurement space side of the gradient magnetic field coil unit, and a shield coil that shields the gradient magnetic field is arranged on the back side, and the gradient increases as the distance between the main coil and the shield coil increases. Magnetic field generation efficiency increases. Accordingly, the configurations of [Patent Document 4] and [Patent Document 5] leave room for improvement in terms of high-frequency magnetic field and gradient magnetic field generation efficiency.

そこで、本発明は上記課題を解決するためになされたものであり、本発明の第1の目的は、シミング作業を容易にすると共に高い静磁場均一度の達成を可能とすることである。
また、本発明の第2の目的は、更にRFコイルの高周波磁場発生効率を向上させることである。
また、本発明の第3の目的は、更に傾斜磁場コイルの磁場発生効率を向上させることである。
Accordingly, the present invention has been made to solve the above-mentioned problems, and a first object of the present invention is to facilitate a shimming operation and to achieve high static magnetic field uniformity.
The second object of the present invention is to further improve the high-frequency magnetic field generation efficiency of the RF coil.
The third object of the present invention is to further improve the magnetic field generation efficiency of the gradient coil.

上記課題を解決するために、本発明は以下の様に構成される。即ち
(1)計測空間側に凹部が設けられた少なくとも一つの静磁場発生器を有する静磁場発生手段と、前記凹部に少なくともその一部が収容された高周波磁場発生手段と傾斜磁場発生手段を有するMRI装置において、
前記各高周波磁場発生手段は、高周波磁場発生のための高周波電気回路が配置された第1の平板と、静磁場補正手段が配置された第2の平板とを有し、前記第1の平板が前記第2の平板よりも前記計測空間側に配置され、前記第1の平板は前記第2の平板に着脱可能に取り付けられる。(請求項1)。
In order to solve the above problems, the present invention is configured as follows. That is, (1) having a static magnetic field generating means having at least one static magnetic field generator provided with a recess on the measurement space side, and a high-frequency magnetic field generating means and a gradient magnetic field generating means having at least a part thereof accommodated in the recess. In MRI equipment
Each of the high-frequency magnetic field generating means has a first flat plate on which a high-frequency electric circuit for generating a high-frequency magnetic field is arranged, and a second flat plate on which a static magnetic field correcting means is arranged, and the first flat plate is The first flat plate is detachably attached to the second flat plate. The first flat plate is disposed closer to the measurement space than the second flat plate. (Claim 1).

特に、前記静磁場補正手段はシム部材であり、前記第2の平板は少なくとも1つの前記シム部材を着脱可能に取付け可能な構造を有する(請求項2)。
これにより、第1の平板を取り外して、第2の平板における静磁場補正手段の調整を行う作業を容易に繰り返すことができるようになる。特に静磁場補正手段をシム部材とする場合は、その着脱を容易に行うことができる構造とすることで、シム部材の配置位置と配置量を調整して静磁場均一度を向上させる所謂シミング作業が容易になり、シミング作業を繰り返して高い静磁場均一度を達成することが容易になる。その結果、前記第1の目的を達成することができる。
Particularly, the static magnetic field correcting means is a shim member, and the second flat plate has a structure in which at least one shim member can be detachably attached (Claim 2).
This makes it possible to easily repeat the operation of removing the first flat plate and adjusting the static magnetic field correction means on the second flat plate. In particular, when the static magnetic field correction means is a shim member, a so-called shimming operation that improves the static magnetic field uniformity by adjusting the arrangement position and the arrangement amount of the shim member by adopting a structure that can be easily attached and detached. It becomes easy to achieve high static magnetic field uniformity by repeating the shimming operation. As a result, the first object can be achieved.

(2)本発明の、好ましい一実施態様は、さらに前記第1の平板と前記第2の平板との間に、前記シム部材を覆うように電気導体を配置する(請求項3)。特に、前記シム部材のみを覆うように電気導体を配置する。
これにより、シム部材とRFコイル用の高周波電気回路との間の電磁気的な干渉が低減されるので、シム部材の配置によって高周波電気回路の調整がばらつくことを防止でき、高周波電気回路の調整をシム部材の有無に関わらず一定して行うことが可能となる。特に、なるべくシム部材のみを覆うように電気導体を配置することで、RFシールドがRFコイルに実質的に近づくことを防止できる。その結果、さらに第2の目的を達成することができる。
(2) In a preferred embodiment of the present invention, an electric conductor is further disposed between the first flat plate and the second flat plate so as to cover the shim member (claim 3). In particular, an electric conductor is disposed so as to cover only the shim member.
This reduces electromagnetic interference between the shim member and the RF coil high-frequency electric circuit, so that it is possible to prevent the adjustment of the high-frequency electric circuit due to the arrangement of the shim member, and to adjust the high-frequency electric circuit. It is possible to carry out the measurement with or without the shim member. In particular, by arranging the electric conductor so as to cover only the shim member as much as possible, the RF shield can be prevented from substantially approaching the RF coil. As a result, the second object can be further achieved.

(3)また、本発明の好ましい一実施態様は、さらに前記第2の平板を着脱可能に上下2分割して、上側部分にシム部材を配置する。
これにより、上側部分(つまり計測空間側部分)をシムプレートとして作成し、これを取り外すことで、静磁場の外でシム部材の脱着を行うことができるので、シミング作業が更に容易となる。
(3) In a preferred embodiment of the present invention, the second flat plate is further detachably divided into two, and a shim member is arranged on the upper portion.
As a result, the upper part (that is, the measurement space side part) is created as a shim plate and removed, so that the shim member can be attached and detached outside the static magnetic field, so that the shimming operation is further facilitated.

また、以上の(1)〜(3)により、凹部内にシム部材を配置する層を別に設ける必要が無くなるので、RFコイルユニットにおけるRFコイルとRFシールド間の距離、及び傾斜磁場コイルユニットにおける主コイルとシールドコイル間の距離を離すことができ、間接的に第2及び第3の目的を達成することができる。   In addition, because of the above (1) to (3), it is not necessary to provide a separate layer for disposing the shim member in the recess, so that the distance between the RF coil and the RF shield in the RF coil unit and the main component in the gradient magnetic field coil unit are eliminated. The distance between the coil and the shield coil can be increased, and the second and third objects can be achieved indirectly.

以上説明した様に、本発明によれば、計測空間に対向する磁石面に凹部を有して、その凹部に少なくともRFコイルの一部を収容するオープン型MRI装置用の磁石において、容易に静磁場の均一度調整が行えるようになる。また、RFコイルと傾斜磁場コイルの磁場発生効率を高めることが可能となる。   As described above, according to the present invention, a magnet for an open type MRI apparatus that has a recess on the magnet surface facing the measurement space and accommodates at least a part of the RF coil in the recess can be easily and statically. Magnetic field uniformity can be adjusted. In addition, the magnetic field generation efficiency of the RF coil and the gradient magnetic field coil can be increased.

以下、本発明の実施形態を添付図面に基づいて説明する。なお、発明の実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
はじめに、本発明が適用されるMRI装置の概略を図8に基づいて説明する。図8は、本発明が適用される垂直磁場方式(対向型又は開放型とも呼ばれる)のMRI装置の一実施形態に関する全体斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In all the drawings for explaining the embodiments of the invention, those having the same function are given the same reference numerals, and their repeated explanation is omitted.
First, an outline of an MRI apparatus to which the present invention is applied will be described with reference to FIG. FIG. 8 is an overall perspective view of an embodiment of an MRI apparatus of a vertical magnetic field type (also called an opposed type or an open type) to which the present invention is applied.

このMRI装置は、NMR現象を利用して被検体の断層画像を得るもので、図8に示すように被検体にNMR現象を誘起してNMR信号を受信するための各種装置を収容するガントリ51、被検体を載置するテーブル52、ガントリ51内各種装置を駆動する電源や制御する各種制御装置を収納した筐体53、および受信したNMR信号を処理して被検体の断層画像を再構成する処理装置54からなり、それぞれ電源・信号線55で接続される。ガントリ51とテーブル52は図示してない高周波電磁波と静磁場を遮蔽するシールドルーム内に配置され、筐体53と処理装置54はシールドルーム外に配置される。   This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject. As shown in FIG. 8, a gantry 51 that houses various apparatuses for inducing a NMR phenomenon in a subject and receiving NMR signals. A table 52 on which the subject is placed, a power source for driving various devices in the gantry 51, a housing 53 that houses various control devices to be controlled, and a received NMR signal to process a tomographic image of the subject. The processing unit 54 is connected to each other by a power source / signal line 55. The gantry 51 and the table 52 are arranged in a shield room that shields high-frequency electromagnetic waves and static magnetic fields (not shown), and the casing 53 and the processing device 54 are arranged outside the shield room.

また、図8のMRI装置の構成をより詳細な機能毎に分解したブロック構成図を図9に示す。図9に示すように、MRI装置は静磁場発生系2と、傾斜磁場発生系3と、送信系5と、受信系6と、信号処理系7と、シーケンサ4と、中央処理装置(CPU)8とを備えて構成される。   FIG. 9 shows a block configuration diagram in which the configuration of the MRI apparatus of FIG. 8 is disassembled for each more detailed function. As shown in FIG. 9, the MRI apparatus includes a static magnetic field generation system 2, a gradient magnetic field generation system 3, a transmission system 5, a reception system 6, a signal processing system 7, a sequencer 4, and a central processing unit (CPU). 8 and configured.

静磁場発生系2は、被検体1の周りの空間にその体軸方向(水平磁場方式)または体軸と直交する方向(垂直磁場方式)に均一な静磁場を発生させるもので、被検体1の周りに常電導方式あるいは超電導方式の静磁場発生源を有する静磁場発生器(例えば、静磁場発生源を内部に含む容器)が配置されている。また、静磁場の不均一を補正して均一度を向上させるために、図示してないシムコイルやシム部材が配置される。静磁場発生系2はガントリ51内に収容される。   The static magnetic field generation system 2 generates a uniform static magnetic field in the space around the subject 1 in the direction of the body axis (horizontal magnetic field method) or in the direction orthogonal to the body axis (vertical magnetic field method). A static magnetic field generator (for example, a container containing a static magnetic field generation source therein) having a normal magnetic field generation source or a superconductivity type static magnetic field generation source is disposed around the space. Further, in order to correct the non-uniformity of the static magnetic field and improve the uniformity, a shim coil and a shim member (not shown) are arranged. The static magnetic field generation system 2 is accommodated in the gantry 51.

傾斜磁場発生系3は、X,Y,Zの3軸方向に巻かれた傾斜磁場コイル9と、それぞれの傾斜磁場コイル9を駆動する傾斜磁場電源10とから成り、後述のシ−ケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源10を駆動することにより、X,Y,Zの3軸方向の傾斜磁場GZ,GY,GXを被検体1に印加する。より具体的には、X,Y,Zのいずれかの1方向にスライス方向傾斜磁場パルス(GS)を印加して被検体1に対するスライス面を設定し、残り2つの方向に位相エンコード方向傾斜磁場パルス(GP)と周波数エンコード方向傾斜磁場パルス(GF)を印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。傾斜磁場コイル9はガントリ51内に、傾斜磁場電源10は筐体53にそれぞれ収容される。   The gradient magnetic field generating system 3 includes a gradient magnetic field coil 9 wound in three axial directions of X, Y, and Z, and a gradient magnetic field power source 10 for driving each gradient magnetic field coil 9. By driving the gradient magnetic field power supply 10 of each coil in accordance with the above command, gradient magnetic fields GZ, GY, and GX in the three-axis directions of X, Y, and Z are applied to the subject 1. More specifically, a slice direction gradient magnetic field pulse (GS) is applied in one of X, Y, and Z to set the slice plane for the subject 1, and the phase encode direction gradient magnetic field is applied to the remaining two directions. A pulse (GP) and a frequency encoding direction gradient magnetic field pulse (GF) are applied, and position information in each direction is encoded in the echo signal. The gradient magnetic field coil 9 is accommodated in the gantry 51, and the gradient magnetic field power source 10 is accommodated in the casing 53.

シーケンサ4は、高周波磁場パルスと傾斜磁場パルスをある所定のパルスシーケンスで繰り返し印加する制御手段で、CPU8の制御で動作し、被検体1の断層画像のデータ収集に必要な種々の命令を送信系5、傾斜磁場発生系3、および受信系6に送る。シーケンサ4は筐体53内に収容される。   The sequencer 4 is a control means that repeatedly applies a high-frequency magnetic field pulse and a gradient magnetic field pulse in a predetermined pulse sequence. The sequencer 4 operates under the control of the CPU 8, and sends various commands necessary for collecting tomographic image data of the subject 1. 5. Send to gradient magnetic field generation system 3 and reception system 6. The sequencer 4 is accommodated in the housing 53.

送信系5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために高周波磁場パルスを照射するもので、高周波発振器11と変調器12と高周波増幅器13と送信側のRFコイル14aとから成る。高周波発振器11から出力された高周波パルスをシーケンサ4からの指令によるタイミングで変調器12により振幅変調し、この振幅変調された高周波パルスを高周波増幅器13で増幅した後に被検体1に近接して配置されたRFコイル14aに供給することにより、高周波磁場パルスが被検体1に照射される。一般的にRFコイル14aがガントリ51内に収容され、他は筐体53内に収容される。   The transmission system 5 irradiates a high frequency magnetic field pulse to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1, and includes a high frequency oscillator 11, a modulator 12, a high frequency amplifier 13, and a transmission side RF coil 14a. The high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at a timing according to a command from the sequencer 4, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1. By supplying to the RF coil 14a, the subject 1 is irradiated with the high frequency magnetic field pulse. Generally, the RF coil 14a is accommodated in the gantry 51, and the others are accommodated in the casing 53.

本発明を適用したMRI装置においては、このRFコイル14aは、以下に説明するRFコイルユニットの一部として構成される。
受信系6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側のRFコイル14bと信号増幅器15と直交位相検波器16と、A/D変換器17とから成る。送信側のRFコイル14aから照射された電磁波によって誘起される被検体1の応答のNMR信号が被検体1に近接して配置されたRFコイル14bで検出され、信号増幅器15で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器16により直交する二系統の信号に分割され、それぞれがA/D変換器17でディジタル量に変換されて、信号処理系7に送られる。一般的に受信系6を構成する前記装置群はガントリ51内に収容される。
In the MRI apparatus to which the present invention is applied, the RF coil 14a is configured as a part of an RF coil unit described below.
The receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and receives the RF coil 14b on the receiving side, the signal amplifier 15, and quadrature detection. And an A / D converter 17. The NMR signal of the response of the subject 1 induced by the electromagnetic wave irradiated from the RF coil 14a on the transmission side is detected by the RF coil 14b arranged close to the subject 1 and amplified by the signal amplifier 15, The signal is divided into two orthogonal signals by the quadrature phase detector 16 at the timing according to the command from the sequencer 4, and each signal is converted into a digital quantity by the A / D converter 17 and sent to the signal processing system 7. Generally, the device group constituting the receiving system 6 is accommodated in a gantry 51.

信号処理系7は、光ディスク19、磁気ディスク18等の外部記憶装置と、CRT等からなるディスプレイ20とを有し、受信系6からのデータがCPU8に入力されると、CPU8が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像をディスプレイ20に表示すると共に、外部記憶装置の磁気ディスク18等に記録する。信号処理系7は処理装置54内に収容される。   The signal processing system 7 includes an external storage device such as an optical disk 19 and a magnetic disk 18 and a display 20 made up of a CRT or the like. When data from the receiving system 6 is input to the CPU 8, the CPU 8 performs signal processing, image processing, and image processing. Processing such as reconstruction is executed, and the resulting tomographic image of the subject 1 is displayed on the display 20 and recorded on the magnetic disk 18 or the like of the external storage device. The signal processing system 7 is accommodated in the processing device 54.

なお、図7において、送信側のRFコイル14aと傾斜磁場コイル9は、被検体1が挿入される静磁場発生系2の静磁場空間内に被検体1に対向して設置されている。また、受信側のRFコイル14bは、被検体1に対向して、或いは取り囲むように設置されている。   In FIG. 7, the transmission-side RF coil 14a and the gradient magnetic field coil 9 are placed opposite to the subject 1 in the static magnetic field space of the static magnetic field generation system 2 into which the subject 1 is inserted. The RF coil 14b on the receiving side is installed so as to face or surround the subject 1.

現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。   Currently, the radionuclide to be imaged by the MRI apparatus is a hydrogen nucleus (proton) which is a main constituent material of the subject as widely used in clinical practice. By imaging information on the spatial distribution of proton density and the spatial distribution of relaxation time in the excited state, the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.

以下、本発明を説明する。本発明は、主として、計測空間側の中央部付近に凹部を有する磁石を一対にして対向配置させた対向型磁石を有するMRI装置において、RFコイルユニットに静磁場補正手段を備えたことである。即ち、
RFコイルユニットをコイル実装板(第1の平板)とベース板(第2の平板)とから構成して、これを磁石の凹部に配置し、コイル実装板をベース板に対して容易に脱着可能とする。そして、ベース板内にシム部材の配置領域を設けてシム部材を着脱可能に配置する(第1の実施形態)。これにより、コイル実装板を取り外してシム部材の配置を調整する作業を容易に繰り返すことができるようになり、その結果、シミング作業が容易になるので高い静磁場均一度を達成することができるようになる。
The present invention will be described below. The present invention is mainly characterized in that an RF coil unit is provided with a static magnetic field correction means in an MRI apparatus having opposed magnets in which a pair of magnets each having a recess is disposed in the vicinity of the central portion on the measurement space side. That is,
The RF coil unit is composed of a coil mounting plate (first flat plate) and a base plate (second flat plate), which is placed in the concave portion of the magnet so that the coil mounting plate can be easily detached from the base plate. And Then, a shim member disposition area is provided in the base plate, and the shim member is detachably disposed (first embodiment). As a result, the operation of removing the coil mounting plate and adjusting the arrangement of the shim members can be easily repeated. As a result, the shimming operation is facilitated, so that high static magnetic field uniformity can be achieved. become.

図9に示したMRI装置の一実施例に本発明を適用すると、RFコイル14aは、コイル実装板の表面上に高周波磁場を発生するための高周波電気回路が配置されて構成される。さらにこのコイル実装板が着脱可能に取り付けられるベース板内に静磁場均一度を改善するシム部材が配置される。そして、ベース板にコイル実装板を取り付けてRFコイルユニットとして構成される。   When the present invention is applied to one embodiment of the MRI apparatus shown in FIG. 9, the RF coil 14a is configured by arranging a high-frequency electric circuit for generating a high-frequency magnetic field on the surface of the coil mounting plate. Further, a shim member for improving the static magnetic field uniformity is disposed in a base plate to which the coil mounting plate is detachably attached. Then, a coil mounting plate is attached to the base plate to constitute an RF coil unit.

また、本発明は、コイル実装板とベース板との間に、シム部材を覆うように電気導体を配置する。好ましくは、シム部材のみを覆うように電気導体を配置する(第2の実施形態)。これにより、シム部材と高周波電気回路との間の電磁気的な干渉が低減されるので、高周波電気回路の調整をシム部材の有無に関わらず一定して行うことが可能となる。その結果、RFコイルの高周波磁場発生効率を向上させることができる。   In the present invention, an electric conductor is disposed between the coil mounting plate and the base plate so as to cover the shim member. Preferably, the electric conductor is disposed so as to cover only the shim member (second embodiment). As a result, electromagnetic interference between the shim member and the high-frequency electric circuit is reduced, so that the high-frequency electric circuit can be adjusted constantly regardless of the presence or absence of the shim member. As a result, the high frequency magnetic field generation efficiency of the RF coil can be improved.

さらに、ベース板を2分割して、計測空間側部分を他方の部分に対して着脱可能にすると共に、計測空間側部分をシム部材の取付け穴を設けたシムプレートとする(第3の実施形態)。これにより、シムプレートを取り外すことで、静磁場の外でシム部材の脱着を行うことができるので、シミング作業が更に容易となる。  Furthermore, the base plate is divided into two so that the measurement space side portion can be attached to and detached from the other portion, and the measurement space side portion is a shim plate provided with mounting holes for shim members (third embodiment) ). Accordingly, by removing the shim plate, the shim member can be attached and detached outside the static magnetic field, so that the shimming operation is further facilitated.

また、以上の本発明により、凹部内にRFコイルユニットや傾斜磁場コイルユニットとは別にシム部材を配置する層を新たに設ける必要が無くなるので、その分だけ凹部内に配置されるRFコイルユニットや傾斜磁場コイルユニットの層を厚くすることができる。その結果、RFコイルユニットにおけるRFコイルとRFシールド間の距離、及び傾斜磁場コイルユニットにおける主コイルとシールドコイル間の距離を離すことができるので、高周波磁場及び傾斜磁場の発生効率を高めることができる。   In addition, according to the present invention described above, there is no need to newly provide a layer for disposing a shim member in the recess, in addition to the RF coil unit and the gradient magnetic field coil unit. The layer of the gradient coil unit can be thickened. As a result, since the distance between the RF coil and the RF shield in the RF coil unit and the distance between the main coil and the shield coil in the gradient magnetic field coil unit can be separated, the generation efficiency of the high-frequency magnetic field and the gradient magnetic field can be increased. .

以下、図8,9で説明した構成を有し、且つ、静磁場発生源として超電導磁石を用いた静磁場発生器を上下に対向させて配置し、各静磁場発生器の計測空間側に凹部を備えた静磁場発生系を有する対向型MRI装置に基づいて本発明の実施形態を説明する。ただし、本発明は上下対向型に限定されず、計測空間側に凹部が設けられた静磁場発生器を有するMRI装置について広く適用が可能である。   Hereinafter, a static magnetic field generator having the configuration described with reference to FIGS. 8 and 9 and using a superconducting magnet as a static magnetic field generation source is disposed so as to face each other, and a recess is formed on the measurement space side of each static magnetic field generator. An embodiment of the present invention will be described based on a counter-type MRI apparatus having a static magnetic field generation system including However, the present invention is not limited to the vertically opposed type, and can be widely applied to an MRI apparatus having a static magnetic field generator in which a recess is provided on the measurement space side.

図1に静磁場発生源として超電導磁石を用いた上下対向型のMRI装置の一例を示す。図1に示したMRI装置は、上下に対向配置された静磁場発生源(超電導コイル)102により、ガントリ51の中央部(計測空間)107に均一な静磁場を発生させる。超電導特性を発揮させるために、超電導コイル102は極低温を保持する低温容器(図示省略)内に配置される。この低温容器は断熱により外部からの熱を遮断するための真空槽(収容手段;この真空槽とその内部構成を含めて静磁場発生器を構成する)101に内包まれる。見やすくするために、本図では冷凍機やヘリウム槽などのような一般的に用いられている構成要素の図示を省略してある。なお、伝導冷却を用いた超電導磁石の場合にはヘリウム槽は不要である。   FIG. 1 shows an example of a vertically opposed MRI apparatus using a superconducting magnet as a static magnetic field generation source. The MRI apparatus shown in FIG. 1 generates a uniform static magnetic field in the central portion (measurement space) 107 of the gantry 51 by means of a static magnetic field generation source (superconducting coil) 102 arranged opposite to the top and bottom. In order to exhibit the superconducting characteristics, the superconducting coil 102 is disposed in a cryogenic container (not shown) that maintains an extremely low temperature. This cryogenic container is enclosed in a vacuum chamber (accommodating means; constituting a static magnetic field generator including this vacuum chamber and its internal configuration) 101 for insulating heat from the outside by heat insulation. In order to make it easy to see, illustrations of commonly used components such as a refrigerator and a helium tank are omitted in this figure. In the case of a superconducting magnet using conduction cooling, a helium bath is not necessary.

また、上下の真空槽101の中央部には凹部106が設けられ、ここにRFコイルユニット104や傾斜磁場コイルユニット105等がそれぞれ上下対向して配置される。   In addition, a concave portion 106 is provided in the central portion of the upper and lower vacuum chambers 101, and an RF coil unit 104, a gradient magnetic field coil unit 105, and the like are disposed in a vertically opposed manner.

図2に、図1のMRI装置における下側の凹部106内の各構成要素の配置を示す。上側凹部においても同じ構成要素が計測空間107を間に挟んで対称に配置される。各構成要素は、計測空間107側から順に、RFコイルユニット104、傾斜磁場コイル(図7の傾斜磁場コイル9相当)、シム領域204が配置される。ここで、シム領域204にはシムコイルやシム部材が真空槽101に固定されて配置され、静磁場不均一の大部分を補正する。それに対して本発明のRFコイルユニット104に配置されるシム部材は静磁場不均一補正の微調整を行う。シム領域204とRFコイルユニット104内のシム部材とで静磁場均一度を向上させる。   FIG. 2 shows the arrangement of each component in the lower recess 106 in the MRI apparatus of FIG. In the upper recess, the same components are arranged symmetrically with the measurement space 107 in between. In each component, an RF coil unit 104, a gradient magnetic field coil (corresponding to the gradient magnetic field coil 9 in FIG. 7), and a shim region 204 are arranged in this order from the measurement space 107 side. Here, shim coils and shim members are fixed to the vacuum chamber 101 in the shim region 204 and correct most of the static magnetic field inhomogeneity. On the other hand, the shim member disposed in the RF coil unit 104 of the present invention performs fine adjustment of static magnetic field nonuniformity correction. The uniformity of the static magnetic field is improved by the shim region 204 and the shim member in the RF coil unit 104.

最初に、本発明の第1の実施形態を詳細に説明する。この実施形態は、RFコイルユニットをコイル実装板とベース板とから構成して、コイル実装板をベース板よりも計測空間側に配置する。この際、コイル実装板をベース板に対して容易に脱着可能に取り付ける。そして、コイル実装板の計測空間側の表面上には高周波磁場を発生するための高周波電気回路を配置し、ベース板内には静磁場均一度を向上させるためのシム部材の配置領域を設けて、そこにシム部材を着脱可能に配置する。   First, the first embodiment of the present invention will be described in detail. In this embodiment, the RF coil unit is composed of a coil mounting plate and a base plate, and the coil mounting plate is arranged closer to the measurement space than the base plate. At this time, the coil mounting plate is attached to the base plate so as to be easily removable. A high-frequency electric circuit for generating a high-frequency magnetic field is arranged on the surface of the coil mounting board on the measurement space side, and a shim member arrangement area for improving the static magnetic field uniformity is provided in the base board. The shim member is detachably disposed there.

この実施形態の実施例を図3〜図5に示す。図3,4はRFコイルユニットの断面図であり、図5は、RFコイルユニットを分解した状態の全体斜視図である。   Examples of this embodiment are shown in FIGS. 3 and 4 are sectional views of the RF coil unit, and FIG. 5 is an overall perspective view of the RF coil unit in an exploded state.

本実施例のRFコイルユニットは、図3に示した様に、大別してコイル実装板104−1(図9のRFコイル14a相当)とベース板104−2とから構成される。更に、コイル実装板104−1の計測空間107側には高周波磁場を発生するための高周波電気回路が配置されている。この高周波電気回路が送信コイルの実体であり、主に、高周波電流路となる導体302に電気素子(コンデンサ、インダクタ、ダイオード等)301を付加して構成される。導体302としては、例えば1mm前後の薄い銅板が用いられる。電気素子は、送信コイルが静磁場強度で定まるプロトンの共鳴周波数(例えば、0.5Tで約21MHz)で高い照射感度(Q値)を持つように調整される。   As shown in FIG. 3, the RF coil unit of the present embodiment is roughly composed of a coil mounting plate 104-1 (corresponding to the RF coil 14a in FIG. 9) and a base plate 104-2. Further, a high-frequency electric circuit for generating a high-frequency magnetic field is disposed on the measurement space 107 side of the coil mounting plate 104-1. This high-frequency electric circuit is the substance of the transmission coil, and is mainly configured by adding an electric element (capacitor, inductor, diode, etc.) 301 to a conductor 302 that becomes a high-frequency current path. As the conductor 302, for example, a thin copper plate of about 1 mm is used. The electric element is adjusted so that the transmission coil has a high irradiation sensitivity (Q value) at a proton resonance frequency (for example, about 21 MHz at 0.5 T) determined by the static magnetic field strength.

一方、ベース板104−2にはシム部材305を取り付けるために少なくとも1個の取付け穴306が形成される。ベース板104−2を凹部106の所定位置に固定した状態で、この取付け穴306にシム部材305を脱着して配置し、静磁場方向に対して平行及び垂直な方向の配置位置とそれぞれの配置量を調整することにより静磁場の均一度調整を行う。静磁場均一度の調整が終了した時点で、コイル実装板104−1をベース板104−2の上に被せて取り付けることによりRFコイルユニットを完成させ、高周波磁場を発生させることが可能となる。
コイル実装板104−1の着脱作業を容易にするためには、例えばベース板104−2にネジ穴を設けておき、コイル実装板104-1をボルトでベース板104−2に取り付けることができる。
On the other hand, at least one mounting hole 306 is formed in the base plate 104-2 for mounting the shim member 305. With the base plate 104-2 fixed at a predetermined position of the recess 106, the shim member 305 is attached to and removed from the mounting hole 306, and the arrangement positions in the directions parallel and perpendicular to the static magnetic field direction and the respective arrangements are arranged. The uniformity of the static magnetic field is adjusted by adjusting the amount. When the adjustment of the static magnetic field uniformity is completed, the RF coil unit can be completed by generating the high-frequency magnetic field by mounting the coil mounting plate 104-1 on the base plate 104-2.
In order to facilitate attachment / detachment work of the coil mounting plate 104-1, for example, a screw hole is provided in the base plate 104-2, and the coil mounting plate 104-1 can be attached to the base plate 104-2 with a bolt. .

シム部材305のベース板104−2への取付け方の一例としては、シム部材305をネジ形状とし、取付け穴306にもネジを切っておくことで、シム部材305の取付け穴306への着脱が容易になる。さらに、シム部材305の取付けのための取付け穴306がベース板104−2を貫通しないようにすることで、ベース板104−2の曲げ剛性を高く保つことが可能となる。その結果、RFコイルユニットのたわみが小さくなるので、安定した高周波磁場の発生が可能となる。
あるいは、図4に示すように、シム部材305の取付け穴306がベース板104−2を貫通する様に設けることも可能である。この場合には、取付け穴306を製作する加工が容易となる。
As an example of how to attach the shim member 305 to the base plate 104-2, the shim member 305 has a screw shape, and the mounting hole 306 is also screwed so that the shim member 305 can be attached to and detached from the mounting hole 306. It becomes easy. Further, by preventing the mounting hole 306 for mounting the shim member 305 from penetrating the base plate 104-2, the bending rigidity of the base plate 104-2 can be kept high. As a result, the deflection of the RF coil unit is reduced, and a stable high-frequency magnetic field can be generated.
Alternatively, as shown in FIG. 4, it is possible to provide the mounting holes 306 of the shim member 305 so as to penetrate the base plate 104-2. In this case, the process of manufacturing the mounting hole 306 is facilitated.

また、高周波磁場の発生効率を低下させないために、コイル実装板104−1とベース板104−2には、誘電損失の少ない部材を用いることが好ましく、例えばガラスエポキシ、ポリテトラフルオロエチレン等の部材を用いることが好適である。また、コイル実装板104−1の厚さは例えば3〜20mmとし、ベース板の厚さは例えば10〜40mmの範囲とするのが好適である。そして、RFコイルユニット全体の厚さとしては、例えば20〜50mmの程度が好適である。   In order not to reduce the generation efficiency of the high-frequency magnetic field, it is preferable to use a member having a small dielectric loss for the coil mounting plate 104-1 and the base plate 104-2, for example, a member such as glass epoxy or polytetrafluoroethylene. Is preferably used. Further, the thickness of the coil mounting plate 104-1 is preferably 3 to 20 mm, for example, and the thickness of the base plate is preferably in the range of 10 to 40 mm, for example. The thickness of the entire RF coil unit is preferably about 20 to 50 mm, for example.

さらに、高周波磁場を計測空間に一様に照射するためには、高周波電気回路とRFシールドとの距離を精度良く一定とする必要がある。コイル実装板104−1とベース板104−2の厚さを精度良く加工することは容易であることから、図3に示すように、RFシールド板203をベース板104−2の底面に固着して配置することにより、高周波電気回路(301と302)とRFシールド板203との距離を精度良く一定とすることができる。その結果、計測空間に高周波磁場を一様に照射することができる。なお、RFシールド板203により高周波磁場を遮蔽することによって、その下に配置される傾斜磁場コイルとの干渉を防止できるので、安定して高周波磁場を発生させることも可能となる。  Furthermore, in order to uniformly irradiate the measurement space with the high-frequency magnetic field, the distance between the high-frequency electric circuit and the RF shield needs to be made constant with high accuracy. Since it is easy to process the thicknesses of the coil mounting plate 104-1 and the base plate 104-2 with high accuracy, the RF shield plate 203 is fixed to the bottom surface of the base plate 104-2 as shown in FIG. Accordingly, the distance between the high-frequency electric circuit (301 and 302) and the RF shield plate 203 can be made constant with high accuracy. As a result, the measurement space can be uniformly irradiated with a high-frequency magnetic field. Since the RF shield plate 203 shields the high-frequency magnetic field, interference with the gradient magnetic field coil disposed thereunder can be prevented, so that the high-frequency magnetic field can be stably generated.

次に、本発明の第2の実施形態を詳細に説明する。この実施形態は、前記第1の実施形態に加えて、更に、コイル実装板とベース板との間にシム部材を覆うように電気導体を配置して、つまり、コイル実装板の高周波電気回路側から見てシム部材が電気導体に隠れて見えないように電気導体を配置して、シム部材による高周波電気回路への影響を抑制する。これは、シム部材と高周波電気回路との間に電磁気的な干渉が生じて、シム部材の配置によって高周波電気回路の調整がばらつくことを防止するためである。すなわち、予めコイル実装板とベース板との間に電気導体を配置しておくことで、ベース板内のシム部材の有無に関わらず、高周波電気回路に対しては高周波の観点で一定の環境と見なせるようにすることができるので、高周波電気回路の調整を一定して行うことが可能となる。   Next, the second embodiment of the present invention will be described in detail. In this embodiment, in addition to the first embodiment, an electric conductor is arranged so as to cover the shim member between the coil mounting plate and the base plate, that is, on the high frequency electric circuit side of the coil mounting plate. The electric conductor is arranged so that the shim member is hidden behind the electric conductor when viewed from above, and the influence of the shim member on the high-frequency electric circuit is suppressed. This is to prevent electromagnetic interference between the shim member and the high-frequency electric circuit and the adjustment of the high-frequency electric circuit due to the arrangement of the shim member. That is, by arranging an electrical conductor between the coil mounting board and the base board in advance, regardless of the presence or absence of shim members in the base board, a high-frequency electrical circuit has a certain environment in terms of high frequency. Therefore, the high-frequency electric circuit can be adjusted constantly.

また、電気導体の配置は、シム部材を覆うように且つ電気導体の領域がなるべく少なくなるように、つまり、なるべくシム部材のみを覆うように配置することが好適である。これは、高周波磁場の発生効率の観点から、RFコイルとRFシールドとの距離をなるべく離した方が好適であるところ、ベース板の全面に電気導体を配置すると、実質的にRFシールドがRFコイルに近づいたのと同じ結果になり、高周波磁場の発生効率が低下するので、これを避けるためである。   Further, it is preferable that the electric conductors are arranged so as to cover the shim member and to reduce the area of the electric conductor as much as possible, that is, to cover only the shim member as much as possible. From the viewpoint of the generation efficiency of the high-frequency magnetic field, it is preferable to keep the distance between the RF coil and the RF shield as much as possible. However, when an electric conductor is arranged on the entire surface of the base plate, the RF shield is substantially This is to avoid this because the generation result of the high-frequency magnetic field is reduced.

この実施形態の実施例である電気導体303の配置例を図6に示す。図6には、図5に示した様な配置の取付け穴306にシム部材305を配置した場合の電気導体303の配置例を示す。図6の示す電気導体の配置は、図5に示したAの方向からコイル実装板の裏側表面を見た場合の電気導体の配置図である。シム部材305の取付け部分を覆うように局在して電気導体303を配置している。図5(a)の例は、取付け穴306のライン上に電気導体303を配置しているが、取付け穴306毎に電気導体303を細かくして配置することで、高周波磁場への影響を最小限にすることもできる。この例を図5(b)に示す。   FIG. 6 shows an arrangement example of the electric conductor 303 which is an example of this embodiment. FIG. 6 shows an example of the arrangement of the electric conductor 303 when the shim member 305 is arranged in the mounting holes 306 arranged as shown in FIG. The arrangement of the electric conductors shown in FIG. 6 is an arrangement view of the electric conductors when the back surface of the coil mounting board is viewed from the direction A shown in FIG. An electric conductor 303 is disposed so as to cover the mounting portion of the shim member 305. In the example of FIG. 5 (a), the electric conductor 303 is arranged on the line of the mounting hole 306, but the influence on the high-frequency magnetic field is minimized by arranging the electric conductor 303 finely for each mounting hole 306. It can also be limited. An example of this is shown in FIG.

また図4に示す様に、この電気導体303の少なくともシム部材側の面を絶縁材304でカバーすることにより、シム部材305と電気導体303との電気的絶縁を行うことが好ましい。もし、シム部材305が電気導体303と電気的に接触していると、傾斜磁場コイル105の振動等によって、シム部材305と電気導体303との間で電気的接触が断続的に生じて、それが原因となって電気的ノイズを発生させる可能性があるためである。   Also, as shown in FIG. 4, it is preferable to electrically insulate the shim member 305 and the electric conductor 303 by covering at least the surface on the shim member side of the electric conductor 303 with an insulating material 304. If the shim member 305 is in electrical contact with the electric conductor 303, electrical contact is intermittently generated between the shim member 305 and the electric conductor 303 due to vibration of the gradient coil 105, etc. This is because there is a possibility that electrical noise is generated.

次に、本発明の第3の実施形態を詳細に説明する。この実施形態は、前記第1又は第2の実施形態において、更に、ベース板を上下2分割して、上側部分(つまり、計測空間側部分)をシム部材の取付け穴を設けたシムプレートとする。また、上側部分を下側部分に対して着脱可能に取り付ける。   Next, the third embodiment of the present invention will be described in detail. In this embodiment, in the first or second embodiment, the base plate is further divided into two parts, and the upper part (that is, the measurement space side part) is a shim plate provided with a mounting hole for the shim member. . The upper part is detachably attached to the lower part.

本実施形態の実施例を図7に示す。図7では、ベース板104-2を上側部分104−2−1と下側部分104−2−2に分割し、上側部分104−2−1にシム部材の取付け穴306を設けてシムプレート状とし、この取付け穴306にシム部材305を配置している。上部と下部の固定は、例えばネジ止めする。これ以外は、図3と同様である。   An example of this embodiment is shown in FIG. In FIG. 7, the base plate 104-2 is divided into an upper part 104-2-1 and a lower part 104-2-2, and shim plate mounting holes 306 are provided in the upper part 104-2-1 to form a shim plate. The shim member 305 is disposed in the mounting hole 306. The upper and lower parts are fixed with screws, for example. The rest is the same as FIG.

以上は、静磁場発生源として超電導磁石を用いた一対の静磁場発生器を上下に対向させて配置した対向型のMRI装置に本発明を適用した実施例を説明したが、本発明のMRI装置は上記実施例に限定されず、種々の変更が可能である。例えば、永久磁石や常電導磁石を用いたMRI装置においても同様の構造を適用することが可能である。また、計測空間側に凹部の無い平坦な磁石構造を持つMRI装置に対しても同様に本発明を適用することができる。
また、静磁場発生器が左右又は左右のいずれか一方のみに配置されて、計測空間内に配置される被検体の体軸に垂直な方向に静磁場を発生するMRI装置にも本発明を適用することができる。
The above describes the embodiment in which the present invention is applied to an opposed MRI apparatus in which a pair of static magnetic field generators using a superconducting magnet as a static magnetic field generation source are arranged facing each other up and down. Are not limited to the above-described embodiments, and various modifications can be made. For example, the same structure can be applied to an MRI apparatus using a permanent magnet or a normal conducting magnet. Further, the present invention can be similarly applied to an MRI apparatus having a flat magnet structure having no recess on the measurement space side.
Further, the present invention is also applied to an MRI apparatus in which a static magnetic field generator is arranged only on either the left or right side or the left and right side and generates a static magnetic field in a direction perpendicular to the body axis of the subject arranged in the measurement space. can do.

あるいは、一対の静磁場発生器ではなく、計測空間側に凹部が設けられた唯一の静磁場発生器を有するMRI装置においても本発明を適用することができる。   Alternatively, the present invention can be applied not only to a pair of static magnetic field generators but also to an MRI apparatus having a single static magnetic field generator in which a recess is provided on the measurement space side.

静磁場発生源として超電導磁石を用いた上下対向型のMRI装置の断面図。A cross-sectional view of a vertically opposed MRI apparatus using a superconducting magnet as a static magnetic field generation source. 図1のMRI装置における下側の凹部106の断面図。FIG. 2 is a cross-sectional view of a lower concave portion 106 in the MRI apparatus of FIG. シム部材の取付け穴がベース板を貫通しないRFコイルユニットの断面図。Sectional drawing of the RF coil unit in which the attachment hole of a shim member does not penetrate a base board. シム部材の取付け穴がベース板を貫通するRFコイルユニットの断面図。Sectional drawing of RF coil unit in which the mounting hole of a shim member penetrates a base board. シム部材の配置例を示す図。The figure which shows the example of arrangement | positioning of a shim member. シム部材が配置されるライン状に電気導体を配置した例を示す図。The figure which shows the example which has arrange | positioned the electrical conductor in the line shape by which a shim member is arrange | positioned. シム部材を覆うように電気導体を配置した例を示す図。The figure which shows the example which has arrange | positioned the electrical conductor so that a shim member may be covered. 本発明に係る垂直磁場方式(開放型)のMRI装置の一実施形態に関する全体斜視図。1 is an overall perspective view of an embodiment of a vertical magnetic field type (open type) MRI apparatus according to the present invention. FIG. 図8のMRI装置の構成をより詳細な機能毎に分解したブロック構成を示す図。FIG. 9 is a diagram showing a block configuration obtained by disassembling the configuration of the MRI apparatus of FIG. 8 for each more detailed function.

符号の説明Explanation of symbols

1…被検体、2…静磁場発生系、3…傾斜磁場発生系、4…シーケンサ、5…送信系、6…受信系、7…信号処理系、8…中央処理装置(CPU)、9…傾斜磁場コイル、10…傾斜磁場電源、11…高周波発信器、12…変調器、13…高周波増幅器、14a…高周波コイル(送信コイル)、14b…高周波コイル(受信コイル)、15…信号増幅器、16…直交位相検波器、17…A/D変換器、18…磁気ディスク、19…光ディスク、20…ディスプレイ、51…ガントリ、52…テーブル、53…筐体、54…処理装置   DESCRIPTION OF SYMBOLS 1 ... Subject, 2 ... Static magnetic field generation system, 3 ... Gradient magnetic field generation system, 4 ... Sequencer, 5 ... Transmission system, 6 ... Reception system, 7 ... Signal processing system, 8 ... Central processing unit (CPU), 9 ... Gradient magnetic field coil, 10 Gradient magnetic field power source, 11 High frequency transmitter, 12 Modulator, 13 High frequency amplifier, 14 a High frequency coil (transmitting coil), 14 b High frequency coil (receiving coil), 15 Signal amplifier, 16 ... Quadrature detector, 17 ... A / D converter, 18 ... Magnetic disk, 19 ... Optical disk, 20 ... Display, 51 ... Gantry, 52 ... Table, 53 ... Housing, 54 ... Processing device

Claims (3)

計測空間側に凹部が設けられた少なくとも一つの静磁場発生器を有する静磁場発生手段と、前記凹部に少なくともその一部が収容された高周波磁場発生手段と傾斜磁場発生手段を有する磁気共鳴イメージング装置において、
前記各高周波磁場発生手段は、高周波磁場発生のための高周波電気回路が配置された第1の平板と、静磁場補正手段が配置された第2の平板とを有し、
前記第1の平板が前記第2の平板よりも前記計測空間側に配置され、
前記第1の平板は前記第2の平板に着脱可能に取り付けられたことを特徴とする磁気共鳴イメージング装置。
A magnetic resonance imaging apparatus having a static magnetic field generating means having at least one static magnetic field generator provided with a recess on the measurement space side, a high-frequency magnetic field generating means and a gradient magnetic field generating means having at least a part thereof accommodated in the recess. In
Each of the high-frequency magnetic field generating means has a first flat plate on which a high-frequency electric circuit for generating a high-frequency magnetic field is arranged, and a second flat plate on which a static magnetic field correcting means is arranged,
The first flat plate is disposed closer to the measurement space than the second flat plate;
The magnetic resonance imaging apparatus according to claim 1, wherein the first flat plate is detachably attached to the second flat plate.
請求項1に記載の磁気共鳴イメージング装置において、前記静磁場補正手段はシム部材であり、前記第2の平板は少なくとも1つの前記シム部材を着脱可能に取付け可能な構造を有することを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the static magnetic field correction means is a shim member, and the second flat plate has a structure in which at least one shim member can be detachably attached. Magnetic resonance imaging device. 請求項2に記載の磁気共鳴イメージング装置において、前記第1の平板と前記第2の平板との間に、前記シム部材を覆うように電気導体を配置したことを特徴とする磁気共鳴イメージング装置。 3. The magnetic resonance imaging apparatus according to claim 2, wherein an electric conductor is disposed between the first flat plate and the second flat plate so as to cover the shim member.
JP2004082116A 2004-03-22 2004-03-22 Magnetic resonance imaging apparatus Pending JP2005261806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082116A JP2005261806A (en) 2004-03-22 2004-03-22 Magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082116A JP2005261806A (en) 2004-03-22 2004-03-22 Magnetic resonance imaging apparatus

Publications (2)

Publication Number Publication Date
JP2005261806A true JP2005261806A (en) 2005-09-29
JP2005261806A5 JP2005261806A5 (en) 2007-05-10

Family

ID=35086936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082116A Pending JP2005261806A (en) 2004-03-22 2004-03-22 Magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP2005261806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026003A (en) * 2006-07-18 2008-02-07 Jeol Ltd Nmr probe
CN111938913A (en) * 2020-08-10 2020-11-17 吉林大学 Wound infection prevention nursing equipment after endocrine dyscrasia

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238917A (en) * 1996-03-11 1997-09-16 Toshiba Corp Coil assembly for magnetic resonance diagnosis
JPH1070027A (en) * 1996-08-26 1998-03-10 Sumitomo Special Metals Co Ltd Field generator for mri
JP2000333929A (en) * 1999-05-25 2000-12-05 Hitachi Medical Corp Magnetostatic field generator for mri device and mri device using the same
JP2000333932A (en) * 1999-05-31 2000-12-05 Hitachi Medical Corp Mri device
JP2002336214A (en) * 2001-05-10 2002-11-26 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging coil structure and magnetic resonance imaging apparatus
JP2003153879A (en) * 2001-07-12 2003-05-27 Shin Etsu Chem Co Ltd Gradient magnetic field generating coil and magnetic field generating device for mri

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238917A (en) * 1996-03-11 1997-09-16 Toshiba Corp Coil assembly for magnetic resonance diagnosis
JPH1070027A (en) * 1996-08-26 1998-03-10 Sumitomo Special Metals Co Ltd Field generator for mri
JP2000333929A (en) * 1999-05-25 2000-12-05 Hitachi Medical Corp Magnetostatic field generator for mri device and mri device using the same
JP2000333932A (en) * 1999-05-31 2000-12-05 Hitachi Medical Corp Mri device
JP2002336214A (en) * 2001-05-10 2002-11-26 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging coil structure and magnetic resonance imaging apparatus
JP2003153879A (en) * 2001-07-12 2003-05-27 Shin Etsu Chem Co Ltd Gradient magnetic field generating coil and magnetic field generating device for mri

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026003A (en) * 2006-07-18 2008-02-07 Jeol Ltd Nmr probe
CN111938913A (en) * 2020-08-10 2020-11-17 吉林大学 Wound infection prevention nursing equipment after endocrine dyscrasia
CN111938913B (en) * 2020-08-10 2021-08-13 吉林大学 Wound infection prevention nursing equipment after endocrine dyscrasia

Similar Documents

Publication Publication Date Title
JP4037272B2 (en) Magnetic resonance imaging apparatus and static magnetic field generator used therefor
US6437568B1 (en) Low noise MRI scanner
US4652824A (en) System for generating images and spacially resolved spectra of an examination subject with nuclear magnetic resonance
US7375526B2 (en) Active-passive electromagnetic shielding to reduce MRI acoustic noise
US9846207B2 (en) Acoustic noise reducing RF coil for magnetic resonance imaging
JP5427604B2 (en) Open magnetic resonance imaging system
US7141974B2 (en) Active-passive electromagnetic shielding to reduce MRI acoustic noise
WO1997025726A1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
JPH07299048A (en) Magnetic resonance image pickup device
CN112840415A (en) Integrated single source cooling of superconducting magnet and RF coil in nuclear magnetic resonance apparatus
US6853855B2 (en) Magnetic resonance tomography apparatus with improved spatial and time stabilization of the homogeneity of the magnetic basic field
JP2005152632A (en) Mri system utilizing supplemental static field-shaping coils
US5977771A (en) Single gradient coil configuration for MRI systems with orthogonal directed magnetic fields
US6982553B2 (en) Radio frequency coil with two parallel end conductors
JP2005261806A (en) Magnetic resonance imaging apparatus
US9182465B2 (en) MRT gradient system with integrated main magnetic field generation
Wang Hardware of MRI System
JP4331322B2 (en) MRI equipment
WO2016199640A1 (en) Open magnetic resonance imaging apparatus
JP4503405B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JPH10262947A (en) Magnetic resonance examination system
Pavlicek MR instrumentation and image formation.
CN117452305A (en) Distributed gradient magnetic field coil and movable magnetic resonance imaging device
JP2002143123A (en) Mri equipment
JP2015053982A (en) Magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100419