JP2005259896A - Semiconductor substrate and manufacturing method thereof - Google Patents
Semiconductor substrate and manufacturing method thereof Download PDFInfo
- Publication number
- JP2005259896A JP2005259896A JP2004067707A JP2004067707A JP2005259896A JP 2005259896 A JP2005259896 A JP 2005259896A JP 2004067707 A JP2004067707 A JP 2004067707A JP 2004067707 A JP2004067707 A JP 2004067707A JP 2005259896 A JP2005259896 A JP 2005259896A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- semiconductor substrate
- crystal semiconductor
- substrate
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、半導体発光素子や電子デバイス等を作るため、単結晶半導体基板上にこの基板と異なる種類の単結晶半導体層を気相成長等により積層して作られる半導体基板及びその製造方法に関する。 The present invention relates to a semiconductor substrate formed by laminating a single crystal semiconductor layer of a different type from this substrate on a single crystal semiconductor substrate by vapor phase growth or the like in order to make a semiconductor light emitting element or an electronic device, and a method for manufacturing the same.
単結晶半導体基板上にこの基板と異なる種類の単結晶半導体層を気相成長等により積層して作られる半導体基板は、通常、シリコン(Si)やサファイア(Al2O3)、ガリウムヒ素(GaAs)等の単結晶半導体基板上に、窒化ガリウム(GaN)や炭化ケイ素(SiC)等の基板と異なる種類の単結晶半導体層を気相成長等により積層して作製される。 A semiconductor substrate formed by laminating a single crystal semiconductor layer of a different type from this substrate on a single crystal semiconductor substrate by vapor phase growth or the like is usually silicon (Si), sapphire (Al 2 O 3 ), gallium arsenide (GaAs). On a single crystal semiconductor substrate such as gallium nitride (GaN) or silicon carbide (SiC).
しかし、上記半導体基板は、異種材料である単結晶半導体基板と単結晶半導体層との間の格子定数及び熱膨張係数の差に起因して生ずる単結晶半導体層の結晶欠陥により、高品位の半導体基板の提供が困難となっている。
この傾向は、ワイドバンドギャップ材料といわれるGaNやSiC等で特に顕著であり、格子定数及び熱膨張係数の差に起因する結晶欠陥は、デバイス化した際、素子劣化や電流リークの原因となっている。
However, the semiconductor substrate is a high-quality semiconductor due to crystal defects in the single crystal semiconductor layer caused by a difference in lattice constant and thermal expansion coefficient between the single crystal semiconductor substrate and the single crystal semiconductor layer which are different materials. It is difficult to provide a substrate.
This tendency is particularly noticeable in GaN, SiC, etc., which are said to be wide band gap materials, and crystal defects caused by differences in lattice constants and thermal expansion coefficients cause element deterioration and current leakage when formed into devices. Yes.
従来、上述した不具合を解消するため、図5に示すように、Siからなる単結晶半導体基板31上にチッ化アルミニウム(AlN)結晶からなるバッファー層32を気相成長により積層し、このバッファー層32上に単結晶半導体基板31と異なるGaNからなる単結晶半導体層33を気相成長により積層してなる半導体基板が知られている。
Conventionally, in order to solve the above-described problems, a
しかし、上記半導体基板では、基本的に下地たる単結晶半導体基板及び界面の情報を引き継いでしまうため、特に高密度の結晶欠陥が生じた場合、その影響を低減することは困難である。
又、バッファー層がドーパントとなる故にキャリア濃度の制御を難しくする場合がある。
Further, since the buffer layer becomes a dopant, it may be difficult to control the carrier concentration.
本発明は、格子定数及び熱膨張係数の差に起因して生じる単結晶半導体層の結晶欠陥を低減した高品位の半導体基板及びその製造方法の提供を課題とする。 An object of the present invention is to provide a high-quality semiconductor substrate in which crystal defects of a single crystal semiconductor layer caused by a difference between a lattice constant and a thermal expansion coefficient are reduced, and a manufacturing method thereof.
本発明の第1の半導体基板の製造方法は、単結晶半導体基板上にこの基板と異なる種類の単結晶半導体層を積層して半導体基板を製造するに際し、単結晶半導体基板の上面に微細な台地状の多数の突起を形成した後、単結晶半導体基板の上面に突起間の隙間を埋めるようにしてバッファー層を積層し、しかる後に、バッファー層上に単結晶半導体基板と異なる種類の単結晶半導体層を積層することを特徴とする。 According to the first method of manufacturing a semiconductor substrate of the present invention, when a semiconductor substrate is manufactured by stacking a single crystal semiconductor layer of a different type from the substrate on the single crystal semiconductor substrate, a fine plateau is formed on the upper surface of the single crystal semiconductor substrate. After forming a large number of protrusions, a buffer layer is stacked on the upper surface of the single crystal semiconductor substrate so as to fill the gaps between the protrusions, and then a single crystal semiconductor of a different type from the single crystal semiconductor substrate is formed on the buffer layer. It is characterized by laminating layers.
第2の半導体基板の製造方法は、半導体単結晶基板上にこの基板と異なる種類の単結晶半導体層を積層して半導体基板を製造するに際し、単結晶半導体基板の上面に微細な台地状の多数の突起を形成した後、単結晶半導体基板の上面に突起間の隙間を埋めることなくバッファー層を積層し、しかる後に、バッファー層上に単結晶半導体基板と異なる種類の単結晶半導体層を積層することを特徴とする。 The second method for manufacturing a semiconductor substrate is to manufacture a semiconductor substrate by stacking a single crystal semiconductor layer of a different type from the substrate on the semiconductor single crystal substrate. After forming the protrusions, a buffer layer is stacked on the upper surface of the single crystal semiconductor substrate without filling the gaps between the protrusions, and then a single crystal semiconductor layer of a different type from the single crystal semiconductor substrate is stacked on the buffer layer. It is characterized by that.
又、第3の半導体基板の製造方法は、第1又は第2の方法において、前記単結晶半導体層の積層後、この単結晶半導体層を単結晶半導体基板から分離することを特徴とする。 According to a third method for manufacturing a semiconductor substrate, in the first or second method, after the single crystal semiconductor layer is stacked, the single crystal semiconductor layer is separated from the single crystal semiconductor substrate.
一方、半導体基板は、第1〜第3のいずれかの半導体基板の製造方法で製造したことを特徴とする。 On the other hand, the semiconductor substrate is manufactured by any one of the first to third methods for manufacturing a semiconductor substrate.
第1の半導体基板及びその製造方法によれば、単結晶半導体基板と単結晶半導体層との格子定数及び熱膨張係数の差による歪が発生したとしても、それが単結晶半導体基板の上面に形成された微細な台地状(メサ形)の多数の突起とバッファー層界面に集中し、微細な台地状の多数の突起が形成された単結晶半導体基板の上面が結晶的に壊れることにより応力の集中が解消されるので、単結晶半導体層の結晶欠陥を低減でき、高品位の半導体基板とすることができる。 According to the first semiconductor substrate and the method for manufacturing the same, even if distortion due to the difference in lattice constant and thermal expansion coefficient between the single crystal semiconductor substrate and the single crystal semiconductor layer occurs, it is formed on the upper surface of the single crystal semiconductor substrate. Concentrated on the interface between the large number of fine plate-like (mesa-shaped) protrusions and the buffer layer, and the upper surface of the single crystal semiconductor substrate on which the many fine plate-like protrusions are formed is broken crystalline. Therefore, crystal defects in the single crystal semiconductor layer can be reduced, and a high-quality semiconductor substrate can be obtained.
第2の半導体基板及びその製造方法によれば、単結晶半導体基板と単結晶半導体層との格子定数及び熱膨張係数の差による歪が発生したとしても、それが単結晶半導体基板の上面に形成された微細な台地状の多数の突起とバッファー層界面に集中し、微細な台地状の多数の突起が形成された単結晶半導体基板の上面が結晶的に第1のもの及び方法より多く壊されることにより応力の集中が解消されるので、単結晶半導体層の結晶欠陥を第1のもの及び方法より格段に低減でき、より高品位の半導体基板とすることができる。 According to the second semiconductor substrate and the method for manufacturing the same, even if distortion occurs due to a difference in lattice constant and thermal expansion coefficient between the single crystal semiconductor substrate and the single crystal semiconductor layer, it is formed on the upper surface of the single crystal semiconductor substrate. The upper surface of the single crystal semiconductor substrate on which a large number of fine plate-like protrusions and a plurality of fine plate-like protrusions are concentrated is crystallized more than the first and method. Since stress concentration is thereby eliminated, crystal defects in the single crystal semiconductor layer can be remarkably reduced as compared with the first and method, and a higher quality semiconductor substrate can be obtained.
又、第3の半導体基板及びその製造方法によれば、第1又は第2のもの及び方法による作用効果の他、単結晶半導体基板との格子定数及び熱膨張係数の差を生じないので、素子作製時の熱サイクル(例えば、犠牲酸化や電極形成後のアロイ工程)にて、特に、冷却過程で再度導入される結晶欠陥を抑制することができる。 In addition, according to the third semiconductor substrate and the manufacturing method thereof, in addition to the effects of the first or second substrate and method, there is no difference in lattice constant and thermal expansion coefficient from the single crystal semiconductor substrate. Crystal defects that are reintroduced in the cooling process can be particularly suppressed in the thermal cycle (for example, the sacrificial oxidation or alloy process after electrode formation) at the time of fabrication.
単結晶半導体基板としては、Si、GaAs、ガリウムリン(GaP)、インジウムリン(InP)、SiC、GaN、サファイア、その他の半導体からなるものが用いられる。
バッファー層及び単結晶半導体層としては、SiC、GaNや窒化アルミニウム(AlN)等の窒化物、GaAs系、InP、ゲルマニウム(Ge)、酸化亜鉛(ZnO)等の酸化物系、ダイヤモンド薄膜、ガリウムアルミニウムヒ素(GaAlAs)等の三元系、ガリウムヒ素アルミニウムリン(GaAsAlP)等の四元系、その他の単結晶半導体基板と異なる半導体からなるものが用いられる。
バッファー層は、単結晶であってもよいが、非晶質や多結晶であっても特に問題はない。
なお、単結晶半導体基板、バッファー層及び単結晶半導体層に関しては、目的に合致する材質であれば、上述したものに限らず、例えば、石英、ニッケル(Ni)や白金(Pt)等の金属からなるものであっても構わない。
As the single crystal semiconductor substrate, a substrate made of Si, GaAs, gallium phosphide (GaP), indium phosphide (InP), SiC, GaN, sapphire, or other semiconductors is used.
Buffer layers and single crystal semiconductor layers include SiC, GaN, nitrides such as aluminum nitride (AlN), oxides such as GaAs, InP, germanium (Ge), and zinc oxide (ZnO), diamond thin films, gallium aluminum A ternary system such as arsenic (GaAlAs), a quaternary system such as gallium arsenide aluminum phosphorus (GaAsAlP), or other semiconductors different from a single crystal semiconductor substrate is used.
The buffer layer may be single crystal, but there is no particular problem even if it is amorphous or polycrystalline.
Note that the single crystal semiconductor substrate, the buffer layer, and the single crystal semiconductor layer are not limited to those described above as long as they meet the purpose. For example, from a metal such as quartz, nickel (Ni), or platinum (Pt) It does not matter.
単結晶半導体基板の上面に形成される微細な台地状の突起の1個の面積は、0.15〜7E−19mm2が好ましく、より好ましくは6E−5〜7E−13mm2である。
突起の1個の面積が7E−19mm2未満若しくは0.15mm2を超えると、欠陥低減効果が失われる。
又、微細な台地状の多数の突起は、ピッチ、隣との隙間の深さが、共に0.001〜500μmが好ましく、より好ましくは50〜0.1μmである。
ピッチ、隣との隙間の深さが、0.001μm未満若しくは500μmを超えると、欠陥低減効果が失われる。
更に、突起の側面の傾斜角度は、30〜150°が好ましく、より好ましくは50〜70°である。
突起の側面の傾斜角度が、30°未満若しくは150°を超えると、欠陥低減効果が失われる。
The area of one of the fine plate-like protrusions formed on the upper surface of the single crystal semiconductor substrate is preferably 0.15 to 7E-19 mm 2 , more preferably 6E-5 to 7E-13 mm 2 .
When the area of one protrusion is less than 7E-19 mm 2 or exceeds 0.15 mm 2 , the defect reduction effect is lost.
In addition, the pitch and the depth of the gap between the adjacent many protrusions in the form of a fine plateau are preferably 0.001 to 500 μm, more preferably 50 to 0.1 μm.
When the pitch and the depth of the gap between adjacent pitches are less than 0.001 μm or more than 500 μm, the defect reduction effect is lost.
Furthermore, the inclination angle of the side surface of the protrusion is preferably 30 to 150 °, more preferably 50 to 70 °.
If the inclination angle of the side surface of the protrusion is less than 30 ° or exceeds 150 °, the defect reduction effect is lost.
単結晶半導体基板の上面への微細な台地状の多数の突起の形成は、単結晶半導体基板の上面に微細マスクパターンを切った後、リアリティブ・イオン・エッチング(RIE:Reactive Ion Etching)を行ったり、非等方性(異方性)エッチングやケミカル・メカニカル・ポリシング(CMP:Chemical Mechanical Polishing)との組み合わせ等により行うか、あるいはエピタキシャル成長を用いたアイランド成長、陽極化成処理、その他により行ってもよい。
なお、単結晶半導体基板の上面の清浄度と均一性を保てれば、機械研磨を用いてもよい。
To form a large number of fine plateau protrusions on the top surface of a single crystal semiconductor substrate, a fine mask pattern is cut on the top surface of the single crystal semiconductor substrate and then reactive ion etching (RIE) is performed. Or by an anisotropic (anisotropic) etching, a combination with chemical mechanical polishing (CMP), etc., or by island growth using epitaxial growth, anodizing, etc. Good.
Note that mechanical polishing may be used as long as the cleanliness and uniformity of the upper surface of the single crystal semiconductor substrate can be maintained.
バッファー層及び単結晶半導体層の気相成長には、MOCVD(Metal Organic Chemical Vapor Deposition)法、MBE(Molecular Bean Epitaxy)法、LPE(Liquid Phase Epitaxy)法、昇華法(改変Lelv法)、その他の方法が用いられる。 For vapor phase growth of buffer layer and single crystal semiconductor layer, MOCVD (Metal Organic Chemical Vapor Deposition) method, MBE (Molecular Bean Epitaxy) method, LPE (Liquid Phase Epitaxy) method, sublimation method (modified Lelv method), etc. The method is used.
単結晶半導体基板からの単結晶半導体層の分離は、単結晶半導体基板を化学的若しくは機械的に除去して行う。
化学的な単結晶半導体基板の除去には、フッ硝酸、他のエッチャントを用い、機械的な単結晶半導体基板の除去には、研磨機等を用いる。
The single crystal semiconductor layer is separated from the single crystal semiconductor substrate by chemically or mechanically removing the single crystal semiconductor substrate.
Fluorine nitric acid and other etchants are used to remove the chemical single crystal semiconductor substrate, and a polishing machine or the like is used to remove the mechanical single crystal semiconductor substrate.
図1は、本発明に係る半導体基板の実施例1を示す要部の概念図である。 FIG. 1 is a conceptual diagram of a main part showing a first embodiment of a semiconductor substrate according to the present invention.
図中1は、(100)Siからなる厚さ645μmの単結晶半導体基板で、この単結晶半導体基板1の上面には、微細な台地状若しくはアイランド状の多数の突起2が形成されている。
微細な台地状の突起2の1個の面積は、1E−5mm2であり、又、微細な台地状の多数の突起2は、ピッチを1μm、隣との隙間の深さを1μmとし、かつ、側面の傾斜角度を60°とされている。
単結晶半導体基板1の上面には、多結晶SiCからなる厚さ0.1μmのバッファー層3が各突起2間の隙間を埋めるようにして積層されており、このバッファー層3上には、単結晶SiCからなる厚さ20μmの単結晶半導体層4が積層されている。
In the figure, reference numeral 1 denotes a single crystal semiconductor substrate made of (100) Si and having a thickness of 645 μm. On the upper surface of the single crystal semiconductor substrate 1, a number of fine plate-like or island-like projections 2 are formed.
The area of one of the fine plate-like protrusions 2 is 1E-5 mm 2 , and the number of fine plate-like protrusions 2 has a pitch of 1 μm and a gap depth of 1 μm, and The inclination angle of the side surface is 60 °.
On the upper surface of the single crystal semiconductor substrate 1, a
上記半導体基板を製造するため、先ず、厚さ645μmの(100)Si基板の上面に微細マスクパターンを切り、引き続いてRIE法により(100)Si基板の上面に微細な台地状の多数の突起を形成した。
次に、MOCVD法により、(100)Si基板の上面にSiCバッファー層を突起間の隙間を埋めるように積層した後、引き続いてSiC単結晶半導体層を積層した。
本実施例によるSiCバッファー層及びSiC単結晶半導体層の成膜条件は、下記の通りである。
1.Si基板をH2雰囲気中1000℃の条件にてアニールを行い、自然酸化膜を除去する。
2.基板温度を400〜600℃とし、SiCバッファー層を50〜100nm程度成膜する。本実施例では、原料にモノメチルシラン(CH3SiH3)を用いた。
3.次に、基板温度を800〜1000℃とし、SiC単結晶層を5μm以上成膜する。本実施例では、原料としてモノメチルシランを用いた。
なお、単結晶半導体基板面として(100)面を挙げたが、(111)面等の他の面であってもよい。
又、SiC単結晶半導体層の平坦性に関しては、その直前に成長させるSiCバッファー層の成長条件により制御することが可能であった。
In order to manufacture the semiconductor substrate, first, a fine mask pattern is cut on the upper surface of the (100) Si substrate having a thickness of 645 μm, and a number of fine plate-like protrusions are subsequently formed on the upper surface of the (100) Si substrate by the RIE method. Formed.
Next, an SiC buffer layer was laminated on the upper surface of the (100) Si substrate by MOCVD so as to fill the gaps between the protrusions, and then an SiC single crystal semiconductor layer was laminated.
The film forming conditions of the SiC buffer layer and the SiC single crystal semiconductor layer according to this example are as follows.
1. The Si substrate is annealed in a H 2 atmosphere at 1000 ° C. to remove the natural oxide film.
2. The substrate temperature is set to 400 to 600 ° C., and the SiC buffer layer is formed to a thickness of about 50 to 100 nm. In this example, monomethylsilane (CH 3 SiH 3 ) was used as a raw material.
3. Next, the substrate temperature is set to 800 to 1000 ° C., and a SiC single crystal layer is formed to a thickness of 5 μm or more. In this example, monomethylsilane was used as a raw material.
Note that although the (100) plane is given as the single crystal semiconductor substrate surface, it may be another plane such as a (111) plane.
Further, the flatness of the SiC single crystal semiconductor layer could be controlled by the growth conditions of the SiC buffer layer grown immediately before.
上述した半導体基板の転位密度を調べたところ、図2において直線Aで示すようになり、表面欠陥、双晶、積層欠陥等が、図2において直線Bで示す従来の半導体基板((100)Siミラーウェハー上にSiCバッファー層及びSiC半導体層を成膜したもの)のそれらに比べ、1桁以上低減していることが確認された。 When the dislocation density of the above-described semiconductor substrate was examined, it became as shown by a straight line A in FIG. 2, and surface defects, twins, stacking faults, and the like were found in a conventional semiconductor substrate ((100) Si shown by a straight line B in FIG. Compared to those obtained by forming a SiC buffer layer and a SiC semiconductor layer on a mirror wafer), it was confirmed that the number was reduced by one digit or more.
図3は、本発明に係る半導体基板の実施例2を示す要部の概念図である。 FIG. 3 is a conceptual diagram of a main part showing a second embodiment of a semiconductor substrate according to the present invention.
この半導体板は、実施例1のものが、バッファー層3を、突起2の間の隙間を埋めるようにして単結晶半導体基板1の上面に形成したのに対し、バッファー層3′を、突起2間の隙間を埋めることなく単結晶半導体基板1の上面に形成したものであり、又、突起2間の隙間を埋めることなくバッファー層3′を成長させるため、(100)Si基板の上面と平行な方向への成長を選択的に助長する下記の条件でMOCVD法により成膜を行ったものである。
SiCバッファー層の成膜条件は、基本的には実施例1と同じであるが、本実施例では炉内圧力を実施例1より10%落とした。これにより、Si基板上面と平行な方向の成長を助長した。
他の構成は、実施例1と同様であるので、同一の構成部材等には同一の符号を付してその説明を省略し、又、他の製造方法は、実施例1と同様であるので、その説明を省略する。
In the semiconductor plate of Example 1, the
The deposition conditions for the SiC buffer layer were basically the same as in Example 1, but in this example, the furnace pressure was 10% lower than in Example 1. This encouraged growth in a direction parallel to the top surface of the Si substrate.
Since other configurations are the same as those in the first embodiment, the same reference numerals are given to the same components and the description thereof is omitted, and other manufacturing methods are the same as those in the first embodiment. The description is omitted.
上述した半導体基板の転位密度を調べたところ、図2において直線Cで示すようになり、従来のそれに比べ2桁以上低減していることが確認された。 When the dislocation density of the above-described semiconductor substrate was examined, it was as shown by a straight line C in FIG. 2, and it was confirmed that the dislocation density was reduced by two orders of magnitude or more compared to the conventional one.
図4は、本発明に係る半導体基板の実施例3を示す要部の概念図である。 FIG. 4 is a conceptual diagram of a main part showing a third embodiment of a semiconductor substrate according to the present invention.
この半導体基板は、前述した実施例1及び実施例2のものが、上面に微細な台形状の多数の突起2を有する単結晶半導体基板1、バッファー層3,3′及び単結晶半導体層4からなる3層構造となっているのに対し、多結晶SiCからなる厚さ0.1μmのバッファー層3″と、このバッファー層3″上に積層した単結晶SiCからなる厚さ20μmの単結晶半導体層4との2層構造となっているものである。
This semiconductor substrate is the same as that of Example 1 and Example 2 described above from the single crystal semiconductor substrate 1, buffer layers 3, 3 'and single
上記半導体基板を製造するには、実施例1又は実施例2の半導体基板の単結晶半導体層4とバッファー層3(3′)を単結晶半導体基板1から分離するため、フッ硝酸を用いて単結晶半導体基板1を化学的に除去する。
In order to manufacture the semiconductor substrate, the single
上述した半導体基板の転位密度を調べたところ、実施例2のものとほぼ同様であった。
又、素子作製時の熱サイクルにて、特に、冷却過程で再導入される欠陥を抑制でき、従来のものより1桁以上低減できることをが確認された。
When the dislocation density of the semiconductor substrate was examined, it was almost the same as that of Example 2.
It was also confirmed that defects introduced again during the cooling process can be suppressed in the thermal cycle during device fabrication, and can be reduced by an order of magnitude or more from the conventional one.
1 単結晶半導体基板
2 突起
3 バッファー層
3′ バッファー層
3″ バッファー層
4 単結晶半導体層
DESCRIPTION OF SYMBOLS 1 Single crystal semiconductor substrate 2
Claims (4)
A semiconductor substrate manufactured by the method for manufacturing a semiconductor substrate according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004067707A JP2005259896A (en) | 2004-03-10 | 2004-03-10 | Semiconductor substrate and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004067707A JP2005259896A (en) | 2004-03-10 | 2004-03-10 | Semiconductor substrate and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005259896A true JP2005259896A (en) | 2005-09-22 |
Family
ID=35085344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004067707A Pending JP2005259896A (en) | 2004-03-10 | 2004-03-10 | Semiconductor substrate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005259896A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018101721A (en) * | 2016-12-21 | 2018-06-28 | 株式会社ニューフレアテクノロジー | Vapor growth method |
-
2004
- 2004-03-10 JP JP2004067707A patent/JP2005259896A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018101721A (en) * | 2016-12-21 | 2018-06-28 | 株式会社ニューフレアテクノロジー | Vapor growth method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4741572B2 (en) | Nitride semiconductor substrate and manufacturing method thereof | |
JP5317398B2 (en) | Gallium nitride device substrate containing elements that change lattice parameters | |
JP4597259B2 (en) | Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor device, group III nitride semiconductor free-standing substrate, and methods of manufacturing the same | |
JP5371430B2 (en) | Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor | |
JP4880456B2 (en) | Nitrogen compound semiconductor device and manufacturing method thereof | |
CN102257189B (en) | The manufacture of the free-standing gallium nitride substrates of fabricating low-defect-density and the device by its manufacture | |
TWI437637B (en) | Method for manufacturing gallium nitride single crystalline substrate using self-split | |
JP3761418B2 (en) | Compound crystal and process for producing the same | |
JP2011084469A (en) | METHOD AND INGOT FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE | |
JP3821232B2 (en) | Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate | |
CN100505164C (en) | Fabrication process of nitride semiconductor substrate and composite material substrate | |
TWI440073B (en) | Method for fabricating circuit structure | |
JP5192785B2 (en) | Manufacturing method of nitride semiconductor device | |
WO2005088687A1 (en) | Method for manufacturing gallium nitride semiconductor substrate | |
JP5065625B2 (en) | Manufacturing method of GaN single crystal substrate | |
CN111681946B (en) | Preparation method of gallium nitride single crystal substrate | |
JP2005306680A (en) | Semiconductor substrate, stand-alone substrate, and method for manufacturing these, as well as method for polishing substrate | |
JP2004107114A (en) | Method of manufacturing group iii nitride compound semiconductor substrate | |
JP4035971B2 (en) | Manufacturing method of semiconductor crystal | |
JP4130389B2 (en) | Method for producing group III nitride compound semiconductor substrate | |
EP2869331A1 (en) | Episubstrates for selective area growth of group iii-v material and a method for fabricating a group iii-v material on a silicon substrate | |
JP7221302B2 (en) | Semiconductor element manufacturing method, semiconductor element and semiconductor device | |
KR100323710B1 (en) | method for fabricating GaN semiconductor laser substate | |
JP2005259896A (en) | Semiconductor substrate and manufacturing method thereof | |
CN115428120A (en) | Manufacturing method of semiconductor structure and semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070711 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20071106 |