JP2005259827A - Nitride semiconductor light emitting device and method of growing nitride semiconductor - Google Patents

Nitride semiconductor light emitting device and method of growing nitride semiconductor Download PDF

Info

Publication number
JP2005259827A
JP2005259827A JP2004066477A JP2004066477A JP2005259827A JP 2005259827 A JP2005259827 A JP 2005259827A JP 2004066477 A JP2004066477 A JP 2004066477A JP 2004066477 A JP2004066477 A JP 2004066477A JP 2005259827 A JP2005259827 A JP 2005259827A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
light emitting
layer
emitting device
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004066477A
Other languages
Japanese (ja)
Inventor
Akinori Koketsu
明伯 纐纈
Norihito Kawaguchi
紀仁 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004066477A priority Critical patent/JP2005259827A/en
Publication of JP2005259827A publication Critical patent/JP2005259827A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride semiconductor light emitting device for emitting a light at a high brightness in a range from UV rays to near IR rays, and a nitride semiconductor growing method which grows the nitride semiconductor having a wide percentage range of In and a controlled composition on the atomic level to obtain an active layer having a high emission efficiency. <P>SOLUTION: The nitride semiconductor light emitting device has an n-type nitride semiconductor, a light emitting layer and a p-type nitride semiconductor grown in this order on a crystal growing substrate. The light emitting layer has an InN well layer and a barrier layer of In<SB>x</SB>Ga<SB>1-x</SB>N(0≤x≤0.3) or aluminum gallium nitride (Al<SB>y</SB>Ga<SB>1-y</SB>N:0≤y≤0.3), and the well layer and the barrier layer are each 10 nm or less, thus forming a superlattice structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、紫外線から近赤外線まで高輝度で発光する窒化物半導体発光素子と窒化物半導体の成長方法に関する。   The present invention relates to a nitride semiconductor light emitting device that emits light with high luminance from ultraviolet to near infrared and a method for growing a nitride semiconductor.

青色発光ダイオード等で使用される窒化ガリウム系半導体として、例えば特許文献1「窒化インジウムガリウム半導体の成長方法」が開示されている。この特許文献1では、窒化インジウムガリウム(InGa1−xN:0<x≦1、以下単に「InGaN」と表す)の発光層を600℃より高い成長温度で成長させている。なお特許文献1の方法で得られたInGaN中のInの比率xは0.25であり、発光波長は約450nmの青色である。 As a gallium nitride semiconductor used in a blue light emitting diode or the like, for example, Patent Document 1 “Growth method of indium gallium nitride semiconductor” is disclosed. In Patent Document 1, a light emitting layer of indium gallium nitride (In x Ga 1-x N: 0 <x ≦ 1, hereinafter simply referred to as “InGaN”) is grown at a growth temperature higher than 600 ° C. The In ratio x in InGaN obtained by the method of Patent Document 1 is 0.25, and the emission wavelength is blue of about 450 nm.

一方、非特許文献1のFig.6に、InGaNの発光層におけるInの比率xと光子エネルギー(Photon energy:eV)との関係が示されており、Inの比率xにより、発光する波長が変化し、x=0.25付近で波長450nm前後の青色、x=0.5付近で波長830nm付近の近赤外、その中間において波長650nm付近の赤色を発光させることができることが知られている。   On the other hand, FIG. 6 shows the relationship between the In ratio x and the photon energy (Photon energy: eV) in the InGaN light-emitting layer, and the emission wavelength varies depending on the In ratio x, and around x = 0.25. It is known that blue light having a wavelength of about 450 nm, near infrared light having a wavelength of about 830 nm near x = 0.5, and red light having a wavelength of about 650 nm in the middle can be emitted.

さらに、非特許文献2は、InNの禁制帯幅は0.7〜0.8eVにあることを示しており、その結果窒化物半導体の光デバイスとしての適用範囲は、AlNの6.2eVからInNの0.8eVまでカバーすることになり、遠紫外線の200nmから光通信波長の1550nmまで広がることを示している。   Furthermore, Non-Patent Document 2 shows that the forbidden band width of InN is 0.7 to 0.8 eV. As a result, the range of application of nitride semiconductors as optical devices ranges from 6.2 eV for AlN to InN. It is shown that it extends from 200 nm of deep ultraviolet rays to 1550 nm of optical communication wavelength.

なお、本発明に関連するその他の文献として、特許文献2、3、非特許文献3〜5があげられる。
特許文献2の「窒化物半導体レーザ素子」は、それぞれInGa1−xN(0≦x≦1)からなる井戸層と障壁層を含む多重量子井戸からなる活性層を有する窒化ガリウム系半導体レーザ素子において、井戸層と障壁層とのバンドギャップエネルギーの差が0.20eV以上、0.30eV以下であるものである。
Other documents related to the present invention include Patent Documents 2 and 3 and Non-Patent Documents 3 to 5.
The “nitride semiconductor laser device” of Patent Document 2 is a gallium nitride semiconductor having a well layer made of In x Ga 1-x N (0 ≦ x ≦ 1) and an active layer made of multiple quantum wells including a barrier layer. In the laser element, the difference in band gap energy between the well layer and the barrier layer is 0.20 eV or more and 0.30 eV or less.

特開平6−196757号公報JP-A-6-196757 特開2001−148546号公報JP 2001-148546 A 特開2003−60237号公報、「半導体結晶膜の成長方法」Japanese Patent Application Laid-Open No. 2003-60237, “Method of Growing Semiconductor Crystal Film”

M.HORI et al., ”Optical Properties ofInxGa1-xN with Entire Alloy Composition on InN Buffer Layer Grown by RF-MBE”, phys. stat.sol.(b) 234, No.3, 750-754 (2002).M.M. HORI et al. "Optical Properties of InxGa1-xN with Endier Alloy Composition on InN Buffer Layer Grown by RF-MBE", phys. stat. sol. (B) 234, no. 3, 750-754 (2002). 名西・荒木・宮嶋、「InNおよび InGaNの結晶成長と構造および特性の評価」、応用物理 第72巻 第5号 p565-571(2003)Menishi, Araki, Miyajima, “InN and InGaN crystal growth, structure and evaluation of properties”, Applied Physics Vol.72, No.5, p565-571 (2003) D.Doppalapudi et al., “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy”, Journal of applied physics, vol.84, No.3, 1389-1395(1998).D. Doppalupdi et al. "Phase separation and ordering in InGaN allies grown by molecular beam epitaxy", Journal of applied physics, vol. 84, no. 3, 1389-1395 (1998). 森・伊藤・寒川・纐纈、「InGaN薄膜における自然超格子構造」、結晶成長学会誌、vol.30 No.3 p97(2003).Mori, Ito, Samukawa, Kaoru, “Natural superlattice structure in InGaN thin film”, Journal of Crystal Growth Society, vol. 30 No. 3 p97 (2003). 河東田 隆、「レーザラマン分光法による半導体の評価」、東京大学出版会、P167-169.Takashi Katoda, “Evaluation of Semiconductors by Laser Raman Spectroscopy”, University of Tokyo Press, P167-169.

上述したように、窒化物半導体の光デバイスとしての適用範囲は、AlNの6.2eVからInNの0.8eVまでカバーすることができ、遠紫外線の200nmから光通信波長の1550nmまで発光する可能性を秘めている。
しかし、従来例で開示されている窒化物半導体素子では、窒化インジウムガリウム(InGa1−xN:0<x≦1)中のInの比率xは、最大でもたかだか0.25程度にすぎず、x値が0.5以上では結晶性に優れた窒化インジウムガリウムが得られにくく、黄色から近赤外発光の発光ダイオード、レーザは実現できなかった。
As described above, the application range of nitride semiconductors as an optical device can cover from 6.2 eV of AlN to 0.8 eV of InN, and can emit light from 200 nm of deep ultraviolet light to 1550 nm of optical communication wavelength. I have a secret.
However, in the nitride semiconductor device disclosed in the conventional example, the ratio x of In in indium gallium nitride (In x Ga 1-x N: 0 <x ≦ 1) is at most only about 0.25. In addition, when the x value is 0.5 or more, it is difficult to obtain indium gallium nitride excellent in crystallinity, and a light emitting diode or laser emitting yellow to near infrared light cannot be realized.

この原因は、以下のように説明することができる。
第1の原因は、図7に示す、窒化インジウムガリウム中のInのモル分率xと平衡温度との関係である。この図に示すように、InGa1−xN中のInのモル分率xを約0.5以上に高めと、その平衡温度は常圧において約600℃以下となる。そのため、サファイア基板の表面にInGaNの半導体被膜を成長させる過程で、サファイア基板や形成されたInGaNを約600℃以上に加熱すると、InGaNが熱分解してしまう。
一方、従来の有機金属気相成長法で高品質の発光層である窒化インジウムガリウムを得るためには、600℃を超えた基板温度で作製する必要があった。そのため、高濃度のインジウムを含むInGaNは相分離を起こし、現実問題として赤を超える波長を発光するInGaNの成長に成功したことはなかった。すなわち、600℃以下では高品質の窒化物半導体の成長は困難であった。
This cause can be explained as follows.
The first cause is the relationship between the molar fraction x of In in indium gallium nitride and the equilibrium temperature shown in FIG. As shown in this figure, when the molar fraction x of In in In x Ga 1-x N is increased to about 0.5 or more, the equilibrium temperature becomes about 600 ° C. or less at normal pressure. Therefore, in the process of growing an InGaN semiconductor film on the surface of the sapphire substrate, if the sapphire substrate or the formed InGaN is heated to about 600 ° C. or higher, the InGaN is thermally decomposed.
On the other hand, in order to obtain indium gallium nitride which is a high-quality light emitting layer by the conventional metal organic vapor phase epitaxy method, it was necessary to produce the substrate at a substrate temperature exceeding 600 ° C. Therefore, InGaN containing a high concentration of indium causes phase separation, and as a practical problem, InGaN that emits light having a wavelength exceeding red has never been successfully grown. That is, it is difficult to grow a high-quality nitride semiconductor at 600 ° C. or lower.

第2の原因は、非特許文献3にも記載されているように、窒化インジウムガリウムの混晶を構成するInNとGaNは結合長が約11%異なるため、巨視的には均一であっても、原子レベルでは混晶半導体の組成は制御されておらず、そのため均一な混合結晶を得ることが難しく、In濃度が高くなると相分離、インジウムドロップレットが発生し、高品質なInGaNを得ることが困難であった。   As described in Non-Patent Document 3, the second cause is that InN and GaN constituting a mixed crystal of indium gallium nitride differ in bond length by about 11%, even if macroscopically uniform. At the atomic level, the composition of the mixed crystal semiconductor is not controlled, so it is difficult to obtain a uniform mixed crystal, and when the In concentration increases, phase separation and indium droplets occur, and high quality InGaN can be obtained. It was difficult.

本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、紫外線から近赤外線まで高輝度で発光する窒化物半導体発光素子と、この窒化物半導体をInの比率範囲が広く原子レベルでも制御された組成で成長させ、発光効率の高い活性層を得ることができる窒化物半導体の成長方法を提供することにある。   The present invention has been made to solve such problems. That is, an object of the present invention is to grow a nitride semiconductor light emitting device that emits light with high luminance from ultraviolet to near infrared, and to grow the nitride semiconductor with a composition having a wide In ratio range and controlled even at the atomic level. An object of the present invention is to provide a method for growing a nitride semiconductor capable of obtaining a high active layer.

本発明によれば、結晶成長用基板上に、n型窒化物半導体、発光層、およびp型窒化物半導体を順に成長させた窒化物半導体発光素子であって、
前記発光層は、InNからなる井戸層と、InGa1-xN(0≦x≦0.3)又は窒化アルミニウムガリウム(AlGa1−yN:0≦y≦0.3)からなる障壁層とを有し、該井戸層と障壁層の膜厚はそれぞれ10nm以下であり、これにより超格子構造を形成する、ことを特徴とする窒化物半導体発光素子が提供される。
According to the present invention, there is provided a nitride semiconductor light-emitting device in which an n-type nitride semiconductor, a light-emitting layer, and a p-type nitride semiconductor are sequentially grown on a crystal growth substrate,
The light emitting layer includes a well layer made of InN and In x Ga 1-x N (0 ≦ x ≦ 0.3) or aluminum gallium nitride (Al y Ga 1-y N: 0 ≦ y ≦ 0.3). There is provided a nitride semiconductor light emitting device characterized in that the well layer and the barrier layer each have a thickness of 10 nm or less, thereby forming a superlattice structure.

また本発明によれば、結晶成長用基板上に、n型窒化物半導体、発光層、およびp型窒化物半導体を順に成長させる窒化物半導体の成長方法であって、
結晶成長用基板を反応容器内で約600℃以下の温度に保持し、反応容器内に前駆体を順次供給し、基板表面にパルスレーザを照射しその照射部分にInNからなる井戸層と、InGa1-xN(0≦x≦0.3)又は窒化アルミニウムガリウム(AlGa1−yN:0≦y≦0.3)からなる障壁層とを有機金属気相成長法により交互にそれぞれ10nm以下の膜厚に成長させ、これにより超格子構造を形成する、ことを特徴とする窒化物半導体の成長方法が提供される。
Further, according to the present invention, there is provided a nitride semiconductor growth method for sequentially growing an n-type nitride semiconductor, a light emitting layer, and a p-type nitride semiconductor on a crystal growth substrate,
The substrate for crystal growth is maintained at a temperature of about 600 ° C. or less in the reaction vessel, precursors are sequentially supplied into the reaction vessel, the surface of the substrate is irradiated with a pulsed laser, a well layer made of InN is formed on the irradiated portion, and In x Ga 1-x N (0 ≦ x ≦ 0.3) or aluminum gallium nitride (Al y Ga 1-y N : 0 ≦ y ≦ 0.3) alternately by organometallic vapor phase epitaxy and a barrier layer made of In addition, a method for growing a nitride semiconductor is provided, in which each is grown to a thickness of 10 nm or less, thereby forming a superlattice structure.

上記本発明の手段によれば、結晶成長用基板を反応容器内で約600℃以下の温度に保持するので、基板の表面にInGaN(又はAlGaN)の半導体被膜が成長する過程でその熱分解を防止することができる。
また、反応容器内に前駆体を順次供給し、基板表面にパルスレーザを照射しその照射部分にInNからなる井戸層と、InGa1-xN(0≦x≦0.3)又は窒化アルミニウムガリウム(AlGa1−yN:0≦y≦0.3)からなる障壁層とを有機金属気相成長法により成長させるので、パルスレーザにより前駆体を照射部分で励起してその分子結合(N−H結合、C−アミン結合、等)を切断し、その部分にInGaN(又はAlGaN)を成長させることができる。
さらに、井戸層と障壁層を交互にそれぞれ10nm以下の膜厚に成長させるので、原子レベルでも制御された歪みの少ない超格子構造を形成することができる。
従って、歪みの少ない超格子構造を形成するので、Inの比率範囲が広く発光効率の高い活性層を得ることができ、紫外線から近赤外線まで高輝度で発光する窒化物半導体発光素子を得ることができる。
According to the above means of the present invention, the crystal growth substrate is maintained at a temperature of about 600 ° C. or less in the reaction vessel, so that the thermal decomposition is performed in the process of growing the InGaN (or AlGaN) semiconductor film on the surface of the substrate. Can be prevented.
Further, precursors are sequentially supplied into the reaction vessel, the surface of the substrate is irradiated with a pulse laser, and a well layer made of InN is formed on the irradiated portion, and In x Ga 1-x N (0 ≦ x ≦ 0.3) or nitriding A barrier layer made of aluminum gallium (Al y Ga 1-y N: 0 ≦ y ≦ 0.3) is grown by metal organic vapor phase epitaxy. A bond (N—H bond, C-amine bond, etc.) can be broken, and InGaN (or AlGaN) can be grown there.
Furthermore, since the well layers and the barrier layers are alternately grown to a thickness of 10 nm or less, a superlattice structure with less strain controlled at the atomic level can be formed.
Therefore, since a superlattice structure with less strain is formed, an active layer having a wide In ratio range and high luminous efficiency can be obtained, and a nitride semiconductor light emitting device that emits light with high luminance from ultraviolet to near infrared can be obtained. it can.

本発明の好ましい実施形態によれば、前記発光層は、井戸層と障壁層を交互に積層した量子井戸構造である。
この構成により、それぞれ10nm以下の膜厚からなる超格子構造を形成するとともに、その全膜厚を任意に設定し、発光強度を制御することができる。
According to a preferred embodiment of the present invention, the light emitting layer has a quantum well structure in which well layers and barrier layers are alternately stacked.
With this configuration, it is possible to form superlattice structures each having a thickness of 10 nm or less and to arbitrarily set the total thickness to control the emission intensity.

また発光波長を制御するために、前記井戸層と障壁層の膜厚比を、所定の範囲で設定するのがよい。
この手段により、井戸層と障壁層をそれぞれ高品質に保持したままで、発光層全体のIn比率を広範囲に自由に調整することができる。
In order to control the emission wavelength, the film thickness ratio between the well layer and the barrier layer is preferably set within a predetermined range.
By this means, the In ratio of the entire light emitting layer can be freely adjusted over a wide range while maintaining the well layer and the barrier layer with high quality.

また発光波長を制御するために、前記井戸層の膜厚を、1nmを超えない所定の範囲で設定してもよい。
この手段により、井戸幅(井戸層の膜厚)を制御すれば発光波長を制御することができる。
In order to control the emission wavelength, the thickness of the well layer may be set within a predetermined range not exceeding 1 nm.
By this means, the emission wavelength can be controlled by controlling the well width (well layer thickness).

また、前記n型窒化物半導体は、窒化ガリウム又は窒化アルミニウムガリウムである、ことが好ましい。
また、前記パルスレーザは、YAGレーザ、エキシマレーザ、等である、ことが好ましい。
The n-type nitride semiconductor is preferably gallium nitride or aluminum gallium nitride.
The pulse laser is preferably a YAG laser, an excimer laser, or the like.

上述したように、本発明の窒化物半導体発光素子は、紫外線から近赤外線まで高輝度で発光でき、本発明の成長方法によりこの窒化物半導体をInの比率範囲が広く原子レベルでも制御された組成で成長させ、発光効率の高い活性層を得ることができる、等の優れた効果を有する。   As described above, the nitride semiconductor light emitting device of the present invention can emit light with high brightness from ultraviolet to near infrared, and the nitride semiconductor has a wide In ratio range and is controlled even at the atomic level by the growth method of the present invention. It is possible to obtain an active layer having a high luminous efficiency and the like.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

我々は特許文献3の「半導体結晶膜の成長方法」において、パルスレーザを照射しながら成長することにより、ノンドープで高品質なInGaNが650℃以下の温度にて成長できることを示した。
また、非特許文献4の「InGaN薄膜における自然超格子構造」において、InN層/InGaN層の超格子構造が形成可能であり、これにより歪エネルギーを緩和できることが報告されている。
更に、非特許文献5の「超格子構造とその無秩序化の評価」において、混晶半導体Ga1-xAlAsの代わりにGaAsとAlAsの超格子を使用することが可能であることが示されている。
In the “semiconductor crystal film growth method” of Patent Document 3, we have shown that non-doped, high-quality InGaN can be grown at a temperature of 650 ° C. or less by growing while irradiating with a pulse laser.
Further, in “Natural superlattice structure in InGaN thin film” of Non-Patent Document 4, it has been reported that a superlattice structure of InN layer / InGaN layer can be formed and strain energy can be relaxed thereby.
Furthermore, “Evaluation of superlattice structure and disorder” in Non-Patent Document 5 shows that it is possible to use a superlattice of GaAs and AlAs instead of the mixed crystal semiconductor Ga 1-x Al x As. Has been.

本発明は、以上のことを鑑み、発明に至ったものである。すなわち、特許文献3の手段を用いれば、Inの比率xが0≦x≦0.3の範囲で高品質の窒化インジウムガリウム(InGa1−xN)を成長させることができ、これをInNからなる井戸層と組み合わせて膜厚がそれぞれ10nm以下の超格子構造を形成することにより、紫外線から近赤外線まで高輝度で発光できる発光効率の高い活性層を容易に得ることができる。 The present invention has been made in view of the above. That is, if the means of Patent Document 3 is used, high-quality indium gallium nitride (In x Ga 1-x N) can be grown when the In ratio x is in the range of 0 ≦ x ≦ 0.3. By forming a superlattice structure having a thickness of 10 nm or less in combination with a well layer made of InN, an active layer with high luminous efficiency capable of emitting light with high luminance from ultraviolet to near infrared can be easily obtained.

図1は、本発明の方法により窒化物半導体を成長させる装置の模式図である。レーザコントローラ12により制御されたレーザ装置11(例えばエキシマレーザ)により、パルスレーザ10を発生・放射する。このパルスレーザ10は、ビーム成形光学系13によりエネルギー分布が均一化され、ミラー14で下向きに反射され、反応容器6に設けられた開口(図示せず)を通して、結晶成長用基板1の上面に照射される。基板1は、シリコン、SiC又はサファイアであるのがよい。   FIG. 1 is a schematic view of an apparatus for growing a nitride semiconductor by the method of the present invention. A pulse laser 10 is generated and emitted by a laser device 11 (for example, an excimer laser) controlled by a laser controller 12. The pulse laser 10 has its energy distribution made uniform by the beam shaping optical system 13, reflected downward by the mirror 14, and passed through an opening (not shown) provided in the reaction vessel 6 on the upper surface of the crystal growth substrate 1. Irradiated. The substrate 1 may be silicon, SiC or sapphire.

パルスレーザ10は、ミラー14の揺動又はビーム成形光学系13の移動により基板上を走査する。また、ステージコントローラ16により、基板1を二次元的に移動できるようになっている。更に、反応容器6(チャンバー)内はポンプ系15及びガス導入部17により所定のガス雰囲気にコントロールされる。   The pulse laser 10 scans on the substrate by swinging the mirror 14 or moving the beam shaping optical system 13. The stage controller 16 can move the substrate 1 two-dimensionally. Further, the inside of the reaction vessel 6 (chamber) is controlled to a predetermined gas atmosphere by the pump system 15 and the gas introduction part 17.

本発明の方法では、基板1は反応容器6内で図示しない温度調節手段(例えばヒータ)によりInGaNが熱分解しない温度に保持される。また、反応容器6内にIn,Ga,Nの前駆体がガス導入部17より順次又は同時に供給される。InGaNが熱分解しない温度は、約600℃以下であるのがよい。なお約600℃を超える温度では熱分解しやすくなる。また、約500℃未満ではInGaNの結晶ができにくくなる。   In the method of the present invention, the substrate 1 is maintained in the reaction vessel 6 at a temperature at which InGaN is not thermally decomposed by temperature adjusting means (not shown) such as a heater. In addition, In, Ga, and N precursors are sequentially or simultaneously supplied into the reaction vessel 6 from the gas introduction unit 17. The temperature at which InGaN does not thermally decompose is preferably about 600 ° C. or less. In addition, it becomes easy to thermally decompose at the temperature over about 600 degreeC. In addition, if it is less than about 500 ° C., it becomes difficult to form InGaN crystals.

図2Aは、本発明による成長させる窒化物半導体の構成例である。この図において、窒化物半導体5は、結晶成長用基板1上に、n型窒化物半導体2、窒化インジウムガリウムの発光層3、およびp型窒化物半導体を順に成長させることにより製造される。
図2Bは、図2Aの一部をエッチングにより取り除き、n型窒化物半導体2とp型窒化物半導体4に電極7を取り付け、発光ダイオードを形成した場合の構成例である。
FIG. 2A is a configuration example of a nitride semiconductor to be grown according to the present invention. In this figure, a nitride semiconductor 5 is manufactured by sequentially growing an n-type nitride semiconductor 2, an indium gallium nitride light emitting layer 3, and a p-type nitride semiconductor on a crystal growth substrate 1.
FIG. 2B shows a configuration example in which a part of FIG. 2A is removed by etching, an electrode 7 is attached to the n-type nitride semiconductor 2 and the p-type nitride semiconductor 4, and a light emitting diode is formed.

本発明により成長させる窒化インジウムガリウムの発光層3は、InNからなる井戸層3aと、井戸層3aの上下に位置しInGa1-xN(0≦x≦0.3)からなる障壁層3bとを有する。なおこの場合、InN及び0≦x≦0.3の範囲のInGa1-xN(GaNを含む)は、欠陥のない薄膜が本発明の方法で容易に形成できるので、同一組成の混晶半導体よりも容易に発光効率の高い活性層を得ることができる。
また、本発明において、井戸層3aと障壁層3bの膜厚はそれぞれ10nm以下に設定され、超格子構造を形成するようになっている。また発光層3は、単一の井戸層3aに限られず、複数の井戸層3aと複数の障壁層3bを交互に積層した量子井戸構造であってもよい。
The light emitting layer 3 of indium gallium nitride grown according to the present invention includes a well layer 3a made of InN and a barrier layer made of In x Ga 1-x N (0 ≦ x ≦ 0.3) located above and below the well layer 3a. 3b. In this case, InN and In x Ga 1-x N (including GaN) in the range of 0 ≦ x ≦ 0.3 can be easily formed with a defect-free thin film by the method of the present invention. An active layer having higher luminous efficiency can be obtained more easily than a crystal semiconductor.
In the present invention, the film thicknesses of the well layer 3a and the barrier layer 3b are each set to 10 nm or less to form a superlattice structure. The light emitting layer 3 is not limited to a single well layer 3a, and may have a quantum well structure in which a plurality of well layers 3a and a plurality of barrier layers 3b are alternately stacked.

また、発光層全体のIn比率を、井戸層と障壁層の膜厚比により制御して発光波長を制御する。
例えば、InNからなる井戸層3aとGaNからなる障壁層3bを膜厚比1:1で積層した場合、発光層3全体のIn比率xは0.5となり、InGa1-xN(x=0.5)の発光層として、波長830nm付近の近赤外光を発光させることができる。
同様に、例えばInNからなる井戸層3aとInGa1-xN(x=0.3)からなる障壁層3bを膜厚比2:1で積層した場合、InGa1-xN(x=0.77)の発光層を形成できる。
Further, the emission ratio is controlled by controlling the In ratio of the entire light emitting layer by the film thickness ratio of the well layer and the barrier layer.
For example, when the well layer 3a made of InN and the barrier layer 3b made of GaN are stacked at a film thickness ratio of 1: 1, the In ratio x of the entire light emitting layer 3 becomes 0.5, and In x Ga 1-x N (x = 0.5) can emit near infrared light having a wavelength of about 830 nm.
Similarly, for example, when a well layer 3a made of InN and a barrier layer 3b made of In x Ga 1-x N (x = 0.3) are stacked at a film thickness ratio of 2: 1, In x Ga 1-x N ( A light emitting layer of x = 0.77) can be formed.

なお、図2A,Bにおいて、発光層全体のIn比率は、0.5以上であるのが好ましく、これにより、従来困難だった赤色や近赤外波長の発光素子を成長させることができる。
なお、本発明はこれに限定されず、In,Ga,Nの比率を変更して、0<x≦1の範囲でInの比率xを変化させることができ、これにより、紫外、青色発光ダイオード、レーザダイオードのみならず、近赤外波長の発光素子として用いることもできる。
In FIGS. 2A and 2B, the In ratio of the entire light emitting layer is preferably 0.5 or more, so that it is possible to grow a light emitting element having a red or near infrared wavelength, which has been difficult in the past.
Note that the present invention is not limited to this, and the ratio of In, Ga, and N can be changed to change the ratio of In in the range of 0 <x ≦ 1. It can be used not only as a laser diode but also as a light emitting element of near infrared wavelength.

また、量子井戸間の相互作用のない超格子における弱励起でのフォトルミネッセンスは、量子井戸内の最低準位にある電子と重い正孔および軽い正孔との再結合によって起こることが知られている。このような再結合過程を仮定した場合、井戸層の幅と発光ピークの関係は図3に示すようになる。この図からわかるように、井戸層3aの膜厚を、発光波長を制御するように1nmを超えない所定の範囲に設定することによって、井戸幅(井戸層の膜厚)により発光波長を制御することができる。
さらに、障壁層をAlGa1-yN(0≦y≦0.3)としても同様の効果を得ることができる。
It is also known that photoluminescence with weak excitation in superlattices without interaction between quantum wells is caused by recombination of electrons at the lowest level in the quantum well with heavy and light holes. Yes. Assuming such a recombination process, the relationship between the width of the well layer and the emission peak is as shown in FIG. As can be seen from this figure, the emission wavelength is controlled by the well width (well layer thickness) by setting the thickness of the well layer 3a within a predetermined range not exceeding 1 nm so as to control the emission wavelength. be able to.
Further, the same effect can be obtained even when the barrier layer is made of Al y Ga 1-y N (0 ≦ y ≦ 0.3).

図1に示した装置を用い、下記の実験条件の下に、成長温度600℃においてパルスレーザ10を照射しながら窒化ガリウム基板2の上にInGaNを成長させた。なお窒化ガリウム基板2は、1000℃まで加熱後に600℃まで下げ、成長中この温度に保持した。   Using the apparatus shown in FIG. 1, InGaN was grown on the gallium nitride substrate 2 while irradiating the pulse laser 10 at a growth temperature of 600 ° C. under the following experimental conditions. The gallium nitride substrate 2 was heated to 1000 ° C., lowered to 600 ° C., and kept at this temperature during growth.

(実験条件)
1.反応ガス
トリメチルガリウム(TEG): 1.2×10−5atm
トリメチルインジウム(TMI): 3.0×10−5atm
アンモニア: 0.4atm
窒素ガス: 850ml/min
2.基板温度 600℃
3.レーザ装置 Nd:YAGレーザ
出力 1mW
繰り返し周波数 1Hz
波長 532nm
4.成長時間 2Hr
(Experimental conditions)
1. Reaction gas Trimethylgallium (TEG): 1.2 × 10 −5 atm
Trimethylindium (TMI): 3.0 × 10 −5 atm
Ammonia: 0.4 atm
Nitrogen gas: 850 ml / min
2. Substrate temperature 600 ° C
3. Laser device Nd: YAG laser output 1mW
Repeat frequency 1Hz
Wavelength 532nm
4). Growth time 2Hr

成長した窒化インジウムガリウム(InGa1−xN:0<x≦1)中のInの比率xは、0.53であった。以下このInGaNを、In0.53Ga0.47Nと表示する。 The In ratio x in the grown indium gallium nitride (In x Ga 1-x N: 0 <x ≦ 1) was 0.53. Hereinafter, this InGaN is represented as In 0.53 Ga 0.47 N.

図4は、レーザを照射した場合と照射しない場合の、In0.53Ga0.47NのωスキャンX線回折振動カーブの比較図である。この図において、Aは照射あり、Bは照射なしの場合である。この図から、レーザを照射して成長させた膜のFWHMは、レーザを照射しない場合よりも小さいことがわかる。
図5は、SEMで観察したIn0.53Ga0.47Nの表面像(A)と断面像(B)である。この図から、高濃度のInを低温で成長させているにもかかわらず、相分離や転位の発生がなく、均一な膜が形成されていることがわかる。また、断面像(B)において、GaNとInGaNが界面を接して積層されており、井戸層3aと障壁層3bの膜厚をそれぞれ10nm以下に設定することにより、超格子構造が形成できることが予測できる。
図6に成長した活性層であるIn0.53Ga0.47Nの光ルミネセンス測定の結果を示す。この図において、横軸は波長[nm]、縦軸はフォトルミネッセンスでの発光強度を示している。
また、図中の実線は室温(RT)での発光、破線は77Kでの発光を示している。
FIG. 4 is a comparison diagram of ω-scan X-ray diffraction vibration curves of In 0.53 Ga 0.47 N with and without laser irradiation. In this figure, A is the case with irradiation and B is the case without irradiation. From this figure, it can be seen that the FWHM of the film grown by laser irradiation is smaller than that in the case of no laser irradiation.
FIG. 5 shows a surface image (A) and a cross-sectional image (B) of In 0.53 Ga 0.47 N observed by SEM. From this figure, it can be seen that even though a high concentration of In is grown at a low temperature, no phase separation or dislocation occurs and a uniform film is formed. In the cross-sectional image (B), GaN and InGaN are stacked in contact with each other, and it is predicted that a superlattice structure can be formed by setting the thicknesses of the well layer 3a and the barrier layer 3b to 10 nm or less, respectively. it can.
FIG. 6 shows the result of photoluminescence measurement of In 0.53 Ga 0.47 N, which is the active layer grown. In this figure, the horizontal axis indicates the wavelength [nm], and the vertical axis indicates the light emission intensity in photoluminescence.
In the figure, the solid line indicates light emission at room temperature (RT), and the broken line indicates light emission at 77K.

この図から、高インジウム組成かつノンドープにもかかわらず、パンド端発光が見られ、品質のよいInGaNが得られており、パルスレーザの照射により、600℃以下でも高品質なInGaNが得られることが明らかとなった。ノンドープでも高品質なInGaNが得られることから、n型、p型または両方のドーパントをドープすることにより、更に高発光のInGaNが得られることは明らかである。   From this figure, despite the high indium composition and non-doping, the emission at the puddle edge is seen, and high-quality InGaN is obtained, and high-quality InGaN can be obtained even at 600 ° C. or lower by irradiation with a pulse laser. It became clear. Since high-quality InGaN can be obtained even without being doped, it is clear that doping with n-type, p-type or both dopants can provide InGaN with higher light emission.

このように、600℃以下で成長が可能となったため、全インジウム組成のInGaNを相分離が起こることがなく作製することができる。また、InGaNの上部に成長させるp型(AlGa1−yN:0≦y≦1)についても、同様に品質の良い結晶が得られる。
また、ビームを均一化する光学系を用いることで、例えばサファイア基板のような2インチサイズ全面に対して発光デバイスに必要な(InGa1−xN:0<x<1)発光層およびp型(AlGa1−yN:0≦y≦1)を低温で成長させることができる。
As described above, since growth is possible at 600 ° C. or lower, InGaN having the entire indium composition can be manufactured without causing phase separation. Similarly, a high-quality crystal can be obtained for p-type (Al y Ga 1-y N: 0 ≦ y ≦ 1) grown on top of InGaN.
Further, by using an optical system that makes the beam uniform, for example, a (In x Ga 1-x N: 0 <x <1) light-emitting layer necessary for a light-emitting device on the entire surface of a 2-inch size such as a sapphire substrate, and p-type (Al y Ga 1-y N : 0 ≦ y ≦ 1) can be a grown at a low temperature.

なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   In addition, this invention is not limited to the Example and embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明により半導体結晶膜を成長させる装置の模式図である。1 is a schematic view of an apparatus for growing a semiconductor crystal film according to the present invention. 本発明の方法により成長させる窒化物半導体の構成例である。It is a structural example of the nitride semiconductor grown by the method of the present invention. 井戸層の幅と発光ピークの関係図である。It is a relationship figure of the width | variety of a well layer, and a light emission peak. レーザを照射した場合と照射しない場合の、In0.53Ga0.47NのωスキャンX線回折振動カーブの比較図である。It is a comparison figure of the ω-scan X-ray diffraction vibration curve of In0.53Ga0.47N with and without laser irradiation. SEMで観察したIn0.53Ga0.47Nの表面像(A)と断面像(B)である。It is the surface image (A) and cross-sectional image (B) of In0.53Ga0.47N observed by SEM. 本発明により成長したIn0.53Ga0.47Nの光ルミネセンス測定結果を示す図である。It is a diagram showing a photoluminescence measurement result of the grown In 0.53 Ga 0.47 N with the present invention. 窒化インジウムガリウム中のInのモル分率xと平衡温度との関係図である。FIG. 4 is a relationship diagram between the molar fraction x of In in indium gallium nitride and the equilibrium temperature.

符号の説明Explanation of symbols

1 基板、2 n型窒化物半導体、3 発光層、4 p型窒化物半導体、
5 窒化物半導体、6 反応容器、7 電極、
10 パルスレーザ、12 レーザコントローラ、
11 エキシマレーザ、13 ビーム成形光学系、
14 ミラー、15 ポンプ系、16 ステージコントローラ、
17 ガス導入部
1 substrate, 2 n-type nitride semiconductor, 3 light emitting layer, 4 p-type nitride semiconductor,
5 Nitride semiconductors, 6 reaction vessels, 7 electrodes,
10 pulse laser, 12 laser controller,
11 excimer laser, 13 beam shaping optics,
14 mirror, 15 pump system, 16 stage controller,
17 Gas introduction part

Claims (9)

結晶成長用基板上に、n型窒化物半導体、発光層、およびp型窒化物半導体を順に成長させた窒化物半導体発光素子であって、
前記発光層は、InNからなる井戸層と、InGa1-xN(0≦x≦0.3)又は窒化アルミニウムガリウム(AlGa1−yN:0≦y≦0.3)からなる障壁層とを有し、該井戸層と障壁層の膜厚はそれぞれ10nm以下であり、これにより超格子構造を形成する、ことを特徴とする窒化物半導体発光素子。
A nitride semiconductor light-emitting device in which an n-type nitride semiconductor, a light-emitting layer, and a p-type nitride semiconductor are sequentially grown on a crystal growth substrate,
The light emitting layer includes a well layer made of InN and In x Ga 1-x N (0 ≦ x ≦ 0.3) or aluminum gallium nitride (Al y Ga 1-y N: 0 ≦ y ≦ 0.3). A nitride semiconductor light emitting device, wherein the well layer and the barrier layer each have a thickness of 10 nm or less, thereby forming a superlattice structure.
前記発光層は、井戸層と障壁層を交互に積層した量子井戸構造である、ことを特徴とする請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light emitting device according to claim 1, wherein the light emitting layer has a quantum well structure in which well layers and barrier layers are alternately stacked. 前記井戸層と障壁層の膜厚比が、発光波長を制御するように所定の範囲に設定されている、ことを特徴とする請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light emitting device according to claim 1, wherein a film thickness ratio between the well layer and the barrier layer is set in a predetermined range so as to control an emission wavelength. 前記井戸層の膜厚が、発光波長を制御するように1nmを超えない所定の範囲に設定されている、ことを特徴とする請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light emitting device according to claim 1, wherein the thickness of the well layer is set in a predetermined range not exceeding 1 nm so as to control an emission wavelength. 前記n型窒化物半導体は、窒化ガリウム又は窒化アルミニウムガリウムである、ことを特徴とする請求項1に記載の窒化物半導体発光素子。 The nitride semiconductor light emitting device according to claim 1, wherein the n-type nitride semiconductor is gallium nitride or aluminum gallium nitride. 結晶成長用基板上に、n型窒化物半導体、発光層、およびp型窒化物半導体を順に成長させる窒化物半導体の成長方法であって、
結晶成長用基板を反応容器内で約600℃以下の温度に保持し、反応容器内に前駆体を順次供給し、基板表面にパルスレーザを照射しその照射部分にInNからなる井戸層と、InGa1-xN(0≦x≦0.3)又は窒化アルミニウムガリウム(AlGa1−yN:0≦y≦0.3)からなる障壁層とを有機金属気相成長法により交互にそれぞれ10nm以下の膜厚に成長させ、これにより超格子構造を形成する、ことを特徴とする窒化物半導体の成長方法。
A method for growing a nitride semiconductor, comprising sequentially growing an n-type nitride semiconductor, a light emitting layer, and a p-type nitride semiconductor on a crystal growth substrate,
The substrate for crystal growth is maintained at a temperature of about 600 ° C. or less in the reaction vessel, precursors are sequentially supplied into the reaction vessel, the surface of the substrate is irradiated with a pulsed laser, a well layer made of InN is formed on the irradiated portion, and In x Ga 1-x N (0 ≦ x ≦ 0.3) or aluminum gallium nitride (Al y Ga 1-y N : 0 ≦ y ≦ 0.3) alternately by organometallic vapor phase epitaxy and a barrier layer made of And growing a film thickness of 10 nm or less to form a superlattice structure, respectively.
前記井戸層と障壁層の膜厚比を、発光波長を制御するように所定の範囲に設定する、ことを特徴とする請求項6に記載の窒化物半導体の成長方法。 The method for growing a nitride semiconductor according to claim 6, wherein a film thickness ratio between the well layer and the barrier layer is set in a predetermined range so as to control an emission wavelength. 前記井戸層の膜厚を、発光波長を制御するように1nmを超えない所定の範囲に設定する、ことを特徴とする請求項6に記載の窒化物半導体の成長方法。 7. The method for growing a nitride semiconductor according to claim 6, wherein the film thickness of the well layer is set to a predetermined range not exceeding 1 nm so as to control the emission wavelength. 前記パルスレーザは、YAGレーザ、エキシマレーザ、等である、ことを特徴とする請求項6に記載の窒化物半導体の成長方法。
The nitride semiconductor growth method according to claim 6, wherein the pulse laser is a YAG laser, an excimer laser, or the like.
JP2004066477A 2004-03-10 2004-03-10 Nitride semiconductor light emitting device and method of growing nitride semiconductor Pending JP2005259827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066477A JP2005259827A (en) 2004-03-10 2004-03-10 Nitride semiconductor light emitting device and method of growing nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066477A JP2005259827A (en) 2004-03-10 2004-03-10 Nitride semiconductor light emitting device and method of growing nitride semiconductor

Publications (1)

Publication Number Publication Date
JP2005259827A true JP2005259827A (en) 2005-09-22

Family

ID=35085289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066477A Pending JP2005259827A (en) 2004-03-10 2004-03-10 Nitride semiconductor light emitting device and method of growing nitride semiconductor

Country Status (1)

Country Link
JP (1) JP2005259827A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231609A (en) * 2008-03-24 2009-10-08 Sumitomo Electric Ind Ltd Production method of semiconductor light-emitting element
KR101067823B1 (en) 2006-10-18 2011-09-27 니텍 인코포레이티드 Ultraviolet light emitting device and method for fabricating same
US8314414B2 (en) 2009-10-26 2012-11-20 Lg Innotek Co., Ltd. Light emitting device and light emitting device package for improving a light emission efficency
JP2013042184A (en) * 2007-03-29 2013-02-28 Seoul Opto Devices Co Ltd Light emitting diode having well layer of superlattice structure and/or barrier layer of superlattice structure
US9142717B2 (en) 2011-05-13 2015-09-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device and wafer
CN115050866A (en) * 2022-08-16 2022-09-13 江苏第三代半导体研究院有限公司 Polarization-controllable quantum dot Micro-LED homoepitaxial structure and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060237A (en) * 2001-06-07 2003-02-28 Ishikawajima Harima Heavy Ind Co Ltd Method of growing semiconductor crystal film
JP2004022970A (en) * 2002-06-19 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060237A (en) * 2001-06-07 2003-02-28 Ishikawajima Harima Heavy Ind Co Ltd Method of growing semiconductor crystal film
JP2004022970A (en) * 2002-06-19 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067823B1 (en) 2006-10-18 2011-09-27 니텍 인코포레이티드 Ultraviolet light emitting device and method for fabricating same
JP2013042184A (en) * 2007-03-29 2013-02-28 Seoul Opto Devices Co Ltd Light emitting diode having well layer of superlattice structure and/or barrier layer of superlattice structure
US9466761B2 (en) 2007-03-29 2016-10-11 Seoul Viosys Co., Ltd. Light emitting diode having well and/or barrier layers with superlattice structure
JP2009231609A (en) * 2008-03-24 2009-10-08 Sumitomo Electric Ind Ltd Production method of semiconductor light-emitting element
US8314414B2 (en) 2009-10-26 2012-11-20 Lg Innotek Co., Ltd. Light emitting device and light emitting device package for improving a light emission efficency
US8716693B2 (en) 2009-10-26 2014-05-06 Lg Innotek Co., Ltd. Light emitting device and light emitting device package for improving a light emission efficiency
US8994001B2 (en) 2009-10-26 2015-03-31 Lg Innotek Co., Ltd. Light emitting device for improving a light emission efficiency
US9142717B2 (en) 2011-05-13 2015-09-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device and wafer
CN115050866A (en) * 2022-08-16 2022-09-13 江苏第三代半导体研究院有限公司 Polarization-controllable quantum dot Micro-LED homoepitaxial structure and preparation method thereof
CN115050866B (en) * 2022-08-16 2022-11-08 江苏第三代半导体研究院有限公司 Polarization-controllable quantum dot Micro-LED homoepitaxial structure and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101317469B1 (en) Non-polar (Al,B,In,Ga)N Quantum Well and Heterostructure Materials and Devices
US6861271B2 (en) Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD)
Hirayama Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes
US7812366B1 (en) Ultraviolet light emitting AlGaN composition, and ultraviolet light emitting device containing same
JP5403212B2 (en) White LED manufacturing apparatus and method
JP2008235802A (en) Light-emitting device
JP2008182069A (en) Semiconductor light-emitting element
JP2009021361A (en) Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element
JP6966063B2 (en) Crystal substrate, ultraviolet light emitting device and their manufacturing method
JP2007329353A (en) ZnO-BASED SEMICONDUCTOR ELEMENT
JP4521719B2 (en) Semiconductor device manufacturing
US20070138489A1 (en) Semiconductor light-emitting device and a method of fabricating the same
JP2006303259A (en) Nitride semiconductor light-emitting device and method of growing nitride semiconductor
JP2007165405A (en) Light emitting diode
JP2008028121A (en) Manufacturing method of semiconductor luminescence element
US20160087153A1 (en) ACTIVE REGION CONTAINING NANODOTS (ALSO REFERRED TO AS &#34;QUANTUM DOTS&#34;) IN MOTHER CRYSTAL FORMED OF ZINC BLENDE-TYPE (ALSO REFERRED TO AS &#34;CUBIC CRYSTAL-TYPE&#34;) AlyInxGal-y-xN CRYSTAL(Y . 0, X&gt;0) GROWN ON Si SUBSTRATE, AND LIGHTEMITTING DEVICE USING THE SAME (LED AND LD)
JP2006303258A (en) Method for growing p-type nitride semiconductor
JP2005259827A (en) Nitride semiconductor light emitting device and method of growing nitride semiconductor
KR20110084296A (en) Light emitting element producing method and light emitting element
JP2012204540A (en) Semiconductor device and method of manufacturing the same
Scholz et al. Low pressure metalorganic vapor phase epitaxial growth of GaN/GaInN heterostructures
JP5392885B2 (en) ZnO-based semiconductor device
JP4026392B2 (en) Semiconductor crystal film growth method
JP7422496B2 (en) Structure, optical device, method for manufacturing optical device, method for manufacturing structure
JP4389888B2 (en) Semiconductor growth method, semiconductor light emitting device manufacturing method, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100729