JP2005259674A - Photoelectric conversion element structure and manufacturing method of the same - Google Patents

Photoelectric conversion element structure and manufacturing method of the same Download PDF

Info

Publication number
JP2005259674A
JP2005259674A JP2004114763A JP2004114763A JP2005259674A JP 2005259674 A JP2005259674 A JP 2005259674A JP 2004114763 A JP2004114763 A JP 2004114763A JP 2004114763 A JP2004114763 A JP 2004114763A JP 2005259674 A JP2005259674 A JP 2005259674A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
element structure
electrode
photochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004114763A
Other languages
Japanese (ja)
Other versions
JP4565173B2 (en
Inventor
Tadashi Terasaki
正 寺崎
Noritaka Yamamoto
典孝 山本
Takashi Hiraga
隆 平賀
Atsushi Yamada
淳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004114763A priority Critical patent/JP4565173B2/en
Publication of JP2005259674A publication Critical patent/JP2005259674A/en
Application granted granted Critical
Publication of JP4565173B2 publication Critical patent/JP4565173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element capable of performing photoelectric conversion with high efficiency by fixing photoelectric complex protein molecule on a solid substrate with high density. <P>SOLUTION: The photoelectric conversion element structure having the photoelectric complex protein molecules as structural element is formed by arranging an electron transmission passage by compounding the photoelectric complex protein molecules and fine nano-particles of gold. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は植物の光合成をつかさどる光化学系複合体蛋白分子を固体基板上に高密度固定化した光電変換素子構造に関するものである。  The invention of this application relates to a photoelectric conversion element structure in which photochemical complex protein molecules that control plant photosynthesis are immobilized on a solid substrate at high density.

生体コンポーネンを用いた光電変換素子やセンサーとしては古くから植物の光合成蛋白が注目されており、その光電変換機能や効率の高さは人工物では真似できない高度に組織化されたものである。このような光合成蛋白の構造はかなり詳細に調べられてきたが、高度な構造をもっているがために機能性材料として取り扱うことには難しさがあり、これを実現する手法は現状ではほとんどないといってよい。だがここで特殊な光受容蛋白を利用することが注目されている。例えば、高度好塩菌がもつ光受容蛋白であるバクテリオロドプシンのホトクロミックを使ったセンサーや光エネルギー変換あるいは光情報記録に有用な有機機能材料等である。バクテリオロドプシンにおいては光励起下で電荷の移動がベクトル的な仕事で達成される。従って、特に光電変換素子等の光エネルギー変換系へ光化学系複合体の部分である紫膜を応用するに当たっては、この蛋白質を高密度に且つ同一方向に配向化させることが変換の効率を上げるために重要である。しかしながら一方で、バクテリオロドプシンではプロトンの移動に伴う電荷移動であるため応答速度の面で問題がある。光化学系複合体を配向化させる方法としては、これまでにも、蛋白表面にある特定なシステイン残基に結合を作り基盤に固定化する方法(非特許文献1)や、分子の親水・疎水性を利用した吸着の選択性を用いた方法、電場を用いた配向法、ゲル中の電場配向を用いる方法、Langmuir膜及びLangmuir−Blodgett(LB)膜の作製法、カチオン性膜などの荷電を持った担体への静電吸着を利用する方法等が知られている。  Photosynthesis proteins of plants have attracted attention for a long time as photoelectric conversion elements and sensors using biological components, and their photoelectric conversion function and high efficiency are highly organized that cannot be imitated by artificial products. The structure of such photosynthetic proteins has been investigated in great detail, but because of its advanced structure, it is difficult to handle as a functional material. It's okay. However, the use of special photoreceptive proteins is attracting attention here. For example, a sensor using a photochromic of bacteriorhodopsin, a photoreceptive protein possessed by highly halophilic bacteria, and an organic functional material useful for light energy conversion or optical information recording. In bacteriorhodopsin, charge transfer is achieved by vector work under photoexcitation. Therefore, when applying the purple film, which is a part of a photochemical complex, to a light energy conversion system such as a photoelectric conversion element, orienting this protein in a high density and in the same direction increases the conversion efficiency. Is important to. However, on the other hand, bacteriorhodopsin has a problem in terms of response speed because of charge transfer accompanying proton transfer. As a method for orienting a photochemical complex, a method of forming a bond to a specific cysteine residue on a protein surface and immobilizing it on the base (Non-patent Document 1), a hydrophilicity / hydrophobicity of a molecule, etc. A method using the selectivity of adsorption by using an electric field, an alignment method using an electric field, a method using an electric field alignment in a gel, a method for producing a Langmuir film and a Langmuir-Blodgett (LB) film, and having a charge such as a cationic film A method using electrostatic adsorption on a carrier is known.

しかしながら、これらの従来の方法の中で、LB膜作製法は、光化学系複合体自体に界面活性が乏しいことから配向の点ではまだ不十分なところが多い。また荷電膜への吸着を利用する配向方法は、光化学系複合体を直接導電性電極基板に接することが不可能な上、多層累積が困難な点が欠点である。電場を利用する方法は最も一般的であるが、膜厚や層数の制御が一般に困難な点が欠点である。電場による配向を一層単位で行う方法として、水−空気界面に形成した光化学系複合体の薄膜に空気層を介して垂直に強い電場を与えることにより、LB膜の配向性を電場の存在下で改善する方法も提案されているが、この方法もLB膜の配向の改善はできても以前として満足なレベルの配向の程度を与えるものではない。  However, among these conventional methods, the LB film preparation method is still insufficient in terms of orientation because the photochemical composite itself has poor surface activity. In addition, the orientation method using adsorption to the charged film has a drawback in that it is impossible to directly contact the photochemical complex with the conductive electrode substrate and it is difficult to accumulate multiple layers. The method using an electric field is the most common, but the disadvantage is that it is generally difficult to control the film thickness and the number of layers. As a method for performing alignment by an electric field in a single unit, a strong electric field is applied vertically to the thin film of the photochemical composite formed at the water-air interface through the air layer, so that the orientation of the LB film is controlled in the presence of the electric field. Although an improvement method has been proposed, this method can improve the orientation of the LB film, but does not give a satisfactory level of orientation.

以上のように、従来の方法では光化学系複合体を高い配向率で配向させるとともに配向膜を累積しながらその厚みを単分子層の厚みの単位で制御することが困難である。  As described above, in the conventional method, it is difficult to orient the photochemical complex at a high orientation ratio and to control the thickness in units of the monomolecular layer while accumulating the orientation films.

また光化学系複合体を電極基板上に配向させた場合にも、基板側に電子を取り出すためには電荷分離した状態からの戻り反応を抑制する必要があり、効率の良い光電変換は行えない。
J.Electroanal.Chem.,365,157−164
Further, even when the photochemical composite is oriented on the electrode substrate, it is necessary to suppress the return reaction from the charge-separated state in order to take out electrons to the substrate side, and efficient photoelectric conversion cannot be performed.
J. et al. Electroanal. Chem. 365-157-164

そこで、この出願発明は、以上のような背景から従来技術の問題点を解消し、光化学系複合体蛋白分子を固体基板上に高密度に固定化して高効率の光電変換を可能とすることのできる新しい光電変換素子構造を提供することを課題としている。  Therefore, this invention of the present application eliminates the problems of the prior art from the background as described above, and enables high-efficiency photoelectric conversion by immobilizing photochemical complex protein molecules at a high density on a solid substrate. It is an object to provide a new photoelectric conversion element structure that can be used.

この出願の発明は、上記の課題を解消するものとして、すなわち、この出願は以下の発明を提供する。
〔1〕光化学系蛋白複合体を構成ヨウ素とする光電変換素子構造であって、光化学系蛋複
The invention of this application is intended to solve the above problems, that is, this application provides the following inventions.
[1] A photoelectric conversion element structure having a photochemical protein complex as constituent iodine, the photochemical protein complex

合体と金ナノ微粒子を堆積させた電極とが複合化されて電子伝達経路が形成されて いることを特徴とする光電変換素子構造。
〔2〕光化学系蛋白複合体は、ラン藻植物や高等植物のPSI、PSHまたは紅色細菌の 光化学系蛋白複合体であることを特徴とする光電変換素子構造。
〔3〕金ナノ微粒子の表面はAu−S結合を形成するチオール分子が配設され、この分子 の末端には陰イオン基が存在することを特徴とする光電変換素子構造。
〔4〕上記いずれかの光電変換素子構造において、基板電極、基板電極に結合し表面部末 端に陰イオン基、S基またはS−S基を有する分子の単分子膜、電解質溶液並びに 対抗電極を備えてセル形成されていることを特徴とする光電変換素子構造。
〔5〕金ナノ微粒子が単分子膜に堆積されていることを特徴とする光電変換素子構造。
〔6〕電解質溶液は還元試薬を含むことを特徴とする光電変換素子構造。
A photoelectric conversion element structure comprising a composite and an electrode on which gold nanoparticles are deposited to form an electron transfer path.
[2] A photoelectric conversion element structure, wherein the photochemical protein complex is a photochemical protein complex of PSI, PSH or red bacteria of cyanobacteria plants and higher plants.
[3] A photoelectric conversion element structure characterized in that a thiol molecule forming an Au—S bond is disposed on the surface of the gold nanoparticle, and an anionic group is present at the end of this molecule.
[4] In any of the photoelectric conversion element structures described above, a substrate electrode, a monomolecular film of an molecule bonded to the substrate electrode and having an anion group, an S group, or an SS group at the end of the surface portion, an electrolyte solution, and a counter electrode A photoelectric conversion element structure characterized in that a cell is formed.
[5] A photoelectric conversion element structure in which gold nanoparticles are deposited on a monomolecular film.
[6] The photoelectric conversion element structure, wherein the electrolyte solution contains a reducing reagent.

上記のとおりのこの出願の発明によれば、従来技術の問題点を解消し、光化学系複合体蛋白分子を固体基板上に高密度に固定化して高効率の光電変換を可能とすることのできる新しい光電変換素子構造が提供される。これによって、高い開放電圧と光電変換効率を示す光電変換素子、高度な電池性能を有する色素増感太陽電池、光のエネルギーを効率よく利用することができる有機色素増感型金属酸化物半導体電極を有する有機色素増感太陽電池などを提供することが可能になる。  According to the invention of this application as described above, the problems of the prior art can be solved, and the photochemical complex protein molecules can be immobilized on the solid substrate at a high density to enable highly efficient photoelectric conversion. A new photoelectric conversion element structure is provided. As a result, a photoelectric conversion element exhibiting a high open-circuit voltage and photoelectric conversion efficiency, a dye-sensitized solar cell having high battery performance, and an organic dye-sensitized metal oxide semiconductor electrode capable of efficiently using light energy It becomes possible to provide an organic dye-sensitized solar cell or the like.

この出願の発明は上記のとおりの特徴をもつものであるが、以下に、その実施の形態について説明する。  The invention of this application has the features as described above, and an embodiment thereof will be described below.

なによりも特徴的なことは、この出願の発明の光電変換素子構造では、光化学系蛋白複合体と金ナノ微粒子を堆積させた電極とが複合化されて電子伝達経路を構成していることである。これによって、光化学系蛋白複合体の高い内部光電変換機能を生かした光電変換素子を形成することが可能になることである。  Above all, the photoelectric conversion element structure of the invention of this application is that the photochemical protein complex and the electrode on which gold nanoparticles are deposited are combined to form an electron transfer path. is there. As a result, it is possible to form a photoelectric conversion element utilizing the high internal photoelectric conversion function of the photochemical protein complex.

ここで、光化学系蛋複合体としては、内部光電変換機能を有する各種の植物由来あるいは微生物由来の蛋白複合体であってよい、たとえばその代表例を例示すると、ラン藻植物や高等植物のPSIやPSII、そして紅色細菌の光化学系蛋白複合体が挙げられる。  Here, the photochemical protein complex may be various plant-derived or microbial-derived protein complexes having an internal photoelectric conversion function. For example, representative examples thereof include PSI of cyanobacteria plants and higher plants. PSII, and the photochemical protein complex of red bacteria.

そして、この出願の発明の光電変換素子構造においては、金ナノ微粒子に注目し、この特徴を最大限に活用している。  And in the photoelectric conversion element structure of the invention of this application, attention is paid to the gold nanoparticle, and this feature is utilized to the maximum.

一般に貴金属ナノ粒子は、局在プラズモン共鳴に由来する光学特性や、大きな比表面積を有することから、ナノテクノロジー分野で再び注目されている。しかし、これらの貴金属ナノ粒子を用いた複合材料に関する検討はほとんど行われていない。一方、発明者は、PS1等の光化学系蛋複合体を修飾した金ナノ構造電極を構成することで、新しい光電変換素子を提供する。  In general, noble metal nanoparticles are attracting attention again in the field of nanotechnology because they have optical properties derived from localized plasmon resonance and a large specific surface area. However, studies on composite materials using these noble metal nanoparticles have hardly been conducted. On the other hand, the inventor provides a new photoelectric conversion element by constructing a gold nanostructure electrode modified with a photochemical protein complex such as PS1.

すなわち、上記の光化学系蛋複合体は、この出願の発明においては、金ナノ微粒子を堆積させた電極と複合化して電子伝達経路を形成するようにしている。    That is, in the invention of this application, the above-described photochemical protein complex is combined with an electrode on which gold nanoparticles are deposited to form an electron transfer path.

ここでの金ナノ微粒子の堆積は様々な手段によって可能とされるが、たとえば、好適には、Au固体基板が装入されているNaClO水溶液などにAu粉末を投入して80〜180℃に加熱することで沈殿形成させる方法(塩析)が例示される。また、その表面に、Au−S結合を形成するチオール分子が配設され、この分子の末端には陰イオン基が存在するものとする。The gold nanoparticles can be deposited by various means here. For example, preferably, Au powder is introduced into a NaClO 4 aqueous solution in which an Au solid substrate is charged, and then heated to 80 to 180 ° C. A method for forming a precipitate by heating (salting out) is exemplified. In addition, a thiol molecule that forms an Au-S bond is disposed on the surface, and an anionic group is present at the end of this molecule.

このような金ナノ微粒子を用いることで、プラズモン効果を効率よく利用することが可能となる。  By using such gold nanoparticle, the plasmon effect can be used efficiently.

そして、この出願の発明の光電変換素子構造では、導電性の固体基板を用いるが、好ましいものとしては、電解に対して安定で耐腐食性を有する貴金属であり、かつ、分子と強固な結合を作る目的と、電気的な接合を達成するために、分子末端にS基やS−S基を持たせた分子とのS−Au結合のため、Au電極を用いることが好適に考慮される。また表面を大きくする目的で、前記のようにナノ微粒子を堆積させる方法も有効である。  And in the photoelectric conversion element structure of the invention of this application, a conductive solid substrate is used. Preferably, it is a noble metal that is stable and resistant to electrolysis and has a strong bond with molecules. In order to achieve the purpose of making and electrical bonding, it is preferable to use an Au electrode for S—Au bonding with a molecule having an S group or an S—S group at the molecular end. For the purpose of increasing the surface, the method of depositing nanoparticles as described above is also effective.

また、In酸化スズに代表される導電性金属酸化物電極基板であってもよいし、FET電極であってもよい。  Moreover, the electroconductive metal oxide electrode substrate represented by In tin oxide may be sufficient, and an FET electrode may be sufficient.

基板の種類、その特徴に応じた電極との電子伝達構造が考慮されることになる。  The electron transfer structure with the electrode corresponding to the type of substrate and its characteristics is considered.

そして、この出願の発明の光電変換素子構造においては、基板電極に結合し表面部末端に陰イオン基、S基、またはS−S基を有する分子の単分子膜、電解質溶液並びに対抗電極を備えてセル形成されていることを好適に考慮することができる。  The photoelectric conversion element structure of the invention of this application includes a monomolecular film of a molecule having an anion group, an S group, or an SS group bonded to the substrate electrode and having an anion group, an S group, or an SS group at the end of the surface portion, an electrolyte solution and a counter electrode. Thus, it can be suitably considered that cells are formed.

この場合、電解質溶液は生体コンポーネントを含むことや、還元試薬を含むことが好ましい。  In this case, the electrolyte solution preferably contains a biological component or a reducing reagent.

そこで以下に実施例を説明する。  Accordingly, examples will be described below.

もちろん以下の例によって発明が限定されることはない。  Of course, the invention is not limited by the following examples.

ナノ構造を有する金電極は、金ナノ粒子(AuNP平均粒径15nm)を塩析によりAu基板電極上に堆積させることで作製した。目的とする複合電極は、好熱性ラン色細菌Synechococcus elongatusから単離したPS1(単量体:10nm)の水溶液に上記の金電極を浸漬することで作製した。この複合電極のSEM観察を行ったところ、粒状の表面形状を持つ細孔性の電極が形成されていることが明らかになった(図1)。この複合電極を三極式電解セルの作用極に用い、犠牲試薬存在下で単色光照射を行うと、PS1由来のアノード光電流が発生した。更に堆積する金ナノ粒子の量を増加させると、光電流量が増加することが明らかになった(図2)。この図2における光電流の相違は、図3に示したように、金ナノ粒子の量の差異を反映している。金ナノ粒子の量が増え、これに修飾されるPSIの量も増えることで光電流が増加することがわかる。  A gold electrode having a nanostructure was produced by depositing gold nanoparticles (AuNP average particle diameter of 15 nm) on an Au substrate electrode by salting out. The target composite electrode was prepared by immersing the gold electrode in an aqueous solution of PS1 (monomer: 10 nm) isolated from the thermophilic orchid bacterium Synechococcus elongatus. SEM observation of this composite electrode revealed that a porous electrode having a granular surface shape was formed (FIG. 1). When this composite electrode was used as a working electrode of a three-electrode electrolytic cell and monochromatic light irradiation was performed in the presence of a sacrificial reagent, an anode photocurrent derived from PS1 was generated. Further, it was found that the photoelectric flow rate increased when the amount of gold nanoparticles deposited was increased (FIG. 2). The difference in photocurrent in FIG. 2 reflects the difference in the amount of gold nanoparticles as shown in FIG. It can be seen that the photocurrent increases as the amount of gold nanoparticles increases and the amount of PSI modified thereby increases.

複合電極のSEM像を示した図である。It is the figure which showed the SEM image of a composite electrode. 光電流アクションスペクトルを示した図である。It is the figure which showed the photocurrent action spectrum. 金ナノ粒子の量の相違を模式的に示した修飾構成図である。It is the modification block diagram which showed typically the difference in the quantity of a gold nanoparticle.

Claims (6)

光化学系蛋白複合体を構成要素とする光電変換素子構造であって、光化学系蛋白複合体と金ナノ微粒子を堆積させた電極とが複合化されて電子伝達経路が形成されていることを特徴とする光電変換素子構造。  A photoelectric conversion element structure having a photochemical protein complex as a constituent element, wherein the photochemical protein complex and an electrode on which gold nanoparticles are deposited are combined to form an electron transfer path. A photoelectric conversion element structure. 光化学系蛋白複合体は、ラン藻植物や高等植物のPSI、PSHまたは紅色細菌の光化学系蛋白複合体であることを特徴とする請求項1の光電変換素子構造。  2. The photoelectric conversion element structure according to claim 1, wherein the photochemical protein complex is a photochemical protein complex of PSI, PSH or red bacteria of cyanobacteria and higher plants. 金ナノ微粒子の表面はAu−S結合を形成するチオール分子が配設され、この分子の末端には陰イオン基が存在することを特徴とする請求項1または2の光電変換素子構造。  3. The photoelectric conversion element structure according to claim 1, wherein a thiol molecule forming an Au—S bond is disposed on a surface of the gold nanoparticle, and an anionic group is present at an end of the molecule. 基板電極、基板電極に結合し表面部末端に陰イオン基、S基またはS−S基を有する分子の単分子膜、電解質溶液並びに対抗電極を備えてセル形成されていることを特徴とする請求項1ないし3のいずれかの光電変換素子構造。  A cell is formed by including a substrate electrode, a monomolecular film of a molecule having an anion group, an S group or an SS group at the end of the surface portion bonded to the substrate electrode, an electrolyte solution, and a counter electrode. Item 4. The photoelectric conversion element structure according to any one of Items 1 to 3. 金ナノ微粒子が単分子膜に堆積されていることを特徴とする請求項4の光電変換素子構造。  5. The photoelectric conversion element structure according to claim 4, wherein the gold nanoparticle is deposited on a monomolecular film. 電解質溶液は還元試薬を含むことを特徴とする請求項4または5の光電変換素子構造。  6. The photoelectric conversion element structure according to claim 4, wherein the electrolyte solution contains a reducing reagent.
JP2004114763A 2004-03-11 2004-03-11 Photoelectric conversion element Expired - Lifetime JP4565173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114763A JP4565173B2 (en) 2004-03-11 2004-03-11 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114763A JP4565173B2 (en) 2004-03-11 2004-03-11 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2005259674A true JP2005259674A (en) 2005-09-22
JP4565173B2 JP4565173B2 (en) 2010-10-20

Family

ID=35085167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114763A Expired - Lifetime JP4565173B2 (en) 2004-03-11 2004-03-11 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4565173B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166697A (en) * 2006-12-08 2008-07-17 Fujifilm Corp Optical energy transfer element and artificial photosynthetic element
EP2000793A2 (en) 2007-06-08 2008-12-10 FUJIFILM Corporation Microstructures, method for producing microstructures, and optical field amplifying device
US8273982B2 (en) 2008-07-17 2012-09-25 Fujifilm Corporation Photoelectric converting device
KR20160042625A (en) * 2014-10-10 2016-04-20 윤다솔 Dye-sensitized Solar Cell Containing Photoautotroph Producing Dye

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353432A (en) * 2001-05-24 2002-12-06 Fuji Photo Film Co Ltd Functional nanostructure and optical element using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353432A (en) * 2001-05-24 2002-12-06 Fuji Photo Film Co Ltd Functional nanostructure and optical element using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166697A (en) * 2006-12-08 2008-07-17 Fujifilm Corp Optical energy transfer element and artificial photosynthetic element
EP2000793A2 (en) 2007-06-08 2008-12-10 FUJIFILM Corporation Microstructures, method for producing microstructures, and optical field amplifying device
US7952707B2 (en) 2007-06-08 2011-05-31 Fujifilm Corporation Microstructures, method for producing microstructures, and optical field amplifying device
US8273982B2 (en) 2008-07-17 2012-09-25 Fujifilm Corporation Photoelectric converting device
KR20160042625A (en) * 2014-10-10 2016-04-20 윤다솔 Dye-sensitized Solar Cell Containing Photoautotroph Producing Dye
KR102255296B1 (en) 2014-10-10 2021-05-25 윤다솔 Dye-sensitized Solar Cell Containing Photoautotroph Producing Dye

Also Published As

Publication number Publication date
JP4565173B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
Cassagneau et al. Optical and electrical characterizations of ultrathin films self-assembled from 11-aminoundecanoic acid capped TiO2 nanoparticles and polyallylamine hydrochloride
Jia et al. Graphitic carbon nitride films: emerging paradigm for versatile applications
Imahori et al. Porphyrin‐and fullerene‐based molecular photovoltaic devices
Ravi et al. Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing
den Hollander et al. Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein–gold interactions
Jia et al. Metal-organic frameworks and their derivatives-modified photoelectrodes for photoelectrochemical applications
Behrens et al. Silver nanoparticle and nanowire formation by microtubule templates
Haga et al. Fabrication and functions of surface nanomaterials based on multilayered or nanoarrayed assembly of metal complexes
Shen et al. Escherichia coli bacteria-templated synthesis of nanoporous cadmium sulfide hollow microrods for efficient photocatalytic hydrogen production
Pamu et al. Plasmon-enhanced photocurrent from photosystem I assembled on Ag nanopyramids
Hou et al. Graphene directed architecture of fine engineered nanostructures with electrochemical applications
Antonacci et al. Photosynthesis-based hybrid nanostructures: electrochemical sensors and photovoltaic cells as case studies
Goux et al. Mechanistic study of the electrodeposition of nanoporous self-assembled ZnO/eosin Y hybrid thin films: Effect of eosin concentration
JP2001168317A (en) Method of forming metal fine particle ordered-structure
Liu et al. Bio‐inspired plasmonic photocatalysts
Zhang et al. Ultralight, flexible, and semi-transparent metal oxide papers for photoelectrochemical water splitting
Gooding et al. Nanostructured electrodes with unique properties for biological and other applications
Pamu et al. Broadband plasmonic photocurrent enhancement from photosystem I assembled with tailored arrays of Au and Ag nanodisks
Umeyama et al. Self-organization of porphyrins and fullerenes for molecular photoelectrochemical devices
Kim et al. Electrosprayed Thylakoid–Alginate Film on a Micro-Pillar Electrode for Scalable Photosynthetic Energy Harvesting
JP4565173B2 (en) Photoelectric conversion element
WO2008023372A2 (en) Optoelectronic device and method of fabricating the same
D’Urso et al. Solvophobic versus electrostatic interactions drive spontaneous adsorption of porphyrins onto inorganic surfaces: A full noncovalent approach
Vijayamohanan et al. Applications of self-assembled monolayers for biomolecular electronics
Yamanoi et al. Assembly of nanosize metallic particles and molecular wires on electrode surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4565173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term