JP2005259624A - Battery status detecting apparatus - Google Patents

Battery status detecting apparatus Download PDF

Info

Publication number
JP2005259624A
JP2005259624A JP2004072031A JP2004072031A JP2005259624A JP 2005259624 A JP2005259624 A JP 2005259624A JP 2004072031 A JP2004072031 A JP 2004072031A JP 2004072031 A JP2004072031 A JP 2004072031A JP 2005259624 A JP2005259624 A JP 2005259624A
Authority
JP
Japan
Prior art keywords
battery
soh
calculated
state
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004072031A
Other languages
Japanese (ja)
Other versions
JP4442262B2 (en
Inventor
Keizo Yamada
惠造 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004072031A priority Critical patent/JP4442262B2/en
Publication of JP2005259624A publication Critical patent/JP2005259624A/en
Application granted granted Critical
Publication of JP4442262B2 publication Critical patent/JP4442262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery status detecting apparatus uniquely defining a deteriorated state of a battery even when the battery is deteriorated in various modes. <P>SOLUTION: The battery status detecting apparatus measures open circuit voltage of a battery in a state of full charge (S204), calculates reduced amount ΔSOH1 of SOH (State Of Health) of a lead battery on the side of a high OCV (open circuit voltage)(S210). When peak voltage Vp of the lead battery is 8V and less when an engine is started (S310), a reduced amount ΔSOH2 of SOH in the lead battery on a low OCV side by SOH map between a discharge voltage and the open circuit voltage is calculated (S312), and the deteriorated state SOH of the lead battery is calculated from ΔSOH1 and ΔSOH2 (S212, S314). SOH, etc., close to a real value of the lead battery cell are calculated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電池状態検出装置に係り、特に、電池の状態を検出する電池状態検出装置に関する。   The present invention relates to a battery state detection device, and more particularly to a battery state detection device that detects a state of a battery.

近年、自動車、携帯機器などの高性能化に伴ってそれらに使用される電池の負荷が大きくなるに従い、電池状態監視と電池状態制御との役割が益々重要性となってきている。例えば、自動車用の電池では、排ガス削減のために行われるアイドルストップ・スタート(ISS)や回生充電などに対応するため、これらの用途に適した電池状態に電池を保つ技術が望まれている。鉛電池はこれらの用途に応用できる代表的な電池のひとつである。   In recent years, the role of battery state monitoring and battery state control has become more and more important as the load on the batteries used in automobiles, portable devices, and the like has increased with the increase in performance. For example, in the case of a battery for an automobile, a technique for keeping the battery in a battery state suitable for these uses is desired in order to cope with idle stop start (ISS) or regenerative charging performed to reduce exhaust gas. Lead batteries are one of the typical batteries that can be applied to these applications.

従来、内部抵抗、放電電圧、開回路電圧などが劣化状態や充電状態などの電池状態の判断材料として用いられてきており、これらの用途に適した電池状態の指標として用いられる。例えば、エンジン始動時の電圧や直流内部抵抗をあらかじめ測定したデータマップと比較して電池状態を算出する技術が各種提案されている(例えば、特許文献1参照)。また、劣化判定では、単位電気量放電あたりの開回路電圧の変化量で劣化度合いを規定し寿命を判定する技術や満充電状態での開回路電圧から劣化度合いを規定しISS判定に利用する技術が開示されている(例えば、特許文献2参照)。   Conventionally, internal resistance, discharge voltage, open circuit voltage, and the like have been used as materials for determining a battery state such as a deteriorated state and a charged state, and are used as indicators of a battery state suitable for these applications. For example, various techniques for calculating a battery state by comparing with a data map obtained by measuring a voltage at the time of engine start and a direct current internal resistance in advance have been proposed (see, for example, Patent Document 1). In the deterioration determination, a technique for determining the degree of deterioration by the amount of change in the open circuit voltage per unit electric quantity discharge to determine the life, or a technique for determining the degree of deterioration from the open circuit voltage in a fully charged state and using it for the ISS determination Is disclosed (for example, see Patent Document 2).

劣化電池の劣化度合い(劣化状態)を表す指標として、上述の単位電気量放電あたりの開回路電圧の変化量、満充電状態での開回路電圧がしばしば用いられる。また、最近では、(満充電容量/初期満充電容量)×100%で定義されるSOH(State Of Health)というパラメータが、劣化状態を表す指標として定着してきている。   As an index indicating the degree of deterioration of a deteriorated battery (deterioration state), the above-described change amount of the open circuit voltage per unit electric quantity discharge and the open circuit voltage in a fully charged state are often used. Also, recently, a parameter called SOH (State Of Health) defined by (full charge capacity / initial full charge capacity) × 100% has been established as an index representing the deterioration state.

特開平7−63830号公報JP-A-7-63830 特開2003−028940号公報JP 2003-028940 A

しかしながら、実際に各種劣化モードでの劣化電池を調査すると、これらの量が同じであっても放電特性が大きく異なる電池が多く、劣化電池の劣化度合いを一意に定義することが難しい。例えば、鉛電池の開回路電圧(OCV)による劣化度合いの検出を例にとると、硫酸鉛化で劣化した電池では、粗大化した硫酸鉛が放電状態のまま充電されずOCVが大きい領域は利用できなくなり、泥状化で劣化した電池では、脱落した活物質が充電状態のまま放電されずOCVが小さい領域が利用できなくなる。   However, when actually investigating deteriorated batteries in various deterioration modes, there are many batteries with greatly different discharge characteristics even if these amounts are the same, and it is difficult to uniquely define the degree of deterioration of the deteriorated battery. For example, taking the detection of the degree of deterioration of an open circuit voltage (OCV) of a lead battery as an example, in a battery that has deteriorated due to lead sulfate, the area in which the large lead sulfate is not charged in a discharged state is used. In a battery that cannot be used and deteriorated due to muddy formation, the active material that has fallen off is not discharged in a charged state, and the region where the OCV is small cannot be used.

本発明は上記事案に鑑み、電池が種々のモードで劣化していても、電池の劣化状態を一意に定義可能な電池状態検出装置を提供することを課題とする。   An object of the present invention is to provide a battery state detection device capable of uniquely defining a deterioration state of a battery even when the battery has deteriorated in various modes.

上記課題を解決するために、本発明は、電池の状態を検出する電池状態検出装置において、満充電状態での前記電池のSOHの減少量を算出する第1のSOH減少量算出手段と、高率放電による前記電池の電圧が所定値以下のときの前記電池のSOHの減少量を算出する第2のSOH減少量算出手段と、前記第1及び第2のSOH減少量算出手段で算出されたSOHの減少量の双方から前記電池のSOHの値を算出するSOH算出手段と、を備える。   In order to solve the above-described problems, the present invention provides a battery state detection device that detects a state of a battery, a first SOH decrease amount calculating unit that calculates a decrease amount of SOH of the battery in a fully charged state, Calculated by a second SOH decrease amount calculating means for calculating the amount of SOH decrease of the battery when the voltage of the battery due to rate discharge is not more than a predetermined value, and the first and second SOH decrease amount calculating means. SOH calculating means for calculating the SOH value of the battery from both of the amount of SOH reduction.

本発明では、第1のSOH減少量算出手段により、満充電状態での電池のSOHの減少量が算出され、第2のSOH減少量算出手段により、高率放電による電池の電圧が所定値以下のときの電池のSOHの減少量が算出され、SOH算出手段により、第1及び第2のSOH減少量算出手段で算出されたSOHの減少量の双方から電池のSOHの値が算出される。本発明によれば、満充電状態での電池のSOHの減少量と高率放電による電池のSOHの減少量とをそれぞれ別の第1及び第2のSOH減少量算出手段で算出するので、電池の劣化モードに応じて電池のSOHの減少量を精度よく算出することができ、SOH算出手段により第1及び第2のSOH減少量算出手段で算出したSOHの減少量の双方のから電池のSOHの値を算出するので、一意に電池のSOHの真値に近いSOHの値を算出することができる。   In the present invention, the first SOH decrease amount calculation means calculates the SOH decrease amount of the battery in the fully charged state, and the second SOH decrease amount calculation means causes the battery voltage due to high rate discharge to be less than or equal to a predetermined value. The SOH decrease amount of the battery at this time is calculated, and the SOH calculation unit calculates the SOH value of the battery from both the SOH decrease amounts calculated by the first and second SOH decrease amount calculation units. According to the present invention, the battery SOH reduction amount in the fully charged state and the battery SOH reduction amount due to the high rate discharge are calculated by separate first and second SOH reduction amount calculation units, respectively. The SOH reduction amount of the battery can be accurately calculated according to the deterioration mode of the battery, and the SOH of the battery is calculated from both the SOH reduction amount calculated by the first and second SOH reduction amount calculation means by the SOH calculation means. Therefore, it is possible to calculate a value of SOH that is uniquely close to the true value of the SOH of the battery.

本発明において、第1及び第2のSOH減少量算出手段は、電池の開回路電圧、内部抵抗又は放電電圧からSOHの減少量を算出するようにしてもよい。このとき、第1のSOH減少量算出手段は、電池の満充電状態での開回路電圧から前記SOHの減少量を算出し、第2のSOH減少量算出手段は、電池の内部抵抗の増大値から前記SOHの減少量を算出するようにしてもよい。また、SOH算出手段で算出された異なる時刻における複数のSOHの値から電池の余命を算出する余命算出手段を更に備えるようにしてもよい。このとき、余命算出手段は、電池の劣化状態の進行速度から電池の余命を算出することが好ましい。更に、非満充電状態での電池のSOCの値を算出するSOC算出手段と、SOC算出手段で算出されたSOCの値、第2のSOH減少量算出手段で算出された電池のSOHの減少量及びSOH算出手段で算出されたSOHに基づいて電池の充電状態を算出する充電状態算出手段と、を更に備えるようにしてもよい。このとき、SOC算出手段は、電池の開回路電圧、内部抵抗又は放電電圧から非満充電状態での電池のSOCの値を算出するようにしてもよい。   In the present invention, the first and second SOH decrease amount calculating means may calculate the decrease amount of SOH from the open circuit voltage, internal resistance or discharge voltage of the battery. At this time, the first SOH decrease amount calculating means calculates the SOH decrease amount from the open circuit voltage when the battery is fully charged, and the second SOH decrease amount calculating means is an increase value of the internal resistance of the battery. From the above, the amount of decrease in SOH may be calculated. Moreover, you may make it further provide the life calculation means which calculates the life expectancy of a battery from the value of several SOH in the different time calculated by the SOH calculation means. In this case, it is preferable that the life expectancy calculating means calculates the life expectancy of the battery from the progress speed of the deterioration state of the battery. Further, an SOC calculation means for calculating the SOC value of the battery in a non-full charge state, an SOC value calculated by the SOC calculation means, and a decrease amount of the SOH of the battery calculated by the second SOH reduction amount calculation means And a state of charge calculation means for calculating the state of charge of the battery based on the SOH calculated by the SOH calculation means. At this time, the SOC calculation means may calculate the SOC value of the battery in the non-full charge state from the open circuit voltage, internal resistance or discharge voltage of the battery.

本発明によれば、満充電状態での電池のSOHの減少量と高率放電による電池のSOHの減少量とをそれぞれ別の第1及び第2のSOH減少量算出手段で算出するので、電池の劣化モードに応じて電池のSOHの減少量を精度よく算出することができ、SOH算出手段により第1及び第2のSOH減少量算出手段で算出したSOHの減少量の双方のから電池のSOHの値を算出するので、一意に電池のSOHの真値に近いSOHの値を算出することができる、という効果を得ることができる。   According to the present invention, the battery SOH reduction amount in the fully charged state and the battery SOH reduction amount due to the high rate discharge are calculated by separate first and second SOH reduction amount calculation units, respectively. The SOH reduction amount of the battery can be accurately calculated according to the deterioration mode of the battery, and the SOH of the battery is calculated from both the SOH reduction amount calculated by the first and second SOH reduction amount calculation means by the SOH calculation means. Since the value of SOH is calculated, it is possible to obtain an effect that the value of SOH that is uniquely close to the true value of SOH of the battery can be calculated.

以下、図面を参照して、本発明を車両用鉛電池75D26の電池状態を検出する電池状態検出装置に適用した実施の形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to a battery state detection device that detects a battery state of a vehicle lead battery 75D26 will be described with reference to the drawings.

(構成)
図2に示すように、本実施形態の電池状態検出装置11は、鉛電池1(75D26)のベント栓から離れた側の鉛電池1の側面に固着されており、鉛電池1の劣化状態(SOH)、充電状態(SOC)、余命等の電池状態を演算するマイクロコンピュータ(以下、マイコンと略称する。)8を有している。鉛電池1の電槽中央部の隔壁にはセンサ挿入孔が形成されており、センサ挿入孔にはサーミスタ等の温度センサ7が挿入され接着剤で固定されている。
(Constitution)
As shown in FIG. 2, the battery state detection device 11 of the present embodiment is fixed to the side surface of the lead battery 1 on the side away from the vent plug of the lead battery 1 (75D26), and the deterioration state of the lead battery 1 ( A microcomputer (hereinafter abbreviated as “microcomputer”) 8 for calculating battery states such as SOH), state of charge (SOC), and life expectancy. A sensor insertion hole is formed in the partition wall in the central part of the battery case of the lead battery 1, and a temperature sensor 7 such as a thermistor is inserted into the sensor insertion hole and fixed with an adhesive.

マイコン8は、中央演算処理装置として機能するCPU、電池状態検出装置11の基本制御プログラムや後述するマップ等のデータを記憶したROM、CPUのワークエリアとして働くRAM、A/Dコンバータ、及び、上位の車両側マイコン10と通信するためのインターフェース等を含んで構成されている。   The microcomputer 8 includes a CPU that functions as a central processing unit, a ROM that stores data such as a basic control program of the battery state detection device 11 and a map that will be described later, a RAM that functions as a work area of the CPU, an A / D converter, and a host An interface for communicating with the vehicle-side microcomputer 10 is included.

鉛電池1の正極端子は、電流センサ6を介してイグニッションスイッチ(以下、IGNスイッチという。)9の中央端子に接続されている。IGNスイッチ9は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、ロータリー式に切り替え接続が可能である。   A positive terminal of the lead battery 1 is connected to a central terminal of an ignition switch (hereinafter referred to as IGN switch) 9 through a current sensor 6. The IGN switch 9 has an OFF terminal, an ON / ACC terminal, and a START terminal in addition to the center terminal, and can be switched and connected in a rotary manner.

電流センサ6の出力端子はマイコン8に内蔵されたA/Dコンバータに接続されており、電流センサ6から出力されたホール電圧はA/Dコンバータでデジタル値に変換され、マイコン8は鉛電池1に流れる電流をデジタル値として取り込むことができる。また、鉛電池1の両極端子はマイコン8に内蔵された他のA/Dコンバータに接続されており、マイコン8は鉛電池1の両端電圧をデジタル値で取り込むことができる。更に、温度センサ7の出力端子は別のA/Dコンバータに接続されており、マイコン8は鉛電池1の温度をデジタル値で取り込むことができる。なお、電池状態検出装置11は、このような配線を含んで構成されている。   The output terminal of the current sensor 6 is connected to an A / D converter built in the microcomputer 8, and the Hall voltage output from the current sensor 6 is converted into a digital value by the A / D converter. Can be captured as a digital value. Further, the bipolar terminals of the lead battery 1 are connected to another A / D converter built in the microcomputer 8, and the microcomputer 8 can take in the voltage across the lead battery 1 as a digital value. Furthermore, the output terminal of the temperature sensor 7 is connected to another A / D converter, and the microcomputer 8 can capture the temperature of the lead battery 1 as a digital value. Note that the battery state detection device 11 includes such wiring.

一方、車両側には、図示しないクラッチ機構を介してエンジン4の回転軸に回転駆動力を伝達させエンジン4を始動させるスタータ3が配されている。また、エンジン4の回転軸は、不図示のクラッチ機構を介して発電機2に動力の伝達が可能であり、エンジン4が回転状態にあるときは、このクラッチ機構を介して発電機2が作動し発電機2からの電力がエアコン、ラジオ等の補機5乃至鉛電池1に供給(充電)される。このようなエンジン制御等は車両側マイコン10により実行される。   On the other hand, a starter 3 for starting the engine 4 by transmitting the rotational driving force to the rotating shaft of the engine 4 via a clutch mechanism (not shown) is disposed on the vehicle side. Further, the rotation shaft of the engine 4 can transmit power to the generator 2 via a clutch mechanism (not shown). When the engine 4 is in a rotating state, the generator 2 is operated via this clutch mechanism. Then, the electric power from the generator 2 is supplied (charged) to the auxiliary machine 5 such as an air conditioner and a radio or the lead battery 1. Such engine control and the like are executed by the vehicle-side microcomputer 10.

IGNスイッチ9のON/ACC端子は、補機5及び一方向への電流の流れを許容する整流素子を介して発電機2の一端に接続されている。また、START端子はスタータ3の一端に接続されている。更に、発電機2、スタータ3及び補機5の他端、鉛電池1の負極端子及びマイコン8は、それぞれグランドに接続されている。   The ON / ACC terminal of the IGN switch 9 is connected to one end of the generator 2 through the auxiliary machine 5 and a rectifying element that allows current flow in one direction. The START terminal is connected to one end of the starter 3. Furthermore, the other end of the generator 2, the starter 3 and the auxiliary machine 5, the negative terminal of the lead battery 1, and the microcomputer 8 are connected to the ground, respectively.

(動作)
次に、フローチャートを参照して、本実施形態の電池状態検出装置11の動作について、マイコン8のCPU(以下、単にCPUという。)を主体として説明する。なお、CPUは、マイコン8に電源が投入されると、鉛電池1のSOC等の電池状態を演算する電池状態演算ルーチンを実行する。
(Operation)
Next, with reference to a flowchart, the operation of the battery state detection device 11 of the present embodiment will be described with a CPU of the microcomputer 8 (hereinafter simply referred to as a CPU) as a subject. The CPU executes a battery state calculation routine for calculating a battery state such as the SOC of the lead battery 1 when the microcomputer 8 is powered on.

図3に示すように、電池状態演算ルーチンでは、まず、ステップ100において、電流センサ6に流れる電流が所定値(例えば、0.05A)以上か否かを判断することで、IGNスイッチ9の中央端子がON/ACC端子又はSTART端子に接続されたか否かを判定する。   As shown in FIG. 3, in the battery state calculation routine, first, in step 100, it is determined whether or not the current flowing through the current sensor 6 is a predetermined value (for example, 0.05 A) or more. It is determined whether the terminal is connected to the ON / ACC terminal or the START terminal.

ステップ100での判断が否定のときは、すなわち、IGNスイッチ9の中央端子がOFF端子に接続されている(イグニッションがオフ状態となっている)ときは、ステップ202において、イグニッションがオフ状態となってから6時間が経過したか否かを判断する。なお、イグニッションがオフ状態となったか否かの判断は、上記と同様に、電流センサ6に流れる電流が所定値未満となったときに、イグニッションがオフ状態となったとみなせばよく、この時刻からCPUの内部時計による時間カウントを開始することで判断することができる。   If the determination in step 100 is negative, that is, if the center terminal of the IGN switch 9 is connected to the OFF terminal (ignition is off), the ignition is off in step 202. It is determined whether 6 hours have passed since then. Note that the determination as to whether or not the ignition has been turned off can be made by assuming that the ignition has been turned off when the current flowing through the current sensor 6 becomes less than a predetermined value, as described above. This can be determined by starting the time count by the CPU internal clock.

ステップ202で否定判断のときは、ステップ100へ戻り、肯定判断のときは、次のステップ204で、鉛電池1の開回路電圧(OCV)を取り込む。従って、鉛電池1のOCVは、イグニッションがオフ状態となってから6時間毎に測定される。次のステップ206では、測定したOCVにより鉛電池1が満充電状態か否かを判断する。このような判断は、例えば、下表1に示す、鉛電池1の新品状態での充電状態(SOC)とOCVとの75D26用関係マップ(SOC(OCV)マップ)を、後述する鉛電池1の劣化状態(SOH)に応じて補正して使用することで、適正に行うことができる。   If the determination in step 202 is negative, the process returns to step 100. If the determination is affirmative, in the next step 204, the open circuit voltage (OCV) of the lead battery 1 is captured. Accordingly, the OCV of the lead battery 1 is measured every 6 hours after the ignition is turned off. In the next step 206, it is determined whether or not the lead battery 1 is fully charged based on the measured OCV. Such a determination is made, for example, by using a 75D26 relation map (SOC (OCV) map) between the state of charge (SOC) of the lead battery 1 in a new state and the OCV shown in Table 1 below. It can be performed appropriately by correcting and using it according to the deterioration state (SOH).

ステップ206で肯定判断のときは、鉛電池1は満充電状態(SOC=100%)であり、次のステップ210で、下表2のSOH(OCV)マップを利用して、ΔSOH1=100%−SOH(OCV)により、満充電状態での鉛電池1のSOHの減少量ΔSOH1を演算してRAMに記憶する。   When the determination in step 206 is affirmative, the lead battery 1 is in a fully charged state (SOC = 100%), and in the next step 210, ΔSOH1 = 100% − using the SOH (OCV) map in Table 2 below. The SOH reduction amount ΔSOH1 of the lead battery 1 in the fully charged state is calculated by SOH (OCV) and stored in the RAM.

次のステップ212では、RAMから後述する鉛電池1のSOHの減少量ΔSOH2(ステップ312参照)を読み出して、SOH=100%−(ΔSOH1+ΔSOH2)により(以下、この数式を式1という。)、満充電状態での鉛電池1のSOHを演算する。なお、電池状態演算ルーチンの初期設定処理(不図示)において、SOHの減少量ΔSOH2の初期値=0がROMからRAMに展開されており、ステップ212では、後述するステップ312でSOHの減少量ΔSOH2が演算されるまでは、SOHの減少量ΔSOH2を0として、すなわち、SOH=100%−ΔSOH1により、鉛電池1のSOHが演算される。次いで、ステップ214では、ステップ212で演算したSOHと現在の時刻とをRAMに記憶してステップ102へ進む。   In the next step 212, an SOH reduction amount ΔSOH2 (see step 312) of the lead battery 1 to be described later is read from the RAM, and SOH = 100% − (ΔSOH1 + ΔSOH2) (hereinafter, this equation is referred to as equation 1). The SOH of the lead battery 1 in the charged state is calculated. In the initial setting process (not shown) of the battery state calculation routine, the initial value of SOH decrease amount ΔSOH2 = 0 is developed from the ROM to the RAM, and in step 212, the SOH decrease amount ΔSOH2 in step 312 described later. Until S is calculated, the SOH decrease amount ΔSOH2 is set to 0, that is, SOH of the lead battery 1 is calculated by SOH = 100% −ΔSOH1. Next, in step 214, the SOH calculated in step 212 and the current time are stored in the RAM, and the process proceeds to step 102.

ステップ206で否定判断のときは、ステップ216において、上述したSOC(OCV)マップを用いて、ステップ204で測定した鉛電池1のOCVから鉛電池1の開回路電圧による充電状態SOC1を演算する。次のステップ218では、鉛電池1のSOCを、SOC=100%×{100%−(SOC1+SOH2)}/SOHにより(以下、この数式を式2という。)演算しRAMに記憶して、ステップ102へ進む。なお、ステップ218では、ステップ212と同様に、後述するステップ312でSOHの減少量ΔSOH2が演算されるまでは、SOHの減少量ΔSOH2を0として演算する。   When a negative determination is made in step 206, in step 216, the state of charge SOC1 based on the open circuit voltage of the lead battery 1 is calculated from the OCV of the lead battery 1 measured in step 204 using the SOC (OCV) map described above. In the next step 218, the SOC of the lead battery 1 is calculated by SOC = 100% × {100% − (SOC1 + SOH2)} / SOH (hereinafter, this equation is referred to as equation 2) and stored in the RAM. Proceed to In step 218, similarly to step 212, the SOH decrease amount ΔSOH2 is calculated as 0 until the SOH decrease amount ΔSOH2 is calculated in step 312 described later.

一方、ステップ100で判断が肯定のときは、すなわち、IGNスイッチ9の中央端子がON/ACC端子又はSTART端子に接続されている(イグニッションがオン状態となっている)ときは、ステップ302で鉛電池1の放電電圧Eを測定してRAMに記憶し、次のステップ304において、鉛電池1が満充電か否かを判断する。このステップ304では、例えば、過去30分の放電電圧Eが90%以上の割合で13.8V以上の幅200mVの範囲に入る場合に満充電と判断し、そうでない場合に非満充電と判断すればよい。   On the other hand, when the determination in step 100 is affirmative, that is, when the center terminal of the IGN switch 9 is connected to the ON / ACC terminal or the START terminal (ignition is in an on state), lead is detected in step 302. The discharge voltage E of the battery 1 is measured and stored in the RAM, and in the next step 304, it is determined whether or not the lead battery 1 is fully charged. In this step 304, for example, when the discharge voltage E for the past 30 minutes falls within a range of 200 mV of 13.8 V or more at a rate of 90% or more, it is determined that the battery is fully charged, and otherwise, it is determined that it is not fully charged. That's fine.

ステップ304で肯定判断のときは、ステップ100に戻り、否定判断のときは、次のステップ306において、電流センサ6から出力されたホール電圧を監視することにより、IGNスイッチ9がSTART端子に接続されたか否かを判断する。   If the determination in step 304 is affirmative, the process returns to step 100. If the determination is negative, in step 306, the Hall voltage output from the current sensor 6 is monitored to connect the IGN switch 9 to the START terminal. It is determined whether or not.

図6は、エンジン始動時の鉛電池1(電流センサ6)に流れる電流を模式的に示したものである。エンジン始動時の鉛電池1の電流波形は、IGNスイッチ9がSTART位置に位置したエンジン始動電流通電開始時(時刻ts)の後、スタータ3への急激な1段目のパルス放電が行われ、電流波形は急激な立下りとなり約50ms経過後にピークが現れる(時刻tp)。その後、減衰する数回の増減を経てエンジン始動が完了する。電流波形は、エンジン4の構造、エンジン4とスタータ3とを繋ぐクラッチの摩擦等に影響されるが、概ね図6に示すような波形となる。従って、ステップ306では、所定値以上の大電流が流れたか否かを判断することで、IGNスイッチ9がSTART端子に接続されたか否かを判断することができる。   FIG. 6 schematically shows the current flowing through the lead battery 1 (current sensor 6) when the engine is started. The current waveform of the lead battery 1 at the start of the engine is such that after the start of energization of the engine start current when the IGN switch 9 is located at the START position (time ts), a rapid first-stage pulse discharge to the starter 3 is performed. The current waveform falls sharply and a peak appears after about 50 ms (time tp). After that, the engine start is completed after a few attenuations. Although the current waveform is affected by the structure of the engine 4, the friction of the clutch connecting the engine 4 and the starter 3, etc., the waveform is generally as shown in FIG. Therefore, in step 306, it can be determined whether or not the IGN switch 9 is connected to the START terminal by determining whether or not a large current of a predetermined value or more has flowed.

ステップ306で否定判断のときは、ステップ100に戻り、肯定判断のときは、ステップ308で鉛電池1の温度T及びピーク電圧Vp(図6における時刻tpでの鉛電池1の放電電圧)を測定する。   When a negative determination is made at step 306, the process returns to step 100. When an affirmative determination is made, the temperature T and peak voltage Vp of the lead battery 1 (discharge voltage of the lead battery 1 at time tp in FIG. 6) are measured at step 308. To do.

次にステップ310では、ピーク電圧Vpが8V以下か否かを判断し、否定判断のときは、ステップ100に戻り、肯定判断のときは、次のステップ312において、図1に示すようなSOH2(温度T、ピーク電圧Vp、OCV)マップに当てはめて、OCVが低い領域での鉛電池1のSOHの減少量ΔSOH2を、ΔSOH2=100%−SOH2(温度T、ピーク電圧Vp、OCV)により演算する。   Next, in step 310, it is determined whether or not the peak voltage Vp is 8 V or less. If the determination is negative, the process returns to step 100. If the determination is affirmative, in the next step 312, SOH2 ( (Temperature T, Peak Voltage Vp, OCV) Map, and the SOH reduction amount ΔSOH2 of the lead battery 1 in the region where the OCV is low is calculated by ΔSOH2 = 100% −SOH2 (temperature T, peak voltage Vp, OCV). .

放電電圧は電流に依存するが、エンジン始動時の電流と鉛電池の型式は対応するので、その型式の鉛電池が搭載される車両のエンジン始動電流を予め調べておき、その電流でのSOH(温度T、ピーク電圧Vp、OCV)マップを使用する。図1は、75D26での25°CにおけるSOH(ピーク電圧Vp、OCV)マップを例示したものであるが、鉛電池1ではVp>8VのデータでSOHとの相関が低いため、Vp≦8Vのデータを選んでSOH(ピーク電圧Vp、OCV)マップに当てはめる必要がある。また、一般に電池状態は温度に依存するため、所定温度毎(例えば、10°C毎)に複数のSOH(ピーク電圧Vp、OCV)マップをROMからRAMに展開しておき、ステップ308で測定した温度Tに近い2つのSOH(OCV)マップを按分計算(補正)することで、ピーク電圧Vpにおける鉛電池1のOCVを演算することが好ましい。   Although the discharge voltage depends on the current, the current at the time of engine start corresponds to the type of the lead battery, so the engine start current of the vehicle on which the lead battery of that type is mounted is examined in advance, and the SOH ( Temperature T, peak voltage Vp, OCV) map is used. FIG. 1 illustrates an SOH (peak voltage Vp, OCV) map at 25 ° C. with 75D26. However, in the lead battery 1, Vp> 8V data is low in correlation with SOH, and therefore Vp ≦ 8V. Data must be selected and applied to the SOH (peak voltage Vp, OCV) map. In general, since the battery state depends on the temperature, a plurality of SOH (peak voltage Vp, OCV) maps are developed from the ROM to the RAM at every predetermined temperature (for example, every 10 ° C.), and measured in step 308. It is preferable to calculate the OCV of the lead battery 1 at the peak voltage Vp by proportionally calculating (correcting) two SOH (OCV) maps close to the temperature T.

次のステップ314では、鉛電池1のSOHを演算する。鉛電池1のSOHの合計減少量ΔSOHは(ΔSOH1+ΔSOH2)であり、SOHは上述した式1により演算することができる。次いで、ステップ316で、ステップ316で演算したSOHと現在の時刻とをRAMに記憶し、ステップ318で、式2により鉛電池1のSOCを演算しRAMに記憶して、ステップ102へ進む。   In the next step 314, the SOH of the lead battery 1 is calculated. The total SOH reduction amount ΔSOH of the lead battery 1 is (ΔSOH1 + ΔSOH2), and the SOH can be calculated by the above-described equation 1. Next, in step 316, the SOH calculated in step 316 and the current time are stored in the RAM, and in step 318, the SOC of the lead battery 1 is calculated and stored in the RAM according to Equation 2, and the process proceeds to step 102.

ステップ102では、初期設定処理での初期値による演算結果を排除するため、満充電状態での鉛電池1のSOHの減少量ΔSOH1と高率放電時の低いOCVでの鉛電池1のSOHの減少量ΔSOH2との双方を演算し、かつ、今回、前回、前々回のSOHを演算したか否かを判断する。否定判断のときは、ステップ100に戻り、肯定判断のときは、次のステップ106で鉛電池1の余命を演算する。   In step 102, in order to eliminate the calculation result of the initial value in the initial setting process, the SOH decrease amount ΔSOH1 of the lead battery 1 in the fully charged state and the SOH decrease of the lead battery 1 at a low OCV during high rate discharge. Both the amount ΔSOH2 are calculated, and it is determined whether or not the previous time and the previous SOH were calculated this time. If the determination is negative, the process returns to step 100. If the determination is affirmative, the remaining life of the lead battery 1 is calculated in the next step 106.

鉛電池1で泥状化だけの劣化が進行している場合は、図1に示すように、劣化による変化は満充電状態等のOCVが大きい領域では小さく、OCVは大きく変わらないので、SOHの経時変化から鉛電池1の余命の算出ができる。本実施形態では、ステップ106で、余命=前回SOH×{前回SOH演算時刻−前々回SOH演算時刻)/(前々回SOH−前回SOH)−(今回SOH演算時刻−前回SOH演算時刻)により(以下、この数式を式3という。)、過去2回以上のSOH演算結果と時刻との関係をSOH=0まで外挿して、現在からSOH=0となるまでの時間を鉛電池1の余命とした。換言すれば、本実施形態では、鉛電池1の劣化状態の進行速度から鉛電池1の余名を演算(算出)している。   If the lead battery 1 is only deteriorated due to mudification, as shown in FIG. 1, the change due to deterioration is small in a region where the OCV is large, such as a fully charged state, and the OCV does not change greatly. The life expectancy of the lead battery 1 can be calculated from the change over time. In the present embodiment, in step 106, life expectancy = previous SOH × {previous SOH calculation time−previous SOH calculation time) / (previous SOH−previous SOH) − (current SOH calculation time−previous SOH calculation time) The relationship between the SOH calculation results of the past two or more times and the time is extrapolated to SOH = 0, and the time from the present to SOH = 0 is defined as the remaining life of the lead battery 1. In other words, in this embodiment, the surname of the lead battery 1 is calculated (calculated) from the progress speed of the deterioration state of the lead battery 1.

次のステップ108では、鉛電池1の最新のSOC、SOH、及び、ステップ106で演算した余命を、インターフェースを介して車両側マイコン10に出力してステップ100に戻る。車両側マイコン10は、マイコン8から報知されたSOC等を車両のインストールメントパネルを制御する図示しないパネル制御部に伝え、インストールメントパネルには文字又はグラフ等で鉛電池1の電池状態が表示される。従って、ドライバはインストールメントパネルを見ることで鉛電池1の電池状態を把握することができる。   In the next step 108, the latest SOC and SOH of the lead battery 1 and the remaining life calculated in step 106 are output to the vehicle-side microcomputer 10 via the interface, and the process returns to step 100. The vehicle-side microcomputer 10 transmits the SOC or the like notified from the microcomputer 8 to a panel control unit (not shown) that controls the vehicle installation panel, and the battery status of the lead battery 1 is displayed on the installation panel by characters or graphs. The Therefore, the driver can grasp the battery state of the lead battery 1 by looking at the installation panel.

(作用等)
次に、本実施形態の電池状態検出装置11の作用、効果等について説明する。
(Action etc.)
Next, operations, effects, and the like of the battery state detection device 11 of the present embodiment will be described.

上述したように、鉛電池は一般に、硫酸鉛化による劣化モードでは粗大化した硫酸鉛が放電状態のまま充電されずOCVが大きい領域は利用できなくなり、泥状化による劣化モードでは活物質が脱落して脱落した活物質が充電状態のまま放電されずOCVが小さい領域が利用できなくなる。本実施形態の電池状態検出装置11では、このように利用できなくなる鉛電池1のOCV領域を、高OCV側と低OCV側とに分け、高OCV側のSOH減少量ΔSOH1及び低OCV側のSOH減少量ΔSOH2について、それぞれに有効な(精度よく演算できる)演算方法を用いて演算し、かつ、鉛電池1のSOHを式1に示したように、ΔSOH1及びΔSOH2の両者を用いて演算しているので、鉛電池1のSOHの真値に近いSOHを演算することができる。   As described above, in general, lead batteries are not charged in a deteriorated mode due to lead sulfate, and coarse lead sulfate is not charged in a discharged state and the OCV is large, and the active material is dropped in the deteriorated mode due to muddy formation. Thus, the active material that has fallen off is not discharged in the charged state, and the region where the OCV is small cannot be used. In the battery state detection device 11 of the present embodiment, the OCV region of the lead battery 1 that cannot be used in this way is divided into a high OCV side and a low OCV side, an SOH decrease amount ΔSOH1 on the high OCV side, and an SOH on the low OCV side. The reduction amount ΔSOH2 is calculated using an effective calculation method (which can be calculated with high accuracy), and the SOH of the lead battery 1 is calculated using both ΔSOH1 and ΔSOH2 as shown in Equation 1. Therefore, SOH close to the true value of SOH of the lead battery 1 can be calculated.

すなわち、高OCV側では、満充電状態による高OCV領域で、大きな電気量の入出がないうちに鉛電池1の安定したOCVを測定して(ステップ204)、SOH減少量ΔSOH1を演算している(ステップ210)。また、低OCV側では、高率放電による低いOCV領域で、ステップ310で示したように、エンジン始動時のピーク電圧Vpが8V以下のときに(高率放電による電池の電圧が所定値以下のときに)、図1に示したSOH(温度T、ピーク電圧Vp、OCV)マップに当てはめて、SOH減少量ΔSOH2を演算している(ステップ312)。そして、式1により、ΔSOH1、ΔSOH2の両者を用いて鉛電池1のSOHを演算しているので(ステップ212、314)、一意に(高OCV側及び低OCV側に拘わらず精度の高い)、鉛電池1のSOHを演算することができる。   That is, on the high OCV side, the stable OCV of the lead battery 1 is measured in the high OCV region due to the fully charged state before a large amount of electricity is input / output (step 204), and the SOH decrease amount ΔSOH1 is calculated. (Step 210). On the low OCV side, in the low OCV region due to high rate discharge, as shown in step 310, when the peak voltage Vp at the time of engine start is 8V or less (the battery voltage due to high rate discharge is below a predetermined value). In some cases, the SOH decrease amount ΔSOH2 is calculated by applying to the SOH (temperature T, peak voltage Vp, OCV) map shown in FIG. 1 (step 312). Since the SOH of the lead battery 1 is calculated by using both ΔSOH1 and ΔSOH2 according to Equation 1 (steps 212 and 314), it is uniquely (highly accurate regardless of the high OCV side and the low OCV side). The SOH of the lead battery 1 can be calculated.

また、本実施形態の電池状態検出装置11では、式3に示したように、異なる時刻における複数のSOHにより、鉛電池1の劣化状態の進行速度から鉛電池1の余命を演算しており(ステップ106)、上記の通り鉛電池1のSOHの精度が高いので、鉛電池1の真値に近い余命を演算することができる。更に、本実施形態の電池状態検出装置11では、鉛電池1の非満充電状態でのSOC1を演算し(ステップ216)、式2により、鉛電池1のSOCを演算したので(ステップ218、318)、劣化状態を考慮した精度の高い鉛電池1のSOCを演算することができる。   Moreover, in the battery state detection apparatus 11 of this embodiment, as shown in Formula 3, the life expectancy of the lead battery 1 is calculated from the progress speed of the deterioration state of the lead battery 1 by a plurality of SOH at different times ( Step 106) Since the accuracy of the SOH of the lead battery 1 is high as described above, the life expectancy close to the true value of the lead battery 1 can be calculated. Furthermore, in the battery state detection device 11 of the present embodiment, the SOC 1 of the lead battery 1 in the non-full charge state is calculated (step 216), and the SOC of the lead battery 1 is calculated by the equation 2 (steps 218 and 318). ), The SOC of the lead battery 1 with high accuracy in consideration of the deterioration state can be calculated.

なお、本実施形態では、ステップ210で、満充電(SOC=100%)において鉛電池1のSOH減少量ΔSOH1を例示したが、本発明はこれに限定されず、高OCV側で大きな電気量の入出がないうちに鉛電池1の安定したOCVを測定してSOH減少量ΔSOH1を演算するようにしてもよい。従って、本発明の「満充電状態」は、満充電及び満充電近傍を意味する。   In the present embodiment, the SOH reduction amount ΔSOH1 of the lead battery 1 is illustrated in step 210 at full charge (SOC = 100%). However, the present invention is not limited to this, and a large amount of electricity is generated on the high OCV side. You may make it calculate SOH reduction | decrease amount (DELTA) SOH1 by measuring stable OCV of the lead battery 1 before entering / exiting. Therefore, the “full charge state” of the present invention means full charge and the vicinity of full charge.

また、本実施形態では、鉛電池1が車両用電池であることを考慮して、エンジンスタート時のピーク電圧Vpを測定する例を示したが(ステップ308)、本発明はこれに限定されず、エアコン等の補機5の使用時に鉛電池1の電圧を測定して鉛電池1のSOH減少量ΔSOH2を演算するようにしてもよい。   In the present embodiment, an example is shown in which the peak voltage Vp at the time of engine start is measured in consideration of the lead battery 1 being a vehicle battery (step 308), but the present invention is not limited to this. When the auxiliary machine 5 such as an air conditioner is used, the voltage of the lead battery 1 may be measured to calculate the SOH reduction amount ΔSOH2 of the lead battery 1.

更に、本実施形態では、鉛電池1に75D26を例示し、そのピーク電圧Vpが8V以下のときにΔSOH2を演算する例を示したが、本発明は鉛電池の型式や例示したピーク電圧Vpに限定されず、いわゆる当業者が適用する電池の特性に応じて適宜変更可能なことは云うまでもない。   Furthermore, in the present embodiment, 75D26 is exemplified for the lead battery 1 and ΔSOH2 is calculated when the peak voltage Vp is 8 V or less. However, the present invention is not limited to the type of the lead battery or the exemplified peak voltage Vp. Needless to say, the present invention is not limited and can be appropriately changed according to the characteristics of the battery applied by those skilled in the art.

また、本実施形態では、開回路電圧(OCV)及びピーク電圧Vp(放電電圧)を測定して、OCVの低下によりΔSOH1及びΔSOH2を演算する例を示したが、本発明はこれに制限されるものではなく、鉛電池1の内部抵抗の増加(増大値)からΔSOH1やΔSOH2を演算するようにしてもよい。例えば、鉛電池1の内部抵抗の増加からΔSOH2を演算するには、電池状態検出装置11は電流センサ6を有しているので、ステップ308でピーク電圧Vpの他にピーク電流Ip(図6における時刻tpでの鉛電池1の放電電流)等を測定しておき、ステップ312で、(内部抵抗の増加)=(エンジン始動前放電電圧−ピーク電圧Vp)/(エンジン始動前電流−ピーク電流Ip)を演算し、内部抵抗のマップに当てはめればよい。   In the present embodiment, an example is shown in which the open circuit voltage (OCV) and the peak voltage Vp (discharge voltage) are measured, and ΔSOH1 and ΔSOH2 are calculated by a decrease in OCV. However, the present invention is limited to this. Instead of this, ΔSOH1 and ΔSOH2 may be calculated from an increase (increase value) in the internal resistance of the lead battery 1. For example, in order to calculate ΔSOH2 from the increase in internal resistance of the lead battery 1, since the battery state detection device 11 includes the current sensor 6, in step 308, in addition to the peak voltage Vp, the peak current Ip (in FIG. In step 312, (increase in internal resistance) = (discharge voltage before engine start-peak voltage Vp) / (current before engine start-peak current Ip). ) And apply to the internal resistance map.

更に、本実施形態では、ΔSOH1、ΔSOH2、SOH、SOC、余命等の演算をマイコン8で実行する例を示したが、車両側マイコン10でこれらの演算をするようにしてもよい。この場合に、マイコン8は、鉛電池1のOCVの測定(ステップ204)、電圧Eの測定(ステップ304)、鉛電池T、ピーク電圧Vpの測定(ステップ308)等を行い、車両側マイコン10のスレーブ(奴隷)マイコンとして機能することとなるが、一般に車両側マイコン10にはマイコン8より処理能力の高いマイコンが使用されているので、マイコン8の負荷を低減し、全体として演算時間を短縮することができるという利点がある。   Furthermore, in this embodiment, although the example which performs calculation, such as (DELTA) SOH1, (DELTA) SOH2, SOH, SOC, and life expectancy by the microcomputer 8, was shown, you may make it perform these calculations by the vehicle side microcomputer 10. FIG. In this case, the microcomputer 8 measures the OCV of the lead battery 1 (step 204), the voltage E (step 304), the lead battery T, the peak voltage Vp (step 308), etc. The microcomputer on the vehicle side generally uses a microcomputer with higher processing capability than the microcomputer 8, so the load on the microcomputer 8 is reduced and the calculation time is shortened as a whole. There is an advantage that you can.

次に、上記実施形態に従って作製した電池状態検出装置の実施例について説明する。なお、比較のために作製した電池状態検出装置についても併記する。実施例及び比較例の電池状態検出装置は、マイコン8をノートパソコンに接続した点で、マイコン8を車両側マイコン10と接続した上記実施形態と構成が異なっている。従って、SOC、SOH、余命はノートパソコンに出力され(図3のステップ108参照)、出力されたデータは、ノートパソコンのディスプレイに表示されると共に、ノートパソコンのメモリに記憶される。   Next, examples of the battery state detection device manufactured according to the above embodiment will be described. In addition, it describes together about the battery state detection apparatus produced for the comparison. The battery state detection devices of the example and the comparative example differ from the above-described embodiment in which the microcomputer 8 is connected to the vehicle-side microcomputer 10 in that the microcomputer 8 is connected to a notebook computer. Therefore, the SOC, SOH, and life expectancy are output to the notebook computer (see step 108 in FIG. 3), and the output data is displayed on the display of the notebook computer and stored in the memory of the notebook computer.

(実施例1)
実施例1の電池状態検出装置では、CPUに、図3に示した電池状態演算ルーチンを実行させた。
(Example 1)
In the battery state detection apparatus of Example 1, the CPU was caused to execute the battery state calculation routine shown in FIG.

(比較例1)
比較例1の電池状態検出装置では、CPUに、図4に示す電池状態演算ルーチンを実行させた。この電池状態演算ルーチンは、図3の300番台のステップ(ステップ302〜ステップ318)を欠く点で、実施例1の電池状態演算ルーチンとは異なっている。換言すれば、比較例1の電池状態検出装置は、鉛電池のSOHの算出の際に、高OCV側のSOH減少量ΔSOH1のみ利用し(満充電状態のOCVから鉛電池のSOHを演算し)、低OCV側のSOH減少量ΔSOH2は利用しないものである。
(Comparative Example 1)
In the battery state detection device of Comparative Example 1, the CPU was caused to execute the battery state calculation routine shown in FIG. This battery state calculation routine is different from the battery state calculation routine of the first embodiment in that the 300th step (steps 302 to 318) in FIG. 3 is omitted. In other words, the battery state detection device of Comparative Example 1 uses only the SOH decrease amount ΔSOH1 on the high OCV side when calculating the SOH of the lead battery (calculates the SOH of the lead battery from the fully charged OCV). The SOH reduction amount ΔSOH2 on the low OCV side is not used.

(比較例2)
比較例2の電池状態検出装置では、CPUに、図5に示す電池状態演算ルーチンを実行させた。この電池状態演算ルーチンは、図3のステップ310を欠く点で、実施例1の電池状態演算ルーチンとは異なっている。
(Comparative Example 2)
In the battery state detection device of Comparative Example 2, the CPU was caused to execute the battery state calculation routine shown in FIG. This battery state calculation routine differs from the battery state calculation routine of the first embodiment in that step 310 of FIG. 3 is omitted.

(試験)
東京の普通自動車のタクシーで1年間に5万km使われた鉛電池75D26を3つ選び、SOC、SOH、余命の真値を求めた。すなわち、まず、各鉛電池を11Aで10.5Vまで放電し残容量の真値を測定した。その後最大電流20Aで14V定電圧充電を行い14Vになってから20分で充電を止め、再び11Aで10.5Vまで放電し満充電容量を測定した。残容量の真値と満充電容量の値を用い、SOCの真値=100%×残容量/満充電容量、SOHの真値=100%×満充電容量/初期満充電容量を演算した。以上の試験後、鉛電池を元の車両に再登載し、エンジン始動不能になるまで従来通りのタクシー業務で使用を続けた。この再登載からエンジン始動不能になるまで時間を鉛電池の余命の実測値(真値)とした。
(test)
We selected three 75D26 lead batteries that were used for 50,000 km per year in a taxi for a regular car in Tokyo, and calculated the true values of SOC, SOH, and life expectancy. That is, first, each lead battery was discharged to 10.5 V at 11 A, and the true value of the remaining capacity was measured. Thereafter, 14V constant voltage charging was performed at a maximum current of 20A, and charging was stopped in 20 minutes after the voltage reached 14V. The battery was discharged again to 10.5V at 11A and the full charge capacity was measured. Using the true value of the remaining capacity and the value of the full charge capacity, the true value of SOC = 100% × remaining capacity / full charge capacity and the true value of SOH = 100% × full charge capacity / initial full charge capacity were calculated. After the above tests, the lead battery was re-installed in the original vehicle and continued to be used in conventional taxi services until the engine could not be started. The time from this re-mounting until the engine could not be started was taken as the actual value (true value) of the remaining life of the lead battery.

表3に、ノートパソコンに最初に表示された鉛電池75D26のSOC(%)、SOH(%)、余命(日数)のパソコン8による演算結果、それらの真値及び真値からのずれ(%)を示す。   Table 3 shows the calculation results by the personal computer 8 of the SOC (%), SOH (%), and life expectancy (days) of the lead battery 75D26 first displayed on the notebook personal computer, their true value and deviation from the true value (%). Indicates.

実施例1の電池状態検出装置によるノートパソコンのディスプレイへの表示値は、真値とほぼ一致していた。比較例1、2の電池状態検出装置は、実施例1の電池状態検出装置より、SOC、SOH、余命のいずれも真値からのずれが大きかった。従って、実施例1の電池状態検出装置が優れていることが分かる。   The value displayed on the display of the notebook personal computer by the battery state detection device of Example 1 substantially matched the true value. In the battery state detection devices of Comparative Examples 1 and 2, the SOC, SOH, and life expectancy of the battery state detection devices of Example 1 were significantly different from true values. Therefore, it turns out that the battery state detection apparatus of Example 1 is excellent.

本発明は、電池が種々のモードで劣化していても、電池の劣化状態を一意に定義可能な電池状態検出装置に係り、電池状態検出装置の製造、販売に寄与するため、産業上の利用可能性を有する。   The present invention relates to a battery state detection device that can uniquely define the deterioration state of a battery even if the battery has deteriorated in various modes, and contributes to the manufacture and sale of the battery state detection device. Have potential.

75D26鉛電池の25°Cにおける種々のSOHでの放電電圧と開回路電圧との関係を示すSOHマップの説明図である。It is explanatory drawing of the SOH map which shows the relationship between the discharge voltage and open circuit voltage in various SOH in 25 degreeC of a 75D26 lead battery. 本発明を適用した実施形態の電池状態検出装置の概略ブロック図である。It is a schematic block diagram of the battery state detection apparatus of embodiment to which this invention is applied. 実施形態の電池状態検出装置のCPUが実行する電池状態演算ルーチンのフローチャートである。It is a flowchart of the battery state calculation routine which CPU of the battery state detection apparatus of embodiment performs. 比較例1の電池状態検出装置のCPUが実行する電池状態演算ルーチンのフローチャートである。It is a flowchart of the battery state calculation routine which CPU of the battery state detection apparatus of the comparative example 1 performs. 比較例2の電池状態検出装置のCPUが実行する電池状態演算ルーチンのフローチャートである。12 is a flowchart of a battery state calculation routine executed by a CPU of the battery state detection device of Comparative Example 2. エンジン始動時の鉛電池に流れる電流の波形を模式的に示す説明図である。It is explanatory drawing which shows typically the waveform of the electric current which flows into the lead battery at the time of engine starting.

符号の説明Explanation of symbols

1 鉛電池(電池)
8 マイコン
11 電池状態検出装置
1 Lead battery (battery)
8 Microcomputer 11 Battery state detection device

Claims (7)

電池の状態を検出する電池状態検出装置において、
満充電状態での前記電池のSOHの減少量を算出する第1のSOH減少量算出手段と、
高率放電による前記電池の電圧が所定値以下のときの前記電池のSOHの減少量を算出する第2のSOH減少量算出手段と、
前記第1及び第2のSOH減少量算出手段で算出されたSOHの減少量の双方から前記電池のSOHの値を算出するSOH算出手段と、
を備えたことを特徴とする電池状態検出装置。
In the battery state detection device for detecting the state of the battery,
A first SOH decrease amount calculating means for calculating an amount of decrease in SOH of the battery in a fully charged state;
A second SOH decrease amount calculating means for calculating a decrease amount of the SOH of the battery when the voltage of the battery due to high rate discharge is equal to or lower than a predetermined value;
SOH calculating means for calculating the SOH value of the battery from both of the SOH reduction amounts calculated by the first and second SOH reduction amount calculating means;
A battery state detection device comprising:
前記第1及び第2のSOH減少量算出手段は、前記電池の開回路電圧、内部抵抗又は放電電圧から前記SOHの減少量を算出することを特徴とする請求項1に記載の電池状態検出装置。   2. The battery state detection device according to claim 1, wherein the first and second SOH decrease amount calculating means calculates the decrease amount of the SOH from an open circuit voltage, an internal resistance, or a discharge voltage of the battery. . 前記第1のSOH減少量算出手段は、前記電池の満充電状態での開回路電圧から前記SOHの減少量を算出し、前記第2のSOH減少量算出手段は、前記電池の内部抵抗の増大値から前記SOHの減少量を算出することを特徴とする請求項2に記載の電池状態検出装置。   The first SOH decrease amount calculating means calculates the SOH decrease amount from an open circuit voltage of the battery in a fully charged state, and the second SOH decrease amount calculating means increases the internal resistance of the battery. The battery state detection device according to claim 2, wherein a decrease amount of the SOH is calculated from a value. 前記SOH算出手段で算出された異なる時刻における複数の前記SOHの値から前記電池の余命を算出する余命算出手段を更に備えたことを特徴とする請求項1に記載の電池状態検出装置。   The battery state detection device according to claim 1, further comprising life expectancy calculating means for calculating the life expectancy of the battery from a plurality of values of the SOH at different times calculated by the SOH calculating means. 前記余命算出手段は、前記電池の劣化状態の進行速度から前記電池の余命を算出することを特徴とする請求項4に記載の電池状態検出装置。   5. The battery state detection device according to claim 4, wherein the life expectancy calculating means calculates the life expectancy of the battery from a progress speed of the deterioration state of the battery. 非満充電状態での前記電池のSOCの値を算出するSOC算出手段と、前記SOC算出手段で算出されたSOCの値、前記第2のSOH減少量算出手段で算出された前記電池のSOHの減少量及び前記SOH算出手段で算出されたSOHに基づいて前記電池の充電状態を算出する充電状態算出手段と、を更に備えたことを特徴とする請求項1に記載の電池状態検出装置。   SOC calculation means for calculating the SOC value of the battery in a non-full charge state, SOC value calculated by the SOC calculation means, and SOH of the battery calculated by the second SOH reduction amount calculation means The battery state detection device according to claim 1, further comprising a charge state calculation unit that calculates a charge state of the battery based on a decrease amount and the SOH calculated by the SOH calculation unit. 前記SOC算出手段は、前記電池の開回路電圧、内部抵抗又は放電電圧から非満充電状態での前記電池のSOCの値を算出することを特徴とする請求項6に記載の電池状態検出装置。   The battery state detection device according to claim 6, wherein the SOC calculation unit calculates the SOC value of the battery in a non-full charge state from the open circuit voltage, internal resistance, or discharge voltage of the battery.
JP2004072031A 2004-03-15 2004-03-15 Battery state detection device Expired - Fee Related JP4442262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072031A JP4442262B2 (en) 2004-03-15 2004-03-15 Battery state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072031A JP4442262B2 (en) 2004-03-15 2004-03-15 Battery state detection device

Publications (2)

Publication Number Publication Date
JP2005259624A true JP2005259624A (en) 2005-09-22
JP4442262B2 JP4442262B2 (en) 2010-03-31

Family

ID=35085120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072031A Expired - Fee Related JP4442262B2 (en) 2004-03-15 2004-03-15 Battery state detection device

Country Status (1)

Country Link
JP (1) JP4442262B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178382A (en) * 2005-12-28 2007-07-12 Auto Network Gijutsu Kenkyusho:Kk Battery state managing apparatus
WO2011074196A1 (en) * 2009-12-16 2011-06-23 パナソニック株式会社 Battery pack, discharge system, charge/discharge system, and discharge control method for lithium ion rechargeable battery
CN108535662A (en) * 2018-05-22 2018-09-14 华霆(合肥)动力技术有限公司 Cell health state detection method and battery management system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178382A (en) * 2005-12-28 2007-07-12 Auto Network Gijutsu Kenkyusho:Kk Battery state managing apparatus
WO2011074196A1 (en) * 2009-12-16 2011-06-23 パナソニック株式会社 Battery pack, discharge system, charge/discharge system, and discharge control method for lithium ion rechargeable battery
CN102308453A (en) * 2009-12-16 2012-01-04 松下电器产业株式会社 Battery pack, discharge system, charge/discharge system, and discharge control method for lithium ion rechargeable battery
JPWO2011074196A1 (en) * 2009-12-16 2013-04-25 パナソニック株式会社 Battery pack, discharge system, charge / discharge system, and discharge control method for lithium ion secondary battery
CN108535662A (en) * 2018-05-22 2018-09-14 华霆(合肥)动力技术有限公司 Cell health state detection method and battery management system

Also Published As

Publication number Publication date
JP4442262B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4057276B2 (en) Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
JP4258348B2 (en) Battery deterioration diagnosis device and on-vehicle power supply control device
US6310462B1 (en) Residual capacity measurement system for battery
JP4457781B2 (en) Deterioration degree estimation method and deterioration degree estimation apparatus
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP4193745B2 (en) Battery state detection method and battery state detection device
JP5162971B2 (en) Battery state detection system and automobile
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JP2017219404A (en) Vehicle and battery state detection system thereof
JP2012189373A (en) Secondary battery condition detection device and secondary battery condition detection method
JP2007276654A (en) Battery state detection system, and car
CN113253117A (en) Estimation method and estimation device for residual SOE value
JP2008074257A (en) Battery deterioration determination device
JP2010208539A (en) Battery diagnosis device
JP4548011B2 (en) Deterioration degree judging device
JP6604478B2 (en) Vehicle and its battery state detection system
JP4702115B2 (en) Battery status judgment device
JP2005292035A (en) Method of detecting battery condition
JP4442262B2 (en) Battery state detection device
JP2004257785A (en) Battery status detection system
JP4670256B2 (en) Battery status detection method
JP4572518B2 (en) Battery status detection method
JP4652891B2 (en) Method and apparatus for measuring remaining capacity of storage battery mounted on vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Ref document number: 4442262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees