JP2005259377A - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
JP2005259377A
JP2005259377A JP2004065966A JP2004065966A JP2005259377A JP 2005259377 A JP2005259377 A JP 2005259377A JP 2004065966 A JP2004065966 A JP 2004065966A JP 2004065966 A JP2004065966 A JP 2004065966A JP 2005259377 A JP2005259377 A JP 2005259377A
Authority
JP
Japan
Prior art keywords
group
organic
anion
electroluminescent element
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004065966A
Other languages
Japanese (ja)
Other versions
JP4425028B2 (en
Inventor
Kaori Saito
香織 齊藤
Yuji Hamada
祐次 浜田
Juichi Takahashi
寿一 高橋
Masako Kato
昌子 加藤
Yoshimi Takigawa
圭美 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004065966A priority Critical patent/JP4425028B2/en
Publication of JP2005259377A publication Critical patent/JP2005259377A/en
Application granted granted Critical
Publication of JP4425028B2 publication Critical patent/JP4425028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescent element having high brightness and high light-emitting efficiency. <P>SOLUTION: On organic layer such as a light-emitting layer includes a polynuclear metal complex represented by formula (1). In formula (1), M is Pt, etc., Y is a nonmetallic element of a periodic table 14 group, etc., X<SB>1</SB>and X<SB>2</SB>are ring-like organic groups and R<SB>1</SB>-R<SB>16</SB>are alkyl groups, etc,. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機エレクトロルミネッセンス素子(有機EL素子)に関するものである。   The present invention relates to an organic electroluminescence element (organic EL element).

有機EL素子は、無機EL素子に比べて、大面積化が容易であり、また発光材料の選択により所望の発色が得られ、低電圧で駆動可能であるため、近年盛んに応用研究がなされている。有機EL素子に用いられる発光材料としては、高い発光効率が期待できることから、イリジウム錯体などの三重項励起発光材料が注目されている。   Organic EL elements are easy to increase in area as compared with inorganic EL elements, and can produce a desired color by selecting a light emitting material and can be driven at a low voltage. Yes. As a light-emitting material used for an organic EL element, triplet excited light-emitting materials such as iridium complexes have attracted attention because high light emission efficiency can be expected.

三重項励起発光材料は主に重金属を中心金属に用いた金属錯体であるが、この中で平面四配位構造をとるものとして、白金、パラジウム、金などの錯体が知られている。これらの金属錯体は、錯体同士が集積することにより単独のものと異なる特性を示す場合がある。非特許文献1及び2においては、架橋配位子で複数の金属をつなげて一分子内において集積させた2−フェニルピリジナト白金複核錯体について、その光化学的特性及び光触媒能などを検討している。   The triplet excited light-emitting material is a metal complex mainly using a heavy metal as a central metal, and platinum, palladium, gold and the like are known as those having a planar four-coordinate structure. These metal complexes may exhibit characteristics different from those of single substances due to the accumulation of the complexes. In Non-Patent Documents 1 and 2, the photochemical characteristics and photocatalytic ability of 2-phenylpyridinatoplatinum complex obtained by connecting multiple metals with a bridging ligand and accumulated in one molecule are studied. Yes.

しかしながら、これらの金属錯体について、有機EL素子の発光材料としての検討は未だなされていない。特に、2つの架橋配位子が互いに逆の向きで配位子するanti型配位錯体の複核金属錯体については、有機EL素子の発光材料としての検討はなされていない。
日本化学会第83春季年会予稿集,第262頁(2003年3月18日〜21日発表) 錯体化学会・日本化学会主催第53回錯体化学討論会講演要旨集,第214頁(2003年9月24日〜26日発表)
However, these metal complexes have not yet been studied as light emitting materials for organic EL elements. In particular, a binuclear metal complex of an anti-coordination complex in which two bridging ligands are opposite to each other has not been studied as a light emitting material for an organic EL device.
Proceedings of the 83rd Annual Meeting of the Chemical Society of Japan, page 262 (announced March 18-21, 2003) Abstracts of the 53rd Coordination Chemistry Conference hosted by the Chemical Society of Japan and the Chemical Society of Japan, page 214 (announced from September 24 to 26, 2003)

本発明の目的は、anti型配位形態の複核金属錯体を発光材料として用いた有機EL素子を提供することにある。   An object of the present invention is to provide an organic EL device using a binuclear metal complex having an anti-coordination form as a light emitting material.

本発明は、一対の電極の間に配置された有機層を備える有機EL素子であり、有機層が、以下の一般式(1)で表わされる複核金属錯体を含むことを特徴としている。   This invention is an organic EL element provided with the organic layer arrange | positioned between a pair of electrodes, The organic layer contains the binuclear metal complex represented by the following General formula (1), It is characterized by the above-mentioned.

Figure 2005259377
Figure 2005259377

(式中、MはPt、Pd、またはAuを示し、Yは周期律表14族、15族及び16族の非金属元素の中から選ばれる少なくとも1種の元素を示し、X1及びX2は環状有機基を示し、R1〜R16は互いに同一であっても異なっていてもよく、水素、または置換されてもよいアルキル基(炭素数1〜20)、アルケニル基(炭素数2〜25)、アルキニル基、アルコキシ基、アリール基、アラルキル基、アリールオキシ基、アリールチオ基、アルキルチオ基、ヘテロ環基、アミノ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、ヒドロキシル基、イミノ基、シアノ基、ニトロ基、ハロゲン基、スルホニル基、シリル基、ボリル基、ホスフィノ基の内のいずれかを示し、R1〜R8内及びR9〜R16内においては互いに結合して環を形成していてもよい。)
上記一般式(1)において、X1及びX2は、例えば、ピリジン−2−チオールアニオン、キノリン−2−チオールアニオン、キノリン−8−チオールアニオン、2−ピリジノールアニオン、2−キノリノールアニオン及びこれらの誘導体からなる群より選択されるものが挙げられる。
(In the formula, M represents Pt, Pd, or Au, Y represents at least one element selected from Group 14, Group 15, and Group 16 nonmetallic elements, and X 1 and X 2 Represents a cyclic organic group, and R 1 to R 16 may be the same or different from each other, and are hydrogen, an alkyl group (having 1 to 20 carbon atoms), an alkenyl group (having 2 to 2 carbon atoms). 25), alkynyl group, alkoxy group, aryl group, aralkyl group, aryloxy group, arylthio group, alkylthio group, heterocyclic group, amino group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, hydroxyl group, an imino group, a cyano group, a nitro group, a halogen group, a sulfonyl group, a silyl group, a boryl group, any of a phosphino group, R 1 to R 8 in及Bonded to each other in the R 9 to R 16 may form a ring.)
In the general formula (1), X 1 and X 2 are, for example, pyridine-2-thiol anion, quinoline-2-thiol anion, quinoline-8-thiol anion, 2-pyridinol anion, 2-quinolinol anion and Those selected from the group consisting of these derivatives may be mentioned.

また、Yは、周期律表14族、15族及び16族の非金属元素の中から選ばれる少なくとも1種の元素である。周期律表14族の非金属元素としては、炭素(C)及びケイ素(Si)が挙げられる。また、周期律表15族の非金属元素としては、窒素(N)、リン(P)、及びヒ素(As)が挙げられる。また、周期律表16族の非金属元素としては、酸素(O)、硫黄(S)、セレン(Se)、及びテルル(Te)が挙げられる。   Y is at least one element selected from Group 14, Group 15 and Group 16 non-metallic elements. Examples of the nonmetallic element of Group 14 of the periodic table include carbon (C) and silicon (Si). In addition, examples of the nonmetallic element of Group 15 of the periodic table include nitrogen (N), phosphorus (P), and arsenic (As). In addition, examples of the non-metallic element of Group 16 of the periodic table include oxygen (O), sulfur (S), selenium (Se), and tellurium (Te).

一般式(1)で表わされる複核金属錯体は、平面四配位構造をとる金属錯体であり、平面性が高く、集積することにより分子間の相互作用に基づいて錯体そのものと異なる発光特性を示す。分子間の相互作用としては、錯体の中心金属同士の相互作用(MM相互作用)が知られており、この相互作用に基づく発光は、三重項3MMLCT励起状態からのものであるため、量子収率が高い。また、MM相互作用によって、より長波長側の発光を示す。このため、赤色発光材料として利用することができる。 The binuclear metal complex represented by the general formula (1) is a metal complex having a planar four-coordinate structure, has high planarity, and exhibits luminescence characteristics different from the complex itself based on the interaction between molecules when accumulated. . As the interaction between molecules, the interaction between the central metals of the complex (MM interaction) is known, and the light emission based on this interaction is from the triplet 3 MMLCT excited state. The rate is high. In addition, longer wavelength light is emitted due to the MM interaction. Therefore, it can be used as a red light emitting material.

一般式(1)で表わされる複核金属錯体は、π共役系配位子を有し、かつ架橋配位子によって複数の金属がつながれた構造を有しているので、優先的に上記の三重項3MMLCT励起状態からの発光を示す。 Since the binuclear metal complex represented by the general formula (1) has a π-conjugated ligand and has a structure in which a plurality of metals are connected by a bridging ligand, the above triplet is preferentially used. 3 Emission from MMLCT excited state is shown.

本発明における複核金属錯体としては、π共役系配位子として2−フェニルピリジンを含み、ピリジンチオラト架橋配位子によって2つの中心金属につながれた構造を有する白金複核金属錯体anti−〔Pt(II)2(ppy)2(pyt)2〕が挙げられる。その構造を以下に示す。 As the binuclear metal complex in the present invention, a platinum binuclear metal complex anti- [Pt () containing 2-phenylpyridine as a π-conjugated ligand and having a structure linked to two central metals by a pyridinethiolato bridging ligand. II) 2 (ppy) 2 (pyt) 2 ]. The structure is shown below.

Figure 2005259377
Figure 2005259377

上記構造に示すように、2つの架橋配位子において、NとSの位置が異なっている。このような構造は、anti構造と呼ばれている。これに対し、syn構造と呼ばれる配位形態が知られている。例えば、π共役系配位子としてビピリジンを含み、ピリジンチオラト架橋配位子によって2つの白金金属がつながれた、以下の構造の白金二核錯体が知られている。   As shown in the above structure, the positions of N and S are different in the two bridging ligands. Such a structure is called an anti structure. On the other hand, a coordination form called a syn structure is known. For example, a platinum binuclear complex having the following structure in which bipyridine is included as a π-conjugated ligand and two platinum metals are connected by a pyridinethiolato bridging ligand is known.

Figure 2005259377
Figure 2005259377

上記のビピリジン錯体は、ビピリジンが電荷的に中性な配位子であるので、カチオン錯体となる。これに対して、本発明の2−フェニルピリジン錯体は、オルトメタル化配位子である2−フェニルピリジンがアニオン配位子であるため、分子全体で電荷を持たない中性錯体となる。このため、昇華性を有しており、真空蒸着法により薄膜を形成することができる。従って、有機EL素子の発光材料として適したものである。   The bipyridine complex is a cation complex because bipyridine is a charge neutral ligand. In contrast, the 2-phenylpyridine complex of the present invention is a neutral complex having no charge in the whole molecule because 2-phenylpyridine, which is an orthometalated ligand, is an anionic ligand. For this reason, it has sublimation property and a thin film can be formed by a vacuum evaporation method. Therefore, it is suitable as a light emitting material for organic EL elements.

また、2−フェニルピリジン誘導体からなる配位子は、ビピリジンよりも配位子場が強いため、トランス効果が強くなり、2つの架橋配位子が互いに異なる向きで配位するanti型配位形態を優先的にとる。このようなanti型配位形態をとるものは、syn型配位形態をとるものとは異なり、結晶内への溶媒や水分子の挿入による発光特性の変化がない。このことから、この配位形態の錯体を用いた有機EL素子においては、外気の環境に影響されることなく、安定な発光が得られる。   In addition, a ligand composed of a 2-phenylpyridine derivative has a stronger ligand effect than bipyridine, so that the trans effect is strong, and the anti-coordination form in which two bridging ligands are coordinated in different directions. Take priority. Those having such an anti-coordination form are different from those having a syn-type coordination form, and have no change in light emission characteristics due to the insertion of a solvent or water molecules into the crystal. For this reason, in an organic EL device using this coordination form complex, stable light emission can be obtained without being affected by the environment of the outside air.

本発明における複核金属錯体で発光層を形成する場合、複核金属錯体単独で、上述の真空蒸着法等により発光層を形成することができる。また、複核金属錯体をドーパントとして発光層内に分散させて用いても良好な発光特性を得ることができる。ホスト化合物としては、その発光ピークがドーパントの吸収ピークと重なりを有するものであることが好ましい。上記の白金二核錯体を用いる場合には、以下に示す構造を有するCBP(4,4′−ビス(カルバゾール−9−イル)−ビフェニル)をホスト材料として用いることが好ましい。発光層におけるドーパントの含有量としては、一般にホスト材料の5〜6重量%程度であることが好ましい。ホスト材料とドーパント材料を、例えば共蒸着させることにより発光層を形成することができる。   When forming a light emitting layer with the binuclear metal complex in this invention, a light emitting layer can be formed by the above-mentioned vacuum evaporation method etc. with a binuclear metal complex alone. Further, even when a binuclear metal complex is used as a dopant dispersed in the light emitting layer, good light emission characteristics can be obtained. The host compound preferably has an emission peak that overlaps with the absorption peak of the dopant. When the above platinum binuclear complex is used, CBP (4,4′-bis (carbazol-9-yl) -biphenyl) having the following structure is preferably used as the host material. In general, the content of the dopant in the light emitting layer is preferably about 5 to 6% by weight of the host material. A light emitting layer can be formed by co-evaporating a host material and a dopant material, for example.

Figure 2005259377
Figure 2005259377

本発明の複核金属錯体を用いて有機EL素子の有機層を形成することにより、高輝度及び高発光効率の有機EL素子とすることができる。   By forming the organic layer of an organic EL element using the binuclear metal complex of this invention, it can be set as an organic EL element of high brightness | luminance and high luminous efficiency.

以下、本発明を実施例により詳細に説明するが、本発明は以下の実施例に限定されるものではなく、適宜変更して実施することが可能なものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example, It can change and implement suitably.

(合成例1)
<白金二核錯体〔Pt2(ppy)2(pyt)2〕の合成>
以下に示す合成スキームに従い、白金二核錯体〔Pt2(ppy)2(pyt)2〕を合成した。
(Synthesis Example 1)
<Synthesis of platinum binuclear complex [Pt 2 (ppy) 2 (pyt) 2 ]>
A platinum binuclear complex [Pt 2 (ppy) 2 (pyt) 2 ] was synthesized according to the following synthesis scheme.

Figure 2005259377
Figure 2005259377

200mlのマイヤーフラスコ内において、(n−Bu)4N〔Pt(ppy)Cl2〕40.0mg(0.15mmol)をアセトニトリル50mlに溶解させ、これに2−ピリジンチオール16.8mg(0.15mmol)、トリ(n−ブチル)アミン27.8mg(1.5mmol)、及びエタノール25mlを加えて室温で一晩攪拌した。攪拌後、析出した目的物(赤色固体)を濾別した。精製は、再結晶法と昇華精製によって行った。 In a 200 ml Meyer flask, 40.0 mg (0.15 mmol) of (n-Bu) 4 N [Pt (ppy) Cl 2 ] was dissolved in 50 ml of acetonitrile, to which 16.8 mg (0.15 mmol) of 2-pyridinethiol was dissolved. ), 27.8 mg (1.5 mmol) of tri (n-butyl) amine, and 25 ml of ethanol were added and stirred overnight at room temperature. After stirring, the precipitated target product (red solid) was filtered off. Purification was performed by recrystallization and sublimation purification.

なお、後述の実施例3及び実施例4において用いた白金二核錯体についても、原料として、対応のメチル置換体またはフッ素置換体あるいは2−キノリンチオールを用いることにより同様にして合成した。   In addition, the platinum binuclear complex used in Example 3 and Example 4 described later was synthesized in the same manner by using a corresponding methyl-substituted product, fluorine-substituted product, or 2-quinolinethiol as a raw material.

(実施例1)
合成例1において得られた白金二核錯体を発光材料として用い、有機EL素子を作製した。図1は、作製した有機EL素子の構造を模式的に示す断面図である。図1を参照して、ガラス基板1の上に、インジウム−スズ酸化物(ITO)からなるホール注入電極(陽極)2を形成し、この上にCuPc(銅フタロシアニン)からなるホール注入層3(厚み10nm)を形成し、さらにこの上にNPB(N,N′−ジ−1−ナフチル−N,N′−ジフェニルベンジジン)からなるホール輸送層4(厚み50nm)を形成した。このホール輸送層4の上に、上記の白金二核錯体〔Pt2(ppy)2(pyt)2〕からなる発光層5(厚み12nm)を形成した。発光層5の上に、BCP(2,9−ジメチル−4,7−ジフェニル−〔1,10〕フェナントロリン)からなるホール阻止層6(厚み10nm)及びAlq(トリス−(8−キノリナト)アルミニウム(III))からなる電子輸送層7(厚み40nm)を形成した。その上に、フッ化リチウム及びアルミニウムからなる電子注入電極(陰極)8(厚み200nm)を形成した。
Example 1
Using the platinum binuclear complex obtained in Synthesis Example 1 as a light-emitting material, an organic EL device was produced. FIG. 1 is a cross-sectional view schematically showing the structure of the produced organic EL element. Referring to FIG. 1, a hole injection electrode (anode) 2 made of indium-tin oxide (ITO) is formed on a glass substrate 1, and a hole injection layer 3 (CuPc (copper phthalocyanine)) is formed thereon. Further, a hole transport layer 4 (thickness: 50 nm) made of NPB (N, N′-di-1-naphthyl-N, N′-diphenylbenzidine) was formed thereon. On the hole transport layer 4, a light emitting layer 5 (thickness 12 nm) made of the above-described platinum binuclear complex [Pt 2 (ppy) 2 (pyt) 2 ] was formed. On the light emitting layer 5, a hole blocking layer 6 (thickness 10 nm) made of BCP (2,9-dimethyl-4,7-diphenyl- [1,10] phenanthroline) and Alq (tris- (8-quinolinato) aluminum ( An electron transport layer 7 (thickness 40 nm) made of III)) was formed. An electron injection electrode (cathode) 8 (thickness 200 nm) made of lithium fluoride and aluminum was formed thereon.

上記各層の形成は、具体的には、以下のようにして行った。   Specifically, each of the above layers was formed as follows.

まず、ITOが形成されたガラス基板をイソプロピルアルコールで5分間超音波洗浄を2回行った後、オゾンクリーナーにて基板表面の洗浄を行った。この後、上記ITOからなる陽極上にホール注入層3、ホール輸送層4、発光層5、ホール阻止層6、電子輸送層7、及び電子注入電極8を順次真空蒸着法にて形成し積層した。これらの蒸着は、いずれも真空度1×10-6Torr、基板温度制御なしの条件で行った。 First, the glass substrate on which ITO was formed was subjected to ultrasonic cleaning twice with isopropyl alcohol for 5 minutes, and then the substrate surface was cleaned with an ozone cleaner. Thereafter, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, a hole blocking layer 6, an electron transport layer 7, and an electron injection electrode 8 are sequentially formed and laminated on the anode made of ITO. . All of these vapor depositions were performed under conditions of a degree of vacuum of 1 × 10 −6 Torr and no substrate temperature control.

CuPcの構造を以下に示す。   The structure of CuPc is shown below.

Figure 2005259377
Figure 2005259377

NPBの構造を以下に示す。   The structure of NPB is shown below.

Figure 2005259377
Figure 2005259377

BCPの構造を以下に示す。   The structure of BCP is shown below.

Figure 2005259377
Figure 2005259377

Alqの構造を以下に示す。   The structure of Alq is shown below.

Figure 2005259377
Figure 2005259377

得られた素子のホール注入電極をプラス、電子注入電極をマイナスにバイアスして電圧を印加したところ、発光の外部量子収率1.4%、発光極大波長670nm、色度CIE座標(0.65,0.35)、最高輝度356cd/m2の赤色発光を得た。この素子の発光スペクトルを図2に示す。図2から明らかなように、赤色発光が得られている。なお、発光スペクトル及び色度は、印加電圧に依存せず、一定であった。 When a voltage was applied with the hole injection electrode of the obtained device positively biased and the electron injection electrode negatively biased, the external quantum yield of light emission was 1.4%, the light emission maximum wavelength was 670 nm, and the chromaticity CIE coordinates (0.65). , 0.35) and a red emission with a maximum luminance of 356 cd / m 2 was obtained. The emission spectrum of this device is shown in FIG. As is clear from FIG. 2, red light emission is obtained. The emission spectrum and chromaticity were constant without depending on the applied voltage.

(実施例2)
実施例1において、BCPに代えて、BAlq(ビス(2−メチル−8−キノリノラト)−4−フェニルフェノラトアルミニウム(III))を用いてホール阻止層を形成する以外は、実施例1と同様にして素子を作製した。
(Example 2)
In Example 1, it replaces with BCP and is the same as Example 1 except forming a hole blocking layer using BAlq (bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III)). Thus, an element was produced.

得られた素子に電圧を印加したところ、発光の外部量子収率2.6%、発光極大波長670nm、色度CIE座標(0.65,0.35)、及び最高輝度584cd/m2の赤色発光が得られた。この素子において、発光スペクトル及び色度は、印加電圧に依存せず、一定であった。 When a voltage was applied to the resulting device, the external quantum yield of light emission was 2.6%, the light emission maximum wavelength was 670 nm, the chromaticity CIE coordinates (0.65, 0.35), and the maximum luminance of 584 cd / m 2 red. Luminescence was obtained. In this device, the emission spectrum and chromaticity were constant without depending on the applied voltage.

BAlqの構造を以下に示す。   The structure of BAlq is shown below.

Figure 2005259377
Figure 2005259377

(実施例3)
実施例1において、実施例2と同様に、BCPに代えて、BAlqを用いてホール阻止層を形成し、さらに白金二核錯体〔Pt2(ppy)2(pyt)2〕に代えて、以下に示す構造を有する白金二核錯体〔Pt2(ptpy)2(pyt)2〕を用いて発光層を形成する以外は、実施例1と同様にして発光素子を作製した。
(Example 3)
In Example 1, as in Example 2, a hole blocking layer was formed using BAlq instead of BCP, and further replaced with platinum binuclear complex [Pt 2 (ppy) 2 (pyt) 2 ]. A light emitting device was produced in the same manner as in Example 1 except that a light emitting layer was formed using a platinum binuclear complex [Pt 2 (ptpy) 2 (pyt) 2 ] having the structure shown in FIG.

得られた発光素子に電圧を印加したところ、発光の外部量子収率2.5%、発光極大波長670nm、色度CIE座標(0.65,0.35)、及び最高輝度990cd/m2の赤色発光が得られた。この素子において、発光スペクトル及び色度は、印加電圧に依存せず、一定であった。 When voltage was applied to the obtained light emitting device, the external quantum yield of light emission was 2.5%, the light emission maximum wavelength was 670 nm, the chromaticity CIE coordinates (0.65, 0.35), and the maximum luminance of 990 cd / m 2 . Red emission was obtained. In this device, the emission spectrum and chromaticity were constant without depending on the applied voltage.

Figure 2005259377
Figure 2005259377

(実施例4)
以下に示す構造を有する白金二核錯体を合成した。
Example 4
A platinum binuclear complex having the structure shown below was synthesized.

Figure 2005259377
Figure 2005259377

Figure 2005259377
Figure 2005259377

Figure 2005259377
Figure 2005259377

Figure 2005259377
Figure 2005259377

Figure 2005259377
Figure 2005259377

合成したこれらの錯体の固体状態・室温でのフォトルミネッセンス(PL)スペクトルの極大波長λPLmaxと、励起スペクトルから求めたその発光に対応する励起エネルギーの波長を測定し、以下の表1に示した。また、表1には、実施例1及び2で用いた錯体及び実施例3において用いた錯体についてのPLスペクトルの極大波長と励起エネルギー波長とを併せて示している。 The maximum wavelength λ PL max of the photoluminescence (PL) spectrum of these synthesized complexes at room temperature and the wavelength of the excitation energy corresponding to the emission obtained from the excitation spectrum were measured and shown in Table 1 below. It was. Table 1 also shows the maximum wavelength and excitation energy wavelength of the PL spectrum for the complexes used in Examples 1 and 2 and the complex used in Example 3.

Figure 2005259377
Figure 2005259377

表1に示す結果から明らかなように、上記の白金二核錯体は550〜600nmの範囲に励起エネルギー波長を有している。単核錯体の場合、励起エネルギー波長は400〜450nm程度であるので三重項3MMLCT遷移に基づいて長波長シフトしているものと思われる。本実施例において合成した表1のNo.3〜7の白金二核錯体は、実施例1及び2で用いたNo.1の白金二核錯体及び実施例3で用いたNo.2の白金二核錯体と近似した波長範囲に吸収ピーク波長及びPLスペクトルの極大波長を有している。従って、これらの白金二核錯体も、有機EL素子の赤色発光材料として用いることができるものであると考えられる。このように配位子に各種置換基を置換しても、有機EL素子の発光材料として用いることができると考えられるので、電子吸引性及び電子供与性などの置換基の電子的性質を選択することにより、発光材料自体のキャリア輸送性などの特性を調整することが可能であると考えられる。 As is clear from the results shown in Table 1, the platinum binuclear complex has an excitation energy wavelength in the range of 550 to 600 nm. In the case of a mononuclear complex, since the excitation energy wavelength is about 400 to 450 nm, it seems that the wavelength shift is long based on the triplet 3 MMLCT transition. No. 1 of Table 1 synthesized in this example. The platinum binuclear complexes of 3 to 7 are the same as those used in Examples 1 and 2. No. 1 used in the platinum binuclear complex of Example 1 and Example 3. 2 has an absorption peak wavelength and a maximum wavelength of the PL spectrum in a wavelength range approximate to that of the platinum binuclear complex. Therefore, it is considered that these platinum binuclear complexes can also be used as red light emitting materials for organic EL elements. Thus, even if various substituents are substituted on the ligand, it is considered that the ligand can be used as a light-emitting material of the organic EL device. Therefore, the electronic properties of the substituent such as electron withdrawing property and electron donating property are selected. Thus, it is considered that characteristics such as carrier transportability of the light emitting material itself can be adjusted.

実施例1で作製した有機EL素子の構造を模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing the structure of the organic EL element produced in Example 1. 実施例1の有機EL素子の発光スペクトルを示す図。The figure which shows the emission spectrum of the organic EL element of Example 1. FIG.

符号の説明Explanation of symbols

1…ガラス基板
2…ホール注入電極(陽極)
3…ホール注入層
4…ホール輸送層
5…発光層
6…ホール阻止層
7…電子輸送層
8…電子注入電極(陰極)
1 ... Glass substrate 2 ... Hole injection electrode (anode)
DESCRIPTION OF SYMBOLS 3 ... Hole injection layer 4 ... Hole transport layer 5 ... Light emitting layer 6 ... Hole blocking layer 7 ... Electron transport layer 8 ... Electron injection electrode (cathode)

Claims (4)

一対の電極の間に配置された有機層を備える有機エレクトロルミネッセンス素子において、
前記有機層が、以下の一般式(1)で表わされる複核金属錯体を含むことを特徴とする有機エレクトロルミネッセンス素子。
Figure 2005259377
(式中、MはPt、Pd、またはAuを示し、Yは周期律表14族、15族及び16族の非金属元素の中から選ばれる少なくとも1種の元素を示し、X1及びX2は環状有機基を示し、R1〜R16は互いに同一であっても異なっていてもよく、水素、または置換されてもよいアルキル基(炭素数1〜20)、アルケニル基(炭素数2〜25)、アルキニル基、アルコキシ基、アリール基、アラルキル基、アリールオキシ基、アリールチオ基、アルキルチオ基、ヘテロ環基、アミノ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、ヒドロキシル基、イミノ基、シアノ基、ニトロ基、ハロゲン基、スルホニル基、シリル基、ボリル基、ホスフィノ基の内のいずれかを示し、R1〜R8内及びR9〜R16内においては互いに結合して環を形成していてもよい。)
In an organic electroluminescence device comprising an organic layer disposed between a pair of electrodes,
The said organic layer contains the binuclear metal complex represented by the following general formula (1), The organic electroluminescent element characterized by the above-mentioned.
Figure 2005259377
(In the formula, M represents Pt, Pd, or Au, Y represents at least one element selected from Group 14, Group 15, and Group 16 nonmetallic elements, and X 1 and X 2 Represents a cyclic organic group, and R 1 to R 16 may be the same or different from each other, and are hydrogen, an alkyl group (having 1 to 20 carbon atoms), an alkenyl group (having 2 to 2 carbon atoms). 25), alkynyl group, alkoxy group, aryl group, aralkyl group, aryloxy group, arylthio group, alkylthio group, heterocyclic group, amino group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, hydroxyl group, an imino group, a cyano group, a nitro group, a halogen group, a sulfonyl group, a silyl group, a boryl group, any of a phosphino group, R 1 to R 8 in及Bonded to each other in the R 9 to R 16 may form a ring.)
前記一般式(1)において、YがS(硫黄)またはO(酸素)であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。   In the said General formula (1), Y is S (sulfur) or O (oxygen), The organic electroluminescent element of Claim 1 characterized by the above-mentioned. 前記一般式(1)において、X1及びX2とYとで構成される部分が、ピリジン−2−チオールアニオン、キノリン−2−チオールアニオン、キノリン−8−チオールアニオン、2−ピリジノールアニオン、2−キノリノールアニオン及びこれらの誘導体からなる群より選択されるものであることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。 In the general formula (1), the moiety composed of X 1 and X 2 and Y is a pyridine-2-thiol anion, a quinoline-2-thiol anion, a quinoline-8-thiol anion, or a 2-pyridinol anion. The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is selected from the group consisting of 2-quinolinol anion and derivatives thereof. 前記有機層が発光層であることを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
The organic electroluminescent element according to claim 1, wherein the organic layer is a light emitting layer.
JP2004065966A 2004-03-09 2004-03-09 Organic electroluminescence device Expired - Lifetime JP4425028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065966A JP4425028B2 (en) 2004-03-09 2004-03-09 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065966A JP4425028B2 (en) 2004-03-09 2004-03-09 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2005259377A true JP2005259377A (en) 2005-09-22
JP4425028B2 JP4425028B2 (en) 2010-03-03

Family

ID=35084913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065966A Expired - Lifetime JP4425028B2 (en) 2004-03-09 2004-03-09 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4425028B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039347A1 (en) * 2010-09-21 2012-03-29 国立大学法人 長崎大学 Metal complex, light emitting element, and display device
CN107923038A (en) * 2015-08-25 2018-04-17 田中贵金属工业株式会社 The chemical vapor deposition raw material being made of binuclear ruthenium and the chemical vapor deposition using the chemical vapor deposition raw material
US20190123288A1 (en) * 2017-09-21 2019-04-25 Universal Display Corporation Organic electroluminescent materials and devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039347A1 (en) * 2010-09-21 2012-03-29 国立大学法人 長崎大学 Metal complex, light emitting element, and display device
US8765952B2 (en) 2010-09-21 2014-07-01 Nagasaki University Metal complex, light emitting element, and display device
JP5924691B2 (en) * 2010-09-21 2016-05-25 国立大学法人 長崎大学 Metal complex, light emitting element, display device
CN107923038A (en) * 2015-08-25 2018-04-17 田中贵金属工业株式会社 The chemical vapor deposition raw material being made of binuclear ruthenium and the chemical vapor deposition using the chemical vapor deposition raw material
CN107923038B (en) * 2015-08-25 2020-01-07 田中贵金属工业株式会社 Raw material for chemical vapor deposition comprising binuclear ruthenium complex and chemical vapor deposition method using same
US20190123288A1 (en) * 2017-09-21 2019-04-25 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JP4425028B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP6426676B2 (en) Novel organic light emitting material
JP5973009B2 (en) Compound
US8247086B2 (en) Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
JP5149000B2 (en) Organic light emitting device
US7759490B2 (en) Phosphorescent Osmium (II) complexes and uses thereof
JP4662854B2 (en) Organometallic compound in which compound for host and compound for dopant are connected, organic electroluminescent device using the same, and method for producing the same
US20110017984A1 (en) Metal complex compound and organic electroluminescent device using same
JP5266203B2 (en) Luminescent substance
JP2003081989A (en) Metal coordination compound, light emitting element and display
JP2015005765A (en) Light-emitting element, light-emitting device, electronic device, luminaire
KR20130018550A (en) Heteroleptic iridium complexes as dopants
JP2003081988A (en) Light emitting element, display and metal coordination compound for the light emitting element
KR20100085845A (en) Organometallic complex, and light-emitting element, light-emitting device, electronic device, and lighting device using the organometallic complex
JP6473437B2 (en) High efficiency phosphorescent material
JP5416098B2 (en) Bipyridine metal complexes used as luminescent materials
KR101057175B1 (en) Novel Iridium (III) Complexes and Organic Electroluminescent Devices Comprising the Same
JP4425028B2 (en) Organic electroluminescence device
JP2013142088A (en) Highly efficient phosphorescent material
JP2004220965A (en) Luminescent element using metal coordination compound
CA2487118A1 (en) Phosphorescent osmium and ruthenium complexes and uses thereof
JP2012188357A (en) Metal complex, light-emitting device, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R151 Written notification of patent or utility model registration

Ref document number: 4425028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

EXPY Cancellation because of completion of term