JP2005258467A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2005258467A
JP2005258467A JP2005148457A JP2005148457A JP2005258467A JP 2005258467 A JP2005258467 A JP 2005258467A JP 2005148457 A JP2005148457 A JP 2005148457A JP 2005148457 A JP2005148457 A JP 2005148457A JP 2005258467 A JP2005258467 A JP 2005258467A
Authority
JP
Japan
Prior art keywords
lens
positive
aspherical data
imaging
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148457A
Other languages
Japanese (ja)
Other versions
JP4207020B2 (en
Inventor
Masafumi Isono
雅史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005148457A priority Critical patent/JP4207020B2/en
Publication of JP2005258467A publication Critical patent/JP2005258467A/en
Application granted granted Critical
Publication of JP4207020B2 publication Critical patent/JP4207020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging lens for a solid-state imaging device excellent in optical performance and made inexpensive and compact. <P>SOLUTION: The imaging lens which forms an image on the solid-state imaging device and is constituted of three lenses is constituted of a first positive lens (L1), an aperture diaphragm (ST), a second positive lens (L2) having a meniscus shape with a convex surface on an image side, and a third negative lens (L3) having a meniscus shape with a concave surface on the image side in order from an object side. It is constituted to satisfies a conditional formula 0.05<T6/f<0.5, wherein T6 is the axial thickness of the third lens (L3) and f is the focal length of an entire system. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は撮像レンズに関するものであり、更に詳しくは被写体の映像を固体撮像素子で取り込むデジタル入力機器(デジタルスチルカメラ,デジタルビデオカメラ等)に適した小型の撮像レンズに関するものである。   The present invention relates to an imaging lens, and more particularly to a small imaging lens suitable for a digital input device (digital still camera, digital video camera, etc.) that captures an image of a subject with a solid-state imaging device.

近年、パーソナルコンピュータ等の普及に伴い、手軽に画像情報をデジタル機器に取り込むことができるデジタルスチルカメラやデジタルビデオカメラ等(以下単に「デジタルカメラ」という。)が個人ユーザーレベルで普及しつつある。このようなデジタルカメラは、今後も画像情報の入力機器として益々普及することが予想される。   In recent years, with the spread of personal computers and the like, digital still cameras, digital video cameras and the like (hereinafter simply referred to as “digital cameras”) that can easily capture image information into digital devices are becoming popular at the individual user level. Such digital cameras are expected to become increasingly popular as image information input devices.

また、デジタルカメラに搭載されるCCD(Charge Coupled Device)等の固体撮像素子の小型化が進展してきており、それに伴ってデジタルカメラにも一層の小型化が求められている。このため、デジタル入力機器において最大の容積を占める撮像レンズにも、コンパクト化が強く要望されている。撮像レンズを小型化するには固体撮像素子のサイズを小さくするのが最も容易な方法ではあるが、そのためには受光素子のサイズを小さくする必要があり、固体撮像素子の製造難易度が上がるとともに撮像レンズに要求される性能も高くなる。   In addition, miniaturization of solid-state imaging devices such as CCDs (Charge Coupled Devices) mounted on digital cameras has progressed, and accordingly, further miniaturization of digital cameras is required. For this reason, there is a strong demand for a compact imaging lens that occupies the largest volume in a digital input device. Although the easiest way to reduce the size of the imaging lens is to reduce the size of the solid-state imaging device, it is necessary to reduce the size of the light-receiving device, which increases the difficulty of manufacturing the solid-state imaging device. The performance required for the imaging lens is also increased.

一方、固体撮像素子のサイズをそのままにして撮像レンズのサイズを小さくすると、必然的に射出瞳位置が像面に近づいてしまう。射出瞳位置が像面に近づくと、撮像レンズから射出された軸外光束が像面に対して斜めに入射するため、固体撮像素子の前面に設けられているマイクロレンズの集光性能が十分に発揮されず、画像の明るさが画像中央部と画像周辺部とで極端に変化するという問題が生じることになる。この問題を解決するために撮像レンズの射出瞳位置を遠くに離そうとすると、どうしても撮像レンズ全体の大型化が避けられなくなる。   On the other hand, if the size of the imaging lens is reduced while leaving the size of the solid-state imaging device as it is, the exit pupil position will inevitably approach the image plane. When the exit pupil position approaches the image plane, the off-axis light beam emitted from the imaging lens is obliquely incident on the image plane, so that the condensing performance of the microlens provided in front of the solid-state imaging device is sufficient This causes a problem that the brightness of the image changes extremely between the central portion of the image and the peripheral portion of the image. In order to solve this problem, if it is attempted to move the exit pupil position of the imaging lens far away, it is inevitable that the entire imaging lens is enlarged.

さらに近年の低価格化競争のため、撮像レンズにも低コスト化の要望が強くなってきている。以上のような要望に対し、レンズ3枚構成の撮像レンズが特許文献1〜3で提案されている。
特開2001−272598号公報 特開2002−698889号公報 特開平11−52227号公報
In addition, due to the recent competition for lower prices, there is an increasing demand for cost reduction in imaging lenses. In response to the above demand, Patent Documents 1 to 3 propose an imaging lens having a three-lens configuration.
JP 2001-272598 A Japanese Patent Application Laid-Open No. 2002-688889 Japanese Patent Laid-Open No. 11-52227

特許文献1に開示されているレンズ3枚構成の撮像レンズは、焦点距離に対して全長が約3倍程度であり、コンパクトになっていない。特許文献2に開示されている撮像レンズは、焦点距離に対して全長が約2倍程度とコンパクトではあるが、ガラスレンズを2枚も使用しているため低コストになっていない。特許文献3に開示されている撮像レンズは、焦点距離に対して全長が約2.5倍程度であり、コンパクトになっていない。また画角が約40度であり、撮像レンズとして使用するには画角が不十分である。   The imaging lens having a three-lens configuration disclosed in Patent Document 1 has a total length of about three times the focal length and is not compact. The imaging lens disclosed in Patent Document 2 is compact with a total length of about twice the focal length, but is not low in cost because it uses two glass lenses. The imaging lens disclosed in Patent Document 3 has a total length of about 2.5 times the focal length and is not compact. The angle of view is about 40 degrees, and the angle of view is insufficient for use as an imaging lens.

本発明はこのような状況に鑑みてなされたものであって、光学性能が良好で低コストかつコンパクトな固体撮像素子用の撮像レンズを提供することを目的とする。   The present invention has been made in view of such a situation, and an object thereof is to provide an imaging lens for a solid-state imaging device that has good optical performance, is low-cost, and is compact.

上記目的を達成するために、第1の発明の撮像レンズは、固体撮像素子に像を形成するレンズ3枚構成の撮像レンズであって、物体側から順に、正の第1レンズと、開口絞りと、像側凸の正のメニスカス形状の第2レンズと、像側凹の負のメニスカス形状の第3レンズとで構成され、以下の条件式(A3)を満足することを特徴とする。
0.05<T6/f<0.5 …(A3)
ただし、
T6:第3レンズの軸上レンズ厚み、
f:全系の焦点距離、
である。
In order to achieve the above object, an imaging lens according to a first aspect of the present invention is an imaging lens having a three-lens configuration for forming an image on a solid-state imaging device. And a positive meniscus second lens having a convex image side and a third lens having a negative meniscus shape having a concave image side, and the following conditional expression (A3) is satisfied.
0.05 <T6 / f <0.5 (A3)
However,
T6: On-axis lens thickness of the third lens,
f: focal length of the entire system,
It is.

第2の発明の撮像レンズは、上記第1の発明において、以下の条件式(A2x)を満足することを特徴とする。
-1.695≦f3/f1<-0.15 …(A2x)
ただし、
f3:第3レンズの焦点距離、
f1:第1レンズの焦点距離、
である。
The imaging lens of the second invention is characterized in that, in the first invention, the following conditional expression (A2x) is satisfied.
-1.695 ≦ f3 / f1 <-0.15… (A2x)
However,
f3: focal length of the third lens
f1: focal length of the first lens,
It is.

本発明によれば、光学性能が良好で低コストかつコンパクトな固体撮像素子用の撮像レンズを実現することができる。そして、本発明に係る撮像レンズを携帯電話搭載のカメラやデジタルカメラ等のデジタル入力機器に用いれば、当該機器の高性能化,高機能化,低コスト化及びコンパクト化に寄与することができる。   According to the present invention, it is possible to realize a low-cost and compact imaging lens for a solid-state imaging device having good optical performance. If the imaging lens according to the present invention is used in a digital input device such as a camera mounted on a mobile phone or a digital camera, it can contribute to high performance, high functionality, low cost, and compactness of the device.

以下、本発明に係る撮像レンズの実施の形態を、図面を参照しつつ説明する。図1〜図12に、第1〜第12の実施の形態のレンズ構成をそれぞれ光学断面で示す。各実施の形態の撮像レンズはいずれも、固体撮像素子(例えばCCD)に対して光学像を形成する撮像用(例えばデジタルカメラ用)の単焦点レンズであって、物体側から順に、第1レンズ(L1),開口絞り(ST),第2レンズ(L2)及び第3レンズ(L3)のレンズ3枚構成になっている。3枚のレンズ(L1〜L3)はいずれもプラスチックレンズであり、各レンズ面(r1,r2,r4〜r7)は非球面である。また第3レンズ(L3)の像側には、光学的ローパスフィルター等に相当する平行平面板状のガラスフィルター(GF)が配置されている。   Hereinafter, embodiments of an imaging lens according to the present invention will be described with reference to the drawings. 1 to 12 show the lens configurations of the first to twelfth embodiments in optical cross sections, respectively. Each of the imaging lenses according to each embodiment is a single-focus lens for imaging (for example, for a digital camera) that forms an optical image on a solid-state imaging device (for example, CCD), and is a first lens in order from the object side. (L1), an aperture stop (ST), a second lens (L2), and a third lens (L3). The three lenses (L1 to L3) are all plastic lenses, and the lens surfaces (r1, r2, r4 to r7) are aspherical surfaces. On the image side of the third lens (L3), a parallel plane plate-like glass filter (GF) corresponding to an optical low-pass filter or the like is disposed.

第1〜第5の実施の形態(図1〜図5)の光学構成は、物体側から順に、パワー(焦点距離の逆数で定義される量)の弱い負又は正の第1レンズ(L1)と、開口絞り(ST)と、正の第2レンズ(L2)と、負の第3レンズ(L3)と、ガラスフィルター(GF)とから成っており、第6〜第8の実施の形態(図6〜図8)の光学構成は、物体側から順に、正の第1レンズ(L1)と、開口絞り(ST)と、正の第2レンズ(L2)と、負の第3レンズ(L3)と、ガラスフィルター(GF)とから成っており、第9〜第12の実施の形態(図9〜図12)の光学構成は、物体側から順に、正の第1レンズ(L1)と、開口絞り(ST)と、正の第2レンズ(L2)と、正の第3レンズ(L3)と、ガラスフィルター(GF)とから成っている。そこで、第1〜第8の実施の形態で採用している(負又は正)・正・負のレンズ3枚構成をレンズタイプAとし、第9〜第12の実施の形態で採用している正・正・正のレンズ3枚構成をレンズタイプBとして、各実施の形態の特徴を以下に説明する。   The optical configurations of the first to fifth embodiments (FIGS. 1 to 5) are, in order from the object side, a first negative or positive first lens (L1) having a weak power (an amount defined by the reciprocal of the focal length). And an aperture stop (ST), a positive second lens (L2), a negative third lens (L3), and a glass filter (GF). Sixth to eighth embodiments ( The optical configuration of FIGS. 6 to 8 is, in order from the object side, a positive first lens (L1), an aperture stop (ST), a positive second lens (L2), and a negative third lens (L3). ) And a glass filter (GF), and the optical configuration of the ninth to twelfth embodiments (FIGS. 9 to 12) includes, in order from the object side, a positive first lens (L1), It consists of an aperture stop (ST), a positive second lens (L2), a positive third lens (L3), and a glass filter (GF). Therefore, the (negative or positive) / positive / negative three-lens configuration employed in the first to eighth embodiments is the lens type A, and is employed in the ninth to twelfth embodiments. The feature of each embodiment will be described below with a lens type B having a configuration of three positive, positive, and positive lenses.

〈レンズタイプA…(負又は正)・正・負〉
第1〜3の実施の形態(図1〜図3)では、第1レンズ(L1)が物体側に凸面を向けたパワーの弱い負のメニスカス形状を有しており、第2レンズ(L2)が正の両凸形状を有しており、第3レンズ(L3)が像側に凹面を向けた負のメニスカス形状を有している。このように、物体側から順に、パワーの弱い負メニスカスレンズから成る第1レンズ(L1)と、開口絞り(ST)と、両凸の正レンズから成る第2レンズ(L2)と、像側に凹の負メニスカスレンズから成る第3レンズ(L3)と、でパワー配置が負・正・負のレンズタイプAを構成することは、撮像レンズの光学性能,コスト及びコンパクト性を良好にバランスさせる上で好ましい。
<Lens Type A ... (Negative or Positive) / Positive / Negative>
In the first to third embodiments (FIGS. 1 to 3), the first lens (L1) has a negative meniscus shape with a weak power with the convex surface facing the object side, and the second lens (L2) Has a positive biconvex shape, and the third lens (L3) has a negative meniscus shape with a concave surface facing the image side. In this way, in order from the object side, the first lens (L1) composed of a negative meniscus lens having a weak power, the aperture stop (ST), the second lens (L2) composed of a biconvex positive lens, and the image side. The third lens (L3) consisting of a concave negative meniscus lens and the lens type A with negative, positive, and negative power arrangement balance the optical performance, cost, and compactness of the imaging lens. Is preferable.

第4,第5の実施の形態(図4,図5)では、第1レンズ(L1)が弱い正のパワーを有しており、第2レンズ(L2)が像側に凸面を向けた正のメニスカス形状を有しており、第3レンズ(L3)が像側に凹面を向けた負のメニスカス形状を有している。このように、物体側から順に、弱いパワーの正レンズから成る第1レンズ(L1)と、開口絞り(ST)と、像側に凸の正メニスカスレンズから成る第2レンズ(L2)と、像側に凹の負メニスカスレンズから成る第3レンズ(L3)と、でパワー配置が正・正・負のレンズタイプAを構成することは、撮像レンズの光学性能,コスト及びコンパクト性を良好にバランスさせる上で好ましい。   In the fourth and fifth embodiments (FIGS. 4 and 5), the first lens (L1) has a weak positive power, and the second lens (L2) is a positive with the convex surface facing the image side. The third lens (L3) has a negative meniscus shape with a concave surface facing the image side. In this manner, in order from the object side, the first lens (L1) composed of a positive lens with weak power, the aperture stop (ST), the second lens (L2) composed of a positive meniscus lens convex on the image side, and the image Constructing the lens type A with positive, positive, and negative power arrangement with the third lens (L3) consisting of a negative negative meniscus lens on the side balances the optical performance, cost, and compactness of the imaging lens. This is preferable.

第6〜第8の実施の形態(図6〜図8)では、第1レンズ(L1)が正のパワーを有しており、第2レンズ(L2)が像側に凸面を向けた正のメニスカス形状を有しており、第3レンズ(L3)が像側に凹面を向けた負のメニスカス形状を有している。このように、物体側から順に、正レンズから成る第1レンズ(L1)と、開口絞り(ST)と、像側に凸の正メニスカスレンズから成る第2レンズ(L2)と、像側に凹の負メニスカスレンズから成る第3レンズ(L3)と、でパワー配置が正・正・負のレンズタイプAを構成することは、撮像レンズの光学性能,コスト及びコンパクト性を良好にバランスさせる上で好ましい。   In the sixth to eighth embodiments (FIGS. 6 to 8), the first lens (L1) has positive power, and the second lens (L2) is positive with the convex surface facing the image side. It has a meniscus shape, and the third lens (L3) has a negative meniscus shape with a concave surface facing the image side. Thus, in order from the object side, the first lens (L1) made of a positive lens, the aperture stop (ST), the second lens (L2) made of a positive meniscus lens convex on the image side, and a concave on the image side. In order to balance the optical performance, cost, and compactness of the imaging lens, the lens type A with positive, positive, and negative power distribution is composed of the third lens (L3) consisting of a negative meniscus lens. preferable.

レンズタイプAの撮像レンズにおいて、満たすことが望ましい条件式を以下に説明する。ただし、以下に説明する全ての条件式を同時に満たす必要はなく、個々の条件式を光学構成に応じてそれぞれ単独に満足すれば、対応する作用・効果を達成することは可能である。もちろん、複数の条件式を満足する方が、光学性能,小型化,組立等の観点からより望ましいことはいうまでもない。   In the lens type A imaging lens, conditional expressions that should be satisfied will be described below. However, it is not necessary to satisfy all the conditional expressions described below at the same time, and it is possible to achieve the corresponding actions and effects as long as each conditional expression is satisfied independently according to the optical configuration. Needless to say, satisfying a plurality of conditional expressions is more desirable from the viewpoint of optical performance, miniaturization, assembly, and the like.

第1〜第5の実施の形態では第1レンズ(L1)が弱いパワーを有しているが、そのパワーは以下の条件式(A0)を満足するものであることが望ましい。
|f/f1|<0.6 …(A0)
ただし、
f:全系の焦点距離、
f1:第1レンズ(L1)の焦点距離、
である。
In the first to fifth embodiments, the first lens (L1) has a weak power, but it is preferable that the power satisfies the following conditional expression (A0).
| F / f1 | <0.6 (A0)
However,
f: focal length of the entire system,
f1: Focal length of the first lens (L1),
It is.

条件式(A0)は、パワーの弱い第1レンズ(L1)に関して、主に製造誤差に伴う性能劣化を減少させるための条件範囲を規定している。条件式(A0)の範囲を外れると、第1レンズ(L1)のパワーが強くなりすぎて、結果として第1レンズ(L1)で発生する各収差が大きくなり、第2レンズ(L2)以降の収差補正負担が大きくなり、製造誤差に伴う性能劣化が激しくなる。   Conditional expression (A0) prescribes a condition range for reducing performance deterioration mainly due to manufacturing errors with respect to the first lens (L1) having low power. Outside the range of conditional expression (A0), the power of the first lens (L1) becomes too strong. As a result, each aberration generated in the first lens (L1) becomes large, and after the second lens (L2). The burden of aberration correction becomes large, and performance deterioration due to manufacturing errors becomes severe.

第3レンズ(L3)に関しては以下の条件式(A1)を満足することが望ましく、前記条件式(A0)と共に満足することが更に望ましい。
-2.2<f/f3<-0.79 …(A1)
ただし、
f:全系の焦点距離、
f3:第3レンズ(L3)の焦点距離、
である。
Regarding the third lens (L3), it is desirable to satisfy the following conditional expression (A1), and it is more desirable to satisfy the conditional expression (A0).
-2.2 <f / f3 <-0.79… (A1)
However,
f: focal length of the entire system,
f3: focal length of the third lens (L3),
It is.

条件式(A1)は、第3レンズ(L3)に関して主にコマ収差をバランスさせるための条件範囲を規定している。条件式(A1)の下限を超えると、コマ収差が悪化し倍率色収差への悪影響が大きくなる。逆に、条件式(A1)の上限を超えると、コマ収差が悪化し非点収差への悪影響が大きくなる。   Conditional expression (A1) defines a condition range for mainly balancing coma aberration with respect to the third lens (L3). If the lower limit of conditional expression (A1) is exceeded, coma will deteriorate and adverse effects on lateral chromatic aberration will increase. On the contrary, when the upper limit of conditional expression (A1) is exceeded, coma becomes worse and the adverse effect on astigmatism increases.

第4〜第8の実施の形態のようにパワー配置が正・正・負のレンズタイプAでは、第1,第3レンズ(L1,L3)に関して以下の条件式(A2)を満足することが望ましく、なかでも以下の条件式(A2a)を満足することが望ましく、条件式(A2b)を満足することが更に望ましい。
-2.6<f3/f1<-0.15 …(A2)
-1.1<f3/f1<-0.15 …(A2a)
-0.35<f3/f1<-0.15 …(A2b)
ただし、
f3:第3レンズ(L3)の焦点距離、
f1:第1レンズ(L1)の焦点距離、
である。
In the lens type A with positive / positive / negative power arrangement as in the fourth to eighth embodiments, the following conditional expression (A2) may be satisfied with respect to the first and third lenses (L1, L3). In particular, it is desirable to satisfy the following conditional expression (A2a), and it is more desirable to satisfy the conditional expression (A2b).
-2.6 <f3 / f1 <-0.15… (A2)
-1.1 <f3 / f1 <-0.15… (A2a)
-0.35 <f3 / f1 <-0.15… (A2b)
However,
f3: focal length of the third lens (L3),
f1: Focal length of the first lens (L1),
It is.

条件式(A2),(A2a),(A2b)は、主に全長と収差をバランスさせるための条件範囲を規定している。条件式(A2)の上限を超えると、収差補正には有利となるが、全長の増大を招くことになる。逆に、条件式(A2)の下限を超えると、全長短縮には有利となるが、収差劣化(特に歪曲収差と像面湾曲の劣化)が著しくなる。   Conditional expressions (A2), (A2a), and (A2b) mainly define a condition range for balancing the total length and aberration. Exceeding the upper limit of conditional expression (A2) is advantageous for aberration correction, but causes an increase in the total length. On the contrary, when the lower limit of conditional expression (A2) is exceeded, it is advantageous for shortening the overall length, but the aberration deterioration (particularly, distortion aberration and field curvature deterioration) becomes significant.

また第3レンズ(L3)に関しては、以下の条件式(A3)を満足することが望ましく、なかでも以下の条件式(A3a)を満足することが更に望ましい。また、前記条件式(A0),(A1),(A2),(A2a),(A2b)のうちの少なくとも1つと共に満足することが更に望ましい。第4〜第8の実施の形態のようにパワー配置が正・正・負のレンズタイプAでは、第2レンズ(L2)が像側凸の正のメニスカス形状を有し、第3レンズ(L3)が像側凹の負のメニスカス形状を有するとともに、以下の条件式(A3)を満足することが望ましく、なかでも以下の条件式(A3a)を満足することが更に望ましい。
0.05<T6/f<0.5 …(A3)
0.05<T6/f<0.4 …(A3a)
ただし、
T6:第3レンズ(L3)の軸上レンズ厚み、
f:全系の焦点距離、
である。
Regarding the third lens (L3), it is desirable to satisfy the following conditional expression (A3), and it is more desirable to satisfy the following conditional expression (A3a). It is further desirable to satisfy at least one of the conditional expressions (A0), (A1), (A2), (A2a), and (A2b). In the lens type A in which the power arrangement is positive, positive, and negative as in the fourth to eighth embodiments, the second lens (L2) has a positive meniscus shape that is convex on the image side, and the third lens (L3 ) Has a negative meniscus shape that is concave on the image side, and preferably satisfies the following conditional expression (A3), and more preferably satisfies the following conditional expression (A3a).
0.05 <T6 / f <0.5 (A3)
0.05 <T6 / f <0.4… (A3a)
However,
T6: On-axis lens thickness of the third lens (L3),
f: focal length of the entire system,
It is.

条件式(A3),(A3a)は、第3レンズ(L3)に関して主に倍率色収差とレンズの製造性をバランスさせるための条件範囲を規定している。条件式(A3)の上限を超えると、倍率色収差を良好に補正することが困難になる。逆に、条件式(A3)の下限を超えると、レンズの厚みが薄すぎて製造が困難になる。   Conditional expressions (A3) and (A3a) prescribe the condition range for balancing the lateral chromatic aberration and the manufacturability of the lens with respect to the third lens (L3). If the upper limit of conditional expression (A3) is exceeded, it will be difficult to satisfactorily correct lateral chromatic aberration. On the other hand, when the lower limit of conditional expression (A3) is exceeded, the thickness of the lens is too thin, making it difficult to manufacture.

〈レンズタイプB…正・正・正〉
第9〜第12の実施の形態(図9〜図12)では、第1レンズ(L1)が物体側に凸面を向けた正のメニスカス形状を有しており、第2レンズ(L2)が像側に凸面を向けた正のメニスカス形状を有しており、第3レンズ(L3)が像側に凸面を向けた正のメニスカス形状を有している。このように、物体側から順に、物体側に凸の正メニスカスレンズから成る第1レンズ(L1)と、開口絞り(ST)と、像側に凸の正レンズから成る第2レンズ(L2)と、像側に凸の正メニスカスレンズから成る第3レンズ(L3)と、でレンズタイプBを構成することは、撮像レンズの光学性能,コスト及びコンパクト性を良好にバランスさせる上で好ましい。
<Lens type B ... Positive / Positive / Positive>
In the ninth to twelfth embodiments (FIGS. 9 to 12), the first lens (L1) has a positive meniscus shape with the convex surface facing the object side, and the second lens (L2) is an image. The third lens (L3) has a positive meniscus shape with a convex surface facing the image side. Thus, in order from the object side, the first lens (L1) composed of a positive meniscus lens convex toward the object side, the aperture stop (ST), and the second lens (L2) composed of a positive lens convex toward the image side. It is preferable to form the lens type B with the third lens (L3) composed of a positive meniscus lens convex on the image side, in order to satisfactorily balance the optical performance, cost, and compactness of the imaging lens.

レンズタイプBの撮像レンズにおいて、満たすことが望ましい条件式を以下に説明する。ただし、以下に説明する全ての条件式を同時に満たす必要はなく、個々の条件式を光学構成に応じてそれぞれ単独に満足すれば、対応する作用・効果を達成することは可能である。もちろん、複数の条件式を満足する方が、光学性能,小型化,組立等の観点からより望ましいことはいうまでもない。   In the lens type B imaging lens, conditional expressions that should be satisfied will be described below. However, it is not necessary to satisfy all the conditional expressions described below at the same time, and it is possible to achieve the corresponding actions and effects as long as each conditional expression is satisfied independently according to the optical configuration. Needless to say, satisfying a plurality of conditional expressions is more desirable from the viewpoint of optical performance, miniaturization, assembly, and the like.

第3レンズ(L3)に関しては、以下の条件式(B1)を満足することが望ましい。
0.2<f/f3<0.4 …(B1)
ただし、
f:全系の焦点距離、
f3:第3レンズ(L3)の焦点距離、
である。
Regarding the third lens (L3), it is desirable to satisfy the following conditional expression (B1).
0.2 <f / f3 <0.4 (B1)
However,
f: focal length of the entire system,
f3: focal length of the third lens (L3),
It is.

条件式(B1)は、第3レンズ(L3)に関して主にコマ収差をバランスさせるための条件範囲を規定している。条件式(B1)の下限を超えると、コマ収差が悪化し倍率色収差への悪影響が大きくなる。逆に、条件式(B1)の上限を超えると、コマ収差が悪化し非点収差への悪影響が大きくなる。   Conditional expression (B1) defines a condition range for mainly balancing coma aberration with respect to the third lens (L3). If the lower limit of conditional expression (B1) is exceeded, coma will deteriorate and adverse effects on lateral chromatic aberration will increase. On the contrary, when the upper limit of conditional expression (B1) is exceeded, coma becomes worse and the adverse effect on astigmatism increases.

第1,第3レンズ(L1,L3)に関しては、以下の条件式(B2)を満足することが望ましい。
0.5<f3/f1<2.6 …(B2)
ただし、
f3:第3レンズ(L3)の焦点距離、
f1:第1レンズ(L1)の焦点距離、
である。
Regarding the first and third lenses (L1, L3), it is desirable to satisfy the following conditional expression (B2).
0.5 <f3 / f1 <2.6 (B2)
However,
f3: focal length of the third lens (L3),
f1: Focal length of the first lens (L1),
It is.

条件式(B2)は、主に全長と収差をバランスさせるための条件範囲を規定している。条件式(B2)の上限を超えると、収差補正には有利となるが、全長の増大を招くことになる。逆に、条件式(B2)の下限を超えると、全長短縮には有利となるが、収差劣化(特に歪曲収差と像面湾曲の劣化)が著しくなる。   Conditional expression (B2) mainly defines a condition range for balancing the total length and aberration. Exceeding the upper limit of conditional expression (B2) is advantageous for aberration correction, but increases the total length. On the contrary, when the lower limit of conditional expression (B2) is exceeded, it is advantageous for shortening the overall length, but the aberration deterioration (particularly, distortion aberration and field curvature deterioration) becomes significant.

また、第3レンズ(L3)に関しては以下の条件式(B3)を満足することが望ましく、第1レンズ(L1)が物体側凸の正のメニスカレンズから成り、第2レンズ(L2)が像側凸の正レンズから成り、第3レンズ(L3)が像側凸の正のメニスカスレンズから成るレンズタイプBのレンズ3枚構成において、以下の条件式(B3)を満足することが更に望ましい。
0.05<T6/f<0.4 …(B3)
ただし、
T6:第3レンズ(L3)の軸上レンズ厚み、
f:全系の焦点距離、
である。
For the third lens (L3), it is desirable to satisfy the following conditional expression (B3), the first lens (L1) is composed of a positive meniscus lens convex on the object side, and the second lens (L2) is an image. In a three-lens type B lens configuration including a side convex positive lens and the third lens (L3) including an image side convex positive meniscus lens, it is more desirable to satisfy the following conditional expression (B3).
0.05 <T6 / f <0.4 (B3)
However,
T6: On-axis lens thickness of the third lens (L3),
f: focal length of the entire system,
It is.

条件式(B3)は、第3レンズ(L3)に関して主に倍率色収差とレンズの製造性をバランスさせるための条件範囲を規定している。条件式(B3)の上限を超えると、倍率色収差を良好に補正することが困難になる。逆に、条件式(B3)の下限を超えると、レンズの厚みが薄すぎて製造が困難になる。   Conditional expression (B3) prescribes a condition range for balancing the lateral chromatic aberration and the manufacturability of the lens mainly with respect to the third lens (L3). If the upper limit of conditional expression (B3) is exceeded, it will be difficult to satisfactorily correct lateral chromatic aberration. On the other hand, when the lower limit of conditional expression (B3) is exceeded, the thickness of the lens is too thin and manufacturing becomes difficult.

〈レンズタイプA,Bに共通の望ましい構成〉
先に述べたように、第1〜第12の実施の形態に用いられている第1〜第3レンズ(L1〜L3)はいずれもプラスチックレンズであり、各レンズ面(r1,r2,r4〜r7)は非球面である。このように、全てのレンズ(L1〜L3)をプラスチックレンズで構成することが望ましく、また、全てのレンズ(L1〜L3)の少なくとも1面を非球面で構成することが望ましい。全てのレンズ(L1〜L3)をプラスチックレンズで構成することは、撮像レンズの低コスト化を達成する上で有効であり、また、各レンズ(L1〜L3)に非球面を少なくとも1面用いることは、球面収差,コマ収差及び歪曲収差の補正に大きな効果がある。
<Preferred configuration common to lens types A and B>
As described above, the first to third lenses (L1 to L3) used in the first to twelfth embodiments are all plastic lenses, and each lens surface (r1, r2, r4 to r7) is an aspherical surface. As described above, it is desirable that all the lenses (L1 to L3) are made of plastic lenses, and it is desirable that at least one surface of all the lenses (L1 to L3) is made of an aspherical surface. Constructing all the lenses (L1 to L3) with plastic lenses is effective in reducing the cost of the imaging lens, and using at least one aspheric surface for each lens (L1 to L3). Has a great effect on correction of spherical aberration, coma and distortion.

第1〜第12の実施の形態の撮像レンズは、入射光線を屈折により偏向させる屈折型レンズ(つまり、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ)のみで構成されているが、これに限らない。例えば、回折により入射光線を偏向させる回折型レンズ,回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ,入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ等を用いてもよい。ただし、媒質内で屈折率が変化する屈折率分布型レンズは、その複雑な製法がコストアップを招くため、本発明に係る撮像レンズでは第1〜第3レンズ(L1〜L3)として均質素材レンズを用いることが望ましい。   The imaging lenses of the first to twelfth embodiments are configured only by a refractive lens that deflects incident light by refraction (that is, a lens that deflects at the interface between media having different refractive indexes). However, it is not limited to this. For example, a diffractive lens that deflects incident light by diffraction, a refractive / diffractive hybrid lens that deflects incident light by a combination of diffraction and refraction, and a refractive index distribution type that deflects incident light according to the refractive index distribution in the medium A lens or the like may be used. However, since the refractive index distribution type lens whose refractive index changes in the medium increases the cost due to its complicated manufacturing method, the imaging lens according to the present invention uses homogeneous material lenses as the first to third lenses (L1 to L3). It is desirable to use

また第1〜第12の実施の形態において、絞り(ST)のほかに不要光をカットするための光束規制板等を必要に応じて配置してもよく、プリズム類(例えば直角プリズム),ミラー類(例えば平面ミラー)等を用いて、光学的なパワー(焦点距離の逆数で定義される量)を有しない面(例えば、反射面,屈折面,回折面)を光路中に配置することにより、撮像レンズの前,後又は途中で光路を折り曲げてもよい。その折り曲げ位置は必要に応じて設定すればよく、光路の適正な折り曲げにより、撮像レンズが搭載されるデジタル入力機器(デジタルカメラ等)の見かけ上の薄型化やコンパクト化を達成することが可能である。   In the first to twelfth embodiments, in addition to the aperture stop (ST), a light flux restricting plate for cutting unnecessary light may be disposed as necessary, such as prisms (for example, right angle prisms), mirrors By placing a surface (for example, a reflecting surface, a refracting surface, a diffracting surface) that does not have optical power (a quantity defined by the reciprocal of the focal length) in the optical path using a class (for example, a plane mirror) The optical path may be bent before, after, or in the middle of the imaging lens. The bending position can be set as necessary, and by appropriately bending the optical path, it is possible to achieve an apparently thin and compact digital input device (such as a digital camera) equipped with an imaging lens. is there.

第1〜第12の実施の形態の撮像レンズは、デジタル入力機器用の小型撮像レンズとしての使用に適しており、これを光学的ローパスフィルターや固体撮像素子と組み合わせることにより、被写体の映像を光学的に取り込んで電気的な信号として出力する撮像レンズ装置を構成することができる。撮像レンズ装置は、被写体の静止画撮影や動画撮影に用いられるカメラ{例えば、デジタルカメラ;ビデオカメラ;デジタルビデオユニット,パーソナルコンピュータ,モバイルコンピュータ,ペン型スキャナー,携帯電話,携帯情報端末(PDA:Personal Digital Assistant),これらの周辺機器(マウス,スキャナー,プリンター,その他のデジタル入出力機器)等に内蔵又は外付けされるカメラ}の主たる構成要素であり、例えば、物体(被写体)側から順に、物体の光学像を形成する撮像レンズと、光学的ローパスフィルター,赤外カットフィルター等の光学フィルターと、撮像レンズにより形成された光学像を電気的な信号に変換する固体撮像素子と、で構成される。   The imaging lenses according to the first to twelfth embodiments are suitable for use as a small imaging lens for digital input equipment. By combining this with an optical low-pass filter or a solid-state imaging device, an image of a subject is optically generated. Therefore, it is possible to configure an imaging lens device that takes in and outputs as an electrical signal. The imaging lens apparatus is a camera used for still image shooting and moving image shooting of a subject {eg, digital camera; video camera; digital video unit, personal computer, mobile computer, pen-type scanner, mobile phone, personal digital assistant (PDA: Personal Digital Assistant), the main components of these peripheral devices (mouse, scanner, printer, other digital input / output devices) etc. built-in or external camera}, for example, in order from the object (subject) side An imaging lens that forms an optical image of the above, an optical filter such as an optical low-pass filter and an infrared cut filter, and a solid-state imaging device that converts the optical image formed by the imaging lens into an electrical signal .

したがって、上述した第1〜第12の実施の形態には以下の構成を有する発明(i)〜(vi)が含まれており、その構成により、良好な光学性能を有し低コストでコンパクトな撮像レンズ装置を実現することができる。そして、これをデジタルカメラ等に適用すれば、当該カメラの高性能化,高機能化,低コスト化及びコンパクト化に寄与することができる。
(i) 光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する固体撮像素子と、を備えた撮像レンズ装置であって、前記撮像レンズが、物体側から順に、正又は負のパワーを有する第1レンズと、正のパワーを有する第2レンズと、負のパワーを有する第3レンズと、のレンズ3枚で構成され、前記条件式(A0),(A1),(A2),(A2a),(A2b),(A3),(A3a)のうちの少なくとも1つを満足することを特徴とする撮像レンズ装置。
(ii) 光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する固体撮像素子と、を備えた撮像レンズ装置であって、前記撮像レンズが、物体側から順に、正のパワーを有する第1レンズと、正のパワーを有する第2レンズと、正のパワーを有する第3レンズと、のレンズ3枚で構成され、前記条件式(B1),(B2),(B3)のうちの少なくとも1つを満足することを特徴とする撮像レンズ装置。
(iii) 更に前記第1レンズと前記第2レンズとの間に開口絞りを有することを特徴とする上記(i)又は(ii)記載の撮像レンズ装置。
(iv) 前記第1〜第3レンズがプラスチックレンズで構成されていることを特徴とする上記(i)〜(iii)のいずれか1つに記載の撮像レンズ装置。
(v) 前記第1〜第3レンズがそれぞれ非球面を少なくとも1面有することを特徴とする上記(i)〜(iv)のいずれか1つに記載の撮像レンズ装置。
(vi) 前記第1〜第3レンズが均質素材レンズで構成されていることを特徴とする上記(i)〜(v)のいずれか1つに記載の撮像レンズ装置。
Accordingly, the above-described first to twelfth embodiments include inventions (i) to (vi) having the following configurations, and the configurations provide good optical performance and are low cost and compact. An imaging lens device can be realized. If this is applied to a digital camera or the like, it can contribute to high performance, high functionality, low cost and compactness of the camera.
(i) An imaging lens device comprising an imaging lens that forms an optical image and a solid-state imaging device that converts an optical image formed by the imaging lens into an electrical signal, wherein the imaging lens is an object In order from the side, the first lens having positive or negative power, the second lens having positive power, and the third lens having negative power are composed of three lenses, and the conditional expression (A0) , (A1), (A2), (A2a), (A2b), (A3), and (A3a).
(ii) An imaging lens device comprising: an imaging lens that forms an optical image; and a solid-state imaging device that converts an optical image formed by the imaging lens into an electrical signal, wherein the imaging lens is an object In order from the side, the first lens having positive power, the second lens having positive power, and the third lens having positive power are composed of three lenses, and the conditional expressions (B1), ( An imaging lens device satisfying at least one of B2) and (B3).
(iii) The imaging lens device according to (i) or (ii), further comprising an aperture stop between the first lens and the second lens.
(iv) The imaging lens device according to any one of (i) to (iii), wherein the first to third lenses are made of plastic lenses.
(v) The imaging lens device according to any one of (i) to (iv), wherein each of the first to third lenses has at least one aspheric surface.
(vi) The imaging lens device according to any one of (i) to (v), wherein the first to third lenses are formed of a homogeneous material lens.

固体撮像素子としては、例えば複数の画素から成るCCDやCMOS(Complementary Metal Oxide Semiconductor)センサー等が用いられ、撮像レンズにより形成された光学像は固体撮像素子により電気的な信号に変換される。撮像レンズで形成されるべき光学像は、固体撮像素子の画素ピッチにより決定される所定の遮断周波数特性を有する光学的ローパスフィルターを通過することにより、電気的な信号に変換される際に発生するいわゆる折り返しノイズが最小化されるように、空間周波数特性が調整される。固体撮像素子で生成した信号は、必要に応じて所定のデジタル画像処理や画像圧縮処理等が施されて、デジタル映像信号としてメモリー(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換されたりして他の機器に伝送される。   As the solid-state imaging device, for example, a CCD or CMOS (Complementary Metal Oxide Semiconductor) sensor composed of a plurality of pixels is used, and an optical image formed by the imaging lens is converted into an electrical signal by the solid-state imaging device. An optical image to be formed by the imaging lens is generated when it is converted into an electrical signal by passing through an optical low-pass filter having a predetermined cutoff frequency characteristic determined by the pixel pitch of the solid-state imaging device. The spatial frequency characteristics are adjusted so that so-called aliasing noise is minimized. The signal generated by the solid-state image sensor is subjected to predetermined digital image processing, image compression processing, etc. as necessary, and is recorded as a digital video signal in a memory (semiconductor memory, optical disk, etc.). Or is converted into an infrared signal and transmitted to another device.

なお、撮像レンズの最終面と固体撮像素子との間に配置される光学的ローパスフィルターは、第1〜第12の実施の形態ではガラスフィルター(GF)で構成されているが、使用されるデジタル入力機器に応じたものであればよい。例えば、所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルターや、必要とされる光学的な遮断周波数の特性を回折効果により達成する位相型ローパスフィルター等が適用可能である。   Note that the optical low-pass filter disposed between the final surface of the imaging lens and the solid-state imaging device is composed of a glass filter (GF) in the first to twelfth embodiments, but is used as a digital filter. Any device according to the input device may be used. For example, a birefringent low-pass filter made of quartz or the like with a predetermined crystal axis direction adjusted, or a phase-type low-pass filter that achieves the required optical cutoff frequency characteristics by the diffraction effect can be applied. is there.

《物体側から正・正・負の順にレンズを有するレンズ3枚以上のレンズタイプ》
次に、正・正・負タイプの撮像レンズの他の実施の形態を、図面を参照しつつ説明する。図25〜図27に、第13〜第15の実施の形態のレンズ構成をそれぞれ光学断面で示す。第13〜第15の実施の形態の撮像レンズはいずれも、固体撮像素子(例えばCCD)に対して光学像を形成する撮像用(例えばデジタルカメラ用)の単焦点レンズである。そして、物体側から順に、正の第1レンズ(L1)と、開口絞り(ST)と、正の第2レンズ(L2)と、像面側に凹面を向けた負の第3レンズ(L3)と、のレンズ3枚構成になっており、その像面側には光学的ローパスフィルター等に相当する平行平面板状のガラスフィルター(GF)が配置されている。また、第13〜第15の実施の形態において、すべてのレンズ面(r1,r2,r4〜r7)は非球面になっている。
<< Lens type with three or more lenses in order of positive, positive, negative from the object side >>
Next, other embodiments of positive / positive / negative imaging lenses will be described with reference to the drawings. FIGS. 25 to 27 show the lens configurations of the thirteenth to fifteenth embodiments in optical cross sections, respectively. The imaging lenses of the thirteenth to fifteenth embodiments are all single-focus lenses for imaging (for example, for digital cameras) that form an optical image on a solid-state imaging device (for example, CCD). Then, in order from the object side, a positive first lens (L1), an aperture stop (ST), a positive second lens (L2), and a negative third lens (L3) with a concave surface facing the image surface side A parallel plane plate-like glass filter (GF) corresponding to an optical low-pass filter or the like is disposed on the image plane side. In the thirteenth to fifteenth embodiments, all lens surfaces (r1, r2, r4 to r7) are aspherical surfaces.

第13〜第15の実施の形態のレンズ構成を更に詳しく説明する。第13の実施の形態において、第1レンズ(L1)は像面側に凸面を向けた正のメニスカス形状を有するプラスチックレンズであり、第2レンズ(L2)は像面側に凸面を向けた正のメニスカス形状を有するガラスレンズであり、第3レンズ(L3)は像面側に凹面を向けた負のメニスカス形状を有するプラスチックレンズである。第14の実施の形態において、第1レンズ(L1)は物体側に凸面を向けた正のメニスカス形状を有するガラスレンズであり、第2レンズ(L2)は像面側に凸面を向けた正のメニスカス形状を有するプラスチックレンズであり、第3レンズ(L3)は両凹形状を有する負のプラスチックレンズである。第15の実施の形態において、第1レンズ(L1)は物体側に凸面を向けた正のメニスカス形状を有するガラスレンズであり、第2レンズ(L2)は像面側に凸面を向けた正のメニスカス形状を有するプラスチックレンズであり、第3レンズ(L3)は像面側に凹面を向けた負のメニスカス形状を有するプラスチックレンズである。   The lens configurations of the thirteenth to fifteenth embodiments will be described in more detail. In the thirteenth embodiment, the first lens (L1) is a plastic lens having a positive meniscus shape with the convex surface facing the image surface side, and the second lens (L2) is a positive lens with the convex surface facing the image surface side. The third lens (L3) is a plastic lens having a negative meniscus shape with a concave surface facing the image plane side. In the fourteenth embodiment, the first lens (L1) is a glass lens having a positive meniscus shape with a convex surface facing the object side, and the second lens (L2) is a positive lens with a convex surface facing the image surface side. It is a plastic lens having a meniscus shape, and the third lens (L3) is a negative plastic lens having a biconcave shape. In the fifteenth embodiment, the first lens (L1) is a glass lens having a positive meniscus shape with a convex surface facing the object side, and the second lens (L2) is a positive lens with a convex surface facing the image surface side. The third lens (L3) is a plastic lens having a negative meniscus shape with a concave surface facing the image plane.

第13〜第15の実施の形態のように、パワー配置が正・正・負のレンズタイプにおいて、第1,第2レンズ(L1,L2)のうちのいずれか一方をガラスレンズ、他方をプラスチックレンズとし、第3レンズ(L3)を像面側に凹面を向けたプラスチックレンズとすることにより、固体撮像素子用の撮像レンズに必要な射出瞳位置,光学性能,コスト,コンパクト性及び製造性を良好にバランスさせることが可能となる。   As in the thirteenth to fifteenth embodiments, in the lens type with positive / positive / negative power arrangement, one of the first and second lenses (L1, L2) is a glass lens, and the other is plastic. The lens, and the third lens (L3) is a plastic lens with the concave surface facing the image plane, so that the exit pupil position, optical performance, cost, compactness, and manufacturability required for an imaging lens for a solid-state imaging device It becomes possible to balance well.

次に、正・正・負・負タイプの撮像レンズの実施の形態を、図面を参照しつつ説明する。図31〜図34に、第16〜第19の実施の形態のレンズ構成をそれぞれ光学断面で示す。第16〜第19の実施の形態の撮像レンズはいずれも、固体撮像素子(例えばCCD)に対して光学像を形成する撮像用(例えばデジタルカメラ用)の単焦点レンズである。そして、物体側から順に、正の前群(GrF)と、開口絞り(ST)と、負又は正の後群(GrR)とから成っており、その像側には光学的ローパスフィルター等に相当する平行平面板状のガラスフィルター(GF)が配置されている。前群(GrF)は、正レンズから成る第1レンズ(L1)1枚で構成されており、後群(GrR)は、物体側から順に、正レンズから成る第2レンズ(L2)と、負レンズから成る第3レンズ(L3)と、負レンズから成る第4レンズ(L4)との3枚で構成されている。つまり第16〜第19の実施の形態の撮像レンズは、物体側から順に、正の第1レンズ(L1)と、開口絞り(ST)と、正の第2レンズ(L2)と、負の第3レンズ(L3)と、負の第4レンズ(L4)と、のレンズ4枚構成になっている。なお、各レンズ構成図(図31〜図34)中、ri(i=1,2,3,...)が付された面は物体側から数えてi番目の面であり、riに*印が付された面は非球面である。   Next, embodiments of positive / positive / negative / negative imaging lenses will be described with reference to the drawings. FIGS. 31 to 34 show the lens configurations of the sixteenth to nineteenth embodiments in optical cross sections, respectively. The imaging lenses of the sixteenth to nineteenth embodiments are all single-focus lenses for imaging (for example, for digital cameras) that form an optical image on a solid-state imaging device (for example, CCD). Then, in order from the object side, it consists of a positive front group (GrF), an aperture stop (ST), and a negative or positive rear group (GrR), and the image side corresponds to an optical low-pass filter etc. A parallel plane plate-like glass filter (GF) is disposed. The front group (GrF) is composed of a first lens (L1) made up of a positive lens, and the rear group (GrR) is made up of a second lens (L2) made up of a positive lens and a negative lens in order from the object side. The third lens (L3) composed of a lens and the fourth lens (L4) composed of a negative lens are used. In other words, the imaging lenses according to the sixteenth to nineteenth embodiments have, in order from the object side, a positive first lens (L1), an aperture stop (ST), a positive second lens (L2), and a negative first lens. It has a four-lens configuration with three lenses (L3) and a negative fourth lens (L4). In each lens configuration diagram (FIGS. 31 to 34), the surface with ri (i = 1, 2, 3,...) Is the i-th surface counted from the object side, and ri * The marked surface is an aspherical surface.

第16〜第19の実施の形態のレンズ構成を更に詳しく説明する。第16〜第18の実施の形態において、第1レンズ(L1)は物体側に凸面を向けたメニスカス形状を有する正のガラスレンズであり、第2レンズ(L2)は像側に凸面を向けたメニスカス形状を有する正のプラスチックレンズであり、第3レンズ(L3)は像側に凸面を向けたメニスカス形状を有する負のプラスチックレンズであり、第4レンズ(L4)は両凹形状を有する負のプラスチックレンズである。そして、前群(GrF)は正のパワーを有しており、後群(GrR)は負のパワーを有している。第19の実施の形態において、第1レンズ(L1)は両凸形状を有する正のガラスレンズであり、第2レンズ(L2)は像側に凸面を向けたメニスカス形状を有する正のプラスチックレンズであり、第3レンズ(L3)は像側に凸面を向けたメニスカス形状を有する負のプラスチックレンズであり、第4レンズ(L4)は両凹形状を有する負のプラスチックレンズである。そして、前群(GrF),後群(GrR)共に正のパワーを有している。   The lens configurations of the sixteenth to nineteenth embodiments will be described in more detail. In the sixteenth to eighteenth embodiments, the first lens (L1) is a positive glass lens having a meniscus shape with a convex surface facing the object side, and the second lens (L2) has a convex surface facing the image side. It is a positive plastic lens having a meniscus shape, the third lens (L3) is a negative plastic lens having a meniscus shape with a convex surface facing the image side, and the fourth lens (L4) is a negative negative lens having a biconcave shape. It is a plastic lens. The front group (GrF) has a positive power, and the rear group (GrR) has a negative power. In the nineteenth embodiment, the first lens (L1) is a positive glass lens having a biconvex shape, and the second lens (L2) is a positive plastic lens having a meniscus shape having a convex surface facing the image side. The third lens (L3) is a negative plastic lens having a meniscus shape with a convex surface facing the image side, and the fourth lens (L4) is a negative plastic lens having a biconcave shape. The front group (GrF) and the rear group (GrR) both have positive power.

第16〜第19の実施の形態のように、物体側から順に、物体側に凸の正レンズと、開口絞り(ST)と、像側に凸の正メニスカスレンズと、像側に凸の負メニスカスレンズと、少なくとも像側面が非球面で像側に凹の負レンズと、のレンズ4枚構成を採用することにより、高い光学性能と適正な射出瞳位置を実現しながらレンズ系のコンパクト化及び低コスト化を達成することができる。また、第16〜第19の実施の形態のようにガラスレンズとプラスチックレンズを適切に配置すること、つまり第1レンズ(L1)のみをガラスレンズで構成し、それ以外のレンズ(L2〜L4)をすべてプラスチックレンズで構成することによって、光学性能が良好で低コストかつコンパクトな撮像レンズを実現することができる。また、第1レンズ(L1)のみをガラスレンズで構成することにより、温度変化に対して性能劣化が少なくなり広い温度範囲で光学性能が良好となる。   As in the sixteenth to nineteenth embodiments, in order from the object side, a positive lens convex to the object side, an aperture stop (ST), a positive meniscus lens convex to the image side, and a negative negative convex to the image side. By adopting a four-lens configuration consisting of a meniscus lens and a negative lens having at least an aspheric image side surface and a concave lens on the image side, the lens system can be made compact while realizing high optical performance and an appropriate exit pupil position. Cost reduction can be achieved. Further, as in the sixteenth to nineteenth embodiments, the glass lens and the plastic lens are appropriately arranged, that is, only the first lens (L1) is constituted by the glass lens, and the other lenses (L2 to L4). By using all plastic lenses, it is possible to realize a low-cost and compact imaging lens with good optical performance. Further, by constituting only the first lens (L1) with a glass lens, the performance deterioration with respect to the temperature change is reduced, and the optical performance is improved over a wide temperature range.

前述したように、固体撮像素子用の撮像レンズには、高性能化,小型化及び低コスト化が求められているが、射出瞳位置を遠くに離そうとすると撮像レンズ全体の大型化を招いてしまう。さらに近年の低価格化競争のため、撮像レンズにも低コスト化の要望が強くなってきており、また近年の固体撮像素子の高密度化により撮像レンズに要求される性能もより高いものになってきている。以上のような要望に対し、コンパクト化を目指した固体撮像素子用撮像レンズが、特開2000−180719号公報,特開2002−228922号公報等で提案されている。   As described above, an imaging lens for a solid-state imaging device is required to have high performance, downsizing, and low cost. However, if the exit pupil position is moved away, the entire imaging lens is increased in size. I will. Furthermore, due to the recent competition for lower prices, there is an increasing demand for lowering costs for imaging lenses, and the higher density of solid-state imaging devices in recent years has resulted in higher performance required for imaging lenses. It is coming. In response to the above demands, imaging lenses for solid-state imaging devices aiming for downsizing have been proposed in Japanese Patent Application Laid-Open Nos. 2000-180719 and 2002-228922.

しかし、特開2000−180719号公報記載の撮像レンズは、画角が50度以下であり、撮像レンズとして使用するには画角が不充分である。一方、特開2002−228922号公報記載の撮像レンズは、画角が60度以上であり、撮像レンズとして使用するのに充分な画角といえる。しかし、開口絞りの位置がレンズ系の前方に位置しているため、周辺性能に対する製造誤差が厳しくなりやすい構成になっている。したがって、周辺性能を維持するのは困難である。また、特開2000−180719号公報,特開2002−228922号公報記載の撮像レンズは、いずれも物体側から順に正レンズ,負レンズの並びになっている。これらのように負レンズがレンズ系の前方に位置する構成では、コンパクト化が困難になってしまう。   However, the imaging lens described in Japanese Patent Laid-Open No. 2000-180719 has an angle of view of 50 degrees or less, and the angle of view is insufficient for use as an imaging lens. On the other hand, the imaging lens described in Japanese Patent Application Laid-Open No. 2002-228922 has a field angle of 60 degrees or more, and can be said to be a sufficient field angle to be used as an imaging lens. However, since the position of the aperture stop is located in front of the lens system, the manufacturing error with respect to the peripheral performance tends to be severe. Therefore, it is difficult to maintain the peripheral performance. In addition, the imaging lenses described in JP 2000-180719 A and JP 2002-228922 A are arranged in the order of a positive lens and a negative lens in order from the object side. In such a configuration where the negative lens is positioned in front of the lens system, it is difficult to make the lens compact.

上記問題点は、物体側から正・正・負の順にレンズを有するレンズ3枚以上のレンズタイプ、例えば、第4〜第8の実施の形態(正・正・負のレンズ3枚),第13〜第15の実施の形態(正・正・負のレンズ3枚),第16〜第19の実施の形態(正・正・負・負のレンズ4枚)の構成を採用することにより解消可能である。つまり、レンズを適切に配置することによりコンパクトにしながらも、最終レンズ面形状を最適にすることにより射出瞳位置をより遠くに位置させることができ、光学性能が良好で低コストかつコンパクトな固体撮像素子用の撮像レンズを提供することが可能である。その特徴的構成を以下に詳述する。   The above-mentioned problems are caused by the lens types of three or more lenses having lenses in the order of positive / positive / negative from the object side, for example, fourth to eighth embodiments (three positive / positive / negative lenses), Eliminating the configuration of the thirteenth to fifteenth embodiments (three positive, positive and negative lenses) and the sixteenth to nineteenth embodiments (four positive, positive, negative and negative lenses) Is possible. In other words, it is possible to position the exit pupil farther by optimizing the final lens surface shape, while making the lens compact by properly arranging the lenses, and with good optical performance, low cost and compact solid-state imaging An imaging lens for an element can be provided. The characteristic configuration will be described in detail below.

第4〜第8,第13〜第19の実施の形態は、固体撮像素子に像を形成する撮像レンズであって、物体側から順に、2枚の正レンズ{第1,第2レンズ(L1,L2)に相当する。}と、少なくとも1枚の負レンズ{第3レンズ(L3)や第4レンズ(L4)に相当する。}とを有し、最も像側のレンズ面が像側に凹面を向けた非球面であり、その非球面が変曲点(point of inflection)を持つことに特徴がある。最も像側のレンズ面の非球面形状は、レンズ構成図が示すレンズ面の断面形状から分かるように、光軸(AX)付近において凹面形状を成しており、中帯域から最外周部では凸面形状を成している。そして、その凹面から凸面へと変化する点が変曲点である。   The fourth to eighth and thirteenth to nineteenth embodiments are imaging lenses that form an image on a solid-state imaging device, and in order from the object side are two positive lenses {first and second lenses (L1 , L2). } And at least one negative lens {corresponding to the third lens (L3) and the fourth lens (L4). }, And the lens surface closest to the image side is an aspherical surface with the concave surface facing the image side, and the aspherical surface has a point of inflection. The aspherical shape of the lens surface closest to the image side is a concave surface in the vicinity of the optical axis (AX) as can be seen from the cross-sectional shape of the lens surface shown in the lens configuration diagram. It has a shape. A point that changes from the concave surface to the convex surface is an inflection point.

上記のように、光軸(AX)付近のレンズ面形状を像側に凹面形状とすることによって、レンズ全長を小さくすることが可能となる。レンズ面全体が凹面形状では周辺部での射出瞳位置が近くなってしまうが、中帯域から最外周部にかけてのレンズ面形状を凸面にすることにより、射出瞳位置をより遠くに位置させることが可能となる。その中帯域から最外周部にかけて凸面形状は、像側に凹面を向けた非球面が変曲点を持つことにより構成される。このように特徴的な形状の非球面を最も像側のレンズ面に用いることにより、レンズ全長が小さいにもかかわらず射出瞳位置の遠い撮像レンズを実現することができる。そして、物体側から正・正・負と続くレンズの並びを採用することにより、レンズ全長をより一層効果的に小さくすることができる。   As described above, by making the lens surface shape near the optical axis (AX) concave on the image side, it is possible to reduce the total lens length. If the entire lens surface is concave, the exit pupil position at the periphery will be close, but by making the lens surface shape from the middle band to the outermost periphery convex, the exit pupil position can be located further away. It becomes possible. The convex shape from the middle band to the outermost periphery is constituted by an aspherical surface with the concave surface facing the image side having an inflection point. By using an aspherical surface having such a characteristic shape for the lens surface closest to the image side, it is possible to realize an imaging lens having a far exit pupil position even though the total lens length is small. By adopting a lens arrangement that continues from positive, positive, and negative from the object side, the total lens length can be further effectively reduced.

上記のような場合に最適な開口絞り位置が、第1レンズ(L1)と第2レンズ(L2)との間である。つまり、第4〜第8,第13〜第19の実施の形態のように、物体側から順に、正レンズ{第1レンズ(L1)に相当する。}と、開口絞り(ST)と、少なくとも1枚のレンズから成るレンズ群{第2,第3レンズ(L2,L3)や第2〜第4レンズ(L2〜L4,GrR)に相当する。}と、で構成され、そのレンズ群の最も像側のレンズが像側に凹面を向けた負レンズ{第3レンズ(L3)又は第4レンズ(L4)に相当する。}であり、その負レンズの像側のレンズ面が非球面であり、その非球面が変曲点を持つことが望ましい。第1レンズの物体側に開口絞りを有する前絞りタイプでは、各レンズを通過する周辺部の光線高さの変化が非常に大きいため、製造誤差に対する敏感度が高くなってしまい、その結果、製造誤差による性能劣化が大きくなってしまう。一方、最も像側のレンズ(すなわち最終レンズ)の像側に開口絞りを有する後絞りタイプでは、射出瞳位置が極端に近くなるため、固体撮像素子用の撮像レンズには適さない。この製造誤差と射出瞳位置とをバランスさせる上で最適な開口絞り位置が、第1レンズ(L1)と第2レンズ(L2)との間である。   The optimum aperture stop position in the above case is between the first lens (L1) and the second lens (L2). That is, as in the fourth to eighth and thirteenth to nineteenth embodiments, the positive lens {corresponds to the first lens (L1) in order from the object side. }, An aperture stop (ST), and a lens group consisting of at least one lens {corresponding to second and third lenses (L2, L3) and second to fourth lenses (L2 to L4, GrR). The negative lens {corresponding to the third lens (L3) or the fourth lens (L4) in which the lens closest to the image side of the lens group has a concave surface facing the image side. It is desirable that the lens surface on the image side of the negative lens is an aspheric surface, and the aspheric surface has an inflection point. In the front stop type having an aperture stop on the object side of the first lens, the change in the height of the light beam passing through each lens is very large, which increases the sensitivity to manufacturing errors, resulting in manufacturing. Performance degradation due to errors will increase. On the other hand, the rear aperture type having an aperture stop on the image side of the most image side lens (that is, the final lens) is not suitable for an imaging lens for a solid-state imaging device because the exit pupil position is extremely close. The optimum aperture stop position for balancing the manufacturing error and the exit pupil position is between the first lens (L1) and the second lens (L2).

また、物体側から順に、正レンズ{第1レンズ(L1)に相当する。}と、開口絞り(ST)と、少なくとも1枚のレンズから成るレンズ群{第2,第3レンズ(L2,L3)や第2〜第4レンズ(L2〜L4,GrR)に相当する。}と、で構成され、そのレンズ群の最も像側のレンズ面が像側に凹面を向けた非球面であり、その非球面が変曲点を持ち、以下の条件式(1)を満足することが望ましい。
1.1<f/Y'<1.9 …(1)
ただし、
f:全系の焦点距離、
Y':最大像高、
である。
Further, in order from the object side, it corresponds to a positive lens {first lens (L1). }, An aperture stop (ST), and a lens group consisting of at least one lens {corresponding to second and third lenses (L2, L3) and second to fourth lenses (L2 to L4, GrR). }, And the lens surface closest to the image side of the lens group is an aspherical surface with the concave surface facing the image side. The aspherical surface has an inflection point and satisfies the following conditional expression (1) It is desirable.
1.1 <f / Y '<1.9 (1)
However,
f: focal length of the entire system,
Y ': Maximum image height,
It is.

条件式(1)は、レンズ全長と前玉径とをバランスさせるための条件範囲を規定している。条件式(1)の下限を越えると、前玉径が大きくなり、撮像レンズ装置の径方向の大型化を招くとともに、歪曲収差の補正が困難になる。逆に、条件式(1)の上限を越えると、光学系の全長が大きくなり、撮像レンズ装置の光軸(AX)方向の大型化を招いてしまう。   Conditional expression (1) defines a condition range for balancing the total lens length and the front lens diameter. If the lower limit of conditional expression (1) is exceeded, the diameter of the front lens will increase, leading to an increase in the radial direction of the imaging lens device, and it will be difficult to correct distortion. On the contrary, if the upper limit of conditional expression (1) is exceeded, the total length of the optical system increases, leading to an increase in the size of the imaging lens device in the optical axis (AX) direction.

以下の条件式(1a)を満足することが望ましく、条件式(1b)を満足することが更に望ましい。条件式(1a),(1b)は、上記条件式(1)が規定している条件範囲のなかでも、上記観点等からより一層好ましい条件範囲を規定している。
1.3<f/Y'<1.8 …(1a)
1.4<f/Y'<1.7 …(1b)
It is desirable to satisfy the following conditional expression (1a), and it is more desirable to satisfy conditional expression (1b). Conditional expressions (1a) and (1b) define a more preferable condition range from the above viewpoint and the like among the condition ranges defined by the conditional expression (1).
1.3 <f / Y '<1.8 (1a)
1.4 <f / Y '<1.7… (1b)

第4〜第8,第13〜第19の実施の形態のように、全てのレンズの少なくとも1面が非球面であることが望ましい。第1〜第3レンズ(L1〜L3)又は第1〜第4レンズ(L1〜L4)のそれぞれに非球面を少なくとも1面設けることは、球面収差,コマ収差及び歪曲収差の補正に大きな効果がある。また、第4〜第8,第13〜第19の実施の形態の撮像レンズは、入射光線を屈折作用により偏向させる屈折型レンズ(つまり、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ)のみで構成されているが、使用可能なレンズはこれに限らない。例えば、回折作用により入射光線を偏向させる回折型レンズ,回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ,入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ等を用いてもよい。ただし、媒質内で屈折率が変化する屈折率分布型レンズは、その複雑な製法がコストアップを招くため、用いるレンズはすべて均質素材レンズであることが望ましい。   As in the fourth to eighth and thirteenth to nineteenth embodiments, it is desirable that at least one surface of all the lenses is aspheric. Providing at least one aspheric surface for each of the first to third lenses (L1 to L3) or the first to fourth lenses (L1 to L4) has a great effect on correction of spherical aberration, coma aberration, and distortion. is there. The imaging lenses according to the fourth to eighth and thirteenth to nineteenth embodiments are refracting lenses that deflect incident light by refraction (that is, deflection is performed at the interface between media having different refractive indexes). Type lens), but usable lenses are not limited to this. For example, a diffractive lens that deflects incident light by diffracting action, a refractive / diffractive hybrid lens that deflects incident light by combining diffractive action and refracting action, and a refractive index distribution that deflects incident light by a refractive index distribution in the medium A mold lens or the like may be used. However, since the refractive index distribution type lens in which the refractive index changes in the medium increases the cost due to its complicated manufacturing method, it is desirable that all the lenses used be a homogeneous material lens.

また、絞り(ST)のほかに不要光をカットするための光束規制板等を必要に応じて配置してもよく、プリズム類(例えば直角プリズム),ミラー類(例えば平面ミラー)等を光路中に配置することにより、その光学的なパワーを有しない面(例えば、反射面,屈折面,回折面)で撮像レンズの前,後又は途中で光路を折り曲げてもよい{例えば、光軸(AX)を約90度折り曲げるようにして光束を反射させてもよい。}。その折り曲げ位置は必要に応じて設定すればよく、光路の適正な折り曲げにより、撮像レンズが搭載されるデジタル入力機器(デジタルカメラ等)の見かけ上の薄型化やコンパクト化を達成することが可能である。   In addition to the stop (ST), a light beam restricting plate for cutting unnecessary light may be arranged as necessary, and prisms (for example, right-angle prisms), mirrors (for example, plane mirrors), etc. are disposed in the optical path. The optical path may be bent before, after, or in the middle of the imaging lens on a surface having no optical power (for example, a reflective surface, a refractive surface, or a diffractive surface) {for example, an optical axis (AX ) May be bent about 90 degrees to reflect the light flux. }. The bending position can be set as necessary, and by appropriately bending the optical path, it is possible to achieve an apparently thin and compact digital input device (such as a digital camera) equipped with an imaging lens. is there.

第4〜第8,第13〜第19の実施の形態の撮像レンズは、デジタル入力機器用の小型撮像レンズとしての使用に適しており、これを光学的ローパスフィルターや固体撮像素子と組み合わせることにより、被写体の映像を光学的に取り込んで電気的な信号として出力する撮像レンズ装置を構成することができる。撮像レンズ装置は、被写体の静止画撮影や動画撮影に用いられるカメラ{例えば、デジタルカメラ;ビデオカメラ;デジタルビデオユニット,パーソナルコンピュータ,モバイルコンピュータ,携帯電話,携帯情報端末(PDA:Personal Digital Assistant),これらの周辺機器(マウス,スキャナー,プリンター,その他のデジタル入出力機器)等に内蔵又は外付けされるカメラ}の主たる構成要素であり、例えば、物体(被写体)側から順に、物体の光学像を形成する撮像レンズと、光学的ローパスフィルター,赤外カットフィルター等の光学フィルターと、撮像レンズにより形成された光学像を電気的な信号に変換する固体撮像素子と、で構成される。   The imaging lenses of the fourth to eighth and thirteenth to nineteenth embodiments are suitable for use as a compact imaging lens for digital input equipment, and are combined with an optical low-pass filter or a solid-state imaging device. An imaging lens device that optically captures a subject image and outputs it as an electrical signal can be configured. The imaging lens device is a camera used for still image shooting or moving image shooting of a subject (for example, a digital camera; a video camera; a digital video unit, a personal computer, a mobile computer, a mobile phone, a personal digital assistant (PDA), These are the main components of the peripheral devices (mouse, scanner, printer, other digital input / output devices) etc. built-in or external camera}. For example, the optical image of the object in order from the object (subject) side. An imaging lens to be formed, an optical filter such as an optical low-pass filter and an infrared cut filter, and a solid-state imaging device that converts an optical image formed by the imaging lens into an electrical signal.

したがって、上述した第4〜第8,第13〜第19の実施の形態には以下の構成を有する発明(I)〜(V)が含まれており、その構成により、良好な光学性能を有し低コストでコンパクトな撮像レンズ装置を実現することができる。そして、これをデジタルカメラ等に適用すれば、当該カメラの高性能化,高機能化,低コスト化及びコンパクト化に寄与することができる。
(I) 光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する撮像素子と、を備えた撮像レンズ装置であって、前記撮像レンズが、物体側から順に、2枚の正レンズと、少なくとも1枚の負レンズとを有し、最も像側のレンズ面が像側に凹面を向けた非球面であり、その非球面が変曲点を持つことを特徴とする撮像レンズ装置。
(II) 光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する撮像素子と、を備えた撮像レンズ装置であって、前記撮像レンズが、物体側から順に、正レンズと、開口絞りと、少なくとも1枚のレンズから成るレンズ群と、で構成され、そのレンズ群の最も像側のレンズが像側に凹面を向けた負レンズであり、その負レンズの像側のレンズ面が非球面であり、その非球面が変曲点を持つことを特徴とする撮像レンズ装置。
(III) 光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する撮像素子と、を備えた撮像レンズ装置であって、前記撮像レンズが、物体側から順に、正レンズと、開口絞りと、少なくとも1枚のレンズから成るレンズ群と、で構成され、そのレンズ群の最も像側のレンズ面が像側に凹面を向けた非球面であり、その非球面が変曲点を持ち、前記条件式(1),(1a),(1b)のうちの少なくとも1つを満足することを特徴とする撮像レンズ装置。
(IV) すべてのレンズがそれぞれ非球面を少なくとも1面有することを特徴とする上記(I)〜(III)のいずれか1つに記載の撮像レンズ装置。
(V) すべてのレンズが均質素材レンズで構成されていることを特徴とする上記(I)〜(IV)のいずれか1つに記載の撮像レンズ装置。
Accordingly, the above-described fourth to eighth and thirteenth to nineteenth embodiments include inventions (I) to (V) having the following configurations, and the configurations have good optical performance. In addition, a compact imaging lens device can be realized at low cost. If this is applied to a digital camera or the like, it can contribute to high performance, high functionality, low cost and compactness of the camera.
(I) An imaging lens device comprising an imaging lens that forms an optical image and an imaging element that converts an optical image formed by the imaging lens into an electrical signal, wherein the imaging lens is on the object side In order, there are two positive lenses and at least one negative lens, the lens surface closest to the image side is an aspherical surface with the concave surface facing the image side, and the aspherical surface has an inflection point. An imaging lens device characterized by the above.
(II) An imaging lens device comprising: an imaging lens that forms an optical image; and an imaging device that converts the optical image formed by the imaging lens into an electrical signal, wherein the imaging lens is on the object side In order from a positive lens, an aperture stop, and a lens group composed of at least one lens. The lens closest to the image side of the lens group is a negative lens with a concave surface facing the image side. An imaging lens device, wherein a lens surface on an image side of a lens is an aspheric surface, and the aspheric surface has an inflection point.
(III) An imaging lens device comprising: an imaging lens that forms an optical image; and an imaging device that converts an optical image formed by the imaging lens into an electrical signal, wherein the imaging lens is on the object side In order from a positive lens, an aperture stop, and a lens group including at least one lens, and the lens surface closest to the image side of the lens group is an aspherical surface with a concave surface facing the image side, An imaging lens device, wherein an aspherical surface has an inflection point and satisfies at least one of the conditional expressions (1), (1a), and (1b).
(IV) The imaging lens device according to any one of (I) to (III) above, wherein all the lenses each have at least one aspheric surface.
(V) The imaging lens device according to any one of (I) to (IV) above, wherein all lenses are composed of homogeneous material lenses.

撮像素子としては、例えば複数の画素から成るCCDやCMOS(Complementary Metal Oxide Semiconductor)センサー等の固体撮像素子が用いられ、撮像レンズにより形成された光学像は固体撮像素子により電気的な信号に変換される。撮像レンズで形成されるべき光学像は、固体撮像素子の画素ピッチにより決定される所定の遮断周波数特性を有する光学的ローパスフィルターを通過することにより、電気的な信号に変換される際に発生するいわゆる折り返しノイズが最小化されるように、空間周波数特性が調整される。固体撮像素子で生成した信号は、必要に応じて所定のデジタル画像処理や画像圧縮処理等が施されて、デジタル映像信号としてメモリー(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換されたりして他の機器に伝送される。なお、撮像レンズの最終面と固体撮像素子との間に配置される光学的ローパスフィルターは、各実施の形態ではガラスフィルター(GF)で構成されているが、使用されるデジタル入力機器に応じたものであればよい。例えば、所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルターや、必要とされる光学的な遮断周波数の特性を回折効果により達成する位相型ローパスフィルター等が適用可能である。   As the imaging device, for example, a solid-state imaging device such as a CCD or CMOS (Complementary Metal Oxide Semiconductor) sensor composed of a plurality of pixels is used, and an optical image formed by the imaging lens is converted into an electrical signal by the solid-state imaging device. The An optical image to be formed by the imaging lens is generated when it is converted into an electrical signal by passing through an optical low-pass filter having a predetermined cutoff frequency characteristic determined by the pixel pitch of the solid-state imaging device. The spatial frequency characteristics are adjusted so that so-called aliasing noise is minimized. The signal generated by the solid-state image sensor is subjected to predetermined digital image processing, image compression processing, etc. as necessary, and is recorded as a digital video signal in a memory (semiconductor memory, optical disk, etc.). Or is converted into an infrared signal and transmitted to another device. Note that the optical low-pass filter disposed between the final surface of the imaging lens and the solid-state imaging device is composed of a glass filter (GF) in each embodiment, but depends on the digital input device used. Anything is acceptable. For example, a birefringent low-pass filter made of quartz or the like with a predetermined crystal axis direction adjusted, or a phase-type low-pass filter that achieves the required optical cutoff frequency characteristics by the diffraction effect can be applied. is there.

以下、本発明を実施した撮像レンズを、コンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1〜19は、前述した第1〜第19の実施の形態にそれぞれ対応しており、第1〜第19の実施の形態を表すレンズ構成図(図1〜図12,図25〜図27,図31〜図34)は、対応する実施例1〜19のレンズ構成をそれぞれ示している。各実施例のコンストラクションデータにおいて、ri(i=1,2,3,...)は物体側から数えてi番目の面の曲率半径(mm)、di(i=1,2,3,...)は物体側から数えてi番目の軸上面間隔(mm)を示しており、Ni(i=1,2,3,...),νi(i=1,2,3,...)は物体側から数えてi番目の光学要素のd線に対する屈折率(Nd),アッベ数(νd)を示している。全系の焦点距離(f,mm)及びFナンバー(FNO)を他のデータとあわせて示し、また、各条件式の対応値を表1,表2に示す。   Hereinafter, the imaging lens embodying the present invention will be described more specifically with reference to construction data and the like. Examples 1 to 19 listed here correspond to the first to nineteenth embodiments, respectively, and are lens configuration diagrams showing the first to nineteenth embodiments (FIGS. 1 to 12, FIG. 12). 25 to 27 and FIGS. 31 to 34) show the lens configurations of the corresponding Examples 1 to 19, respectively. In the construction data of each example, ri (i = 1, 2, 3, ...) is the radius of curvature (mm) of the i-th surface counted from the object side, di (i = 1, 2, 3,. ..) indicates the i-th axis upper surface distance (mm) counted from the object side, and Ni (i = 1,2,3, ...), νi (i = 1,2,3, ...). .) Shows the refractive index (Nd) and Abbe number (νd) of the i-th optical element counted from the object side with respect to the d-line. The focal length (f, mm) and F number (FNO) of the entire system are shown together with other data, and the corresponding values of the conditional expressions are shown in Tables 1 and 2.

曲率半径riに*印が付された面は、非球面形状の屈折光学面又は非球面と等価な屈折作用を有する面であることを示し、非球面の面形状を表わす以下の式(AS)で定義されるものとする。各実施例の非球面データを他のデータとあわせて示す。
X(H)=(C0・H2)/{1+√(1-ε・C02・H2)}+Σ(Ai・Hi) …(AS)
ただし、式(AS)中、
X(H):高さHの位置での光軸(AX)方向の変位量(面頂点基準)、
H:光軸(AX)に対して垂直な方向の高さ、
C0:近軸曲率(=1/曲率半径)、
ε:2次曲面パラメータ、
Ai:i次の非球面係数(Ai=0の場合のデータは省略する。)、
である。
The surface marked with * in the radius of curvature ri indicates that the surface is an aspherical refractive optical surface or a surface having a refractive action equivalent to that of the aspherical surface. It shall be defined in The aspheric data of each example is shown together with other data.
X (H) = (C0 · H 2 ) / {1 + √ (1-ε · C0 2 · H 2 )} + Σ (Ai · H i )… (AS)
However, in the formula (AS)
X (H): Displacement in the direction of the optical axis (AX) at the position of height H (based on the surface vertex),
H: height in the direction perpendicular to the optical axis (AX),
C0: Paraxial curvature (= 1 / curvature radius),
ε: quadric surface parameter,
Ai: i-th order aspheric coefficient (data when Ai = 0 is omitted),
It is.

図13〜図24,図28〜図30,図35〜図38は、実施例1〜実施例19に対応する収差図であり、図13〜図24,図28〜図30,図35〜図38中、(A)は球面収差図,(B)は非点収差図,(C)は歪曲収差図である{FNO:Fナンバー,Y':最大像高(mm)}。球面収差図において、実線(d)はd線、一点鎖線(g)はg線、二点鎖線(c)はc線に対する各球面収差量(mm)を表しており、破線(SC)は正弦条件不満足量(mm)を表している。非点収差図において、破線(DM)はメリディオナル面でのd線に対する非点収差(mm)を表しており、実線(DS)はサジタル面でのd線に対する非点収差(mm)を表わしている。また、歪曲収差図において実線はd線に対する歪曲(%)を表している。   FIGS. 13 to 24, FIGS. 28 to 30, and FIGS. 35 to 38 are aberration diagrams corresponding to Examples 1 to 19, and FIGS. 13 to 24, FIGS. 28 to 30, and FIGS. 38, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, and (C) is a distortion diagram {FNO: F number, Y ′: maximum image height (mm)}. In the spherical aberration diagram, the solid line (d) represents the d line, the alternate long and short dash line (g) represents the g line, the alternate long and two short dashes line (c) represents the amount of spherical aberration (mm) with respect to the c line, and the broken line (SC) represents the sine. The amount of unsatisfied conditions (mm). In the astigmatism diagram, the broken line (DM) represents the astigmatism (mm) for the d-line on the meridional surface, and the solid line (DS) represents the astigmatism (mm) for the d-line on the sagittal surface. Yes. In the distortion diagram, the solid line represents the distortion (%) with respect to the d-line.

《実施例1》
f=3.469,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 2.800
d1= 1.322 N1=1.58340 ν1= 30.23(L1)
r2*= 1.595
d2= 0.741
r3= ∞(ST)
d3= 0.442
r4*= 5.686
d4= 1.686 N2=1.53048 ν2= 55.72(L2)
r5*= -1.141
d5= 0.100
r6*= 18.824
d6= 1.026 N3=1.58340 ν3= 30.23(L3)
r7*= 2.039
d7= 1.000
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 1
f = 3.469, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 2.800
d1 = 1.322 N1 = 1.58340 ν1 = 30.23 (L1)
r2 * = 1.595
d2 = 0.741
r3 = ∞ (ST)
d3 = 0.442
r4 * = 5.686
d4 = 1.686 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.141
d5 = 0.100
r6 * = 18.824
d6 = 1.026 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 2.039
d7 = 1.000
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.32631,A4=0.23941×10-1,A6=-0.24142×10-3,A8=0.87227×10-3
[第2面(r2)の非球面データ]
ε=0.20000×10,A4=0.83403×10-1,A6=0.98460×10-3,A8=0.49924×10-1
[第4面(r4)の非球面データ]
ε=0.18973×10,A4=-0.11614×10-1,A6=-0.22756×10-1,A8=0.82323×10-2
[第5面(r5)の非球面データ]
ε=0.26870,A4=0.34068×10-1,A6=-0.14733×10-1,A8=0.56763×10-3
[第6面(r6)の非球面データ]
ε=0.0 A4=-0.47058×10-1,A6=-0.90811×10-2,A8=0.19180×10-2
[第7面(r7)の非球面データ]
ε=0.35130,A4=-0.86078×10-1,A6=0.14913×10-1,A8=-0.18277×10-2
[Aspherical data of the first surface (r1)]
ε = 0.32631, A4 = 0.23941 × 10 -1 , A6 = -0.24142 × 10 -3 , A8 = 0.87227 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = 0.20000 × 10, A4 = 0.83403 × 10 -1 , A6 = 0.98460 × 10 -3 , A8 = 0.49924 × 10 -1
[Aspherical data of 4th surface (r4)]
ε = 0.18973 × 10, A4 = −0.11614 × 10 −1 , A6 = −0.22756 × 10 −1 , A8 = 0.82323 × 10 −2
[Aspherical data of 5th surface (r5)]
ε = 0.26870, A4 = 0.34068 × 10 -1 , A6 = -0.14733 × 10 -1 , A8 = 0.56763 × 10 -3
[Aspherical data of 6th surface (r6)]
ε = 0.0 A4 = -0.47058 × 10 -1 , A6 = -0.90811 × 10 -2 , A8 = 0.19180 × 10 -2
[Aspherical data of 7th surface (r7)]
ε = 0.35130, A4 = -0.86078 × 10 -1 , A6 = 0.14913 × 10 -1 , A8 = -0.18277 × 10 -2

《実施例2》
f=3.467,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.914
d1= 1.633 N1=1.58340 ν1= 30.23(L1)
r2*= 2.253
d2= 0.545
r3= ∞(ST)
d3= 0.300
r4*= 5.484
d4= 2.097 N2=1.53048 ν2= 55.72(L2)
r5*= -0.992
d5= 0.100
r6*= 6.928
d6= 0.700 N3=1.58340 ν3= 30.23(L3)
r7*= 1.261
d7= 1.000
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 2
f = 3.467, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.914
d1 = 1.633 N1 = 1.58340 ν1 = 30.23 (L1)
r2 * = 2.253
d2 = 0.545
r3 = ∞ (ST)
d3 = 0.300
r4 * = 5.484
d4 = 2.097 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -0.992
d5 = 0.100
r6 * = 6.928
d6 = 0.700 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 1.261
d7 = 1.000
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.10000×10,A4=0.15050×10-1,A6=0.17624×10-2,A8=-0.28942×10-3,A10=0.15435×10-3
[第2面(r2)の非球面データ]
ε=0.10000×10,A4=0.12063,A6=0.53318×10-1,A8=-0.34519×10-1,A10=0.15360
[第4面(r4)の非球面データ]
ε=0.10000×10,A4=0.21812×10-1,A6=0.13669×10-1,A8=0.89058×10-2,A13=-0.10085×10-1
[第5面(r5)の非球面データ]
ε=0.10969,A4=0.13179,A6=-0.87983×10-1,A8=0.39597×10-1,A10=-0.51378×10-2
[第6面(r6)の非球面データ]
ε=0.10000×10,A4=-0.98804×10-1,A6=0.25381×10-1,A8=-0.41254×10-2,A10=-0.74291×10-3
[第7面(r7)の非球面データ]
ε=-0.50000×10,A4=-0.69548×10-1,A6=0.27279×10-1,A8=-0.76305×10-2,A10=0.73965×10-3
[Aspherical data of the first surface (r1)]
ε = 0.10000 × 10, A4 = 0.15050 × 10 −1 , A6 = 0.17624 × 10 −2 , A8 = -0.28942 × 10 -3 , A10 = 0.15435 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = 0.10000 × 10, A4 = 0.12063, A6 = 0.53318 × 10 −1 , A8 = -0.34519 × 10 −1 , A10 = 0.15360
[Aspherical data of 4th surface (r4)]
ε = 0.10000 × 10, A4 = 0.21812 × 10 −1 , A6 = 0.13669 × 10 −1 , A8 = 0.89058 × 10 −2 , A13 = -0.10085 × 10 −1
[Aspherical data of 5th surface (r5)]
ε = 0.10969, A4 = 0.13179, A6 = -0.87983 × 10 -1 , A8 = 0.39597 × 10 -1 , A10 = -0.51378 × 10 -2
[Aspherical data of 6th surface (r6)]
ε = 0.10000 × 10, A4 = -0.98804 × 10 -1 , A6 = 0.25381 × 10 -1 , A8 = -0.41254 × 10 -2 , A10 = -0.74291 × 10 -3
[Aspherical data of 7th surface (r7)]
ε = -0.50000 × 10, A4 = -0.69548 × 10 -1 , A6 = 0.27279 × 10 -1 , A8 = -0.76305 × 10 -2 , A10 = 0.73965 × 10 -3

《実施例3》
f=3.965,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 5.638
d1= 1.569 N1=1.58340 ν1= 30.23(L1)
r2*= 3.303
d2= 0.394
r3= ∞(ST)
d3= 0.200
r4*= 4.256
d4= 2.649 N2=1.53048 ν2= 55.72(L2)
r5*= -1.065
d5= 0.100
r6*= 19.154
d6= 0.799 N3=1.58340 ν3= 30.23(L3)
r7*= 1.266
d7= 1.000
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 3
f = 3.965, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 5.638
d1 = 1.569 N1 = 1.58340 ν1 = 30.23 (L1)
r2 * = 3.303
d2 = 0.394
r3 = ∞ (ST)
d3 = 0.200
r4 * = 4.256
d4 = 2.649 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.065
d5 = 0.100
r6 * = 19.154
d6 = 0.799 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 1.266
d7 = 1.000
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.10000×10,A4=0.12129×10-1,A6=0.31044×10-2,A8=-0.11652×10-2,A10=0.19214×10-3
[第2面(r2)の非球面データ]
ε=0.10000×10,A4=0.10276,A6=0.19545×10-1,A8=-0.73712×10-2,A10=0.55142×10-1
[第4面(r4)の非球面データ]
ε=0.10000×10,A4=0.45950×10-1,A6=0.47759×10-2,A8=0.79466×10-2,A10=-0.12984×10-1
[第5面(r5)の非球面データ]
ε=0.11091,A4=0.12806,A6=-0.70237×10-1,A8=0.26286×10-1,A10=-0.27364×10-2
[第6面(r6)の非球面データ]
ε=0.10000×10,A4=-0.85336×10-1,A6=0.25832×10-1,A8=-0.89579×10-2,A10=0.67422×10-3
[第7面(r7)の非球面データ]
ε=-0.50000×10,A4=-0.52773×10-1,A6=0.17861×10-1,A8=-0.46675×10-2,A10=0.43220×10-3
[Aspherical data of the first surface (r1)]
ε = 0.10000 × 10, A4 = 0.12129 × 10 -1 , A6 = 0.31044 × 10 -2 , A8 = -0.11652 × 10 -2 , A10 = 0.19214 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = 0.10000 × 10, A4 = 0.10276, A6 = 0.19545 × 10 -1 , A8 = -0.73712 × 10 -2 , A10 = 0.55142 × 10 -1
[Aspherical data of 4th surface (r4)]
ε = 0.10000 × 10, A4 = 0.45950 × 10 -1 , A6 = 0.47759 × 10 -2 , A8 = 0.79466 × 10 -2 , A10 = -0.12984 × 10 -1
[Aspherical data of 5th surface (r5)]
ε = 0.11091, A4 = 0.12806, A6 = -0.70237 × 10 -1 , A8 = 0.26286 × 10 -1 , A10 = -0.27364 × 10 -2
[Aspherical data of 6th surface (r6)]
ε = 0.10000 × 10, A4 = −0.85336 × 10 −1 , A6 = 0.25832 × 10 −1 , A8 = −0.89579 × 10 −2 , A10 = 0.67422 × 10 −3
[Aspherical data of 7th surface (r7)]
ε = -0.50000 × 10, A4 = -0.52773 × 10 −1 , A6 = 0.17861 × 10 −1 , A8 = −0.46675 × 10 −2 , A10 = 0.43220 × 10 -3

《実施例4》
f=3.507,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 68.391
d1= 0.872 N1=1.53048 ν1= 55.72(L1)
r2*= -6.304
d2= 0.938
r3= ∞(ST)
d3= 0.500
r4*= -3.703
d4= 1.649 N2=1.53048 ν2= 55.72(L2)
r5*= -0.852
d5= 0.100
r6*= 11.946
d6= 0.700 N3=1.58340 ν3= 30.23(L3)
r7*= 1.225
d7= 1.000
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 4
f = 3.507, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 68.391
d1 = 0.872 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = -6.304
d2 = 0.938
r3 = ∞ (ST)
d3 = 0.500
r4 * = -3.703
d4 = 1.649 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -0.852
d5 = 0.100
r6 * = 11.946
d6 = 0.700 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 1.225
d7 = 1.000
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.51000×102,A4=0.56767×10-2,A6=0.35339×10-2,A8=-0.16790×10-2,A10=0.18541×10-3
[第2面(r2)の非球面データ]
ε=0.15652×102,A4=0.29585×10-1,A6=0.49258×10-2,A8=-0.68370×10-2,A10=0.21683×10-2
[第4面(r4)の非球面データ]
ε=0.14877×10,A4=-0.79140×10-1,A6=-0.47628×10-1,A8=0.48397×10-1,A10=-0.11082
[第5面(r5)の非球面データ]
ε=-0.10000×10,A4=-0.10074×10-1,A6=-0.10146,A8=0.69391×10-1,A10=-0.22979×10-1
[第6面(r6)の非球面データ]
ε=0.21028×10,A4=-0.38111×10-1,A6=0.40875×10-2,A8=0.27790×10-2,A10=-0.24091×10-2
[第7面(r7)の非球面データ]
ε=-0.60000×10,A4=-0.45478×10-1,A6=0.20696×10-1,A8=-0.67145×10-2,A10=0.63538×10-3
[Aspherical data of the first surface (r1)]
ε = 0.51000 × 10 2 , A4 = 0.56767 × 10 -2 , A6 = 0.35339 × 10 -2 , A8 = -0.16790 × 10 -2 , A10 = 0.18541 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = 0.15652 × 10 2 , A4 = 0.29585 × 10 −1 , A6 = 0.49258 × 10 −2 , A8 = −0.68370 × 10 −2 , A10 = 0.21683 × 10 −2
[Aspherical data of 4th surface (r4)]
ε = 0.14877 × 10, A4 = -0.79140 × 10 -1 , A6 = -0.47628 × 10 -1 , A8 = 0.48397 × 10 -1 , A10 = -0.11082
[Aspherical data of 5th surface (r5)]
ε = -0.10000 × 10, A4 = -0.10074 × 10 -1 , A6 = -0.10146, A8 = 0.69391 × 10 -1 , A10 = -0.22979 × 10 -1
[Aspherical data of 6th surface (r6)]
ε = 0.21028 × 10, A4 = −0.38111 × 10 −1 , A6 = 0.40875 × 10 −2 , A8 = 0.27790 × 10 −2 , A10 = −0.24091 × 10 −2
[Aspherical data of 7th surface (r7)]
ε = -0.60000 × 10, A4 = -0.45478 × 10 -1 , A6 = 0.20696 × 10 -1 , A8 = -0.67145 × 10 -2 , A10 = 0.63538 × 10 -3

《実施例5》
f=4.046,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 5.219
d1= 1.013 N1=1.53048 ν1= 55.72(L1)
r2*= -64.896
d2= 0.748
r3= ∞(ST)
d3= 0.500
r4*= -4.392
d4= 1.756 N2=1.53048 ν2= 55.72(L2)
r5*= -0.904
d5= 0.100
r6*= 20.088
d6= 0.725 N3=1.58340 ν3= 30.23(L3)
r7*= 1.208
d7= 1.000
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 5
f = 4.046, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 5.219
d1 = 1.013 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = -64.896
d2 = 0.748
r3 = ∞ (ST)
d3 = 0.500
r4 * = -4.392
d4 = 1.756 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -0.904
d5 = 0.100
r6 * = 20.088
d6 = 0.725 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 1.208
d7 = 1.000
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=-0.70781×10,A4=0.89349×10-2,A6=0.47221×10-2,A8=-0.10936×10-2,A10=0.26309×10-3
[第2面(r2)の非球面データ]
ε=-0.14000×102,A4=0.21091×10-1,A6=0.65881×10-2,A8=-0.31253×10-2,A10=0.14822×10-2
[第4面(r4)の非球面データ]
ε=0.21386×10,A4=-0.36204×10-1,A6=-0.25647×10-1,A8=0.63204×10-1,A10=-0.70302×10-1
[第5面(r5)の非球面データ]
ε=-0.97822,A4=0.29364×10-1,A6=-0.10042,A8=0.61685×10-1,A10=-0.15831×10-1
[第6面(r6)の非球面データ]
ε=-0.20000×10,A4=-0.46735×10-1,A6=0.63444×10-2,A8=0.57281×10-2,A10=-0.26912×10-2
[第7面(r7)の非球面データ]
ε=-0.60000×10,A4=-0.60010×10-1,A6=0.24137×10-1,A8=-0.56437×10-2,A10=0.43112×10-3
[Aspherical data of the first surface (r1)]
ε = -0.70781 × 10, A4 = 0.89349 × 10 -2 , A6 = 0.47221 × 10 -2 , A8 = -0.10936 × 10 -2 , A10 = 0.26309 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = -0.14000 × 10 2 , A4 = 0.21091 × 10 -1 , A6 = 0.65881 × 10 -2 , A8 = -0.31253 × 10 -2 , A10 = 0.14822 × 10 -2
[Aspherical data of 4th surface (r4)]
ε = 0.21386 × 10, A4 = −0.36204 × 10 −1 , A6 = −0.25647 × 10 −1 , A8 = 0.63204 × 10 −1 , A10 = −0.70302 × 10 −1
[Aspherical data of 5th surface (r5)]
ε = -0.97822, A4 = 0.29364 × 10 -1 , A6 = -0.10042, A8 = 0.61685 × 10 -1 , A10 = -0.15831 × 10 -1
[Aspherical data of 6th surface (r6)]
ε = -0.20000 × 10, A4 = -0.46735 × 10 -1 , A6 = 0.63444 × 10 -2 , A8 = 0.57281 × 10 -2 , A10 = -0.26912 × 10 -2
[Aspherical data of 7th surface (r7)]
ε = -0.60000 × 10, A4 = -0.60010 × 10 -1 , A6 = 0.24137 × 10 -1 , A8 = -0.56437 × 10 -2 , A10 = 0.43112 × 10 -3

《実施例6》
f=4.057,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.887
d1= 1.137 N1=1.53048 ν1= 55.72(L1)
r2*= 50.974
d2= 0.745
r3= ∞(ST)
d3= 0.500
r4*= -3.040
d4= 1.696 N2=1.53048 ν2= 55.72(L2)
r5*= -1.374
d5= 0.100
r6*= 1.971
d6= 0.700 N3=1.58340 ν3= 30.23(L3)
r7*= 1.157
d7= 1.000
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 6
f = 4.057, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.887
d1 = 1.137 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = 50.974
d2 = 0.745
r3 = ∞ (ST)
d3 = 0.500
r4 * = -3.040
d4 = 1.696 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.374
d5 = 0.100
r6 * = 1.971
d6 = 0.700 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 1.157
d7 = 1.000
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=-0.17782×10,A4=0.61057×10-2,A6=0.14542×10-2,A8=-0.49868×10-3,A10=0.16539×10-3
[第2面(r2)の非球面データ]
ε=0.16000×102,A4=0.61220×10-2,A6=-0.75168×10-3,A8=0.15948×10-2,A10=-0.17231×10-4
[第4面(r4)の非球面データ]
ε=0.84433,A4=0.61538×10-2,A6=-0.21453,A8=0.30585,A10=-0.20991
[第5面(r5)の非球面データ]
ε=0.36507,A4=-0.44642×10-1,A6=0.12082×10-1,A8=0.88202×10-2,A10=-0.56296×10-2
[第6面(r6)の非球面データ]
ε=-0.20000×10,A4=-0.14745,A6=0.32555×10-1,A8=0.43398×10-2,A10=-0.22720×10-2
[第7面(r7)の非球面データ]
ε=-0.19045×10,A4=-0.97978×10-1,A6=0.23732×10-1,A8=-0.25696×10-2,A10=-0.40956×10-5
[Aspherical data of the first surface (r1)]
ε = -0.17782 × 10, A4 = 0.61057 × 10 -2, A6 = 0.14542 × 10 -2, A8 = -0.49868 × 10 -3, A10 = 0.16539 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = 0.16000 × 10 2 , A4 = 0.61220 × 10 -2 , A6 = -0.75168 × 10 -3 , A8 = 0.15948 × 10 -2 , A10 = -0.17231 × 10 -4
[Aspherical data of 4th surface (r4)]
ε = 0.84433, A4 = 0.61538 × 10 -2 , A6 = -0.21453, A8 = 0.30585, A10 = -0.20991
[Aspherical data of 5th surface (r5)]
ε = 0.36507, A4 = -0.44642 × 10 -1 , A6 = 0.12082 × 10 -1 , A8 = 0.88202 × 10 -2 , A10 = -0.56296 × 10 -2
[Aspherical data of 6th surface (r6)]
ε = -0.20000 × 10, A4 = -0.14745, A6 = 0.32555 × 10 -1 , A8 = 0.43398 × 10 -2 , A10 = -0.22720 × 10 -2
[Aspherical data of 7th surface (r7)]
ε = -0.19045 × 10, A4 = -0.97978 × 10 -1 , A6 = 0.23732 × 10 -1 , A8 = -0.25696 × 10 -2 , A10 = -0.40956 × 10 -5

《実施例7》
f=5.413,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.262
d1= 1.267 N1=1.53048 ν1= 55.72(L1)
r2*= 20.506
d2= 0.605
r3= ∞(ST)
d3= 1.011
r4*= -2.627
d4= 1.329 N2=1.53048 ν2= 55.72(L2)
r5*= -1.750
d5= 0.100
r6*= 6.747
d6= 1.769 N3=1.58340 ν3= 30.23(L3)
r7*= 2.711
d7= 0.500
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 7
f = 5.413, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.262
d1 = 1.267 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = 20.506
d2 = 0.605
r3 = ∞ (ST)
d3 = 1.011
r4 * = -2.627
d4 = 1.329 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.750
d5 = 0.100
r6 * = 6.747
d6 = 1.769 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 2.711
d7 = 0.500
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.23583,A4=0.42634×10-2,A6=0.70946×10-3,A8=0.83522×10-4,A10=0.22563×10-4
[第2面(r2)の非球面データ]
ε=0.13080×102,A4=0.76363×10-2,A6=-0.96051×10-3,A8=0.12099×10-2,A10=-0.32280×10-3
[第4面(r4)の非球面データ]
ε=0.14778×10,A4=0.46580×10-2,A6=-0.48590×10-1,A8=0.29449×10-1,A10=-0.35940×10-2
[第5面(r5)の非球面データ]
ε=0.54871,A4=-0.31360×10-1,A6=0.95481×10-2,A8=-0.21117×10-2,A10=0.74248×10-3
[第6面(r6)の非球面データ]
ε=0.35876×10-1,A4=-0.60741×10-1,A6=0.13571×10-1,A8=-0.98325×10-3,A10=-0.49719×10-4
[第7面(r7)の非球面データ]
ε=-0.54011×10,A4=-0.17861×10-1,A6=0.16540×10-3,A8=0.11796×10-3,A10=-0.10468×10-4
[Aspherical data of the first surface (r1)]
ε = 0.23583, A4 = 0.42634 × 10 -2 , A6 = 0.70946 × 10 -3 , A8 = 0.83522 × 10 -4 , A10 = 0.22563 × 10 -4
[Aspherical data of 2nd surface (r2)]
ε = 0.13080 × 10 2 , A4 = 0.76363 × 10 -2 , A6 = -0.96051 × 10 -3 , A8 = 0.12099 × 10 -2 , A10 = -0.32280 × 10 -3
[Aspherical data of 4th surface (r4)]
ε = 0.14778 × 10, A4 = 0.46580 × 10 -2 , A6 = -0.48590 × 10 -1 , A8 = 0.29449 × 10 -1 , A10 = -0.35940 × 10 -2
[Aspherical data of 5th surface (r5)]
ε = 0.54871, A4 = -0.31360 × 10 -1 , A6 = 0.95481 × 10 -2 , A8 = -0.21117 × 10 -2 , A10 = 0.74248 × 10 -3
[Aspherical data of 6th surface (r6)]
ε = 0.35876 × 10 -1 , A4 = -0.60741 × 10 -1 , A6 = 0.13571 × 10 -1 , A8 = -0.98325 × 10 -3 , A10 = -0.49719 × 10 -4
[Aspherical data of 7th surface (r7)]
ε = -0.54011 × 10, A4 = -0.17861 × 10 -1 , A6 = 0.16540 × 10 -3 , A8 = 0.11796 × 10 -3 , A10 = -0.10468 × 10 -4

《実施例8》
f=5.414,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 2.566
d1= 1.227 N1=1.53048 ν1= 55.72(L1)
r2*= 18.606
d2= 0.369
r3= ∞(ST)
d3= 0.935
r4*= -1.834
d4= 1.208 N2=1.53048 ν2= 55.72(L2)
r5*= -1.611
d5= 0.100
r6*= 7.215
d6= 1.581 N3=1.58340 ν3= 30.23(L3)
r7*= 2.841
d7= 0.500
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 8
f = 5.414, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 2.566
d1 = 1.227 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = 18.606
d2 = 0.369
r3 = ∞ (ST)
d3 = 0.935
r4 * = -1.834
d4 = 1.208 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.611
d5 = 0.100
r6 * = 7.215
d6 = 1.581 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 2.841
d7 = 0.500
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.16794,A4=0.43888×10-2,A6=0.28598×10-3,A8=0.32325×10-3,A10=-0.24401×10-3
[第2面(r2)の非球面データ]
ε=-0.73024×10,A4=-0.29787×10-2,A6=-0.20862×10-2,A8=-0.10682×10-2,A10=0.34571×10-3
[第4面(r4)の非球面データ]
ε=0.12492×10,A4=0.29931×10-2,A6=-0.49256×10-1,A8=0.23979×10-1,A10=0.79079×10-3
[第5面(r5)の非球面データ]
ε=0.53675,A4=-0.23290×10-1,A6=0.52301×10-2,A8=0.10769×10-2,A10=0.44801×10-3
[第6面(r6)の非球面データ]
ε=0.20000×10,A4=-0.66312×10-1,A6=0.15524×10-1,A8=-0.15169×10-2,A10=-0.38654×10-4
[第7面(r7)の非球面データ]
ε=-0.60000×10,A4=-0.25548×10-1,A6=0.14515×10-2,A8=-0.25702×10-4,A10=-0.80128×10-5
[Aspherical data of the first surface (r1)]
ε = 0.16794, A4 = 0.43888 × 10 -2 , A6 = 0.28598 × 10 -3 , A8 = 0.32325 × 10 -3 , A10 = -0.24401 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = -0.73024 × 10, A4 = -0.29787 × 10 -2 , A6 = -0.20862 × 10 -2 , A8 = -0.10682 × 10 -2 , A10 = 0.34571 × 10 -3
[Aspherical data of 4th surface (r4)]
ε = 0.12492 × 10, A4 = 0.29931 × 10 -2 , A6 = -0.49256 × 10 -1 , A8 = 0.23979 × 10 -1 , A10 = 0.79079 × 10 -3
[Aspherical data of 5th surface (r5)]
ε = 0.53675, A4 = -0.23290 × 10 -1 , A6 = 0.52301 × 10 -2 , A8 = 0.10769 × 10 -2 , A10 = 0.44801 × 10 -3
[Aspherical data of 6th surface (r6)]
ε = 0.20000 × 10, A4 = -0.66312 × 10 -1 , A6 = 0.15524 × 10 -1 , A8 = -0.15169 × 10 -2 , A10 = -0.38654 × 10 -4
[Aspherical data of 7th surface (r7)]
ε = -0.60000 × 10, A4 = -0.25548 × 10 -1 , A6 = 0.14515 × 10 -2 , A8 = -0.25702 × 10 -4 , A10 = -0.80 128 × 10 -5

《実施例9》
f=3.470,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 1.928
d1= 1.028 N1=1.53048 ν1= 55.72(L1)
r2*= 2.310
d2= 0.478
r3= ∞(ST)
d3= 0.300
r4*= 8.421
d4= 1.304 N2=1.53048 ν2= 55.72(L2)
r5*= -1.151
d5= 0.655
r6*= -0.468
d6= 0.720 N3=1.58340 ν3= 30.23(L3)
r7*= -0.694
d7= 0.300
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 9
f = 3.470, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 1.928
d1 = 1.028 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = 2.310
d2 = 0.478
r3 = ∞ (ST)
d3 = 0.300
r4 * = 8.421
d4 = 1.304 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.151
d5 = 0.655
r6 * = -0.468
d6 = 0.720 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = -0.694
d7 = 0.300
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.10000×10,A4=-0.45870×10-2,A6=0.29663×10-2,A8=-0.12412×10-2,A10=-0.94981×10-3
[第2面(r2)の非球面データ]
ε=0.10000×10,A4=-0.11631×10-1,A6=0.15359,A8=-0.35362,A10=0.22705
[第4面(r4)の非球面データ]
ε=0.10000×10,A4=-0.12407,A6=0.87272×10-1,A8=-0.30646,A10=0.23712
[第5面(r5)の非球面データ]
ε=0.10000×10,A4=0.27864×10-1,A6=0.64946×10-1,A8=-0.13857,A10=0.11579
[第6面(r6)の非球面データ]
ε=0.13801,A4=0.36196,A6=0.16987,A8=-0.10315,A10=0.81031×10-1
[第7面(r7)の非球面データ]
ε=0.17413,A4=0.15173,A6=0.72208×10-1,A8=-0.28908×10-1,A10=0.74165×10-2
[Aspherical data of the first surface (r1)]
ε = 0.10000 × 10, A4 = -0.45870 × 10 -2 , A6 = 0.29663 × 10 -2 , A8 = -0.12412 × 10 -2 , A10 = -0.94981 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = 0.10000 × 10, A4 = -0.11631 × 10 -1 , A6 = 0.15359, A8 = -0.35362, A10 = 0.22705
[Aspherical data of 4th surface (r4)]
ε = 0.10000 × 10, A4 = -0.12407, A6 = 0.87272 × 10 -1 , A8 = -0.30646, A10 = 0.23712
[Aspherical data of 5th surface (r5)]
ε = 0.10000 × 10, A4 = 0.27864 × 10 −1 , A6 = 0.64946 × 10 −1 , A8 = -0.13857, A10 = 0.11579
[Aspherical data of 6th surface (r6)]
ε = 0.13801, A4 = 0.36196, A6 = 0.16987, A8 = -0.10315, A10 = 0.81031 × 10 -1
[Aspherical data of 7th surface (r7)]
ε = 0.17413, A4 = 0.15173, A6 = 0.72208 × 10 −1 , A8 = -0.28908 × 10 −1 , A10 = 0.74165 × 10 −2

《実施例10》
f=3.469,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 2.173
d1= 1.103 N1=1.53048 ν1= 55.72(L1)
r2*= 2.584
d2= 0.602
r3= ∞(ST)
d3= 0.328
r4*= 6.726
d4= 1.283 N2=1.53048 ν2= 55.72(L2)
r5*= -1.160
d5= 0.736
r6*= -0.459
d6= 0.738 N3=1.58340 ν3= 30.23(L3)
r7*= -0.680
d7= 0.300
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 10
f = 3.469, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 2.173
d1 = 1.103 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = 2.584
d2 = 0.602
r3 = ∞ (ST)
d3 = 0.328
r4 * = 6.726
d4 = 1.283 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.160
d5 = 0.736
r6 * = -0.459
d6 = 0.738 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = -0.680
d7 = 0.300
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.10000×10,A4=0.87958×10-3,A6=0.42137×10-2,A8=-0.16799×10-3,A10=-0.19193×10-3
[第2面(r2)の非球面データ]
ε=0.10000×10,A4=0.93253×10-2,A6=0.15533,A8=-0.24491,A10=0.13194
[第4面(r4)の非球面データ]
ε=0.10000×10,A4=-0.98391×10-1,A6=0.94609×10-1,A8=-0.17520,A10=0.12094
[第5面(r5)の非球面データ]
ε=0.10000×10,A4=0.44653×10-1,A6=0.55013×10-1,A8=-0.12054,A10=0.11213
[第6面(r6)の非球面データ]
ε=0.13153,A4=0.36562,A6=0.16321,A8=-0.11039,A10=0.86597×10-1
[第7面(r7)の非球面データ]
ε=0.16282,A4=0.15658,A6=0.66062×10-1,A8=-0.28592×10-1,A10=0.75366×10-2
[Aspherical data of the first surface (r1)]
ε = 0.10000 × 10, A4 = 0.87958 × 10 -3 , A6 = 0.42137 × 10 -2 , A8 = -0.16799 × 10 -3 , A10 = -0.19193 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = 0.10000 × 10, A4 = 0.93253 × 10 -2 , A6 = 0.15533, A8 = -0.24491, A10 = 0.13194
[Aspherical data of 4th surface (r4)]
ε = 0.10000 × 10, A4 = -0.98391 × 10 -1 , A6 = 0.94609 × 10 -1 , A8 = -0.17520, A10 = 0.12094
[Aspherical data of 5th surface (r5)]
ε = 0.10000 × 10, A4 = 0.44653 × 10 −1 , A6 = 0.55013 × 10 −1 , A8 = -0.12054, A10 = 0.11213
[Aspherical data of 6th surface (r6)]
ε = 0.13153, A4 = 0.36562, A6 = 0.16321, A8 = -0.11039, A10 = 0.86597 × 10 -1
[Aspherical data of 7th surface (r7)]
ε = 0.16282, A4 = 0.15658, A6 = 0.66062 × 10 −1 , A8 = −0.28592 × 10 −1 , A10 = 0.75366 × 10 −2

《実施例11》
f=2.357,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.284
d1= 0.988 N1=1.53048 ν1= 55.72(L1)
r2*= 8.603
d2= 0.249
r3= ∞(ST)
d3= 0.231
r4*= 2.351
d4= 1.000 N2=1.53048 ν2= 55.72(L2)
r5*= -0.806
d5= 0.367
r6*= -0.328
d6= 0.700 N3=1.58340 ν3= 30.23(L3)
r7*= -0.557
d7= 0.200
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 11
f = 2.357, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.284
d1 = 0.988 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = 8.603
d2 = 0.249
r3 = ∞ (ST)
d3 = 0.231
r4 * = 2.351
d4 = 1.000 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -0.806
d5 = 0.367
r6 * = -0.328
d6 = 0.700 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = -0.557
d7 = 0.200
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.10000×10,A4=-0.82390×10-1,A6=-0.51231×10-3,A8=-0.31114×10-1,A10=0.20505×10-1
[第2面(r2)の非球面データ]
ε=0.10000×10,A4=-0.22908,A6=0.19307,A8=-0.66911,A10=0.11352×10
[第4面(r4)の非球面データ]
ε=0.10000×10,A4=-0.31044,A6=-0.13877,A8=0.59855,A10=-0.34008×10
[第5面(r5)の非球面データ]
ε=0.10000×10,A4=0.19846,A6=0.34588,A8=-0.10718×10,A10=0.22259×10
[第6面(r6)の非球面データ]
ε=0.14294,A4=0.16786×10,A6=0.77941,A8=-0.21235×10,A10=0.29745×10
[第7面(r7)の非球面データ]
ε=0.22025,A4=0.51811,A6=0.40947,A8=-0.41631,A10=0.19224
[Aspherical data of the first surface (r1)]
ε = 0.10000 × 10, A4 = -0.82390 × 10 -1 , A6 = -0.51231 × 10 -3 , A8 = -0.31114 × 10 -1 , A10 = 0.20505 × 10 -1
[Aspherical data of 2nd surface (r2)]
ε = 0.10000 × 10, A4 = -0.22908, A6 = 0.19307, A8 = -0.66911, A10 = 0.11352 × 10
[Aspherical data of 4th surface (r4)]
ε = 0.10000 × 10, A4 = -0.31044, A6 = -0.13877, A8 = 0.59855, A10 = -0.34008 × 10
[Aspherical data of 5th surface (r5)]
ε = 0.10000 × 10, A4 = 0.19846, A6 = 0.34588, A8 = -0.10718 × 10, A10 = 0.22259 × 10
[Aspherical data of 6th surface (r6)]
ε = 0.14294, A4 = 0.16786 × 10, A6 = 0.77941, A8 = -0.21235 × 10, A10 = 0.29745 × 10
[Aspherical data of 7th surface (r7)]
ε = 0.22025, A4 = 0.51811, A6 = 0.40947, A8 = -0.41631, A10 = 0.19224

《実施例12》
f=3.909,FNO=2.8
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 1.946
d1= 1.063 N1=1.53048 ν1= 55.72(L1)
r2*= 2.908
d2= 0.461
r3= ∞(ST)
d3= 0.369
r4*= 25.898
d4= 1.214 N2=1.53048 ν2= 55.72(L2)
r5*= -1.222
d5= 0.719
r6*= -0.512
d6= 0.864 N3=1.58340 ν3= 30.23(L3)
r7*= -0.791
d7= 0.300
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 12
f = 3.909, FNO = 2.8
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 1.946
d1 = 1.063 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = 2.908
d2 = 0.461
r3 = ∞ (ST)
d3 = 0.369
r4 * = 25.898
d4 = 1.214 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.222
d5 = 0.719
r6 * = -0.512
d6 = 0.864 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = -0.791
d7 = 0.300
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=0.10000×10,A4=-0.71083×10-2,A6=0.83355×10-2,A8=-0.43965×10-2,A10=0.15236×10-2
[第2面(r2)の非球面データ]
ε=0.10000×10,A4=0.48178×10-2,A6=0.77795×10-1,A8=-0.11808,A10=0.82135×10-1
[第4面(r4)の非球面データ]
ε=0.10000×10,A4=-0.67192×10-1,A6=0.75859×10-2,A8=-0.45131×10-1,A10=-0.15867×10-2
[第5面(r5)の非球面データ]
ε=0.10000×10,A4=0.57645×10-1,A6=0.64121×10-2,A8=-0.12843×10-1,A10=0.27561×10-1
[第6面(r6)の非球面データ]
ε=0.15149,A4=0.34428,A6=0.14586,A8=-0.13119,A10=0.71148×10-1
[第7面(r7)の非球面データ]
ε=0.19214,A4=0.13217,A6=0.45573×10-1,A8=-0.23420×10-1,A10=0.52064×10-2
[Aspherical data of the first surface (r1)]
ε = 0.10000 × 10, A4 = -0.71083 × 10 -2 , A6 = 0.83355 × 10 -2 , A8 = -0.43965 × 10 -2 , A10 = 0.15236 × 10 -2
[Aspherical data of 2nd surface (r2)]
ε = 0.10000 × 10, A4 = 0.48178 × 10 -2 , A6 = 0.77795 × 10 -1 , A8 = -0.11808, A10 = 0.82135 × 10 -1
[Aspherical data of 4th surface (r4)]
ε = 0.10000 × 10, A4 = -0.67192 × 10 -1 , A6 = 0.75859 × 10 -2 , A8 = -0.45131 × 10 -1 , A10 = -0.15867 × 10 -2
[Aspherical data of 5th surface (r5)]
ε = 0.10000 × 10, A4 = 0.57645 × 10 -1 , A6 = 0.64121 × 10 -2 , A8 = -0.12843 × 10 -1 , A10 = 0.27561 × 10 -1
[Aspherical data of 6th surface (r6)]
ε = 0.15149, A4 = 0.34428, A6 = 0.14586, A8 = -0.13119, A10 = 0.71148 × 10 -1
[Aspherical data of 7th surface (r7)]
ε = 0.19214, A4 = 0.13217, A6 = 0.45573 × 10 −1 , A8 = −0.23420 × 10 −1 , A10 = 0.52064 × 10 −2

Figure 2005258467
Figure 2005258467

《実施例13》
f=3.382,FNO=2.80
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= -10.748
d1= 0.756 N1=1.53048 ν1= 55.72(L1)
r2*= -6.165
d2= 0.933
r3= ∞(ST)
d3= 0.500
r4*= -12.672
d4= 1.734 N2=1.48749 ν2= 70.44(L2)
r5*= -0.898
d5= 0.100
r6*= 5.623
d6= 0.700 N3=1.58340 ν3= 30.23(L3)
r7*= 1.145
d7= 1.300
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 13
f = 3.382, FNO = 2.80
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = -10.748
d1 = 0.756 N1 = 1.53048 ν1 = 55.72 (L1)
r2 * = -6.165
d2 = 0.933
r3 = ∞ (ST)
d3 = 0.500
r4 * = -12.672
d4 = 1.734 N2 = 1.48749 ν2 = 70.44 (L2)
r5 * = -0.898
d5 = 0.100
r6 * = 5.623
d6 = 0.700 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 1.145
d7 = 1.300
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε=-0.49000×102,A4= 0.19628×10-1,A6= 0.42261×10-2,A8=-0.14046×10-2,A10= 0.24571×10-3
[第2面(r2)の非球面データ]
ε=-0.61499×10,A4= 0.46300×10-1,A6= 0.58156×10-2,A8=-0.55287×10-2,A10= 0.25143×10-2
[第4面(r4)の非球面データ]
ε=-0.10000×10,A4=-0.36178×10-1,A6=-0.35359×10-1,A8= 0.33661×10-1,A10=-0.76906×10-1
[第5面(r5)の非球面データ]
ε=-0.10000×10,A4= 0.88131×10-2,A6=-0.10394,A8= 0.66365×10-1,A10=-0.21004×10-1
[第6面(r6)の非球面データ]
ε=-0.19193×10,A4=-0.51842×10-1,A6= 0.75512×10-3,A8= 0.23514×10-2,A10=-0.21619×10-2
[第7面(r7)の非球面データ]
ε=-0.45157×10,A4=-0.44404×10-1,A6= 0.19663×10-1,A8=-0.73281×10-2,A10= 0.92529×10-3
[Aspherical data of the first surface (r1)]
ε = -0.49000 × 10 2 , A4 = 0.19628 × 10 -1 , A6 = 0.42261 × 10 -2 , A8 = -0.14046 × 10 -2 , A10 = 0.24571 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = -0.61499 × 10, A4 = 0.46300 × 10 -1 , A6 = 0.58156 × 10 -2 , A8 = -0.55287 × 10 -2 , A10 = 0.25143 × 10 -2
[Aspherical data of 4th surface (r4)]
ε = -0.10000 × 10, A4 = -0.36178 × 10 -1 , A6 = -0.35359 × 10 -1 , A8 = 0.33661 × 10 -1 , A10 = -0.76906 × 10 -1
[Aspherical data of 5th surface (r5)]
ε = -0.10000 × 10, A4 = 0.88131 × 10 -2 , A6 = -0.10394, A8 = 0.66365 × 10 -1 , A10 = -0.21004 × 10 -1
[Aspherical data of 6th surface (r6)]
ε = -0.19193 × 10, A4 = -0.51842 × 10 -1 , A6 = 0.75512 × 10 -3 , A8 = 0.23514 × 10 -2 , A10 = -0.21619 × 10 -2
[Aspherical data of 7th surface (r7)]
ε = -0.45157 × 10, A4 = -0.44404 × 10 -1 , A6 = 0.19663 × 10 -1 , A8 = -0.73281 × 10 -2 , A10 = 0.92529 × 10 -3

《実施例14》
f=5.403,FNO=2.80
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.427
d1= 1.256 N1=1.58913 ν1= 61.28(L1)
r2*= 13.824
d2= 0.643
r3= ∞(ST)
d3= 0.972
r4*= -3.551
d4= 1.640 N2=1.53048 ν2= 55.72(L2)
r5*= -1.328
d5= 0.100
r6*= -31.222
d6= 1.584 N3=1.58340 ν3= 30.23(L3)
r7*= 2.125
d7= 0.800
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 14
f = 5.403, FNO = 2.80
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.427
d1 = 1.256 N1 = 1.58913 ν1 = 61.28 (L1)
r2 * = 13.824
d2 = 0.643
r3 = ∞ (ST)
d3 = 0.972
r4 * = -3.551
d4 = 1.640 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.328
d5 = 0.100
r6 * = -31.222
d6 = 1.584 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 2.125
d7 = 0.800
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε= 0.45664,A4= 0.50687×10-2,A6= 0.84990×10-3,A8=-0.13419×10-4,A10= 0.45261×10-4
[第2面(r2)の非球面データ]
ε= 0.13638×102,A4= 0.12538×10-1,A6=-0.40314×10-2,A8= 0.29052×10-2,A10=-0.63264×10-3
[第4面(r4)の非球面データ]
ε= 0.20000×10,A4=-0.17811×10-1,A6=-0.44803×10-1,A8= 0.25403×10-1,A10=-0.27515×10-2
[第5面(r5)の非球面データ]
ε= 0.28496,A4=-0.90398×10-3,A6= 0.58812×10-2,A8=-0.40268×10-2,A10= 0.10098×10-2
[第6面(r6)の非球面データ]
ε= 0.0,A4=-0.60414×10-1,A6= 0.15910×10-1,A8=-0.10850×10-2,A10=-0.90198×10-4
[第7面(r7)の非球面データ]
ε=-0.52095×10,A4=-0.30068×10-1,A6= 0.30856×10-2,A8=-0.17047×10-3,A10= 0.10885×10-6
[Aspherical data of the first surface (r1)]
ε = 0.45664, A4 = 0.50687 × 10 -2 , A6 = 0.84990 × 10 -3 , A8 = -0.13419 × 10 -4 , A10 = 0.45261 × 10 -4
[Aspherical data of 2nd surface (r2)]
ε = 0.13638 × 10 2 , A4 = 0.12538 × 10 -1 , A6 = -0.40314 × 10 -2 , A8 = 0.29052 × 10 -2 , A10 = -0.63264 × 10 -3
[Aspherical data of 4th surface (r4)]
ε = 0.20000 × 10, A4 = −0.17811 × 10 −1 , A6 = −0.44803 × 10 −1 , A8 = 0.25403 × 10 −1 , A10 = −0.27515 × 10 −2
[Aspherical data of 5th surface (r5)]
ε = 0.28496, A4 = -0.90398 × 10 -3 , A6 = 0.58812 × 10 -2 , A8 = -0.40268 × 10 -2 , A10 = 0.10098 × 10 -2
[Aspherical data of 6th surface (r6)]
ε = 0.0, A4 = -0.60414 × 10 -1 , A6 = 0.15910 × 10 -1 , A8 = -0.10850 × 10 -2 , A10 = -0.90198 × 10 -4
[Aspherical data of 7th surface (r7)]
ε = -0.52095 × 10, A4 = -0.30068 × 10 -1 , A6 = 0.30856 × 10 -2 , A8 = -0.17047 × 10 -3 , A10 = 0.10885 × 10 -6

《実施例15》
f=4.212,FNO=4.00
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 1.823
d1= 1.195 N1=1.48749 ν1= 70.44(L1)
r2*= 17.003
d2= 0.300
r3= ∞(ST)
d3= 0.575
r4*= -1.231
d4= 1.371 N2=1.53048 ν2= 55.72(L2)
r5*= -0.881
d5= 0.100
r6*= 4.980
d6= 0.749 N3=1.58340 ν3= 30.23(L3)
r7*= 1.193
d7= 0.500
r8= ∞
d8= 0.500 N4=1.51680 ν4= 64.20(GF)
r9= ∞
Example 15
f = 4.212, FNO = 4.00
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 1.823
d1 = 1.195 N1 = 1.48749 ν1 = 70.44 (L1)
r2 * = 17.003
d2 = 0.300
r3 = ∞ (ST)
d3 = 0.575
r4 * = -1.231
d4 = 1.371 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -0.881
d5 = 0.100
r6 * = 4.980
d6 = 0.749 N3 = 1.58340 ν3 = 30.23 (L3)
r7 * = 1.193
d7 = 0.500
r8 = ∞
d8 = 0.500 N4 = 1.51680 ν4 = 64.20 (GF)
r9 = ∞

[第1面(r1)の非球面データ]
ε= 0.41144,A4= 0.85264×10-2,A6= 0.61779×10-2,A8=-0.18563×10-2,A10=-0.12302×10-2
[第2面(r2)の非球面データ]
ε= 0.16000×102,A4=-0.94292×10-2,A6=-0.39468×10-1,A8= 0.43553×10-1,A10=-0.19370×10-1
[第4面(r4)の非球面データ]
ε= 0.19571×10,A4=-0.22360×10-1,A6=-0.23890,A8= 0.29336,A10= 0.36819
[第5面(r5)の非球面データ]
ε= 0.66179×10-1,A4= 0.59525×10-1,A6=-0.70445×10-1,A8= 0.15571×10-1,A10= 0.54156×10-2
[第6面(r6)の非球面データ]
ε= 0.12482×10,A4=-0.14933,A6= 0.56598×10-1,A8=-0.76101×10-2,A10=-0.24802×10-4
[第7面(r7)の非球面データ]
ε=-0.60000×10,A4=-0.74292×10-1,A6= 0.64193×10-2,A8= 0.15186×10-2,A10=-0.29432×10-3
[Aspherical data of the first surface (r1)]
ε = 0.41144, A4 = 0.85264 × 10 -2 , A6 = 0.61779 × 10 -2 , A8 = -0.18563 × 10 -2 , A10 = -0.12302 × 10 -2
[Aspherical data of 2nd surface (r2)]
ε = 0.16000 × 10 2 , A4 = −0.94292 × 10 −2 , A6 = −0.339468 × 10 −1 , A8 = 0.43553 × 10 −1 , A10 = −0.19370 × 10 −1
[Aspherical data of 4th surface (r4)]
ε = 0.19571 × 10, A4 = -0.22360 × 10 -1 , A6 = -0.23890, A8 = 0.29336, A10 = 0.36819
[Aspherical data of 5th surface (r5)]
ε = 0.66179 × 10 -1 , A4 = 0.59525 × 10 -1 , A6 = -0.70445 × 10 -1 , A8 = 0.15571 × 10 -1 , A10 = 0.54156 × 10 -2
[Aspherical data of 6th surface (r6)]
ε = 0.12482 × 10, A4 = -0.14933, A6 = 0.56598 × 10 -1 , A8 = -0.76101 × 10 -2 , A10 = -0.24802 × 10 -4
[Aspherical data of 7th surface (r7)]
ε = -0.60000 × 10, A4 = -0.74292 × 10 -1 , A6 = 0.64193 × 10 -2 , A8 = 0.15186 × 10 -2 , A10 = -0.29432 × 10 -3

《実施例16》
f=7.277,FNO=4.00
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.548
d1= 1.161 N1=1.58913 ν1= 61.28(L1)
r2*= 16.802
d2= 0.593
r3= ∞(ST)
d3= 1.343
r4*= -3.817
d4= 1.377 N2=1.53048 ν2= 55.72(L2)
r5*= -1.576
d5= 0.447
r6*= -2.730
d6= 1.686 N3=1.58340 ν3= 30.23(L3)
r7= -4.280
d7= 0.100
r8= -5.779
d8= 0.833 N4=1.53048 ν4= 55.72(L4)
r9*= 5.219
d9= 0.500
r10= ∞
d10= 0.700 N5=1.51680 ν5= 64.20(GF)
r11= ∞
Example 16
f = 7.277, FNO = 4.00
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.548
d1 = 1.161 N1 = 1.58913 ν1 = 61.28 (L1)
r2 * = 16.802
d2 = 0.593
r3 = ∞ (ST)
d3 = 1.343
r4 * = -3.817
d4 = 1.377 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.576
d5 = 0.447
r6 * = -2.730
d6 = 1.686 N3 = 1.58340 ν3 = 30.23 (L3)
r7 = -4.280
d7 = 0.100
r8 = -5.779
d8 = 0.833 N4 = 1.53048 ν4 = 55.72 (L4)
r9 * = 5.219
d9 = 0.500
r10 = ∞
d10 = 0.700 N5 = 1.51680 ν5 = 64.20 (GF)
r11 = ∞

[第1面(r1)の非球面データ]
ε= 0.77503,A4= 0.25359×10-2,A6= 0.42096×10-3,A8= 0.12178×10-4,A10= 0.88312×10-5
[第2面(r2)の非球面データ]
ε= 0.16000×102,A4= 0.60134×10-2,A6=-0.12266×10-2,A8= 0.58101×10-3,A10=-0.11992×10-3
[第4面(r4)の非球面データ]
ε= 0.20000×10,A4=-0.23442×10-1,A6=-0.78672×10-2,A8= 0.75751×10-2,A10=-0.35641×10-3
[第5面(r5)の非球面データ]
ε= 0.26692,A4=-0.38537×10-2,A6= 0.64572×10-3,A8=-0.20007×10-3,A10= 0.48166×10-3
[第6面(r6)の非球面データ]
ε= 0.19644×10-1,A4=-0.20508×10-1,A6= 0.58512×10-2,A8=-0.43953×10-4,A10=-0.11200×10-3
[第9面(r9)の非球面データ]
ε=-0.24561×10,A4=-0.14117×10-1,A6= 0.65211×10-3,A8=-0.11832×10-4,A10=-0.56001×10-6
[Aspherical data of the first surface (r1)]
ε = 0.77503, A4 = 0.25359 × 10 -2 , A6 = 0.42096 × 10 -3 , A8 = 0.12178 × 10 -4 , A10 = 0.88312 × 10 -5
[Aspherical data of 2nd surface (r2)]
ε = 0.16000 × 10 2 , A4 = 0.60134 × 10 -2 , A6 = -0.12266 × 10 -2 , A8 = 0.58101 × 10 -3 , A10 = -0.11992 × 10 -3
[Aspherical data of 4th surface (r4)]
ε = 0.20000 × 10, A4 = -0.23442 × 10 -1 , A6 = -0.78672 × 10 -2 , A8 = 0.75751 × 10 -2 , A10 = -0.35641 × 10 -3
[Aspherical data of 5th surface (r5)]
ε = 0.26692, A4 = -0.38537 × 10 -2 , A6 = 0.64572 × 10 -3 , A8 = -0.20007 × 10 -3 , A10 = 0.48166 × 10 -3
[Aspherical data of 6th surface (r6)]
ε = 0.19644 × 10 -1 , A4 = -0.20508 × 10 -1 , A6 = 0.58512 × 10 -2 , A8 = -0.43953 × 10 -4 , A10 = -0.11200 × 10 -3
[Aspherical data of 9th surface (r9)]
ε = -0.24561 × 10, A4 = -0.14117 × 10 -1 , A6 = 0.65211 × 10 -3 , A8 = -0.11832 × 10 -4 , A10 = -0.56001 × 10 -6

《実施例17》
f=7.224,FNO=4.00
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.085
d1= 1.254 N1=1.48749 ν1= 70.44(L1)
r2*= 132.361
d2= 0.519
r3= ∞(ST)
d3= 1.333
r4*= -2.840
d4= 1.370 N2=1.53048 ν2= 55.72(L2)
r5*= -1.406
d5= 0.215
r6*= -2.977
d6= 1.421 N3=1.58340 ν3= 30.23(L3)
r7= -4.231
d7= 0.200
r8*= -3.893
d8= 0.929 N4=1.53048 ν4= 55.72(L4)
r9*= 4.977
d9= 0.500
r10= ∞
d10= 0.700 N5=1.51680 ν5= 64.20(GF)
r11= ∞
Example 17
f = 7.224, FNO = 4.00
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.085
d1 = 1.254 N1 = 1.48749 ν1 = 70.44 (L1)
r2 * = 132.361
d2 = 0.519
r3 = ∞ (ST)
d3 = 1.333
r4 * = -2.840
d4 = 1.370 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.406
d5 = 0.215
r6 * = -2.977
d6 = 1.421 N3 = 1.58340 ν3 = 30.23 (L3)
r7 = -4.231
d7 = 0.200
r8 * = -3.893
d8 = 0.929 N4 = 1.53048 ν4 = 55.72 (L4)
r9 * = 4.977
d9 = 0.500
r10 = ∞
d10 = 0.700 N5 = 1.51680 ν5 = 64.20 (GF)
r11 = ∞

[第1面(r1)の非球面データ]
ε= 0.53903,A4= 0.16932×10-2,A6=-0.11741×10-3,A8= 0.57949×10-4,A10=-0.71896×10-4
[第2面(r2)の非球面データ]
ε=-0.14000×102,A4= 0.27334×10-2,A6=-0.26419×10-2,A8=-0.75325×10-4,A10= 0.73080×10-4
[第4面(r4)の非球面データ]
ε= 0.20000×10,A4=-0.31677×10-1,A6=-0.75942×10-2,A8= 0.91685×10-2,A10= 0.41558×10-3
[第5面(r5)の非球面データ]
ε= 0.24552,A4=-0.52179×10-2,A6= 0.25889×10-2,A8= 0.68847×10-4,A10= 0.47898×10-3
[第6面(r6)の非球面データ]
ε= 0.40102×10-1,A4=-0.18898×10-1,A6= 0.54964×10-2,A8= 0.32997×10-3,A10=-0.26481×10-3
[第8面(r8)の非球面データ]
ε= 0.10000×10,A4= 0.48378×10-3,A6= 0.60634×10-3,A8= 0.19793×10-4,A10=-0.16558×10-5
[第9面(r9)の非球面データ]
ε=-0.60000×10,A4=-0.16306×10-1,A6= 0.98140×10-3,A8=-0.41108×10-4,A10= 0.65479×10-6
[Aspherical data of the first surface (r1)]
ε = 0.53903, A4 = 0.16932 × 10 -2 , A6 = -0.11741 × 10 -3 , A8 = 0.57949 × 10 -4 , A10 = -0.71896 × 10 -4
[Aspherical data of 2nd surface (r2)]
ε = -0.14000 × 10 2 , A4 = 0.27334 × 10 -2 , A6 = -0.26419 × 10 -2 , A8 = -0.75325 × 10 -4 , A10 = 0.73080 × 10 -4
[Aspherical data of 4th surface (r4)]
ε = 0.20000 × 10, A4 = -0.31677 × 10 -1 , A6 = -0.75942 × 10 -2 , A8 = 0.91685 × 10 -2 , A10 = 0.41558 × 10 -3
[Aspherical data of 5th surface (r5)]
ε = 0.24552, A4 = -0.52179 × 10 -2 , A6 = 0.25889 × 10 -2 , A8 = 0.68847 × 10 -4 , A10 = 0.47898 × 10 -3
[Aspherical data of 6th surface (r6)]
ε = 0.40102 × 10 -1 , A4 = -0.18898 × 10 -1 , A6 = 0.54964 × 10 -2 , A8 = 0.32997 × 10 -3 , A10 = -0.26481 × 10 -3
[Aspherical data of 8th surface (r8)]
ε = 0.10000 × 10, A4 = 0.48378 × 10 -3 , A6 = 0.60634 × 10 -3 , A8 = 0.19793 × 10 -4 , A10 = -0.16558 × 10 -5
[Aspherical data of 9th surface (r9)]
ε = -0.60000 × 10, A4 = -0.16306 × 10 -1 , A6 = 0.98 140 × 10 -3 , A8 = -0.41108 × 10 -4 , A10 = 0.65479 × 10 -6

《実施例18》
f=7.223,FNO=3.20
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.658
d1= 1.456 N1=1.48749 ν1= 70.44(L1)
r2*= 73.204
d2= 0.709
r3= ∞(ST)
d3= 1.347
r4*= -3.303
d4= 1.559 N2=1.53048 ν2= 55.72(L2)
r5*= -1.519
d5= 0.100
r6*= -5.135
d6= 1.559 N3=1.58340 ν3= 30.23(L3)
r7= -8.750
d7= 0.200
r8*= -7.043
d8= 1.264 N4=1.53048 ν4= 55.72(L4)
r9*= 3.768
d9= 0.500
r10= ∞
d10= 0.700 N5=1.51680 ν5= 64.20(GF)
r11= ∞
Example 18
f = 7.223, FNO = 3.20
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.658
d1 = 1.456 N1 = 1.48749 ν1 = 70.44 (L1)
r2 * = 73.204
d2 = 0.709
r3 = ∞ (ST)
d3 = 1.347
r4 * = -3.303
d4 = 1.559 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.519
d5 = 0.100
r6 * = -5.135
d6 = 1.559 N3 = 1.58340 ν3 = 30.23 (L3)
r7 = -8.750
d7 = 0.200
r8 * = -7.043
d8 = 1.264 N4 = 1.53048 ν4 = 55.72 (L4)
r9 * = 3.768
d9 = 0.500
r10 = ∞
d10 = 0.700 N5 = 1.51680 ν5 = 64.20 (GF)
r11 = ∞

[第1面(r1)の非球面データ]
ε= 0.71501,A4= 0.28518×10-2,A6=-0.17675×10-3,A8= 0.14775×10-3,A10=-0.18376×10-4
[第2面(r2)の非球面データ]
ε= 0.16000×102,A4= 0.63737×10-2,A6=-0.12019×10-2,A8= 0.11025×10-3,A10=-0.14631×10-4
[第4面(r4)の非球面データ]
ε= 0.17392×10,A4=-0.19887×10-1,A6=-0.18654×10-1,A8= 0.10823×10-1,A10=-0.98268×10-3
[第5面(r5)の非球面データ]
ε= 0.25841,A4=-0.41793×10-3,A6=-0.20223×10-3,A8=-0.33463×10-3,A10= 0.23695×10-3
[第6面(r6)の非球面データ]
ε= 0.00000,A4=-0.14443×10-1,A6= 0.39292×10-2,A8=-0.46118×10-4,A10=-0.77163×10-4
[第8面(r8)の非球面データ]
ε= 0.10000×10,A4= 0.39723×10-3,A6= 0.28397×10-3,A8= 0.18192×10-5,A10=-0.45178×10-6
[第9面(r9)の非球面データ]
ε=-0.55782×10,A4=-0.11687×10-1,A6= 0.76776×10-3,A8=-0.49279×10-4,A10= 0.13179×10-5
[Aspherical data of the first surface (r1)]
ε = 0.71501, A4 = 0.28518 × 10 -2 , A6 = -0.17675 × 10 -3 , A8 = 0.14775 × 10 -3 , A10 = -0.18376 × 10 -4
[Aspherical data of 2nd surface (r2)]
ε = 0.16000 × 10 2 , A4 = 0.63737 × 10 -2 , A6 = -0.12019 × 10 -2 , A8 = 0.11025 × 10 -3 , A10 = -0.14631 × 10 -4
[Aspherical data of 4th surface (r4)]
ε = 0.17392 × 10, A4 = -0.19887 × 10 -1 , A6 = -0.18654 × 10 -1 , A8 = 0.10823 × 10 -1 , A10 = -0.98268 × 10 -3
[Aspherical data of 5th surface (r5)]
ε = 0.25841, A4 = -0.41793 × 10 -3 , A6 = -0.20223 × 10 -3 , A8 = -0.33463 × 10 -3 , A10 = 0.23695 × 10 -3
[Aspherical data of 6th surface (r6)]
ε = 0.00000, A4 = -0.14443 × 10 -1 , A6 = 0.39292 × 10 -2 , A8 = -0.46118 × 10 -4 , A10 = -0.77163 × 10 -4
[Aspherical data of 8th surface (r8)]
ε = 0.10000 × 10, A4 = 0.39723 × 10 -3 , A6 = 0.28397 × 10 -3 , A8 = 0.18192 × 10 -5 , A10 = -0.45178 × 10 -6
[Aspherical data of 9th surface (r9)]
ε = -0.55782 × 10, A4 = -0.11687 × 10 -1 , A6 = 0.76776 × 10 -3 , A8 = -0.49279 × 10 -4 , A10 = 0.13179 × 10 -5

《実施例19》
f=5.457,FNO=3.20
[曲率半径] [軸上面間隔] [屈折率] [アッベ数]
r1*= 3.253
d1= 1.288 N1=1.48749 ν1= 70.44(L1)
r2*= -86.056
d2= 0.579
r3= ∞(ST)
d3= 1.036
r4*= -2.672
d4= 1.199 N2=1.53048 ν2= 55.72(L2)
r5*= -1.179
d5= 0.100
r6*= -4.423
d6= 1.022 N3=1.58340 ν3= 30.23(L3)
r7= -7.099
d7= 0.200
r8*= -6.526
d8= 0.956 N4=1.53048 ν4= 55.72(L4)
r9*= 2.573
d9= 0.500
r10= ∞
d10= 0.500 N5=1.51680 ν5= 64.20(GF)
r11= ∞
Example 19
f = 5.457, FNO = 3.20
[Curve radius] [Axis spacing] [Refractive index] [Abbe number]
r1 * = 3.253
d1 = 1.288 N1 = 1.48749 ν1 = 70.44 (L1)
r2 * = -86.056
d2 = 0.579
r3 = ∞ (ST)
d3 = 1.036
r4 * = -2.672
d4 = 1.199 N2 = 1.53048 ν2 = 55.72 (L2)
r5 * = -1.179
d5 = 0.100
r6 * = -4.423
d6 = 1.022 N3 = 1.58340 ν3 = 30.23 (L3)
r7 = -7.099
d7 = 0.200
r8 * = -6.526
d8 = 0.956 N4 = 1.53048 ν4 = 55.72 (L4)
r9 * = 2.573
d9 = 0.500
r10 = ∞
d10 = 0.500 N5 = 1.51680 ν5 = 64.20 (GF)
r11 = ∞

[第1面(r1)の非球面データ]
ε= 0.61954,A4= 0.60178×10-2,A6=-0.12105×10-2,A8= 0.86233×10-3,A10=-0.15712×10-3
[第2面(r2)の非球面データ]
ε=-0.14000×102,A4= 0.15001×10-1,A6=-0.53033×10-2,A8= 0.12331×10-2,A10=-0.29962×10-3
[第4面(r4)の非球面データ]
ε= 0.11867×10,A4=-0.37808×10-1,A6=-0.76004×10-1,A8= 0.79954×10-1,A10=-0.14867×10-1
[第5面(r5)の非球面データ]
ε= 0.25855,A4= 0.51279×10-3,A6=-0.23878×10-2,A8=-0.21119×10-2,A10= 0.31651×10-2
[第6面(r6)の非球面データ]
ε= 0.69924,A4=-0.37699×10-1,A6= 0.16425×10-1,A8=-0.53665×10-3,A10=-0.77077×10-3
[第8面(r8)の非球面データ]
ε= 0.10000×10,A4= 0.22716×10-3,A6= 0.10393×10-2,A8= 0.34646×10-5,A10=-0.42799×10-5
[第9面(r9)の非球面データ]
ε=-0.56964×10,A4=-0.26810×10-1,A6= 0.32076×10-2,A8=-0.37062×10-3,A10= 0.17192×10-4
[Aspherical data of the first surface (r1)]
ε = 0.61954, A4 = 0.60178 × 10 -2 , A6 = -0.12105 × 10 -2 , A8 = 0.86233 × 10 -3 , A10 = -0.15712 × 10 -3
[Aspherical data of 2nd surface (r2)]
ε = -0.14000 × 10 2 , A4 = 0.15001 × 10 -1 , A6 = -0.53033 × 10 -2 , A8 = 0.12331 × 10 -2 , A10 = -0.29962 × 10 -3
[Aspherical data of 4th surface (r4)]
ε = 0.11867 × 10, A4 = -0.37808 × 10 -1 , A6 = -0.76004 × 10 -1 , A8 = 0.79954 × 10 -1 , A10 = -0.14867 × 10 -1
[Aspherical data of 5th surface (r5)]
ε = 0.25855, A4 = 0.51279 × 10 -3 , A6 = -0.23878 × 10 -2 , A8 = -0.21119 × 10 -2 , A10 = 0.31651 × 10 -2
[Aspherical data of 6th surface (r6)]
ε = 0.69924, A4 = -0.37699 × 10 -1 , A6 = 0.16425 × 10 -1 , A8 = -0.53665 × 10 -3 , A10 = -0.77077 × 10 -3
[Aspherical data of 8th surface (r8)]
ε = 0.10000 × 10, A4 = 0.22716 × 10 −3 , A6 = 0.10393 × 10 −2 , A8 = 0.34646 × 10 −5 , A10 = −0.42799 × 10 −5
[Aspherical data of 9th surface (r9)]
ε = -0.56964 × 10, A4 = -0.26810 × 10 -1 , A6 = 0.32076 × 10 -2 , A8 = -0.37062 × 10 -3 , A10 = 0.17192 × 10 -4

Figure 2005258467
Figure 2005258467

第1の実施の形態(実施例1)のレンズ構成図。The lens block diagram of 1st Embodiment (Example 1). 第2の実施の形態(実施例2)のレンズ構成図。The lens block diagram of 2nd Embodiment (Example 2). 第3の実施の形態(実施例3)のレンズ構成図。The lens block diagram of 3rd Embodiment (Example 3). 第4の実施の形態(実施例4)のレンズ構成図。The lens block diagram of 4th Embodiment (Example 4). 第5の実施の形態(実施例5)のレンズ構成図。The lens block diagram of 5th Embodiment (Example 5). 第6の実施の形態(実施例6)のレンズ構成図。The lens block diagram of 6th Embodiment (Example 6). 第7の実施の形態(実施例7)のレンズ構成図。The lens block diagram of 7th Embodiment (Example 7). 第8の実施の形態(実施例8)のレンズ構成図。The lens block diagram of 8th Embodiment (Example 8). 第9の実施の形態(実施例9)のレンズ構成図。The lens block diagram of 9th Embodiment (Example 9). 第10の実施の形態(実施例10)のレンズ構成図。The lens block diagram of 10th Embodiment (Example 10). 第11の実施の形態(実施例11)のレンズ構成図。The lens block diagram of 11th Embodiment (Example 11). 第12の実施の形態(実施例12)のレンズ構成図。The lens block diagram of 12th Embodiment (Example 12). 実施例1の収差図。FIG. 6 is an aberration diagram of Example 1. 実施例2の収差図。FIG. 6 is an aberration diagram of Example 2. 実施例3の収差図。FIG. 6 is an aberration diagram of Example 3. 実施例4の収差図。FIG. 6 is an aberration diagram of Example 4. 実施例5の収差図。FIG. 6 is an aberration diagram of Example 5. 実施例6の収差図。FIG. 10 is an aberration diagram of Example 6. 実施例7の収差図。FIG. 10 is an aberration diagram of Example 7. 実施例8の収差図。FIG. 10 is an aberration diagram of Example 8. 実施例9の収差図。FIG. 10 is an aberration diagram of Example 9. 実施例10の収差図。FIG. 10 is an aberration diagram of Example 10. 実施例11の収差図。FIG. 10 shows aberration diagrams of Example 11. 実施例12の収差図。FIG. 10 is an aberration diagram of Example 12. 第13の実施の形態(実施例13)のレンズ構成図。The lens block diagram of 13th Embodiment (Example 13). 第14の実施の形態(実施例14)のレンズ構成図。The lens block diagram of 14th Embodiment (Example 14). 第15の実施の形態(実施例15)のレンズ構成図。The lens block diagram of 15th Embodiment (Example 15). 実施例13の収差図。Aberration diagram of Example 13. 実施例14の収差図。Aberration diagram of Example 14. 実施例15の収差図。FIG. 18 shows aberration diagrams of Example 15. 第16の実施の形態(実施例16)のレンズ構成図。The lens block diagram of 16th Embodiment (Example 16). 第17の実施の形態(実施例17)のレンズ構成図。The lens block diagram of 17th Embodiment (Example 17). 第18の実施の形態(実施例18)のレンズ構成図。The lens block diagram of 18th Embodiment (Example 18). 第19の実施の形態(実施例19)のレンズ構成図。The lens block diagram of 19th Embodiment (Example 19). 実施例16の収差図。Aberration diagram of Example 16. 実施例17の収差図。Aberration diagram of Example 17. 実施例18の収差図。Aberration diagrams of Example 18. 実施例19の収差図。Aberration diagrams of Example 19.

符号の説明Explanation of symbols

L1 第1レンズ
ST 開口絞り
L2 第2レンズ
L3 第3レンズ
GF ガラスフィルター
AX 光軸
L1 first lens
ST Aperture stop
L2 second lens
L3 3rd lens
GF glass filter
AX optical axis

Claims (2)

固体撮像素子に像を形成するレンズ3枚構成の撮像レンズであって、物体側から順に、正の第1レンズと、開口絞りと、像側凸の正のメニスカス形状の第2レンズと、像側凹の負のメニスカス形状の第3レンズとで構成され、以下の条件式(A3)を満足することを特徴とする撮像レンズ;
0.05<T6/f<0.5 …(A3)
ただし、
T6:第3レンズの軸上レンズ厚み、
f:全系の焦点距離、
である。
An imaging lens having a three-lens configuration for forming an image on a solid-state imaging device, in order from the object side, a positive first lens, an aperture stop, a positive meniscus second lens convex on the image side, and an image An imaging lens comprising a third lens having a negative negative meniscus shape and satisfying the following conditional expression (A3):
0.05 <T6 / f <0.5 (A3)
However,
T6: On-axis lens thickness of the third lens,
f: focal length of the entire system,
It is.
以下の条件式(A2x)を満足することを特徴とする請求項1記載の撮像レンズ;
-1.695≦f3/f1<-0.15 …(A2x)
ただし、
f3:第3レンズの焦点距離、
f1:第1レンズの焦点距離、
である。
The imaging lens according to claim 1, wherein the following conditional expression (A2x) is satisfied:
-1.695 ≦ f3 / f1 <-0.15… (A2x)
However,
f3: focal length of the third lens
f1: focal length of the first lens,
It is.
JP2005148457A 2002-07-30 2005-05-20 Imaging lens Expired - Lifetime JP4207020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148457A JP4207020B2 (en) 2002-07-30 2005-05-20 Imaging lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002220692 2002-07-30
JP2002272939 2002-09-19
JP2005148457A JP4207020B2 (en) 2002-07-30 2005-05-20 Imaging lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003022180A Division JP3870907B2 (en) 2002-07-30 2003-01-30 Imaging lens

Publications (2)

Publication Number Publication Date
JP2005258467A true JP2005258467A (en) 2005-09-22
JP4207020B2 JP4207020B2 (en) 2009-01-14

Family

ID=35084157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148457A Expired - Lifetime JP4207020B2 (en) 2002-07-30 2005-05-20 Imaging lens

Country Status (1)

Country Link
JP (1) JP4207020B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027622A1 (en) * 2009-09-01 2011-03-10 オリンパスメディカルシステムズ株式会社 Objective optical system
JP2011085733A (en) * 2009-10-15 2011-04-28 Hitachi Maxell Ltd Imaging lens system
TWI448722B (en) * 2011-11-11 2014-08-11 Largan Precision Co Ltd Optical lens system for image taking
CN104181676A (en) * 2013-05-23 2014-12-03 信泰光学(深圳)有限公司 Micro lens
TWI485426B (en) * 2013-05-03 2015-05-21 Sintai Optical Shenzhen Co Ltd Miniaturized lens assembly
US9146378B2 (en) 2013-10-18 2015-09-29 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and mobile terminal
WO2019093377A1 (en) * 2017-11-10 2019-05-16 マクセル株式会社 Imaging lens system and imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138253B2 (en) 2006-09-05 2013-02-06 東京エレクトロン株式会社 Annealing equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027622A1 (en) * 2009-09-01 2011-03-10 オリンパスメディカルシステムズ株式会社 Objective optical system
US8531781B2 (en) 2009-09-01 2013-09-10 Olympus Medical Systems Corp. Objective optical system
JP2011085733A (en) * 2009-10-15 2011-04-28 Hitachi Maxell Ltd Imaging lens system
TWI448722B (en) * 2011-11-11 2014-08-11 Largan Precision Co Ltd Optical lens system for image taking
TWI485426B (en) * 2013-05-03 2015-05-21 Sintai Optical Shenzhen Co Ltd Miniaturized lens assembly
US9239445B2 (en) 2013-05-03 2016-01-19 Sintai Optical (Shenzhen) Co., Ltd. Miniaturized lens assembly
CN104181676A (en) * 2013-05-23 2014-12-03 信泰光学(深圳)有限公司 Micro lens
US9146378B2 (en) 2013-10-18 2015-09-29 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and mobile terminal
WO2019093377A1 (en) * 2017-11-10 2019-05-16 マクセル株式会社 Imaging lens system and imaging device
JPWO2019093377A1 (en) * 2017-11-10 2020-09-24 マクセル株式会社 Imaging lens system and imaging device

Also Published As

Publication number Publication date
JP4207020B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP3938143B2 (en) Super wide-angle optical system
JP3695449B2 (en) Imaging lens
US6927927B2 (en) Taking lens system
US7304807B2 (en) Taking lens system
JP4720214B2 (en) Imaging lens
JP4186560B2 (en) Super wide angle lens
JP3835398B2 (en) Imaging lens
JP2006243092A (en) Wide angle lens
JP2002082284A (en) Imaging lens device
JP4207020B2 (en) Imaging lens
JP4400193B2 (en) Imaging lens
JP3870907B2 (en) Imaging lens
JP4244958B2 (en) Imaging lens
JP2006098429A (en) Imaging lens
JP2005338234A (en) Imaging lens
JP4254746B2 (en) Imaging lens
JP2006330575A (en) Imaging lens
JP4442184B2 (en) Imaging lens
JP3611558B2 (en) Imaging lens
JP2004317743A (en) Imaging lens
JP3478265B2 (en) Imaging lens device
JP2004246169A (en) Single focus lens
JP3717487B2 (en) Imaging lens
JP2004163850A (en) Imaging lens
JP2004191844A (en) Imaging lens

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Ref document number: 4207020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term