JP2005257769A - Optical thin film, optical element, exposure apparatus using same, and exposure method - Google Patents

Optical thin film, optical element, exposure apparatus using same, and exposure method Download PDF

Info

Publication number
JP2005257769A
JP2005257769A JP2004065789A JP2004065789A JP2005257769A JP 2005257769 A JP2005257769 A JP 2005257769A JP 2004065789 A JP2004065789 A JP 2004065789A JP 2004065789 A JP2004065789 A JP 2004065789A JP 2005257769 A JP2005257769 A JP 2005257769A
Authority
JP
Japan
Prior art keywords
film
substrate
optical
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004065789A
Other languages
Japanese (ja)
Other versions
JP2005257769A5 (en
Inventor
Hirotaka Fukushima
浩孝 福島
Ryuji Hiroo
竜二 枇榔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004065789A priority Critical patent/JP2005257769A/en
Publication of JP2005257769A publication Critical patent/JP2005257769A/en
Publication of JP2005257769A5 publication Critical patent/JP2005257769A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element whose reflection characteristics are uniform in the surface of a lens. <P>SOLUTION: The optical element has multilayer film configuration in which crystalline substrate and its first layer are amorphous films having optical film thickness of 0.480 to 0.520λ0 when the λ0 is defined as the center wavelength of design. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は光学薄膜を用いた光学素子に関するものである。   The present invention relates to an optical element using an optical thin film.

カメラや半導体縮小投影露光装置(以下ステッパー)や液晶プロジェクターなどの光学を利用した製品には、レンズや基板に光学薄膜を施すことで所望の光学特性を持たした光学素子が多く用いられている。そして、これら光学素子が製品の性能を大きく左右している。   2. Description of the Related Art In optical products such as cameras, semiconductor reduced projection exposure apparatuses (hereinafter referred to as steppers) and liquid crystal projectors, optical elements having desired optical characteristics by applying optical thin films to lenses and substrates are often used. These optical elements greatly influence the performance of the product.

これら光学素子のレンズや基板には様々な硝材が用いられている。その求められる特性やコストにより使い分けられている。その中で結晶質の硝材を用いる必要がある場合がある。   Various glass materials are used for lenses and substrates of these optical elements. They are properly used according to their required characteristics and cost. Among them, it may be necessary to use a crystalline glass material.

例えば、光源波長が紫外域であるArFエキシマレーザーやFレーザーを用いるステッパーにおいては、そのレーザーの出力やフォトンエネルギーが大きいため、レンズや基板が光吸収を起こすことによる光量の低下や発熱による素子破壊が問題になることが多い。そのため、この光吸収を小さくするためにレンズや基板の硝材には、結晶質の蛍石などが用いられる。 For example, in a stepper using an ArF excimer laser or F 2 laser light source wavelength of the ultraviolet region, therefore the output and the photon energy of the laser is large, the lens and the substrate of the element due to the decrease and heat generation quantity by causing light absorption Destruction is often a problem. Therefore, in order to reduce this light absorption, crystalline fluorite or the like is used for the glass material of the lens or substrate.

また、カメラや天体望遠鏡などでも色収差の問題からレンズの硝材には結晶質の蛍石などが用いられることがある。   Moreover, crystalline fluorite or the like is sometimes used as the glass material of the lens in a camera or an astronomical telescope because of the problem of chromatic aberration.

このようなレンズや基板に結晶質の硝材を用いる場合に、光学特性などの点からその上に結晶質の光学薄膜が成膜されることがある。例えば特許文献1に記載されているような反射防止膜がその例である。基板とその基板上に成膜される薄膜が共に結晶質である場合、基板の原子面間隔と膜の原子面間隔の関係から薄膜の成長仕方が基板から大きく影響を受けることがある。例えば、岩塩上のAg膜のような基板方位に対して膜が、特定の方位に成長するエピタキシャル膜(岩塩上のAg膜の場合は(001)Ag//(001)NaCl)などがその代表例である。   When a crystalline glass material is used for such a lens or substrate, a crystalline optical thin film may be formed thereon from the viewpoint of optical characteristics. For example, an antireflection film as described in Patent Document 1 is an example. When the substrate and the thin film formed on the substrate are both crystalline, the growth method of the thin film may be greatly influenced by the substrate due to the relationship between the atomic plane spacing of the substrate and the atomic plane spacing of the film. For example, an epitaxial film in which the film grows in a specific direction with respect to the substrate orientation, such as an Ag film on rock salt (in the case of an Ag film on rock salt, (001) Ag // (001) NaCl) is a typical example. It is an example.

これは結晶質の光学薄膜においても例外ではない。結晶質である基板に結晶質の光学薄膜を成膜する場合、基板と薄膜の原子面間隔の関係から、光学薄膜の持つ特性がその基板により大きく変化する。図9に特許文献1に記載されている反射防止膜を(111)蛍石基板と(110)蛍石基板に成膜した場合の特性の違いを示す。これを従来例1とし、その構成を下に示す。   This is no exception in crystalline optical thin films. When a crystalline optical thin film is formed on a crystalline substrate, the characteristics of the optical thin film vary greatly depending on the relationship between the atomic plane distances of the substrate and the thin film. FIG. 9 shows the difference in characteristics when the antireflection film described in Patent Document 1 is formed on the (111) fluorite substrate and the (110) fluorite substrate. This will be referred to as Conventional Example 1, and its configuration is shown below.

[従来例1]
基板:単結晶蛍石
第一層:0.10λのLaF
第二層:0.30λのMgF
第三層:0.25λのLaF
第四層:0.24λのMgF
媒質:空気
特開平09−329702号公報
[Conventional example 1]
Substrate: Single crystal fluorite First layer: 0.10λ LaF 3
Second layer: 0.30λ MgF 2
Third layer: 0.25λ LaF 3
Fourth layer: 0.24λ MgF 2
Medium: Air
JP 09-329702 A

以上のように、上記従来例の反射防止膜などでは、結晶質の基板の成膜面における面方位の影響により、反射防止膜の特性が変化してしまうことがある。さらに、結晶質のレンズの場合は、レンズが曲率を有するためにレンズ面内において結晶面が同一ではなく、レンズ面内で反射特性が不均一となってしまう。このようなレンズ面内で反射特性が不均一である光学素子をカメラや半導体縮小投影露光装置などに用いると、その結像性能の低下を招いてしまう。   As described above, in the conventional antireflection film and the like, the characteristics of the antireflection film may change due to the influence of the plane orientation on the film formation surface of the crystalline substrate. Furthermore, in the case of a crystalline lens, since the lens has a curvature, the crystal surface is not the same in the lens surface, and the reflection characteristics are not uniform in the lens surface. If such an optical element having a non-uniform reflection characteristic within the lens surface is used in a camera, a semiconductor reduced projection exposure apparatus, or the like, the imaging performance is degraded.

そこで結晶質基板に結晶質の光学薄膜を形成する場合に、基板の面方位の状態による膜への影響を抑制するため、基板への第一層目に基板の面方位の影響を受けない非晶質膜を光学設計上の自由度を大きく失わない0.480〜0.520λ0の光学的膜厚分積層する。   Therefore, when a crystalline optical thin film is formed on a crystalline substrate, the first layer on the substrate is not affected by the surface orientation of the substrate in order to suppress the effect on the film due to the surface orientation of the substrate. The crystalline film is laminated by an optical film thickness of 0.480 to 0.520λ0 that does not largely lose the degree of freedom in optical design.

本発明を利用することで、基板やレンズが結晶質の硝材であってもその基板やレンズに光学特性が影響されることのない光学素子を製造することが可能となる。特に、レンズの場合はレンズ面内での光学特性の均一化に大きな効果を発揮する。そして、本発明の反射防止膜を用いると良好な光学特性を得ることも可能となる。   By utilizing the present invention, it is possible to manufacture an optical element whose optical characteristics are not affected by the substrate or lens even if the substrate or lens is a crystalline glass material. In particular, in the case of a lens, it has a great effect on making the optical characteristics uniform within the lens surface. Further, when the antireflection film of the present invention is used, good optical characteristics can be obtained.

以下に、本発明の実施形態としての一例として反射防止膜を示す。言うに及ばず、本発明はこの例に限定されるものではない。   Hereinafter, an antireflection film is shown as an example of the embodiment of the present invention. Needless to say, the present invention is not limited to this example.

本発明に係わる光学素子の一例としての反射防止膜は、図1に示すように結晶質基板1上に基板側から数えて第一層目として非晶質膜の低屈折率膜2、第二層目として結晶質膜の高屈折率膜3、第三層目として低屈折率膜4を積層した構成である。   As shown in FIG. 1, the antireflection film as an example of the optical element according to the present invention has an amorphous low refractive index film 2 as the first layer on the crystalline substrate 1 from the substrate side, A high refractive index film 3 of a crystalline film is laminated as a layer, and a low refractive index film 4 is laminated as a third layer.

そして、第一層目の非晶質膜の膜厚は、光学設計上の自由度を大きく失わない光学的膜厚で0.5λ前後の0.480〜0.520λ0である。   And the film thickness of the amorphous film of the first layer is 0.480 to 0.520λ0, which is an optical film thickness that does not largely lose the degree of freedom in optical design.

ここで用いられる低屈折率層は、基板よりも屈折率が低いものであり、MgF、AlF、NaF、LiF、CaF、SrF、BaF、NaAlF、SiO、TbFのいずれかかもしくはその混合物である。また、ここで用いられる高い屈折率層は、基板よりも屈折率が高いものであり、NdF、LaF、GdF、DyF、PbF、SmF、YbF、ErFのいずれかかもしくはその混合物である。 The low refractive index layer used here has a refractive index lower than that of the substrate, and is MgF 2 , AlF 3 , NaF, LiF, CaF 2 , SrF 2 , BaF 2 , Na 3 AlF 6 , SiO 2 , TbF 3. Or a mixture thereof. The high refractive index layer used here has a refractive index higher than that of the substrate, and is one of NdF 3 , LaF 3 , GdF 3 , DyF 3 , PbF 3 , SmF 3 , YbF 3 , and ErF 3 . Or a mixture thereof.

そして、基板への第一層目の非晶質膜の低屈折率膜はAlF、SiO、ThFのいずれかかもしくはその混合物である。 The low refractive index film of the first amorphous film on the substrate is any one of AlF 3 , SiO 2 , ThF 3 or a mixture thereof.

これらの膜の成膜方法は真空蒸着法、スパッタリング法、イオンプレーティング法、イオンアシスト蒸着法、イオンビームスパッタリング法、等の方法で好ましく成膜される。   These films are preferably formed by a method such as vacuum deposition, sputtering, ion plating, ion-assisted deposition, or ion beam sputtering.

また、本発明の反射防止膜の対象中心波長は、120〜200nmであるときに特に従来例に対してその効果が大きくなる。光の設計中心波長が165〜200nmではスパッタリング法か真空蒸着法、120〜165nmでは真空蒸着法が特に望ましい。   In addition, when the target center wavelength of the antireflection film of the present invention is 120 to 200 nm, the effect is particularly large with respect to the conventional example. Sputtering or vacuum deposition is particularly desirable when the design center wavelength of light is 165 to 200 nm, and vacuum deposition is particularly desirable when the wavelength is 120 to 165 nm.

以上の実施形態のような反射防止膜をレンズ、プリズム等の光学素子に適用することで、低反射高透過な光学素子が得られるばかりでなく、基板面内においてその光学特性が均一であり、その成膜において、その光学特性の再現性が基板に依らず十分に確保されるものが可能となる。   By applying the antireflection film as in the above embodiment to an optical element such as a lens or a prism, not only an optical element with low reflection and high transmission can be obtained, but also its optical characteristics are uniform within the substrate surface, In the film formation, it becomes possible to sufficiently ensure the reproducibility of the optical characteristics regardless of the substrate.

〈実施例〉
上記実施形態の具体的な実施例を以下に示す。
<Example>
Specific examples of the above embodiment will be described below.

本実施例1の反射防止膜は、図1のように基板1上に真空蒸着法を用いて低屈折率膜の層2、結晶質の高屈折率膜の層3、低屈折率膜の4を順次積層した構成である。基板硝材、膜材料、膜厚を以下に示す。   As shown in FIG. 1, the antireflective film of Example 1 is formed by applying a low refractive index film layer 2, a crystalline high refractive index film layer 3, and a low refractive index film 4 on a substrate 1 using a vacuum deposition method. Are sequentially stacked. The substrate glass material, film material, and film thickness are shown below.

[実施例1]
基板:単結晶蛍石
第一層:0.505λのAlF
第二層:0.248λのGdF
第三層:0.252λのMgF
媒質:空気
λは対象中心波長で、ここではλ=157nmとしてある。単結晶蛍石基板、AlF3、GdF3、MgF2の屈折率は、それぞれ1.56,1.46,1.80,1.46である。
[Example 1]
Substrate: Single crystal fluorite First layer: 0.505λ AlF 3
Second layer: 0.248λ GdF 3
Third layer: 0.252λ MgF 2
Medium: Air λ is a target center wavelength, and here, λ = 157 nm. The refractive indexes of the single crystal fluorite substrate, AlF3, GdF3, and MgF2 are 1.56, 1.46, 1.80, and 1.46, respectively.

また実施例1の比較例として、同様な成膜プロセスを用いて以下のような反射防止膜を形成した。   As a comparative example of Example 1, the following antireflection film was formed using the same film forming process.

[比較例1]
基板:単結晶蛍石
第一層:0.10λのMgF
第二層:0.30λのGdF
第三層:0.25λのMgF
媒質:空気
これらの反射特性を図2に示す。本実施例1の反射率の方が低減されており、入射角度が0°付近ではその値は0に近い。
[Comparative Example 1]
Substrate: Single crystal fluorite First layer: 0.10λ MgF 2
Second layer: 0.30λ GdF 3
Third layer: 0.25λ MgF 2
Medium: Air These reflection characteristics are shown in FIG. The reflectance of Example 1 is reduced, and the value is close to 0 when the incident angle is near 0 °.

また、これら例を(111)蛍石基板と(110)蛍石基板に成膜した場合の反射特性を図3に示す。比較例1では特性を異なるが、実施例1ではほぼ同じ特性であった。つまり、実施例1では基板の面方位に依らない光学特性を得られる。   In addition, FIG. 3 shows the reflection characteristics when these examples are formed on the (111) fluorite substrate and the (110) fluorite substrate. Although the characteristics were different in Comparative Example 1, the characteristics were almost the same in Example 1. That is, in Example 1, optical characteristics independent of the surface orientation of the substrate can be obtained.

本実施例2の反射防止膜は、図4のように基板1上に真空蒸着法を用いて低屈折率膜の層5、結晶質の高屈折率膜の層6、低屈折率膜の7を順次積層した構成である。基板硝材、膜材料、膜厚を以下に示す。   As shown in FIG. 4, the antireflective film of Example 2 is formed by using a vacuum deposition method on a substrate 1 as shown in FIG. 4, a low refractive index film layer 5, a crystalline high refractive index film layer 6, and a low refractive index film 7. Are sequentially stacked. The substrate glass material, film material, and film thickness are shown below.

[実施例2]
基板:単結晶蛍石
第一層:0.520λのAlF
第二層:0.257λのGdF
第三層:0.257λのMgF
媒質:空気
λは対象中心波長で、ここではλ=193nmとしてある。単結晶蛍石基板、AlF、GdF、MgFの屈折率は、それぞれ1.55,1.42,1.70,1.42である。
[Example 2]
Substrate: Single crystal fluorite First layer: 0.520λ AlF 3
Second layer: 0.257λ GdF 3
Third layer: 0.257λ MgF 2
Medium: Air λ is a target center wavelength, and here, λ = 193 nm. The refractive indexes of the single crystal fluorite substrate, AlF 3 , GdF 3 , and MgF 2 are 1.55, 1.42, 1.70, and 1.42, respectively.

また実施例2の比較例として、同様な成膜プロセスを用いて以下のような反射防止膜を形成した。   As a comparative example of Example 2, the following antireflection film was formed using the same film forming process.

[比較例2]
基板:単結晶蛍石
第一層:0.550λのAlF
第二層:0.275λのGdF
第三層:0.275λのMgF
媒質:空気
これらの反射特性を図5に示す。本実施例2の反射率がより低く、入射角度が0°付近ではその値は0に近い。また、これらの例を実際のステッパーに展開した場合を考えてみる。ステッパーはレンズ枚数が非常に多い。例えばレンズ枚数が100枚とすると、反射防止膜の面数は200枚になる。反射防止膜の反射率が0.1%であっても、(0.999)200で約20%の光量の低下となってしまう。また、これらの反射光は迷光となり、フレアーやゴーストの原因となってしまう。よって、ステッパーにおける高い露光性能を実現するにはたとえ0.1%でも低い反射特性が良い。実施例2はステッパー用の光学素子として見ても十分に低い反射特性を有している。
[Comparative Example 2]
Substrate: Single crystal fluorite First layer: 0.550λ AlF 3
Second layer: 0.275λ GdF 3
Third layer: 0.275λ MgF 2
Medium: Air These reflection characteristics are shown in FIG. In Example 2, the reflectance is lower, and the value is close to 0 when the incident angle is near 0 °. Also consider the case where these examples are developed in an actual stepper. Steppers have a very large number of lenses. For example, when the number of lenses is 100, the number of antireflection films is 200. Even if the reflectance of the antireflection film is 0.1%, the light quantity is reduced by about 20% at (0.999) 200 . In addition, these reflected lights become stray light and cause flare and ghost. Therefore, low reflection characteristics are good even at 0.1% in order to realize high exposure performance in the stepper. Example 2 has sufficiently low reflection characteristics even when viewed as an optical element for a stepper.

また、これら例を(111)蛍石基板と(110)蛍石基板に成膜した場合の反射特性を図6に示す。比較例2では特性を異なるが、実施例2ではほぼ同じ特性であった。つまり、実施例2では基板の面方位に依らない光学特性を得られる。   FIG. 6 shows the reflection characteristics when these examples are formed on the (111) fluorite substrate and the (110) fluorite substrate. Although the characteristics were different in Comparative Example 2, the characteristics were almost the same in Example 2. That is, in Example 2, optical characteristics independent of the surface orientation of the substrate can be obtained.

本実施例3の反射防止膜は、図4のように基板1上に真空蒸着法を用いて低屈折率膜の層5、結晶質の高屈折率膜の層6、低屈折率膜の7を順次積層した構成である。基板硝材、膜材料、膜厚を以下に示す。   As shown in FIG. 4, the antireflection film of Example 3 is formed by using a vacuum deposition method on the substrate 1 to form a low refractive index layer 5, a crystalline high refractive index layer 6, and a low refractive index layer 7. Are sequentially stacked. The substrate glass material, film material, and film thickness are shown below.

[実施例3]
基板:単結晶蛍石
第一層:0.480λのAlF
第二層:0.244λのLaF
第三層:0.244λのMgF
媒質:空気
λは対象中心波長で、ここではλ=157nmとしてある。単結晶蛍石基板、AlF3、GdF3、MgF2の屈折率は、それぞれ1.56,1.46,1.80,1.46である。
[Example 3]
Substrate: Single crystal fluorite First layer: 0.480λ AlF 3
Second layer: LaF 3 of 0.244λ
Third layer: 0.244λ MgF 2
Medium: Air λ is a target center wavelength, and here, λ = 157 nm. The refractive indexes of the single crystal fluorite substrate, AlF3, GdF3, and MgF2 are 1.56, 1.46, 1.80, and 1.46, respectively.

また実施例3の比較例として、同様な成膜プロセスを用いて以下のような反射防止膜を形成した。   As a comparative example of Example 3, the following antireflection film was formed using the same film forming process.

[比較例3]
基板:単結晶蛍石
第一層:0.460λのMgF
第二層:0.234λのLaF
第三層:0.234のMgF
媒質:空気
これらの反射特性を図7に示す。本実施例3の反射率がより低く、入射角度が0°付近ではその値は0に近い。また、これらの例を実際のステッパーに展開した場合を考えてみる。ステッパーはレンズ枚数が非常に多い。例えばレンズ枚数が100枚とすると、反射防止膜の面数は200枚になる。反射防止膜の反射率が0.1%であっても、(0.999)200で約20%の光量の低下となってしまう。また、これらの反射光は迷光となり、フレアーやゴーストの原因となってしまう。よって、高いステッパー露光性能を実現するにはたとえ0.1%でも低い反射特性が良い。実施例3はステッパーの光学素子としても十分に低い反射特性を有している。
[Comparative Example 3]
Substrate: Single crystal fluorite First layer: 0.460λ MgF 2
Second layer: 0.234λ LaF 3
Third layer: 0.234 MgF 2
Medium: Air These reflection characteristics are shown in FIG. In Example 3, the reflectance is lower, and the value is close to 0 when the incident angle is near 0 °. Also consider the case where these examples are developed in an actual stepper. Steppers have a very large number of lenses. For example, when the number of lenses is 100, the number of antireflection films is 200. Even if the reflectance of the antireflection film is 0.1%, the light quantity is reduced by about 20% at (0.999) 200 . In addition, these reflected lights become stray light and cause flare and ghost. Therefore, in order to achieve high stepper exposure performance, low reflection characteristics are good even at 0.1%. Example 3 has sufficiently low reflection characteristics as an optical element of a stepper.

また、これら例を(111)蛍石基板と(110)蛍石基板に成膜した場合の反射特性を図8に示す。比較例3では特性を異なるが、実施例3ではほぼ同じ特性であった。つまり、実施例3では基板の面方位に依らない光学特性を得られる。   In addition, FIG. 8 shows the reflection characteristics when these examples are formed on the (111) fluorite substrate and the (110) fluorite substrate. Although the characteristic was different in Comparative Example 3, the characteristic was almost the same in Example 3. That is, in Example 3, optical characteristics independent of the surface orientation of the substrate can be obtained.

<露光装置の実施例>
次に、本発明の光学薄膜を有する光学素子を半導体露光装置に適用した場合の実施例を示す。
<Example of exposure apparatus>
Next, an example in which the optical element having the optical thin film of the present invention is applied to a semiconductor exposure apparatus will be described.

図10において、10は光軸、20は真空紫外領域の波長157nmの光を発生する光源、30は開口絞り30Aを備える照明光学系、40はレチクルMを載置するステージ、50は開口絞り50Aを備える投影光学系、60はウエハWを載置するステージを示す。光源20からの光が照明光学系30を介してレチクルMに照射せしめられ、投影光学系50によりレチクルMのデバイスパターンの像がウエハW上に投影される。   In FIG. 10, 10 is an optical axis, 20 is a light source that generates light having a wavelength of 157 nm in the vacuum ultraviolet region, 30 is an illumination optical system including an aperture stop 30A, 40 is a stage on which the reticle M is placed, and 50 is an aperture stop 50A. The projection optical system 60 includes a stage 60 on which the wafer W is placed. Light from the light source 20 is irradiated onto the reticle M via the illumination optical system 30, and an image of the device pattern on the reticle M is projected onto the wafer W by the projection optical system 50.

本実施例の投影露光装置は、照明光学系30と投影光学系50のそれぞれにおいて本発明の光学薄膜を有するレンズにより光学系が形成されている。上記レンズによって光学系を構成したことにより、優れた光学特性を実現している。   In the projection exposure apparatus of the present embodiment, the optical system is formed by the lens having the optical thin film of the present invention in each of the illumination optical system 30 and the projection optical system 50. By configuring the optical system with the lens, excellent optical characteristics are realized.

<デバイス製造方法の実施例>
次に、上記図10の投影露光装置を利用したデバイスの製造方法の実施例を説明する。
<Example of Device Manufacturing Method>
Next, an embodiment of a device manufacturing method using the projection exposure apparatus shown in FIG. 10 will be described.

図11は半導体デバイス(ICやLSI等の半導体チップ、液晶パネルやCCD)の製造フローを示す。ステップ1(回路設計)では半導体デバイスの回路設計を行なう。ステップ2(マスク製作)では設計した回路パターンを形成したマスク(レチクル)を製作する。一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記用意したマスクとウエハとを用いて、リソグラフィー技術によってウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4よって作成されたウエハを用いてチップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)ではステップ5で作成された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行なう。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。   FIG. 11 shows a manufacturing flow of a semiconductor device (a semiconductor chip such as an IC or LSI, a liquid crystal panel or a CCD). In step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask production), a mask (reticle) on which the designed circuit pattern is formed is produced. On the other hand, in step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer. The next step 5 (assembly) is called a post-process, and is a process for forming a chip using the wafer created in step 4, and the assembly process (dicing, bonding), packaging process (chip encapsulation) and the like are performed. Including. In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device created in step 5 are performed. Through these steps, the semiconductor device is completed and shipped (step 7).

図12は上記ウエハプロセスの詳細なフローを示す。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12ではウエハの表面に絶縁膜を形成する。ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打ち込み)ではウエハにイオンを打ち込む。ステップ15(レジスト処理)ではウエハにレジスト(感材)を塗布する。ステップ16(露光)では上記投影露光装置によってマスクの回路パタ−ンの像でウエハを露光する。ステップ17(現像)では露光したウエハを現像する。ステップ18(エッチング)では現像したレジスト以外の部分を削り取る。ステップ19(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらステップを繰り返し行なうことによりウエハ上に回路パタ−ンが形成される。   FIG. 12 shows a detailed flow of the wafer process. In step 11 (oxidation), the wafer surface is oxidized. In step 12, an insulating film is formed on the surface of the wafer. In step 13 (electrode formation), an electrode is formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. In step 15 (resist process), a resist (sensitive material) is applied to the wafer. Step 16 (exposure) uses the projection exposure apparatus to expose a wafer with an image of the circuit pattern of the mask. In step 17 (development), the exposed wafer is developed. In step 18 (etching), portions other than the developed resist are removed. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.

本実施例の製造方法を用いれば、従来は難しかった高集積度のデバイスを製造することが可能になる。   By using the manufacturing method of this embodiment, it becomes possible to manufacture a highly integrated device, which has been difficult in the past.

本発明の実施例1の反射防止膜Antireflection film of Example 1 of the present invention 本発明の実施例1と比較例1の反射率―入射角度特性Reflectance-incident angle characteristics of Example 1 and Comparative Example 1 of the present invention 本発明の実施例1と比較例1それぞれの基板を変えた時の反射率―入射角度特性Reflectivity-incident angle characteristics when the substrates of Example 1 and Comparative Example 1 of the present invention are changed 本発明の実施例2及び3の反射防止膜Antireflection film of Examples 2 and 3 of the present invention 本発明の実施例2と比較例2の反射率―入射角度特性Reflectivity-incident angle characteristics of Example 2 and Comparative Example 2 of the present invention 本発明の実施例2と比較例2それぞれの基板を変えた時の反射率―入射角度特性Reflectivity-incident angle characteristics when the substrates of Example 2 and Comparative Example 2 of the present invention are changed 本発明の実施例3と比較例3の反射率―入射角度特性Reflectance-incident angle characteristics of Example 3 and Comparative Example 3 of the present invention 本発明の実施例3と比較例3それぞれの基板を変えた時の反射率―入射角度特性Reflectivity-incident angle characteristics when the substrates of Example 3 and Comparative Example 3 of the present invention are changed 従来の反射防止膜の光学特性Optical properties of conventional antireflection coatings 本発明の光学素子を有する光学系を有する投影露光装置を示す図The figure which shows the projection exposure apparatus which has an optical system which has the optical element of this invention デバイスの製造フローを示す図Diagram showing device manufacturing flow ウエハプロセスを示す図Diagram showing wafer process

符号の説明Explanation of symbols

1 基板
2 低屈折率層
3 高屈折率層
4 低屈折率層
5 低屈折率層
6 高屈折率層
7 低屈折率層
20 露光光源
30 照明光学系
40 レチクルステージ
50 投影光学系
60 ウエハステージ
DESCRIPTION OF SYMBOLS 1 Substrate 2 Low refractive index layer 3 High refractive index layer 4 Low refractive index layer 5 Low refractive index layer 6 High refractive index layer 7 Low refractive index layer 20 Exposure light source 30 Illumination optical system 40 Reticle stage 50 Projection optical system 60 Wafer stage

Claims (5)

結晶質基板とその第一層目がλ0を設計中心波長とすると0.480〜0.520λ0の光学的膜厚の非晶質膜である多層膜構成を特徴とする光学素子。   An optical element characterized in that the crystalline substrate and the first layer thereof have a multilayer structure that is an amorphous film having an optical film thickness of 0.480 to 0.520λ0 where λ0 is a design center wavelength. 請求項1における結晶質基板がCaF、MgF、LiF、LaFのいずれかであり、その基板への第一層目の非晶質膜がAlF、ThF、SiOのいずれかかもしくはそれらの混合物であることを特徴とした光学素子。 The crystalline substrate according to claim 1 is any one of CaF 2 , MgF 2 , LiF 2 , and LaF 3 , and the first amorphous film on the substrate is any one of AlF 3 , ThF 3 , and SiO 2 . Or an optical element characterized by being a mixture thereof. 請求項2の基板上の多層膜が、120〜200nmの波長の光に対する反射防止機能を有することを特徴とする光学素子。   3. The optical element according to claim 2, wherein the multilayer film on the substrate has an antireflection function for light having a wavelength of 120 to 200 nm. 請求項3の反射防止機能を有する多層膜が、AlF、YF、SiO、SiO、Al、Y、ScO、Pr11、TaO、TbF 、NaF、LiF、NaAlFのいずれかかもしくはその混合物である低屈折率膜と、NdF、LaF、GdF、DyF、PbF、SmF、YbF、ErFのいずれかかもしくはその混合物である高屈折率膜によって構成されていることを特徴とする光学素子。 The multilayer film having an antireflection function according to claim 3 is AlF 3 , YF 3 , SiO 2 , SiO, Al 2 O 3 , Y 2 O 3 , ScO 3 , Pr 6 O 11 , TaO 5 , TbF 3 , NaF, A low refractive index film that is one of LiF, Na 3 AlF 6 or a mixture thereof, and one of NdF 3 , LaF 3 , GdF 3 , DyF 3 , PbF 3 , SmF 3 , YbF 3 , ErF 3 or a combination thereof An optical element comprising a high refractive index film which is a mixture. 請求項4における多層膜が、λ0を設計中心波長とすると基板への第一層目の光学的膜厚が0.480〜0.520λ0の低屈折率膜、第二層目の光学的膜厚が0.240〜0.260λ0の高屈折率膜、第三層目の光学的膜厚が0.240〜0.260λ0の低屈折率膜であることを特徴とする光学素子。
5. The multilayer film according to claim 4, wherein λ0 is a design center wavelength, the optical film thickness of the first layer on the substrate is 0.480 to 0.520 λ0, and the optical film thickness of the second layer. Is a high refractive index film having a thickness of 0.240 to 0.260λ0, and a low refractive index film having an optical thickness of the third layer of 0.240 to 0.260λ0.
JP2004065789A 2004-03-09 2004-03-09 Optical thin film, optical element, exposure apparatus using same, and exposure method Pending JP2005257769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065789A JP2005257769A (en) 2004-03-09 2004-03-09 Optical thin film, optical element, exposure apparatus using same, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065789A JP2005257769A (en) 2004-03-09 2004-03-09 Optical thin film, optical element, exposure apparatus using same, and exposure method

Publications (2)

Publication Number Publication Date
JP2005257769A true JP2005257769A (en) 2005-09-22
JP2005257769A5 JP2005257769A5 (en) 2007-04-26

Family

ID=35083586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065789A Pending JP2005257769A (en) 2004-03-09 2004-03-09 Optical thin film, optical element, exposure apparatus using same, and exposure method

Country Status (1)

Country Link
JP (1) JP2005257769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793937A (en) * 2018-08-03 2020-02-14 张家港康得新光电材料有限公司 Membrane type determination method
KR20210114053A (en) * 2019-02-25 2021-09-17 사이머 엘엘씨 Optical elements for deep ultraviolet light sources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177002A (en) * 1984-09-25 1986-04-19 Canon Inc Optical antireflecting film
JPH10253802A (en) * 1997-03-07 1998-09-25 Nikon Corp Reflection preventive film
JP2000111707A (en) * 1998-10-05 2000-04-21 Nikon Corp Optical member having antireflection property and its production
JP2001141902A (en) * 1999-09-02 2001-05-25 Nikon Corp Optical element, its manufacturing method and exposure device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177002A (en) * 1984-09-25 1986-04-19 Canon Inc Optical antireflecting film
JPH10253802A (en) * 1997-03-07 1998-09-25 Nikon Corp Reflection preventive film
JP2000111707A (en) * 1998-10-05 2000-04-21 Nikon Corp Optical member having antireflection property and its production
JP2001141902A (en) * 1999-09-02 2001-05-25 Nikon Corp Optical element, its manufacturing method and exposure device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793937A (en) * 2018-08-03 2020-02-14 张家港康得新光电材料有限公司 Membrane type determination method
KR20210114053A (en) * 2019-02-25 2021-09-17 사이머 엘엘씨 Optical elements for deep ultraviolet light sources
KR102530873B1 (en) * 2019-02-25 2023-05-09 사이머 엘엘씨 Optical Elements for Deep Ultraviolet Light Sources
US11784452B2 (en) 2019-02-25 2023-10-10 Cymer, Llc Optical element for a deep ultraviolet light source

Similar Documents

Publication Publication Date Title
US7301695B2 (en) Anti-reflective film and optical element having anti-reflective film
JP2007133102A (en) Optical element having reflection preventing film, and exposure apparatus having the same
JP2005191381A (en) Exposure method and system thereof
US7511888B2 (en) Projection optical system, exposure apparatus, device manufacturing method, and device manufactured by using the same
JP2008242332A (en) Reflecting optical element and exposure device
TW200908083A (en) Exposure apparatus and semiconductor device fabrication method
US5885712A (en) Anti-reflection film and optical system using the same
TW201823848A (en) Pellicle structures and methods of fabricating thereof
JP2003297729A (en) Projection optical system, exposure apparatus, and method of exposure
WO2002050612A2 (en) Method and system for improving stability of photomasks
JPS63113502A (en) Reflection preventive film
JP4591686B2 (en) Multilayer reflector
JP3720609B2 (en) Antireflection film and optical system provided with the same
JP2002134385A (en) Multilayer film reflector and projection aligner
JPS63113501A (en) Reflection preventing film
US8179520B2 (en) Optical element, projection optical system, exposure apparatus, and device fabrication method
JP2005257769A (en) Optical thin film, optical element, exposure apparatus using same, and exposure method
JP3232727B2 (en) 2-wavelength anti-reflection coating
JPH11264902A (en) Antireflection film and optical system on which the film is applied
JP2002189101A (en) Antireflection film, optical element and exposure device
EP1312586A1 (en) Optical coating for UV applications
JP2007059743A (en) Multilayer film reflector and aligner
JP2007088237A (en) Multilayer reflector and euv exposure apparatus
JP2007156365A (en) Antireflection film, optical element, optical system, exposer and device manufacturing method
JP2002311209A (en) Antireflection film, optical element and aligner mounting the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102