JP2005257393A - Specifying method of corrosion spot of structure - Google Patents

Specifying method of corrosion spot of structure Download PDF

Info

Publication number
JP2005257393A
JP2005257393A JP2004067713A JP2004067713A JP2005257393A JP 2005257393 A JP2005257393 A JP 2005257393A JP 2004067713 A JP2004067713 A JP 2004067713A JP 2004067713 A JP2004067713 A JP 2004067713A JP 2005257393 A JP2005257393 A JP 2005257393A
Authority
JP
Japan
Prior art keywords
hydrogen gas
light
wavelength
corrosion
transmission loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067713A
Other languages
Japanese (ja)
Other versions
JP3955855B2 (en
JP2005257393A5 (en
Inventor
Katsuhiko Iketani
勝彦 池谷
Fumito Minoura
史登 箕浦
Osamu Ogawa
理 小川
Tadashi Mano
匡司 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2004067713A priority Critical patent/JP3955855B2/en
Publication of JP2005257393A publication Critical patent/JP2005257393A/en
Publication of JP2005257393A5 publication Critical patent/JP2005257393A5/ja
Application granted granted Critical
Publication of JP3955855B2 publication Critical patent/JP3955855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a specifying method of a corrosion spot of a structure capable of specifying highly accurately the corrosion spot of the structure, and specifying a loss factor of an optical fiber. <P>SOLUTION: In this method for specifying the corrosion spot of the structure 82 generating gaseous hydrogen h by corrosion, by storing one or a plurality of optical fibers 86, generation of the gaseous hydrogen h is detected by allowing light having the wavelength for detecting the gaseous hydrogen h generated by corrosion to enter the optical fibers 86, and when generation of the gaseous hydrogen h is detected, purge gas n is supplied into the structure 82 in a section where the gaseous hydrogen h is generated, to thereby purge the gaseous hydrogen h in the structure 82 to the outside of the structure 82, and then the change of a transmission loss generated in the optical fibers 86 is detected by allowing light having the wavelength for detecting the gaseous hydrogen hn to enter the optical fibers 86, to thereby specify a generation spot of the gaseous hydrogen hn. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバを収納する構造物の腐食箇所を特定する方法に関するものである。   The present invention relates to a method for identifying a corrosion location of a structure that houses an optical fiber.

1または複数の光ファイバを収納し、腐食によって水素ガスが供給される構造物として、例えば、図8に示すような光ファイバ複合架空地線(OPGW)81がある。OPGW81は、落雷を受け止める架空地線としての機能と、内蔵した光ファイバによる通信機能とを有する。このOPGW81は、気密構造のアルミ管(Al管)82と、その内部に設けられるアルミ製の溝付きスペーサ83とでアルミパイプユニット84を構成し、スペーサ83の溝85内に複数本の光ファイバ86を撚り合わせた通信用の光ファイバユニット87を収納し、アルミ管82の外周に複数本の鋼心アルミ線(AC線)88を撚り合わせたものである。アルミ管82、スペーサ83、光ファイバユニット87間には、わずかな空隙aが形成される。   As a structure that houses one or a plurality of optical fibers and is supplied with hydrogen gas by corrosion, for example, there is an optical fiber composite ground wire (OPGW) 81 as shown in FIG. The OPGW 81 has a function as an aerial ground wire that receives lightning strikes and a communication function using a built-in optical fiber. In this OPGW 81, an aluminum pipe unit 84 is configured by an aluminum tube (Al tube) 82 having an airtight structure and an aluminum grooved spacer 83 provided therein, and a plurality of optical fibers are provided in the groove 85 of the spacer 83. The optical fiber unit 87 for communication which twisted 86 is accommodated, and the steel tube aluminum wire (AC wire) 88 is twisted around the outer periphery of the aluminum pipe 82. A slight gap a is formed between the aluminum tube 82, the spacer 83, and the optical fiber unit 87.

OPGW81は、図10に示すように、鉄塔径間t(一般的には、200〜500m程度)で設けられた複数の鉄塔1間に、図示しない送電線より上方に架線され、送電線の下方となる鉄塔1に接続箱間隔b(一般的には、2〜3km程度、もしくは鉄塔1の3〜8径間程度)で設けられたOPGW用光接続箱(JB)2a,2b…により、光ファイバの若(上流)側と老(下流)側とが接続されて線路構成される。   As shown in FIG. 10, the OPGW 81 is installed above a power transmission line (not shown) between a plurality of steel towers 1 provided at a steel tower span t (generally about 200 to 500 m), and below the power transmission line. The optical connection boxes for OPGW (JB) 2a, 2b... Provided in the steel tower 1 with a junction box interval b (generally about 2 to 3 km, or about 3 to 8 diameters of the steel tower 1) The young (upstream) side and the old (downstream) side of the fiber are connected to form a line.

OPGW81では、図9(a)〜図9(d)に示すように、腐食によりAl管82に穴が開く障害が問題となっている。具体的には、Al管82とAC線88の空隙に水wがたまり、たまった水wの蒸発によりCl−等の不純物が濃縮される(図9(a))。Cl−によりAl管82とAC線88に孔食が発生する(図9(b))。孔食が進行し、AC線88の鉄が露出する(図9(c))。アルミと鉄のガルバニック作用により腐食が促進され、Al管82に貫通孔91が発生する。   In OPGW 81, as shown in FIGS. 9A to 9D, there is a problem that a hole is opened in the Al pipe 82 due to corrosion. Specifically, water w accumulates in the gap between the Al tube 82 and the AC wire 88, and impurities such as Cl- are concentrated by evaporation of the accumulated water w (FIG. 9A). Cl − causes pitting corrosion in the Al tube 82 and the AC wire 88 (FIG. 9B). Pitting corrosion progresses and the iron of AC line 88 is exposed (FIG. 9C). Corrosion is accelerated by the galvanic action of aluminum and iron, and a through hole 91 is generated in the Al pipe 82.

この貫通孔91から水wがAl管82内部へ浸入し、(i)浸入した水wが気温低下により凍結膨張して光ファイバを圧迫、または(ii)アルミニウムの腐食生成物(水酸化アルミ)が生じて光ファイバを圧迫することにより、光ファイバの伝送損失が増加し、通信回線障害に至ることがある。また、Al管82の腐食箇所において、水とアルミニウムが反応するときには、水素ガスが発生する。   Water w enters the inside of the Al pipe 82 from the through-hole 91, and (i) the infiltrated water w freezes and expands due to a decrease in temperature and compresses the optical fiber, or (ii) an aluminum corrosion product (aluminum hydroxide) Occurring and compressing the optical fiber may increase the transmission loss of the optical fiber and cause a communication line failure. In addition, hydrogen gas is generated when water reacts with aluminum at the corrosion location of the Al pipe 82.

OPGWの腐食箇所を特定する方法には、以下の1)〜3)の方法がある。   There are the following methods 1) to 3) as methods for identifying the corrosion site of OPGW.

1)気密測定法
図11に示すように、アルミ管および接続箱2a,2b…(図12参照)は気密構造なので、一方の接続箱2aから窒素ガスボンベ111によって窒素ガスを注入し、隣接する他方の接続箱2bでは圧力センサ112によって内部圧力をモニタし、注入側と同じ圧力になったら気密良好、すなわち、両接続箱2a,2b間のOPGW81のアルミ管には穴(貫通孔)がないと判定する。注入側と同じ圧力に達しない場合は気密不良、すなわちアルミ管に貫通孔があると判定する。
1) Airtight measurement method As shown in FIG. 11, the aluminum tubes and the junction boxes 2a, 2b (see FIG. 12) have an airtight structure, so that nitrogen gas is injected from one junction box 2a by the nitrogen gas cylinder 111, and the other In the connection box 2b, the internal pressure is monitored by the pressure sensor 112, and when the pressure becomes the same as that on the injection side, the airtightness is good. That is, there is no hole (through hole) in the aluminum tube of the OPGW 81 between the connection boxes 2a and 2b. judge. If the same pressure as the injection side is not reached, it is determined that the airtightness is poor, that is, the aluminum tube has a through hole.

図12に示すように、接続箱2aは、パッキン付きのケースにフタを閉めることで気密構造になっている。接続箱2aの側壁121には、OPGW導入口122と、増設ケーブル用穴123とが設けられているので、この増設用ケーブル穴123から窒素ガスの注入を行う。   As shown in FIG. 12, the junction box 2a has an airtight structure by closing a lid on a case with packing. Since the OPGW introduction port 122 and the extension cable hole 123 are provided in the side wall 121 of the connection box 2a, nitrogen gas is injected from the extension cable hole 123.

2)接続箱の水素濃度測定法
OPGWのアルミ管内部で発生した水素ガスは、OPGWの長手方向に拡散して接続箱内に滞留するので、接続箱における水素ガス濃度を検知管などにより測定する。測定した接続箱で水素ガスが検知されたら、その接続箱に接続された片側あるいは反対側のOPGW、または両側のOPGWにおいてアルミ管の腐食が発生していると判定する。
2) Method for measuring the hydrogen concentration in the junction box Since the hydrogen gas generated inside the OPGW aluminum tube diffuses in the longitudinal direction of the OPGW and stays in the junction box, the hydrogen gas concentration in the junction box is measured using a detector tube or the like. . If hydrogen gas is detected in the measured junction box, it is determined that corrosion of the aluminum pipe has occurred in the OPGW on one side or the opposite side connected to the junction box, or the OPGW on both sides.

3)水素吸収波長光を用いたOTDRによる測定
水素ガスは光ファイバの内部にまで拡散し、光ファイバ中を伝搬する光の伝送損失が特定の波長の光では増加する。特定の波長とは、光ファイバ内部に拡散した水素ガスの水素分子による吸収が原因となって損失が生じる波長(以下、「水素吸収波長」という。)であり、光ファイバ通信で用いられる近赤外領域では、図13の特性線131に示すように、1.24μm、1.6〜1.7μm帯の波長などがこれにあたる(その他の波長については、非特許文献1参照)。ただし、特性線131は、水素ガス分圧が1気圧(水素ガス100%雰囲気)における値を示している。
3) Measurement by OTDR using hydrogen absorption wavelength light Hydrogen gas diffuses to the inside of the optical fiber, and the transmission loss of light propagating in the optical fiber increases with light of a specific wavelength. The specific wavelength is a wavelength at which loss occurs due to absorption by hydrogen molecules of hydrogen gas diffused inside the optical fiber (hereinafter referred to as “hydrogen absorption wavelength”), which is a near-red wavelength used in optical fiber communication. In the outer region, as indicated by the characteristic line 131 in FIG. 13, the wavelengths in the 1.24 μm, 1.6 to 1.7 μm band, and the like correspond to this (for other wavelengths, refer to Non-Patent Document 1). However, the characteristic line 131 shows a value when the hydrogen gas partial pressure is 1 atm (hydrogen gas 100% atmosphere).

図14に示すように、光パルス試験器(Optical Time Domain Reflectometer)(以下、OTDR と記す。)141において、水素吸収波長光を用いることにより、光ファイバに、水素ガスによる伝送損失(以下、「水素吸収損失」という。)が発生している箇所の長手方向分布を測定することができ、水素吸収損失が発生している区間(接続箱間隔b)を把握することができる。   As shown in FIG. 14, in the optical pulse tester (Optical Time Domain Reflectometer) (hereinafter referred to as OTDR) 141, by using hydrogen absorption wavelength light, transmission loss due to hydrogen gas (hereinafter referred to as “ It is possible to measure the distribution in the longitudinal direction of the portion where the hydrogen absorption loss occurs) and to grasp the section where the hydrogen absorption loss occurs (junction box interval b).

具体的には、通信局舎142の光配線盤143と、OPGW81の若側端末の接続箱2sとが既に接続されているので、通信局舎142にOTDR141を設け、このOTDR141と光配線盤143とを接続する。OTDR141により、OPGW81の光ファイバに、測定光として、水素吸収波長光(例えば、波長1.24μmの光)を送信し、その後方散乱光の受光レベルを測定する。   Specifically, since the optical distribution board 143 of the communication station 142 and the connection box 2s of the young terminal of the OPGW 81 are already connected, the communication station 142 is provided with an OTDR 141, and this OTDR 141 and the optical distribution board 143 And connect. The OTDR 141 transmits hydrogen absorption wavelength light (for example, light having a wavelength of 1.24 μm) as measurement light to the optical fiber of the OPGW 81, and measures the light reception level of the backscattered light.

図15に示す測定結果の一例では、実線で示した水素吸収波長光(ここでは、波長1.24μmの光)の伝送損失分布(6.0dB/km)は、傾きが大きい、すなわち、損失が大きい箇所(距離0km近傍から2.5km程度まで)があるので、この箇所を水素吸収損失が発生している箇所と判断し、この位置でOPGWのアルミ管の腐食が発生していると見なしている。   In the example of the measurement result shown in FIG. 15, the transmission loss distribution (6.0 dB / km) of the hydrogen absorption wavelength light (here, light having a wavelength of 1.24 μm) indicated by a solid line has a large slope, that is, the loss is high. Since there is a large part (from a distance of about 0 km to about 2.5 km), this part is judged to be a place where hydrogen absorption loss has occurred, and it is considered that corrosion of the OPGW aluminum pipe has occurred at this position. Yes.

なお、この出願の発明に関連する先行技術文献情報としては、次のものがある。   The prior art document information related to the invention of this application includes the following.

特開平9−219114号公報JP-A-9-219114 特開2002−218614号公報JP 2002-218614 A 特開2002−218615号公報JP 2002-218615A 特開昭60−196702号公報JP 60-196702 A 特開昭63−18309号公報JP-A-63-18309 桑水流、外2名、“光海底ケーブル伝送損失に及ぼす水素の影響”、国際通信の研究、no.129,pp.345−354,1986年6月Kuwasui, 2 others, “Effect of hydrogen on optical submarine cable transmission loss”, research on international communications, no. 129, pp. 345-354, June 1986

ところで、腐食したOPGW区間は張り替えを行う必要があるが、張り替え区間を可能な限り短くする(コストを抑える)ためには、腐食位置を正確に把握することが必要である。張り替えの最小単位は通常、図10の鉄塔径間tとなるため、腐食位置の特定は、鉄塔径間t(一般的には、200〜500m程度)以下の精度が求められる。しかしながら、上述した1)〜3)の方法は次のような問題がある。   By the way, the corroded OPGW section needs to be replaced, but in order to shorten the replacement section as much as possible (to reduce the cost), it is necessary to accurately grasp the corrosion position. Since the minimum unit of re-laying is usually the steel tower span t in FIG. 10, the specification of the corrosion position requires an accuracy of the steel tower span t (generally about 200 to 500 m) or less. However, the methods 1) to 3) described above have the following problems.

1)気密測定法は、アルミ管の気密不良を直接把握できることが長所である。ただし、接続箱2a,2b…は通常、鉄塔1の3〜8径間程度の間隔で設置されている。したがって、この方法では、接続箱2a,2b間のOPGW81のアルミ管に穴があることはわかっても、どの位置(箇所、鉄塔径間)に穴があるかの特定はできない。   1) The advantage of the airtightness measurement method is that it can directly grasp the airtightness failure of the aluminum tube. However, the connection boxes 2a, 2b... Are usually installed at intervals of about 3 to 8 diameters of the steel tower 1. Therefore, in this method, even if it is known that there is a hole in the aluminum pipe of OPGW 81 between the junction boxes 2a and 2b, it is not possible to specify at which position (location, between the tower diameters) the hole is present.

また、調査対象外のOPGW81には窒素ガスが流れないようにしなければならない。そのため、接続箱2a,2b間においてOPGW81を分断する必要が生じ、全ての通信回線の停止および光ファイバの切断が必要となり、測定コストが高額になる。測定作業には3日/箇所程度必要であることからも、現実的ではない。   Further, it is necessary to prevent nitrogen gas from flowing through the OPGW 81 that is not the object of investigation. Therefore, it is necessary to divide the OPGW 81 between the connection boxes 2a and 2b, and it is necessary to stop all communication lines and cut optical fibers, resulting in a high measurement cost. Since the measurement work requires about 3 days / location, it is not realistic.

2)接続箱の水素濃度測定法は、簡単に測定でき、水素ガスの発生を直接把握できることが長所である。ただし、接続箱には両側のOPGWから水素ガスが流入し得るので、どちら側のOPGWから水素ガスが流れ込んだかの判定は不可能である。   2) The method of measuring the hydrogen concentration in the junction box is advantageous in that it can be easily measured and the generation of hydrogen gas can be directly grasped. However, since hydrogen gas can flow from the OPGW on both sides into the junction box, it is impossible to determine which side of the OPGW has flowed hydrogen gas.

つまり、水素濃度の測定結果は、測定した接続箱からその両側に隣接する接続箱までのOPGWの判定となるので、1)と同様に腐食位置(鉄塔径間)の特定はできない。   That is, since the measurement result of the hydrogen concentration is an OPGW determination from the measured junction box to the junction boxes adjacent to both sides thereof, the corrosion position (between the tower diameters) cannot be specified as in 1).

3)水素吸収波長光を用いたOTDRによる測定法は、OPGW81に内蔵された光ファイバの一端、例えば、通信局舎142から測定するだけで全てのOPGW81に内蔵された光ファイバの伝送損失分布を把握でき、それにより水素吸収損失箇所の特定が行えることが、1)、2)に比べ大きな利点である。ただし、OTDR141で把握できる水素吸収損失箇所は、水素ガスの存在位置であって、実際の腐食発生位置ではない。水素ガスはOPGW81の長手方向に拡散するので、腐食の発生していない位置の鉄塔径間でも水素吸収損失は観測されてしまう。実際、図15で説明したように、実線路の測定データでは、接続箱間隔全体のOPGWに水素吸収損失が観測される。   3) The measurement method by OTDR using the hydrogen absorption wavelength light is that the transmission loss distribution of the optical fiber built in all the OPGW 81 is measured only from one end of the optical fiber built in the OPGW 81, for example, the communication station 142. It is a great advantage over 1) and 2) that it can be grasped and the location of hydrogen absorption loss can be identified. However, the hydrogen absorption loss location that can be grasped by the OTDR 141 is the location where hydrogen gas exists, not the actual location where corrosion occurs. Since hydrogen gas diffuses in the longitudinal direction of the OPGW 81, hydrogen absorption loss is observed even between steel tower diameters where corrosion has not occurred. In fact, as described with reference to FIG. 15, in the actual line measurement data, hydrogen absorption loss is observed in the OPGW over the entire junction box interval.

また、水素吸収損失が生じる特定の波長においても、他要因(マイクロベンド損失等)によっても水素吸収損失に酷似した損失増加を示すことがあり、一波長の測定結果では損失要因の特定が困難である。特に水素吸収波長光の一つである、波長1.625μmの光の場合は他要因の影響が顕著となる。   Also, even at a specific wavelength where hydrogen absorption loss occurs, the loss increase may be very similar to hydrogen absorption loss due to other factors (such as microbend loss). is there. In particular, in the case of light having a wavelength of 1.625 μm, which is one of the hydrogen absorption wavelength lights, the influence of other factors becomes significant.

さらに、OPGW81に数kmに亘って水素吸収損失が生じている場合は、伝送損失の全体の量が大きくなり、一度に測定できるOPGWの長さが大きく制限される。すなわち、特定の波長(例えば、1.24μm)の光での測定では、OTDR141の測定光の減衰が大きく、通信局舎142からの測定だけでは、OPGW81全体の伝送損失分布の測定が不可能となるため、水素吸収損失が発生している箇所の評価が不可能となる。   Further, when hydrogen absorption loss occurs over several kilometers in the OPGW 81, the total amount of transmission loss increases, and the length of the OPGW that can be measured at one time is greatly limited. That is, in the measurement with light of a specific wavelength (for example, 1.24 μm), the attenuation of the measurement light of OTDR 141 is large, and it is impossible to measure the transmission loss distribution of the entire OPGW 81 only by measurement from the communication station 142. Therefore, it is impossible to evaluate the location where the hydrogen absorption loss occurs.

つまり、この方法では、水素ガスが拡散した伝送損失の増加区間(おおむね、接続箱間隔程度)は判定できても、伝送損失が発生する要因の特定、さらには伝送損失を増加させる要因が発生している位置、すなわち腐食が発生している箇所(もしくは、腐食が発生している鉄塔径間)の特定はできない。   In other words, in this method, even if the transmission loss increase interval (generally, about the junction box interval) in which hydrogen gas is diffused can be determined, the cause of the transmission loss is identified, and further the factor that increases the transmission loss occurs. It is not possible to identify the location where the corrosion occurs, that is, the location where the corrosion has occurred (or between the tower diameters where the corrosion has occurred).

そこで、本発明の目的は、上記課題を解決し、構造物の腐食箇所の高精度な特定、および光ファイバの伝送損失が発生する要因の特定を可能にする構造物の腐食箇所の特定方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems, and to provide a method for identifying a corroded portion of a structure that enables highly accurate identification of a corroded portion of a structure and identification of a factor causing transmission loss of an optical fiber. It is to provide.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、1または複数の光ファイバを収納し、腐食によって水素ガスが供給される構造物の腐食箇所を特定する方法であって、腐食で発生する水素ガスを検出する波長の光を前記光ファイバに入射して水素ガスの発生の有無を検出し、水素ガスの発生を検出したとき、水素ガスが発生している区間の構造物内にパージガスを供給して構造物内の水素ガスを構造物外にパージし、その後水素ガスを検出する波長の光を前記光ファイバに入射して前記光ファイバ内に発生する伝送損失の変化を検出することによって、水素ガスの発生箇所を特定する構造物の腐食箇所の特定方法である。   The present invention was devised to achieve the above object, and the invention of claim 1 specifies one or a plurality of optical fibers and specifies a corrosion location of a structure to which hydrogen gas is supplied by corrosion. In this method, light having a wavelength for detecting hydrogen gas generated by corrosion is incident on the optical fiber to detect whether hydrogen gas is generated. When hydrogen gas generation is detected, hydrogen gas is generated. A purge gas is supplied into the structure in a section where the hydrogen gas in the structure is purged outside the structure, and then light having a wavelength for detecting the hydrogen gas is incident on the optical fiber and generated in the optical fiber. This is a method for identifying the corrosion location of a structure that identifies the location where hydrogen gas is generated by detecting a change in transmission loss.

請求項2の発明は、前記水素ガスの発生の有無の検出には、水素ガスによる伝送損失の大なる波長の光と、水素ガスによる伝送損失の大なる波長の光よりも水素ガスによる伝送損失が小なる波長の光との少なくとも2波長の光を用いる請求項1記載の構造物の腐食箇所の特定方法である。   According to a second aspect of the present invention, in the detection of the presence or absence of the generation of hydrogen gas, light having a wavelength with a large transmission loss due to hydrogen gas and a transmission loss due to hydrogen gas than light having a wavelength having a large transmission loss due to hydrogen gas 2. The method for identifying a corroded portion of a structure according to claim 1, wherein light having at least two wavelengths and light having a smaller wavelength is used.

請求項3の発明は、前記光ファイバ内に発生する伝送損失の変化の検出には、水素吸収波長の光を用いる請求項1または2記載の構造物の腐食箇所の特定方法である。   A third aspect of the present invention is the method for identifying a corroded portion of a structure according to the first or second aspect, wherein light of a hydrogen absorption wavelength is used to detect a change in transmission loss generated in the optical fiber.

請求項4の発明は、前記水素ガスによる伝送損失の大なる波長の光のみを、水素吸収波長の光とする請求項1または2記載の構造物の腐食箇所の特定方法である。   The invention according to claim 4 is the method for identifying a corrosion site of a structure according to claim 1 or 2, wherein only light having a wavelength with a large transmission loss due to hydrogen gas is used as light having a hydrogen absorption wavelength.

請求項5の発明は、前記構造物をアルミ管とする、請求項1〜4いずれかに記載の構造物の腐食箇所の特定方法である。   The invention according to claim 5 is the method for identifying a corrosion location of the structure according to any one of claims 1 to 4, wherein the structure is an aluminum pipe.

請求項6の発明は、前記パージガスを、空気または窒素とする、請求項1〜5いずれかに記載の構造物の腐食箇所の特定方法である。   A sixth aspect of the invention is a method for identifying a corrosion location of a structure according to any one of the first to fifth aspects, wherein the purge gas is air or nitrogen.

請求項7の発明は、前記伝送損失の測定は、構造物に収納された光ファイバのいずれか1本を用いて測定する、請求項1〜6いずれかに記載の構造物の腐食箇所の特定方法である。   According to a seventh aspect of the invention, the measurement of the transmission loss is performed by using any one of optical fibers housed in the structure. Is the method.

請求項8の発明は、前記1または複数の光ファイバを収納する構造物は、光ファイバ複合架空地線とする、請求項1〜7いずれかに記載の構造物の腐食箇所の特定方法である。   Invention of Claim 8 is the identification method of the corrosion location of the structure in any one of Claims 1-7 which makes the structure which accommodates the said 1 or several optical fiber into an optical fiber composite aerial ground wire. .

本発明によれば、次のような優れた効果を発揮する。   According to the present invention, the following excellent effects are exhibited.

(1)構造物の腐食箇所を高精度に特定できる。   (1) The corrosion location of the structure can be specified with high accuracy.

(2)改修(張り替え)する区間を短くでき、改修費用の削減、工期の短縮が可能となる。   (2) The section to be repaired (replaced) can be shortened, so that the repair cost can be reduced and the construction period can be shortened.

以下、本発明の好適実施の形態を添付図面にしたがって説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

本発明は、光ファイバを収納した構造物の腐食箇所を特定する方法であるが、以下の説明では、本発明を図8で説明したOPGWのアルミ管の腐食箇所を特定する方法に応用した例で説明する。   The present invention is a method for identifying a corroded portion of a structure containing an optical fiber. In the following description, the present invention is applied to a method for identifying a corroded portion of an OPGW aluminum pipe described in FIG. I will explain it.

本実施の形態に係る構造物の腐食箇所の特定方法は、上述した3)水素吸収波長光を用いたOTDRによる測定法をベースとはしているが、腐食箇所(位置)の特定、すなわち腐食している箇所と腐食せずに水素ガスが拡散しているだけとの箇所とを区別するために、OTDR測定と接続箱からのパージガス注入とを併用することが特徴である。   The method for identifying the corrosion location of the structure according to the present embodiment is based on the above-described 3) measurement method by OTDR using hydrogen absorption wavelength light, but the identification of the corrosion location (position), that is, corrosion. In order to distinguish between the location where the hydrogen gas is diffused without being corroded and the location where only the OTDR measurement is performed and the purge gas injection from the junction box is used.

図1は、本発明の好適実施の形態であるアルミ管の腐食箇所の特定方法の一工程を示す概略図である。   FIG. 1 is a schematic diagram showing one step of a method for identifying a corroded portion of an aluminum pipe according to a preferred embodiment of the present invention.

図1に示すように、OPGW81は、鉄塔径間t(一般的に、200〜500m程度)で設けられた複数の鉄塔1間に、図示しない送電線より上方(鉄塔最上部など)に架線され、送電線の下方となる鉄塔1に接続箱間隔b(一般的に、2〜3km程度、もしくは鉄塔1の3〜8径間程度)で設けられたOPGW用光接続箱(JB)2s,2a,2b…により、光ファイバの若(上流)側と老(下流)側とが接続されて線路構成される。通信局舎3の光配線盤4と、OPGW81の若側端末の接続箱2sとが既に接続されているので、通信局舎3にOTDR5を設け、このOTDR5と光配線盤4とを接続する。   As shown in FIG. 1, OPGW 81 is installed above a transmission line (not shown) (such as the top of the tower) between a plurality of towers 1 provided with a tower span t (generally about 200 to 500 m). An optical connection box for OPGW (JB) 2s, 2a provided on the tower 1 below the transmission line with a connection box interval b (generally about 2-3 km or about 3-8 diameters of the tower 1). , 2b... Are connected to the young (upstream) side and the old (downstream) side of the optical fiber. Since the optical wiring board 4 of the communication station 3 and the connection box 2s of the young terminal of the OPGW 81 are already connected, the OTDR 5 is provided in the communication station 3 and the OTDR 5 and the optical wiring board 4 are connected.

まず、このOTDR5を用いた測定によって、OPGW81のアルミ管内に水素ガスが滞留しているかどうかを検出する。   First, whether or not hydrogen gas is retained in the aluminum pipe of OPGW81 is detected by measurement using this OTDR5.

水素ガス発生の有無の検出は、OTDRに代表されるような、光ファイバの長手方向の光の伝送損失の分布の測定を、2波長以上の複数の波長の光を用いて行う(説明を簡便化するため、以下、光ファイバの長手方向の光の伝送損失の分布の測定をOTDRを用いて行うと仮定し、その測定を、OTDR測定とよぶこととして説明する。)。   Detection of the presence or absence of hydrogen gas generation is performed by measuring the distribution of transmission loss of light in the longitudinal direction of an optical fiber, as represented by OTDR, using light of a plurality of wavelengths of two or more wavelengths (the explanation is simple). Therefore, in the following, it is assumed that the measurement of the distribution of light transmission loss in the longitudinal direction of the optical fiber is performed using OTDR, and the measurement is referred to as OTDR measurement.)

このOTDR測定に使用する測定光は、アルミ管の腐食で発生した水素ガスの影響を受けにくい(水素吸収損失の小なる)波長λaの光と、波長λaの光よりも水素ガスの影響を受けやすい(水素吸収損失の大なる)波長λbの光との少なくとも2波長の光とする。   The measurement light used for this OTDR measurement is less affected by hydrogen gas generated by corrosion of the aluminum tube (having a smaller hydrogen absorption loss) and more affected by hydrogen gas than light of wavelength λa. It is assumed that the light has a wavelength of λb that is easy (having a large hydrogen absorption loss) and at least two wavelengths.

本実施の形態では、波長λaの測定光として、水素ガスに吸収されにくい波長1.31μmの光を使用した。(なおこの波長は、通常、通信回線で使用されている。)また、波長λbの測定光としては、水素ガスによる吸収損失が2dB/km以上生じる波長の光として、水素吸収波長の光の一つである1.24μmの光、あるいは波長1.625μmの光を使用した。なお、波長は水素吸収損失が異なれば良いが、この例のように、波長λaは水素吸収波長ではない波長を、波長λbは水素吸収波長を選定すると、より好ましい。また、波長λbに水素吸収波長を選定する場合、測定光としては、先の例の他に、図13に示すような1.59、1.7μmなどの1.6〜1.7μm帯の波長の光などを使用してもよい(図13および非特許文献1参照)。   In the present embodiment, light having a wavelength of 1.31 μm that is difficult to be absorbed by hydrogen gas is used as measurement light having a wavelength λa. (This wavelength is usually used in communication lines.) In addition, as the measurement light having the wavelength λb, light having a wavelength that causes absorption loss due to hydrogen gas of 2 dB / km or more is used. One light having a wavelength of 1.24 μm or a light having a wavelength of 1.625 μm was used. Although it is sufficient that the wavelength has different hydrogen absorption loss, it is more preferable that the wavelength λa is not a hydrogen absorption wavelength and the wavelength λb is a hydrogen absorption wavelength as in this example. In addition, when the hydrogen absorption wavelength is selected as the wavelength λb, the measurement light may be a wavelength in the 1.6 to 1.7 μm band such as 1.59 and 1.7 μm as shown in FIG. May be used (see FIG. 13 and Non-Patent Document 1).

通信局舎3からOTDR5により、OPGW81の光ファイバユニットのいずれか1本の光ファイバに、波長λaの光と、波長λbの光とを送信して入射し、これら各光の後方散乱光の受光レベルをそれぞれ測定する。   The communication station 3 transmits the light with the wavelength λa and the light with the wavelength λb into one of the optical fibers of the OPGW 81 by the OTDR 5, and receives the backscattered light of each light. Measure each level.

ここで、光ファイバ中を伝搬する光の伝送損失が、水素吸収波長では水素ガス分圧に応じて一定の割合で増加することを利用する。上述した図13の特性線131は、水素ガス分圧が1気圧(水素ガス100%雰囲気)における値を示しているが、水素ガス分圧が1気圧以外の特性線の形も特性線131の形と相似になる(非特許文献1参照)。   Here, it is utilized that the transmission loss of light propagating through the optical fiber increases at a constant rate according to the hydrogen gas partial pressure at the hydrogen absorption wavelength. The above-described characteristic line 131 in FIG. 13 shows a value when the hydrogen gas partial pressure is 1 atm (hydrogen gas 100% atmosphere), but the shape of the characteristic line other than the hydrogen gas partial pressure is 1 atm. Similar to the shape (see Non-Patent Document 1).

つまり、水素ガスによる各波長の伝送損失増加値の比は特有であり、かつ一定であることから、各接続箱間ごとの水素ガスによる各波長の伝送損失増加値の比に、各接続箱間ごとの光ファイバの初期損失を加味させることにより、水素ガス発生の有無を検出すると共に、伝送損失要因が水素吸収損失である区間(隣接する接続箱間)のみを特定する。ただし、光ファイバの初期損失とは、接続損失や光ファイバ自体の伝送損失などの健全損失や、曲げ損失のことをいう。   In other words, since the ratio of the transmission loss increase value of each wavelength due to hydrogen gas is unique and constant, the ratio of the transmission loss increase value of each wavelength due to hydrogen gas between each connection box is By taking into account the initial loss of each optical fiber, the presence or absence of hydrogen gas generation is detected, and only the section (between adjacent junction boxes) where the transmission loss factor is the hydrogen absorption loss is specified. However, the initial loss of the optical fiber means sound loss such as connection loss and transmission loss of the optical fiber itself, and bending loss.

例えば、測定に波長1.31μmの光と波長1.24μmの光とを用いた場合、波長1.31μmの光の伝送損失(dB/km)を横軸にとり、波長1.24μmの光の伝送損失(dB/km)を縦軸にとると、図2に示すような実線路の測定結果が得られる。ただし、各伝送損失は各接続箱区間内の伝送損失の平均値である。   For example, when light having a wavelength of 1.31 μm and light having a wavelength of 1.24 μm are used for the measurement, the transmission loss (dB / km) of light having a wavelength of 1.31 μm is plotted on the horizontal axis, and light having a wavelength of 1.24 μm is transmitted. When the loss (dB / km) is taken on the vertical axis, the measurement result of the actual line as shown in FIG. 2 is obtained. However, each transmission loss is an average value of transmission loss in each junction box section.

図2に示すように、各伝送損失が、波長1.24μmの光において約1〜7dB/kmであり、かつ波長1.31μmの光において約0.38〜0.58dB/kmであるときのように、傾きが大きい特性線21近傍になるとき、それぞれの伝送損失が大きく異なることから、水素吸収損失(図中の×)が生じているとみなし、当該区間では水素ガスが滞留していると判定する。   As shown in FIG. 2, when each transmission loss is about 1 to 7 dB / km in the light with a wavelength of 1.24 μm and about 0.38 to 0.58 dB / km in the light with a wavelength of 1.31 μm, As described above, when the vicinity of the characteristic line 21 having a large inclination is reached, since each transmission loss is greatly different, it is considered that a hydrogen absorption loss (× in the figure) occurs, and hydrogen gas stays in the section. Is determined.

これに対し、波長1.24μmの光、および波長1.31μmの光の双方の伝送損失がほぼ一致し、かつ約0.36〜0.4dB/km近傍に集中するとき(図中の○)は、場所によらずほぼ同一の伝送損失であることを示すため、光ファイバそのものがもつ伝送損失(健全損失)とみなして、当該区間では水素ガスの滞留や、その他の要因での損失が発生していないと判定する。   On the other hand, when the transmission loss of both the light with a wavelength of 1.24 μm and the light with a wavelength of 1.31 μm are almost the same and are concentrated in the vicinity of about 0.36 to 0.4 dB / km (◯ in the figure). Indicates that the transmission loss is almost the same regardless of the location, so it is regarded as the transmission loss (sound loss) of the optical fiber itself, and hydrogen gas stagnation and other factors occur in the section. Judge that it is not.

また、波長1.24μmの光および波長1.31μmの光の伝送損失が、約0.37〜0.52dB/kmであるときのように、傾きが小さい特性線22近傍になるとき(図中の黒三角)、場所によって伝送損失が異なるが、水素吸収損失の比には及ばない程度の損失の相違が生じていることから、水素吸収損失ではない例えば曲げ損失などであるとみなして、当該区間では水素ガスの滞留はないが、何らかの損失は発生していると判定する。   Further, when the transmission loss of light having a wavelength of 1.24 μm and light having a wavelength of 1.31 μm is in the vicinity of the characteristic line 22 having a small inclination as in the case of about 0.37 to 0.52 dB / km (in the drawing) ), Transmission loss differs depending on the location, but since there is a difference in loss that does not reach the ratio of hydrogen absorption loss, it is considered that it is not hydrogen absorption loss, for example, bending loss. Although there is no stagnation of hydrogen gas in the section, it is determined that some loss has occurred.

波長1.31μmの光と波長1.625μmの光とを用いた場合も同様である。すなわち、図3に示すように、各伝送損失が、波長1.625μmの光において約0.6〜2.7dB/kmであり、かつ波長1.31μmの光において約0.38〜0.62dB/kmであるときのように、傾きが大きい特性線31近傍になるときは、水素吸収損失が生じているとみなして、当該区間で水素ガスが滞留していると判定する。   The same applies when light having a wavelength of 1.31 μm and light having a wavelength of 1.625 μm are used. That is, as shown in FIG. 3, each transmission loss is about 0.6 to 2.7 dB / km for light with a wavelength of 1.625 μm and about 0.38 to 0.62 dB for light with a wavelength of 1.31 μm. When it is near the characteristic line 31 with a large inclination as in the case of / km, it is determined that hydrogen absorption loss has occurred, and it is determined that hydrogen gas is retained in the section.

これに対し、各損失値が波長1.625μmの光、および波長1.31μmの光の双方の伝送損失がほぼ一致し、約0.36〜0.4dB/km近傍に集中するときは、健全損失とみなして、当該区間で水素ガスの滞留や、その他の要因での損失が発生していないと判定する。   On the other hand, when the loss values of both the light with a wavelength of 1.625 μm and the light with a wavelength of 1.31 μm are substantially the same and concentrate in the vicinity of about 0.36 to 0.4 dB / km, It is determined that there is no loss due to stagnation of hydrogen gas or other factors in the section.

また、波長1.625μmにおいて約0.3〜0.7dB/kmであり、かつ波長1.31μmの光において約0.37〜0.52dB/kmであるときのように、傾きが小さい特性線32近傍になるときは、水素吸収損失ではない損失(例えば、曲げ損失など)であるとみなして、当該区間で水素ガスの滞留はないが、何らかの損失は発生していると判定する。   In addition, the characteristic line has a small inclination as in the case of about 0.3 to 0.7 dB / km at a wavelength of 1.625 μm and about 0.37 to 0.52 dB / km in light having a wavelength of 1.31 μm. When it is close to 32, it is regarded as a loss that is not a hydrogen absorption loss (for example, a bending loss, etc.), and it is determined that some loss has occurred, although there is no stagnation of hydrogen gas in that section.

以上により、OPGW81のアルミ管内に水素ガスが滞留しているかどうかが検出され、同時に、接続箱間隔の程度の精度で水素ガスの滞留している区間(発生した水素ガスが拡散した区間)も特定される。   From the above, it is detected whether hydrogen gas is retained in the aluminum pipe of OPGW81, and at the same time, the section where the hydrogen gas is retained (the section where the generated hydrogen gas has diffused) is specified with the accuracy of the junction box interval. Is done.

次に、前述の方法でアルミ管内に水素ガスが滞留している区間を特定した後、その区間のどこで水素ガスが発生しているのかを特定する方法を説明する。   Next, a method for specifying the section where hydrogen gas is retained in the aluminum pipe by the above-described method and then identifying where the hydrogen gas is generated in the section will be described.

水素ガスが発生している区間のOPGW81では、図5(a)に示すように、アルミ管82、スペーサ83、光ファイバユニットとで形成された空隙aに、腐食箇所(水素ガス供給源)cから発生した水素ガスhが拡散して充満している。空隙aに水素ガスhが充満するのは、OPGW81に浸入した水が重力によってアルミ管82の外周面の底と、AC線88との隙間にたまり、この溜まった水によりアルミ管82が腐食され、主にアルミ管82の底部に図9の貫通孔91が形成されるためであると考えられる。   In the OPGW 81 in the section where hydrogen gas is generated, as shown in FIG. 5A, a corrosive spot (hydrogen gas supply source) c is formed in the gap a formed by the aluminum tube 82, the spacer 83, and the optical fiber unit. The hydrogen gas h generated from is diffused and filled. The hydrogen gas h is filled in the gap a because the water that has entered the OPGW 81 accumulates in the gap between the bottom of the outer peripheral surface of the aluminum tube 82 and the AC wire 88 due to gravity, and the accumulated water corrodes the aluminum tube 82. This is presumably because the through hole 91 shown in FIG. 9 is formed at the bottom of the aluminum tube 82.

ここでは例として、水素ガスが滞留している区間が、図1の接続箱2a,2b間であると特定されたと仮定して説明する。   Here, as an example, the description will be made assuming that the section in which the hydrogen gas is staying is specified between the junction boxes 2a and 2b in FIG.

図4に示すように、一方の接続箱2aにパージガスボンベ41を接続し、OPGW81のアルミ管内の空隙a(図8参照)に、接続箱2aからパージガスを供給(注入)する。パージガスは、測定光の伝送損失に影響を及ぼさないものであれば何でも構わないが、不活性ガス、空気などがよく、好ましくは窒素ガスである。また供給する圧力は、外気圧以上であることが必要であるが、好ましくは1気圧程度である。このパージガスの注入は、図12で説明したように、接続箱2aの側壁121に設けられた増設用ケーブル用穴123から行う。   As shown in FIG. 4, a purge gas cylinder 41 is connected to one of the connection boxes 2a, and purge gas is supplied (injected) from the connection box 2a into the gap a in the aluminum pipe of the OPGW 81 (see FIG. 8). The purge gas may be anything as long as it does not affect the transmission loss of the measuring light, but is preferably an inert gas, air, etc., preferably nitrogen gas. The pressure to be supplied needs to be equal to or higher than the external pressure, but is preferably about 1 atm. The purge gas is injected from the extension cable hole 123 provided in the side wall 121 of the junction box 2a as described with reference to FIG.

パージガス(ここでは例として、パージガスを窒素ガスnとする。)を注入したとき、図5(b)に示すように、注入した窒素ガスnにより、空隙a中の水素ガスhを接続箱2a,2b間のアルミ管82外にパージして抜き、空隙a中の水素ガス分圧を低下させた後、窒素ガスnの注入を停止する。   When purge gas (in this example, the purge gas is nitrogen gas n) is injected, as shown in FIG. 5B, the hydrogen gas h in the gap a is caused to flow into the junction box 2a, After purging out of the aluminum tube 82 between 2b and reducing the hydrogen gas partial pressure in the gap a, the injection of nitrogen gas n is stopped.

窒素ガスnの注入量は、接続箱2a,2b間のアルミ管82内の空隙aに存在している水素ガスhを窒素ガスnで置換できる程度の量とする。具体的には、アルミ管82内の空隙aの断面積が既知なので、計算により注入量を求め、この注入量に基づき、図4のパージガスボンベ41のバルブを開く時間を決定する。また、他方の接続箱2bに水素ガス濃度センサを接続し、この水素ガス濃度センサで接続箱2b内の水素ガス濃度をモニタし、水素ガスが予め定めた量以下、もしくは検知されなくなったとき、パージガスボンベ41のバルブを閉めるようにしてもよい。   The amount of nitrogen gas n injected is such that hydrogen gas h present in the gap a in the aluminum tube 82 between the junction boxes 2a and 2b can be replaced with nitrogen gas n. Specifically, since the cross-sectional area of the gap a in the aluminum pipe 82 is known, the injection amount is obtained by calculation, and the time for opening the valve of the purge gas cylinder 41 in FIG. 4 is determined based on this injection amount. In addition, when a hydrogen gas concentration sensor is connected to the other connection box 2b and the hydrogen gas concentration in the connection box 2b is monitored with this hydrogen gas concentration sensor, the hydrogen gas is below a predetermined amount or no longer detected. The valve of the purge gas cylinder 41 may be closed.

窒素ガスnの注入量は厳密に上述した量である必要はないが、注入量が多すぎたり、窒素ガスnを注入し続けたりしないようにすることが望ましい。これは、水素ガスが光ファイバ内部から自然拡散でゆっくりと抜けてゆく過程を観測するためである。すなわち、後述する水素ガスによる光ファイバの伝送損失変化の観測を容易にするためである。   Although the amount of nitrogen gas n need not be strictly the amount described above, it is desirable that the amount of nitrogen gas n not be too large or that nitrogen gas n be continuously injected. This is to observe the process of hydrogen gas slowly escaping from the inside of the optical fiber by natural diffusion. That is, to facilitate observation of a change in transmission loss of the optical fiber due to hydrogen gas, which will be described later.

窒素ガスnの注入停止後、図1の通信局舎3からOTDR5により、OPGW81の光ファイバユニットのいずれか1本の光ファイバに、前述した波長λbの測定光(例えば、波長1.24μm、あるいは波長1.625μm等の水素吸収波長の光)を送信して入射し、この光の後方散乱光の受光レベル(伝送損失分布)を継続して測定する。   After stopping the injection of the nitrogen gas n, the measurement light having the wavelength λb (for example, the wavelength of 1.24 μm, or the like) is applied to any one of the optical fiber units of the OPGW 81 by the OTDR 5 from the communication station 3 in FIG. Light with a hydrogen absorption wavelength such as a wavelength of 1.625 μm is transmitted and incident, and the light reception level (transmission loss distribution) of the backscattered light of this light is continuously measured.

図6に図5の各状態において、OTDR測定で観測される伝送損失の特徴の概要を示す。ただし、図6(a)〜図6(c)では、横軸を長手方向の位置とし、縦軸をOTDR受光レベルとする。   FIG. 6 shows an outline of the characteristics of transmission loss observed in the OTDR measurement in each state of FIG. However, in FIGS. 6A to 6C, the horizontal axis is the position in the longitudinal direction, and the vertical axis is the OTDR light reception level.

図6(a)に示すように、空隙a中の水素ガスhを抜いた直後(測定直後)のOTDR測定によって得られるOTDR受光レベルの波形61a(図5(a)および図5(b)の状態での測定結果に対応)は、水素ガスhを抜く前と損失のレベルがほとんど変わらず、全体的に損失が観測される。これは、光ファイバ内部の水素ガスがすぐにパージされず、光ファイバ中に水素ガスが存在するためである。   As shown in FIG. 6 (a), the waveform 61a (FIG. 5 (a) and FIG. 5 (b) of the OTDR light reception level obtained by the OTDR measurement immediately after the hydrogen gas h in the gap a is removed (immediately after the measurement). (Corresponding to the measurement result in the state), the loss level is almost the same as before the hydrogen gas h is extracted, and the loss is observed as a whole. This is because the hydrogen gas inside the optical fiber is not immediately purged, and hydrogen gas exists in the optical fiber.

空隙a中の水素ガスhが追い出され、空隙a中の水素分圧が低下すると、光ファイバ中に拡散していた水素ガスも次第に光ファイバ外部へ拡散し、光の伝送損失は減少(OTDR受光レベルは増加)していく。この過程は、水素ガスが抜けて伝送損失が減少するので、ここでは、損失減少過程と呼ぶこととする。   When the hydrogen gas h in the gap a is expelled and the hydrogen partial pressure in the gap a decreases, the hydrogen gas diffused in the optical fiber gradually diffuses to the outside of the optical fiber, and the light transmission loss decreases (OTDR light reception). Level will increase). This process is referred to herein as a loss reduction process because hydrogen gas escapes and transmission loss decreases.

このとき、図5(c)に示すような、腐食が発生して水素ガスの供給源となっている区間(腐食箇所c)では、新たに発生する水素ガスhnにより、水素ガスhが抜かれた健全区間(図中白抜きの部分)に比べて水素ガス分圧は高いため、光ファイバ中の水素ガスが光ファイバ外部へ抜ける速度は遅くなる。   At this time, as shown in FIG. 5C, the hydrogen gas h was extracted by the newly generated hydrogen gas hn in the section where the corrosion occurred and became the hydrogen gas supply source (corrosion point c). Since the hydrogen gas partial pressure is higher than that in the healthy section (the white area in the figure), the speed at which the hydrogen gas in the optical fiber escapes to the outside of the optical fiber is slow.

このとき、図6(b)に示すように、OTDR測定によって得られるOTDR受光レベルの波形61b(図5(c)の状態での測定結果に対応)では、損失が減少する速度が遅く、伝送損失(OTDR受光レベル)分布の傾きが大きいままである区間Bが観測されるので、この区間Bは新たに水素ガスhnが発生するなど、水素ガス分圧が高くなる要因をもつ区間であることがわかる。一方、OTDR測定によって得られるOTDR受光レベルの波形61bの区間B(水素ガス分圧が高くなる要因をもつ区間)以外の範囲では、図6(a)のOTDR測定によって得られるOTDR受光レベルの波形61aに比べて損失が全体的に減少する。   At this time, as shown in FIG. 6 (b), in the waveform 61b of the OTDR light reception level obtained by OTDR measurement (corresponding to the measurement result in the state of FIG. 5 (c)), the speed at which the loss is reduced is low. Since section B in which the slope of the loss (OTDR light reception level) distribution remains large is observed, this section B is a section having a factor of increasing the hydrogen gas partial pressure, such as newly generating hydrogen gas hn. I understand. On the other hand, in the range other than the section B of the waveform 61b of the OTDR light reception level obtained by the OTDR measurement (section having a factor that increases the hydrogen gas partial pressure), the waveform of the OTDR light reception level obtained by the OTDR measurement of FIG. Loss is reduced overall compared to 61a.

したがって、OTDR5で伝送損失(OTDR受光レベル)分布を継続的にモニタし、損失が減少するのが遅い区間Bを調べれば、図4の接続箱2a,2b間のさらに狭い範囲において、OPGW81のアルミ管の腐食箇所を特定することができる。   Therefore, by continuously monitoring the transmission loss (OTDR received light level) distribution with OTDR5 and examining section B where the loss is slow to decrease, the OPGW81 aluminum is narrower in the narrower range between the junction boxes 2a and 2b in FIG. It is possible to identify the corrosion site of the pipe.

その後、所定期間経過すると、図5(d)に示すように、腐食箇所cから新たに発生する水素ガスhnは長手方向に拡散し、OPGW81は図5(a)の状態に戻る。図5(d)に対応するOTDR測定によって得られるOTDR受光レベルの波形は、図6(c)に示すようにOTDR測定によって得られるOTDR受光レベルの波形61aである。   Thereafter, when a predetermined period elapses, as shown in FIG. 5D, the hydrogen gas hn newly generated from the corrosion location c diffuses in the longitudinal direction, and the OPGW 81 returns to the state of FIG. The waveform of the OTDR light reception level obtained by the OTDR measurement corresponding to FIG. 5D is the waveform 61a of the OTDR light reception level obtained by the OTDR measurement as shown in FIG.

ここで、本発明者らは、波長1.24μmの光によって、本手法で特定できる腐食区間の距離を概略で見積もってみた。   Here, the present inventors roughly estimated the distance of the corrosion section that can be specified by this method using light having a wavelength of 1.24 μm.

水素ガス分圧が1気圧において、波長1.24μmの光の水素吸収損失は8dB/kmである(図14および非特許文献1参照)。ただし、水素ガスが抜ける過程(損失減少過程)で観測するのだから、水素ガス分圧が1/4気圧程度での損失、すなわち2dB/km程度で観測できなければならないと仮定すると、現在、一般的に使用されているOTDRの伝送損失の測定精度は0.1dB程度であるから、現状では、腐食区間全体で0.2dB以上の損失が生じないと検出できない。ゆえに、(0.2dB)÷(2dB/km)=100mであるから、特定可能な腐食区間長は、100m以上となる。   When the hydrogen gas partial pressure is 1 atm, the hydrogen absorption loss of light having a wavelength of 1.24 μm is 8 dB / km (see FIG. 14 and Non-Patent Document 1). However, since the observation is performed in the process of loss of hydrogen gas (loss reduction process), assuming that the loss at a hydrogen gas partial pressure of about 1/4 atm, that is, about 2 dB / km should be observed, Since the measurement accuracy of the transmission loss of the OTDR used in general is about 0.1 dB, at present, it cannot be detected unless a loss of 0.2 dB or more occurs in the entire corrosion section. Therefore, since (0.2 dB) ÷ (2 dB / km) = 100 m, the identifiable corrosion section length is 100 m or more.

このように、本実施の形態に係る方法は、まず、OTDR5により、OPGW81のアルミ管82の腐食で水素ガスhが滞留しているとみなされる接続箱間2a,2bを特定する。次に、その接続箱間2a,2bのアルミ管82内の水素ガスhをパージガスでパージし、その後OTDR5により、接続箱間2a,2bにおいて、水素ガスによる光ファイバの伝送損失の変化を継続観測してアルミ管82内で新たに発生した水素ガスhnによる水素ガスが滞留しているとみなされる区間を検出する。   As described above, in the method according to the present embodiment, first, the connection boxes 2a and 2b between which the hydrogen gas h is considered to be retained due to corrosion of the aluminum pipe 82 of the OPGW 81 are specified by OTDR5. Next, the hydrogen gas h in the aluminum pipe 82 between the junction boxes 2a and 2b is purged with a purge gas, and then the change in the optical fiber transmission loss due to the hydrogen gas is continuously observed between the junction boxes 2a and 2b by OTDR5. Then, a section in which the hydrogen gas by the newly generated hydrogen gas hn is regarded as staying in the aluminum pipe 82 is detected.

これにより、本実施の形態に係る方法によれば、従来、接続箱間という精度でしか特定できなかったOPGWの腐食箇所を、鉄塔径間t以下の精度(約100m)で特定できる。したがって、例えば、図4の接続箱2a,2b間の鉄塔1a,1b間において、OPGW81のアルミ管82が腐食していることが高精度に特定できる。   Thereby, according to the method according to the present embodiment, it is possible to specify the corrosion location of OPGW, which has conventionally been specified only with an accuracy between junction boxes, with an accuracy (about 100 m) equal to or less than the steel tower span t. Therefore, for example, it can be specified with high accuracy that the aluminum pipe 82 of the OPGW 81 is corroded between the steel towers 1a and 1b between the junction boxes 2a and 2b of FIG.

また、パージガスは、単に接続箱間のアルミ管内の水素ガスhを追い出せばよいので、背景技術で説明した1)気密測定法のように、OPGWを分断し、調査対象外のOPGWにはパージガスが流れない状態にする必要がないため、通信回線停止や光ファイバの切断が不要となり、測定コストが安く、作業時間も短い。   Further, since the purge gas simply drives out the hydrogen gas h in the aluminum tube between the junction boxes, the OPGW is divided as in the airtight measurement method described in the background art. Since there is no need to make it non-flowing, there is no need to stop the communication line or cut the optical fiber, the measurement cost is low, and the work time is short.

OTDR5により接続箱間2a,2bを特定する際、水素ガスによる吸収損失が生じる波長1.24μmの光、あるいは1.6〜1.7μm帯の波長の光と、水素ガスに吸収されにくい波長1.31μmの光との少なくとも2波長の光を用いているので、従来では困難であった初期の腐食、あるいは水素吸収損失量が大きく生じる特定波長の光(例えば、波長1.24μmの光)では、損失量が大きく、OTDR5の測定光が遠くまで届かずに減衰し、各接続箱間全体の損失評価が不可能な場合においても、波長を選択することによりOPGW81の腐食箇所を効率的に特定できる。   When the connection box 2a, 2b is specified by OTDR5, light having a wavelength of 1.24 μm that causes absorption loss due to hydrogen gas, or light having a wavelength in the 1.6 to 1.7 μm band, and wavelength 1 that is not easily absorbed by hydrogen gas Because light of at least two wavelengths with light of .31 μm is used, in the case of light of a specific wavelength (for example, light of wavelength 1.24 μm) in which initial corrosion, which has been difficult in the past, or a large amount of hydrogen absorption loss occurs. Even if the loss amount is large, the measurement light of OTDR5 is attenuated without reaching far, and it is impossible to evaluate the total loss between each junction box, the corrosion location of OPGW81 can be identified efficiently by selecting the wavelength. it can.

その後、アルミ管82内で新たに発生した水素ガスhnによる水素ガスが滞留しているとみなされる区間を検出する際、水素ガスによる吸収損失が生じる波長1.24μmの光、あるいは1.6〜1.7μm帯の波長の光を用いているので、OPGW81の腐食箇所を高精度に特定できる。   Thereafter, when detecting a section in which the hydrogen gas generated by the hydrogen gas hn newly generated in the aluminum pipe 82 is regarded as staying, light having a wavelength of 1.24 μm causing absorption loss due to the hydrogen gas, or 1.6 to Since light having a wavelength in the 1.7 μm band is used, the corrosion location of OPGW81 can be specified with high accuracy.

さらに、一般にOPGWでは、図8のOPGW81のように、スペーサ83の外径はアルミ管82の内径よりも若干小さく形成されており、空隙aがあることにより、光ファイバユニット87のいずれか1本の光ファイバ86を用いて測定すれば、全ての光ファイバ86を測定することなく、水素ガスhや新たに発生する水素ガスhnを検知できる。   Further, in general, in the OPGW, the outer diameter of the spacer 83 is slightly smaller than the inner diameter of the aluminum tube 82 as in the OPGW 81 in FIG. 8, and any one of the optical fiber units 87 is provided due to the gap a. If the optical fiber 86 is used for measurement, the hydrogen gas h and the newly generated hydrogen gas hn can be detected without measuring all the optical fibers 86.

OTDR測定は、波長毎の伝送損失値の割合に主眼をおいていることから、評価結果が伝送損失の大小に左右されにくい。このことから、損失増加の比較的少ない腐食初期にも対応可能であり、OPGWの常時監視方法としても活用可能である。   Since the OTDR measurement focuses on the ratio of the transmission loss value for each wavelength, the evaluation result is not easily influenced by the magnitude of the transmission loss. Therefore, it is possible to cope with the initial stage of corrosion with a relatively small loss increase, and it can be used as a constant monitoring method for OPGW.

また、OTDRにより接続箱間を特定する際、各接続箱間ごとの水素ガスによる各波長の伝送損失増加値の比に、各接続箱間ごとの光ファイバの初期損失を加味させることにより、水素ガス発生の有無をさらに精度よく検出でき、伝送損失要因が水素吸収損失である区間(隣接する接続箱間)のみを特定できるようになる。   In addition, when specifying the connection box by OTDR, the initial loss of the optical fiber for each connection box is added to the ratio of the transmission loss increase value of each wavelength by the hydrogen gas for each connection box, so that The presence or absence of gas generation can be detected with higher accuracy, and only the section (between adjacent junction boxes) where the transmission loss factor is the hydrogen absorption loss can be specified.

さらに本発明によれば、OPGWの腐食箇所(腐食区間、腐食範囲)を精度よく特定することができるので、OPGWの改修(張り替え)する区間を短くでき、改修費用の削減、工期の短縮が可能となる。   Furthermore, according to the present invention, the corrosion location (corrosion zone, corrosion range) of OPGW can be specified with high accuracy, so that the zone where OPGW is refurbished (replaced) can be shortened, and the repair cost can be reduced and the construction period can be shortened. It becomes.

パージガスとしては、特定した接続箱間のアルミ管内の水素ガスの分圧を下げるという目的を達成すればよいから、窒素ガスnに限定されず、他の不活性ガス、空気などの水素吸収波長光で損失を大きくしないガスならばどのような種類でもよい。   The purge gas is not limited to the nitrogen gas n because it only needs to achieve the purpose of lowering the partial pressure of the hydrogen gas in the aluminum pipe between the specified junction boxes. Any type of gas may be used as long as it does not increase loss.

上述した方法は、水素ガスが抜けて伝送損失が減少する損失減少過程で観測する方法で説明しているが、特定した接続箱間のアルミ管内にパージガスを大量に注入し、アルミ管内(光ファイバ中も含む)の水素ガスhを十分に追い出し、パージガス注入を停止して再び新たに発生する水素ガスhnの発生の経過(伝送損失が増加していく過程:以下、「損失増加過程」という。)を観測する方法でもよい。ただし、損失減少過程を観測する方法の方が、測定時間を短縮する上では好ましい。   The above-described method is described as a method of observing the loss reduction process in which hydrogen gas escapes and transmission loss decreases, but a large amount of purge gas is injected into the aluminum tube between the specified junction boxes, and the aluminum tube (optical fiber) The hydrogen gas h (including the inside) is sufficiently expelled, the purge gas injection is stopped, and the generation of hydrogen gas hn newly generated again (a process in which transmission loss increases: hereinafter referred to as “loss increasing process”). ) May be used. However, the method of observing the loss reduction process is preferable for shortening the measurement time.

これは、損失減少過程を観測する方法では、伝送損失の変化の速度(以下、「現象速度」という。)は、光ファイバ内部から水素ガスが外部へ拡散する速度(拡散定数)により決まるため、腐食の程度に依らず約1週間程度の観測で腐食位置を特定することができるためである。一方、損失増加過程では、腐食の進行に伴う水素ガスの増加を待たなければならず、この現象速度は損失減少過程の場合よりかなり遅い。また、現象速度は腐食の程度に左右されるため、必要な観測期間をあらかじめ予測することができない。   This is because in the method of observing the loss reduction process, the rate of change in transmission loss (hereinafter referred to as “phenomenon rate”) is determined by the rate at which hydrogen gas diffuses from the inside of the optical fiber (diffusion constant). This is because the corrosion position can be specified by observation for about one week regardless of the degree of corrosion. On the other hand, in the loss increasing process, it is necessary to wait for an increase in hydrogen gas as the corrosion progresses, and this phenomenon speed is considerably slower than in the loss decreasing process. Moreover, since the phenomenon speed depends on the degree of corrosion, the necessary observation period cannot be predicted in advance.

長さ100mのOPGW(OPユニット)81をサンプルとし、その中央部26m長部分のアルミ管82を、希塩酸を注入することにより腐食させた。上述した本実施の形態に係る方法により、サンプルのアルミ管82内にパージガスとして窒素ガスnを所定の量だけ注入し、注入停止後の伝送損失の変化を波長1.24μmの光を用いてOTDRにより継続して観測した。この実験結果を図7に示す。ただし、図7では、横軸を距離にとり、縦軸をOTDR受光レベルにとっている。なお、図7の網目部分は測定終了後にアルミ管82を解体して、腐食していることを目視で確認した腐食範囲の区間である。   An OPGW (OP unit) 81 having a length of 100 m was used as a sample, and an aluminum tube 82 having a length of 26 m at the center was corroded by injecting dilute hydrochloric acid. By the method according to the present embodiment described above, a predetermined amount of nitrogen gas n is injected into the sample aluminum tube 82 as a purge gas, and the change in transmission loss after the injection is stopped is measured using light having a wavelength of 1.24 μm. Observed continuously. The experimental results are shown in FIG. However, in FIG. 7, the horizontal axis is the distance, and the vertical axis is the OTDR light reception level. In addition, the mesh part of FIG. 7 is a section of the corrosion range in which the aluminum tube 82 is disassembled after the measurement is finished and the corrosion is visually confirmed.

図7に示すように、窒素ガス注入前のOTDR測定によって得られる波形71(図中の細線)、およびその平均線71a(図中の一点鎖線)は、全体的に損失が観測されている(図5(a)の状態、図6(a)に相当)。パージガスの注入停止後、1.8日後のOTDR測定によって得られる波形72(図中の太い点線)は、アルミ管内の水素ガスをパージした(追い出した)直後なので、水素ガスをパージする前と伝送損失のレベルはほとんど変わらない(図5(b)の状態)。   As shown in FIG. 7, the waveform 71 (thin line in the figure) obtained by the OTDR measurement before nitrogen gas injection, and the average line 71a (the one-dot chain line in the figure) are generally observed to have a loss ( FIG. 5 (a) corresponds to FIG. 6 (a). Waveform 72 (thick dotted line in the figure) obtained by OTDR measurement after 1.8 days after the purge gas injection is stopped is just after hydrogen gas in the aluminum pipe has been purged (displaced), so transmission before and after purging hydrogen gas The level of loss hardly changes (state of FIG. 5B).

しかし、パージガスの注入停止から約1週間後である8.8日後のOTDR測定によって得られる波形73(図中の太線)、およびその平均線73a(図中の二点鎖線)では、波形71および平均線71aに比べて伝送損失が減少する(図5(c)の状態、図6(b)に相当)部分と、伝送損失が減少するのが遅い(波形の平均線の傾きが大きいままである)部分、すなわち伝送損失が大きいままである部分とが観測できる。従って、この伝送損失が大きいままである部分を腐食範囲(腐食区間)と特定する。この結果は、測定終了後にアルミ管82を解体して、腐食していることを目視で確認した腐食範囲の区間と一致し、本発明の有効性は検証された。   However, in the waveform 73 (thick line in the figure) obtained by OTDR measurement after 8.8 days, which is about one week after the stop of the purge gas injection, and the average line 73a (two-dot chain line in the figure), the waveform 71 and Compared with the average line 71a, the transmission loss is reduced (the state of FIG. 5C, corresponding to FIG. 6B), and the transmission loss is slow to decrease (the inclination of the average line of the waveform remains large). A certain part, that is, a part where transmission loss remains large can be observed. Therefore, the portion where the transmission loss remains large is identified as the corrosion range (corrosion section). This result coincided with the section of the corrosion range in which the aluminum tube 82 was disassembled after the measurement was finished and visually confirmed that it was corroded, and the effectiveness of the present invention was verified.

以上、測定の具体的な説明では、光ファイバの伝送損失分布を測る測定器としてOTDRを例としたが、当然、光によって伝送損失分布を測定する方法であれば同様に測定することができ、測定器をOTDRのみに限定するものではない。   As described above, in the specific description of the measurement, the OTDR is taken as an example of a measuring instrument for measuring the transmission loss distribution of the optical fiber, but it can be measured in the same manner as long as it is a method of measuring the transmission loss distribution by light. The measuring instrument is not limited to OTDR alone.

上記実施の形態では、構造物としてのOPGWの腐食箇所を特定する方法を説明したが、本発明は、OPGWに限らず、アルミ管に光ファイバを収納する構成を有するいかなる送電線、通信ケーブルを含む各種ケーブルや、逆に、観測用に光ファイバを配したアルミ管など、構造物としてのアルミ管の内部に光ファイバを配置している設備の腐食箇所の特定方法にも応用できる。また、観測対象をアルミ管だけでなく、腐食によって水素ガスが発生するものであれば同様に腐食箇所を特定できる。   In the above-described embodiment, the method for identifying the corrosion site of OPGW as a structure has been described. However, the present invention is not limited to OPGW, and any power transmission line or communication cable having a configuration in which an optical fiber is accommodated in an aluminum tube is used. It can also be applied to methods for identifying corroded areas in facilities that have optical fibers arranged inside an aluminum tube as a structure, such as various cables included, and conversely, aluminum tubes with optical fibers arranged for observation. Moreover, if the observation target is not only an aluminum pipe but also hydrogen gas is generated by corrosion, the corrosion location can be specified similarly.

更には、周辺雰囲気に水素ガスが存在し、通常は水素ガスの分圧が低い状態の構造物(収納容器)に光ファイバが収納され、収納容器の異常(壊れ、ひび、溶けなどの腐食)によって、外部などから水素ガスが供給され、その水素ガスに光ファイバがさらされるといった状況下の設備に対しても同様の方法で異常箇所を特定することが出来る。   Furthermore, the optical fiber is stored in a structure (storage container) where hydrogen gas is present in the surrounding atmosphere and the partial pressure of hydrogen gas is usually low, and the storage container is abnormal (corrosion due to breakage, cracking, melting, etc.). Thus, an abnormal location can be identified in the same way for equipment under circumstances where hydrogen gas is supplied from the outside and the optical fiber is exposed to the hydrogen gas.

本発明の好適実施の形態である構造物の腐食箇所の特定方法の一工程を示す概略図である。It is the schematic which shows 1 process of the identification method of the corrosion location of the structure which is preferable embodiment of this invention. 図1の工程における実線路測定結果の一例を示す図である。It is a figure which shows an example of the actual track | line measurement result in the process of FIG. 図1の工程における実線路測定結果の一例を示す図である。It is a figure which shows an example of the actual track | line measurement result in the process of FIG. 本実施の形態に係る構造物の腐食箇所の特定方法の一工程を示す概略図である。It is the schematic which shows 1 process of the identification method of the corrosion location of the structure which concerns on this Embodiment. 図5(a)〜図5(d)は、図4の工程におけるOPGWの縦断面を模式的に示した図である。FIG. 5A to FIG. 5D are diagrams schematically showing a longitudinal section of the OPGW in the process of FIG. 図6(a)は図5(a)および図5(b)におけるOTDR測定によって得られる波形図、図6(b)は図5(c)におけるOTDR測定によって得られる波形図、図6(c)は図5(d)におけるOTDR測定によって得られる波形図である。6A is a waveform diagram obtained by the OTDR measurement in FIGS. 5A and 5B, FIG. 6B is a waveform diagram obtained by the OTDR measurement in FIG. 5C, and FIG. ) Is a waveform diagram obtained by the OTDR measurement in FIG. 実施例におけるOTDR測定によって得られる波形図である。It is a wave form diagram obtained by the OTDR measurement in an Example. OPGWの一例を示す横断面図である。It is a cross-sectional view which shows an example of OPGW. 図9(a)〜(d)は、OPGWの腐食の進行を模式的に示した図(図8のA部の拡大図)である。FIGS. 9A to 9D are diagrams (enlarged view of portion A in FIG. 8) schematically showing the progress of corrosion of OPGW. OPGWの線路構成を示す概略図である。It is the schematic which shows the track | line structure of OPGW. 背景技術の気密測定法を示す概略図である。It is the schematic which shows the airtight measuring method of background art. OPGW接続箱の概略図である。It is the schematic of an OPGW connection box. 水素ガスによる光ファイバ伝送損失増加の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the optical fiber transmission loss increase by hydrogen gas. 背景技術の水素吸収波長光を用いたOTDR測定法を示す概略図である。It is the schematic which shows the OTDR measuring method using the hydrogen absorption wavelength light of background art. 図14の測定結果の一例を示すOTDR測定によって得られる波形図である。It is a wave form diagram obtained by OTDR measurement which shows an example of the measurement result of FIG.

符号の説明Explanation of symbols

1 鉄塔
2s,2a,2b… OPGW用光接続箱
3 通信局舎
5 OTDR
81 OPGW(構造物)
82 アルミ管(構造物)
86 光ファイバ
b 接続箱間隔
t 鉄塔径間
n 窒素ガス(パージガス)
h 水素ガス
hn 新たに発生する水素ガス
1 Steel tower 2s, 2a, 2b ... Optical connection box for OPGW 3 Communication station 5 OTDR
81 OPGW (structure)
82 Aluminum pipe (structure)
86 Optical fiber b Connection box interval t Steel tower span n Nitrogen gas (purge gas)
h Hydrogen gas hn Newly generated hydrogen gas

Claims (8)

1または複数の光ファイバを収納し、腐食によって水素ガスが供給される構造物の腐食箇所を特定する方法であって、腐食で発生する水素ガスを検出する波長の光を前記光ファイバに入射して水素ガスの発生の有無を検出し、水素ガスの発生を検出したとき、水素ガスが発生している区間の構造物内にパージガスを供給して構造物内の水素ガスを構造物外にパージし、その後水素ガスを検出する波長の光を前記光ファイバに入射して前記光ファイバ内に発生する伝送損失の変化を検出することによって、水素ガスの発生箇所を特定することを特徴とする構造物の腐食箇所の特定方法。   A method of housing one or a plurality of optical fibers and specifying a corrosion location of a structure to which hydrogen gas is supplied by corrosion, and entering light having a wavelength for detecting hydrogen gas generated by corrosion into the optical fiber. When the generation of hydrogen gas is detected, purge gas is supplied to the structure in the section where hydrogen gas is generated, and the hydrogen gas in the structure is purged outside the structure. Then, the location where hydrogen gas is generated is identified by detecting the change in the transmission loss generated in the optical fiber when light having a wavelength for detecting hydrogen gas is incident on the optical fiber. How to identify corroded parts. 前記水素ガスの発生の有無の検出には、水素ガスによる伝送損失の大なる波長の光と、水素ガスによる伝送損失の大なる波長の光よりも水素ガスによる伝送損失が小なる波長の光との少なくとも2波長の光を用いる請求項1記載の構造物の腐食箇所の特定方法。   The detection of the presence or absence of generation of hydrogen gas includes light having a wavelength with a large transmission loss due to hydrogen gas and light having a wavelength with a transmission loss due to hydrogen gas smaller than light having a wavelength with large transmission loss due to hydrogen gas. The method for identifying a corrosion location of a structure according to claim 1, wherein light having at least two wavelengths is used. 前記光ファイバ内に発生する伝送損失の変化の検出には、水素吸収波長の光を用いる請求項1または2記載の構造物の腐食箇所の特定方法。   The method for identifying a corroded portion of a structure according to claim 1 or 2, wherein light of a hydrogen absorption wavelength is used to detect a change in transmission loss generated in the optical fiber. 前記水素ガスによる伝送損失の大なる波長の光のみを、水素吸収波長の光とする請求項1または2記載の構造物の腐食箇所の特定方法。   The method for identifying a corroded portion of a structure according to claim 1 or 2, wherein only light having a wavelength with a large transmission loss due to hydrogen gas is light having a hydrogen absorption wavelength. 前記構造物をアルミ管とする、請求項1〜4いずれかに記載の構造物の腐食箇所の特定方法。   The method for identifying a corrosion location of a structure according to any one of claims 1 to 4, wherein the structure is an aluminum pipe. 前記パージガスを、空気または窒素とする、請求項1〜5いずれかに記載の構造物の腐食箇所の特定方法。   The method for identifying a corrosion location of a structure according to any one of claims 1 to 5, wherein the purge gas is air or nitrogen. 前記伝送損失の測定は、構造物に収納された光ファイバのいずれか1本を用いて測定する、請求項1〜6いずれかに記載の構造物の腐食箇所の特定方法。   The method for identifying a corrosion site of a structure according to any one of claims 1 to 6, wherein the transmission loss is measured using any one of optical fibers housed in the structure. 前記1または複数の光ファイバを収納する構造物は、光ファイバ複合架空地線とする、請求項1〜7いずれかに記載の構造物の腐食箇所の特定方法。
The method for identifying a corroded portion of a structure according to any one of claims 1 to 7, wherein the structure that houses the one or more optical fibers is an optical fiber composite ground wire.
JP2004067713A 2004-03-10 2004-03-10 How to identify corrosion points in structures Expired - Fee Related JP3955855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067713A JP3955855B2 (en) 2004-03-10 2004-03-10 How to identify corrosion points in structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067713A JP3955855B2 (en) 2004-03-10 2004-03-10 How to identify corrosion points in structures

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007079049A Division JP3955882B1 (en) 2007-03-26 2007-03-26 How to identify corrosion points in structures
JP2007079048A Division JP4065307B2 (en) 2007-03-26 2007-03-26 How to identify corrosion points in structures

Publications (3)

Publication Number Publication Date
JP2005257393A true JP2005257393A (en) 2005-09-22
JP2005257393A5 JP2005257393A5 (en) 2007-02-08
JP3955855B2 JP3955855B2 (en) 2007-08-08

Family

ID=35083265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067713A Expired - Fee Related JP3955855B2 (en) 2004-03-10 2004-03-10 How to identify corrosion points in structures

Country Status (1)

Country Link
JP (1) JP3955855B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164381A (en) * 2006-12-27 2008-07-17 Chugoku Electric Power Co Inc:The Method for estimating damaged spot of opgw, and information processor
JP2009258073A (en) * 2008-03-25 2009-11-05 Central Res Inst Of Electric Power Ind Method and apparatus for detecting water of optical fiber composite overhead ground wire
JP2013096734A (en) * 2011-10-28 2013-05-20 Hokkaido Electric Power Co Inc:The Optical fiber diagnosis method
JP2016053490A (en) * 2014-09-03 2016-04-14 日本電信電話株式会社 Water entry into detection sensor and water entry detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164381A (en) * 2006-12-27 2008-07-17 Chugoku Electric Power Co Inc:The Method for estimating damaged spot of opgw, and information processor
JP2009258073A (en) * 2008-03-25 2009-11-05 Central Res Inst Of Electric Power Ind Method and apparatus for detecting water of optical fiber composite overhead ground wire
JP2013096734A (en) * 2011-10-28 2013-05-20 Hokkaido Electric Power Co Inc:The Optical fiber diagnosis method
JP2016053490A (en) * 2014-09-03 2016-04-14 日本電信電話株式会社 Water entry into detection sensor and water entry detection method

Also Published As

Publication number Publication date
JP3955855B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
WO2019172276A1 (en) Optical fiber monitoring method, and optical fiber monitoring system
US7865044B2 (en) Sensing system using optical fiber suited to high temperatures
US5015859A (en) Method and apparatus for detecting wear
JP4657024B2 (en) Optical fiber inundation judgment method
JP4065307B2 (en) How to identify corrosion points in structures
CN112887017B (en) Positioning method and positioning system for optical cable connecting tower
JP3955855B2 (en) How to identify corrosion points in structures
JP5234943B2 (en) Water detection method and water detection device for optical fiber composite ground wire
JP3955882B1 (en) How to identify corrosion points in structures
JP2005257393A5 (en)
JP4660293B2 (en) Optical fiber intrusion judgment method, optical fiber maintenance method
Inaudi et al. Distributed fiber-optic sensing for long-range monitoring of pipelines
JP2010212767A (en) Otdr measuring instrument, system and method for monitoring optical communication line
JPS63236938A (en) Method for detecting water immersion of optical fiber cable connection part
JP7364960B2 (en) Fiber optic device, temperature measurement system, and method for manufacturing fiber optic device
Wright et al. Multi-Parameter Optical Fiber Sensor for Simultaneous Corrosion and Humidity Monitoring
JP2013096734A (en) Optical fiber diagnosis method
Wright et al. Metallic Film-Coated Optical Fiber Sensor for Corrosion Monitoring at High Pressures
JP7331959B2 (en) Apparatus and method for detecting immersion in optical fiber
JP2002218615A (en) Apparatus and method for sensing corrosion of aluminum overhead power transmission line
JP4979373B2 (en) OPGW damage location estimation method and information processing apparatus
JP4614896B2 (en) Method and apparatus for constructing data relating to water immersion amount of optical fiber built-in cable and transmission loss of optical fiber, method of estimating water immersion amount of cable containing optical fiber
中村篤志 A Study on Optical Fiber Testing Technique Based on Backscattered Power of Higher-Order Mode
Maslo et al. Degradation of Optical Fiber Parameters During the Period of Usage: 2003-2019
Nazarov et al. Performance Characteristics of Fiber Optical Lines and Diagnostic Techniques for Optical Fiber Cable

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees