JP2005257334A - Gas sensor element and output adjustment method therefor - Google Patents

Gas sensor element and output adjustment method therefor Download PDF

Info

Publication number
JP2005257334A
JP2005257334A JP2004066172A JP2004066172A JP2005257334A JP 2005257334 A JP2005257334 A JP 2005257334A JP 2004066172 A JP2004066172 A JP 2004066172A JP 2004066172 A JP2004066172 A JP 2004066172A JP 2005257334 A JP2005257334 A JP 2005257334A
Authority
JP
Japan
Prior art keywords
electrode
gas
adjustment
sensor element
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004066172A
Other languages
Japanese (ja)
Other versions
JP4401825B2 (en
Inventor
Hiroo Imamura
弘男 今村
Tasuke Makino
太輔 牧野
Makoto Nakae
誠 中江
Susumu Naito
将 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2004066172A priority Critical patent/JP4401825B2/en
Publication of JP2005257334A publication Critical patent/JP2005257334A/en
Application granted granted Critical
Publication of JP4401825B2 publication Critical patent/JP4401825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an output adjustment method for an inexpensive gas sensor element with a simple element structure capable of absorbing a characteristic individual difference. <P>SOLUTION: The gas sensor element comprises a solid electrolyte 11 and a pair of a reference electrode 4 and a measuring gas-side electrode 3, the pair of electrodes 3 and 4 being electrically connected to a measuring circuit adapted to take out an output. The gas sensor element further comprises a diffusion resistant layer 2 provided so as to cover the surface opposed to a measuring gas of the measuring gas-side electrode 3, the surface of the diffusion resistant layer 2 having a gas inlet part 20 so as to introduce the measuring gas at least from the diffusion resistant layer 2 toward the measuring gas-side electrode 3. When the output of this gas sensor element is adjusted, the area of the measuring gas-side electrode 3 covered with the diffusion resistant layer 2 is adjusted according to an output adjustment quantity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車エンジン等の内燃機関の排気系等に設置して燃焼制御等に利用できるガスセンサ素子及びその出力調整方法に関する。   The present invention relates to a gas sensor element that can be installed in an exhaust system or the like of an internal combustion engine such as an automobile engine and used for combustion control and the like, and an output adjustment method thereof.

自動車エンジン等の内燃機関において、空燃比制御を行う際に、次のような構成のガスセンサ素子を設けたガスセンサが広く用いられている。
すなわち、図11、図12に示すごとく、ガスセンサ素子9は、固体電解質体11と該固体電解質体11の表面に設けた一対の基準電極92と被測定ガス側電極91とからなり、上記一対の電極91、92は、該一対の電極91、92から出力を取り出すよう構成した測定回路(図示略)に電気的に接続されている。
そして、上記被測定ガス側電極91における被測定ガスと対面する面を覆うように、緻密層21と多孔層22からなる拡散抵抗層2が設けてあり、少なくとも上記拡散抵抗層2から上記被測定ガス側電極91に向けて被測定ガスを導入するよう、上記拡散抵抗層2の表面はガス導入部20を有する。
In an internal combustion engine such as an automobile engine, a gas sensor provided with a gas sensor element having the following configuration is widely used when air-fuel ratio control is performed.
That is, as shown in FIGS. 11 and 12, the gas sensor element 9 includes a solid electrolyte body 11, a pair of reference electrodes 92 provided on the surface of the solid electrolyte body 11, and a measured gas side electrode 91. The electrodes 91 and 92 are electrically connected to a measurement circuit (not shown) configured to extract output from the pair of electrodes 91 and 92.
A diffusion resistance layer 2 including a dense layer 21 and a porous layer 22 is provided so as to cover a surface of the measurement gas side electrode 91 facing the measurement gas, and at least from the diffusion resistance layer 2 to the measurement target. The surface of the diffusion resistance layer 2 has a gas introduction part 20 so as to introduce a measurement gas toward the gas side electrode 91.

上記ガスセンサ素子9において、ガス濃度の測定は次のように行われる。
すなわち、被測定ガスが導入部20を介して拡散抵抗層2に入り、被測定ガス側電極91と接触する。
被測定ガス側電極91と基準電極92との間に測定回路が接続されているが、この測定回路を介して、上記一対の電極91、92の間に定電圧を印加する。
この定電圧の値が適切であれば、上記一対の電極91、92の間に流れる電流値は拡散抵抗層2を通過する酸素分子の量によって律速される。
従って、上記一対の電極91、92に接続した測定回路において検出できる電流値は、被測定ガス中の酸素濃度が一定であれば、特定の値で飽和する特性を持つ。
In the gas sensor element 9, the gas concentration is measured as follows.
That is, the gas to be measured enters the diffusion resistance layer 2 through the introduction portion 20 and contacts the gas to be measured side electrode 91.
A measurement circuit is connected between the measured gas side electrode 91 and the reference electrode 92, and a constant voltage is applied between the pair of electrodes 91 and 92 via this measurement circuit.
If the value of the constant voltage is appropriate, the value of the current flowing between the pair of electrodes 91 and 92 is limited by the amount of oxygen molecules passing through the diffusion resistance layer 2.
Therefore, the current value that can be detected in the measurement circuit connected to the pair of electrodes 91 and 92 has a characteristic of being saturated at a specific value if the oxygen concentration in the gas to be measured is constant.

図13は酸素濃度がa〜dまで変化した場合(a>b>c>d)の、上記一対の電極91、92に対する印加電圧と出力電流との関係を示す線図である。
同図より、上記一対の電極91、92間に適当な印加電圧を加えることで(同図に示すV)、酸素濃度に応じた出力電流が得られることがわかる。同図において、酸素濃度がaの場合、出力電流Iaを得ることができる。
FIG. 13 is a diagram showing the relationship between the voltage applied to the pair of electrodes 91 and 92 and the output current when the oxygen concentration changes from a to d (a>b>c> d).
From the figure, it is understood that an output current corresponding to the oxygen concentration can be obtained by applying an appropriate applied voltage between the pair of electrodes 91 and 92 (V shown in the figure). In the figure, when the oxygen concentration is a, the output current Ia can be obtained.

ところで多数のガスセンサ素子を製造する際は、製造ばらつきにより特性に個体差が発生することがある。
酸素濃度aの被測定ガスにさらしたガスセンサ素子の、上記一対の電極の間に定電圧Vを印加すると、出力電流はIaとなる筈である。
しかし現実に多数のガスセンサ素子からから得られる出力電流をプロットすると、図14に示すような分布図が得られる。
ある程度の誤差を許容するとして、ΔIaの範囲にある出力を得たガスセンサ素子は良品として実用に供することができても、ΔIaの範囲を越えたXにあたる出力を備えるガスセンサ素子は、測定誤差が大きく、使用に耐えない不良品である。
By the way, when manufacturing a large number of gas sensor elements, individual differences may occur in characteristics due to manufacturing variations.
When a constant voltage V is applied between the pair of electrodes of the gas sensor element exposed to the gas to be measured having an oxygen concentration a, the output current should be Ia.
However, when the output current obtained from a large number of gas sensor elements is actually plotted, a distribution diagram as shown in FIG. 14 is obtained.
Even if a gas sensor element that has obtained an output in the range of ΔIa can be put into practical use as a non-defective product assuming that a certain amount of error is allowed, a gas sensor element having an output corresponding to X exceeding the range of ΔIa has a large measurement error. This is a defective product that cannot be used.

従って、製造歩留まり向上のためには、不良品のガスセンサ素子をなんらかの手段で良品となる出力範囲に出力調整してやる必要がある。
従来、素子の外部に抵抗体等を備えた外部回路を設けて、該外部回路の抵抗値を適宜変更して出力電流を調整し、製造ばらつきによる特性個体差を吸収することが提案されていた(特許文献1参照)。
また、拡散抵抗層を加工して、被測定ガスが導入部から電極に到達するまでの距離(拡散距離)を変えて、特性個体差を吸収することが提案されていた(特許文献2参照)。
Therefore, in order to improve the manufacturing yield, it is necessary to adjust the output of the defective gas sensor element to a non-defective output range by some means.
Conventionally, it has been proposed to provide an external circuit having a resistor or the like outside the element, adjust the output current by appropriately changing the resistance value of the external circuit, and absorb characteristic individual differences due to manufacturing variations. (See Patent Document 1).
In addition, it has been proposed to process the diffusion resistance layer and change the distance (diffusion distance) until the gas to be measured reaches the electrode from the introduction part to absorb individual differences (see Patent Document 2). .

実公平7−27391号公報No. 7-27391 特開2001−153835号公報JP 2001-153835 A

しかしながら、特許文献1にかかる発明では、出力電流の調整にガスセンサ素子と別個の外部回路、抵抗体等が必要で、素子構成が複雑となるおそれがあった。
また、特許文献2にかかる発明では、拡散抵抗層の拡散抵抗の特性(気孔率や気孔径)が場所に応じてばらつくことがあるため、拡散距離の変更のみで目標とする出力電流を得ることは困難であった。
本発明は、かかる従来の問題点に鑑みてなされたもので、特性個体差を吸収可能で、低コスト、素子構成が単純であるガスセンサ素子及びその出力調整方法を提供しようとするものである。
However, in the invention according to Patent Document 1, an external circuit, a resistor, and the like separate from the gas sensor element are required for adjusting the output current, and the element configuration may be complicated.
Further, in the invention according to Patent Document 2, since the diffusion resistance characteristics (porosity and pore diameter) of the diffusion resistance layer may vary depending on the location, a target output current can be obtained only by changing the diffusion distance. Was difficult.
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a gas sensor element that can absorb individual characteristic differences, has a low cost, and has a simple element configuration, and an output adjustment method thereof.

第1の発明は、固体電解質体と該固体電解質体の表面に設けた一対の基準電極と被測定ガス側電極とからなり、上記一対の電極は、該一対の電極から出力を取り出すよう構成した測定回路に電気的に接続されてなり、
かつ上記被測定ガス側電極における被測定ガスと対面する面を覆うように拡散抵抗層が設けてあり、少なくとも上記拡散抵抗層から上記被測定ガス側電極に向けて被測定ガスを導入するよう、上記拡散抵抗層の表面はガス導入部を有するガスセンサ素子の出力を調整するにあたり、
出力調整量に応じて、拡散抵抗層により覆われた被測定ガス側電極の面積を調整することを特徴とするガスセンサ素子の出力調整方法にある。
The first invention comprises a solid electrolyte body, a pair of reference electrodes provided on the surface of the solid electrolyte body, and a gas side electrode to be measured, and the pair of electrodes is configured to extract output from the pair of electrodes. Electrically connected to the measurement circuit,
And a diffusion resistance layer is provided so as to cover the surface of the measurement gas side electrode facing the measurement gas, and at least the measurement gas is introduced from the diffusion resistance layer toward the measurement gas side electrode. In adjusting the output of the gas sensor element having the gas introduction part, the surface of the diffusion resistance layer is
According to the output adjustment method of the gas sensor element, the area of the measured gas side electrode covered with the diffusion resistance layer is adjusted according to the output adjustment amount.

ガスセンサ素子において、拡散抵抗層に覆われた被測定ガス側電極と基準電極との間に適当な電圧を印加した場合、両電極間から得られる出力電流は拡散抵抗層を通過する被測定ガスの量によって律速される。
一般に、拡散抵抗層で覆われた被測定ガス側電極を備えたガスセンサ素子において、出力電流は拡散断面積が大きくなると増加する傾向がある。
よって、出力調整量に応じて、拡散抵抗層で覆われた被測定ガス側電極の面積を調整することで、拡散断面積を調整し、出力電流を調整することができる。すなわち、被測定ガス側電極の面積を小さくすることで、拡散断面積を小さくして、出力電流を減らすことができる。反対に、被測定ガス側電極の面積を大きくすることで、拡散断面積を大きくして、出力電流を増やすことができる。
In the gas sensor element, when an appropriate voltage is applied between the measurement gas side electrode covered with the diffusion resistance layer and the reference electrode, the output current obtained between the two electrodes is the current of the measurement gas passing through the diffusion resistance layer. Limited by quantity.
In general, in a gas sensor element having a measured gas side electrode covered with a diffusion resistance layer, the output current tends to increase as the diffusion cross-sectional area increases.
Therefore, by adjusting the area of the measured gas side electrode covered with the diffusion resistance layer according to the output adjustment amount, the diffusion cross section can be adjusted and the output current can be adjusted. That is, by reducing the area of the measured gas side electrode, the diffusion cross-sectional area can be reduced and the output current can be reduced. On the contrary, by increasing the area of the measured gas side electrode, the diffusion cross-sectional area can be increased and the output current can be increased.

また、第1の発明にかかるガスセンサ素子では、被測定ガス側電極が拡散抵抗層に覆われている。従って、被測定ガスはガス導入部から拡散抵抗層の内部を経由して、拡散抵抗層と被測定ガス側電極との境界面を通じて、被測定ガス側電極表面に到達する。
被測定ガス側電極の面積を調整する手段を設けることで、拡散断面積をコントロールして、容易に素子の出力調整を行うことができる。
そして、第1の発明は、被測定ガス側電極の面積を調整する手段として従来技術に記載したような抵抗体を用いた外部回路を用いていないため、低コストかつ素子構成を単純とすることができる。
更に、拡散距離でなく、拡散断面積を調整する方法で出力調整を行うため、拡散距離の差が原因の拡散抵抗層のガス通過時間、すなわち応答時間のガスセンサ素子間バラツキが生じ難いという効果を得ることができる。
以上、第1の発明によれば、特性個体差を吸収可能で、低コスト、素子構成が単純であるガスセンサ素子の出力調整方法を提供することができる。
In the gas sensor element according to the first aspect of the invention, the measured gas side electrode is covered with the diffusion resistance layer. Therefore, the gas under measurement reaches the surface of the gas under measurement side electrode from the gas introduction section through the inside of the diffusion resistance layer through the boundary surface between the diffusion resistance layer and the gas side electrode under measurement.
By providing a means for adjusting the area of the measured gas side electrode, the output of the element can be easily adjusted by controlling the diffusion cross-sectional area.
Since the first invention does not use an external circuit using a resistor as described in the prior art as means for adjusting the area of the gas side electrode to be measured, the device configuration is low in cost and simple. Can do.
Furthermore, since the output is adjusted by adjusting the diffusion cross section instead of the diffusion distance, the gas passage time of the diffusion resistance layer due to the difference in the diffusion distance, that is, the response time is less likely to vary between the gas sensor elements. Can be obtained.
As mentioned above, according to 1st invention, the output adjustment method of the gas sensor element which can absorb a characteristic individual difference, is low-cost, and an element structure is simple can be provided.

第2の発明は、固体電解質体と該固体電解質体の表面に設けた一対の基準電極と被測定ガス側電極とからなり、上記一対の電極は、該一対の電極から出力を取り出すよう構成した測定回路に電気的に接続されてなり、
上記被測定ガス側電極は1枚の主電極と該主電極よりも面積の小さい複数の調整電極とからなり、かつ上記主電極に対する拡散距離をL1、上記調整電極に対する拡散距離をL2とすると、L2≦L1であることを特徴とするガスセンサ素子にある(請求項7)。
The second invention comprises a solid electrolyte body, a pair of reference electrodes provided on the surface of the solid electrolyte body, and a measured gas side electrode, and the pair of electrodes is configured to extract output from the pair of electrodes. Electrically connected to the measurement circuit,
The measured gas side electrode is composed of one main electrode and a plurality of adjustment electrodes having a smaller area than the main electrode, and the diffusion distance to the main electrode is L1, and the diffusion distance to the adjustment electrode is L2. The gas sensor element is characterized by satisfying L2 ≦ L1 (Claim 7).

第2の発明にかかるガスセンサ素子は被測定ガス側電極が、主電極と該主電極よりも面積の小さい複数の調整電極からなる。
従って、調整電極を主電極から1つづつ電気的に切り離すことで、少なくとも1つの調整電極により生じる出力電流の大きさに応じた調整を行うことができる(後述する図1参照)。
更に、L2≦L1であることから、全ての調整電極が主電極から電気的に切り離されない限り、ガスセンサ素子の出力電流に寄与することができる。
仮にL2>L1である場合、被測定ガスは調整電極に達する前に、主電極に到達する。
そのため、検出したい特定ガスの濃度が薄い場合等に、主電極において特定ガスの大半が分解して酸素イオンとなり、調整電極に到達し難くなる。そのため、出力電流は常に主電極にのみ依存することとなり、調整電極を設ける意味がなくなる。
なお、上記L1、L2はガス導入部と主電極や調整電極の端部との間の最短距離であり、具体的な寸法は後述する図5、図9に示した。
In the gas sensor element according to the second aspect of the invention, the measured gas side electrode includes a main electrode and a plurality of adjustment electrodes having a smaller area than the main electrode.
Therefore, the adjustment electrode can be adjusted according to the magnitude of the output current generated by at least one adjustment electrode by electrically separating the adjustment electrodes one by one from the main electrode (see FIG. 1 described later).
Furthermore, since L2 ≦ L1, it is possible to contribute to the output current of the gas sensor element unless all the adjustment electrodes are electrically disconnected from the main electrode.
If L2> L1, the gas to be measured reaches the main electrode before reaching the adjustment electrode.
For this reason, when the concentration of the specific gas to be detected is low, most of the specific gas is decomposed into oxygen ions at the main electrode, so that it is difficult to reach the adjustment electrode. Therefore, the output current always depends only on the main electrode, and the meaning of providing the adjustment electrode is lost.
Note that L1 and L2 are the shortest distances between the gas introduction part and the ends of the main electrode and the adjustment electrode, and specific dimensions are shown in FIGS.

そして、第2の発明にかかる構成のガスセンサ素子を用いることで、被測定ガス側電極の面積を調整する手段として従来技術に記載したような抵抗体を用いた外部回路を用いていないため、低コストかつ素子構成を単純とすることができる。
更に、拡散距離でなく、拡散断面積を調整する方法で出力調整を行うため、拡散距離の差が原因の拡散抵抗層のガス通過時間、すなわち応答時間のガスセンサ素子間バラツキが生じ難いという効果を得ることができる。
Since the gas sensor element having the configuration according to the second invention is used, an external circuit using a resistor as described in the prior art is not used as means for adjusting the area of the gas side electrode to be measured. Cost and device configuration can be simplified.
Furthermore, since the output is adjusted by adjusting the diffusion cross section instead of the diffusion distance, the gas passage time of the diffusion resistance layer due to the difference in the diffusion distance, that is, the response time is less likely to vary between the gas sensor elements. Can be obtained.

以上、第2の発明によれば、特性個体差を吸収可能で、低コスト、素子構成が単純であるガスセンサ素子の出力調整方法を提供することができる。   As described above, according to the second aspect of the invention, it is possible to provide a gas sensor element output adjustment method that can absorb individual characteristic differences, is low-cost, and has a simple element configuration.

第1の発明にかかる出力調整方法は、内燃機関の燃焼制御に用いる空燃比センサ素子や、限界電流式の酸素センサ素子の他、NOx、CO、HC等の各種ガス濃度を検出するガスセンサ素子に適用することができる。
また、第2の発明にかかるガスセンサ素子において、拡散抵抗層は、被測定ガス側電極のみを覆うように構成することもできるし、被測定ガス側電極を設けた固体電解質体の表面の全体または部分を覆うように構成することもできる。
更に、拡散抵抗層をガス不透過の緻密層とガスが透過する多孔層とから構成することもできる(図2参照)。
また、一般的なガスセンサ素子と同様に、第2の発明のガスセンサ素子における上記固体電解質体は酸素イオン導電性のセラミックから構成することができ、また拡散抵抗層は多孔質のセラミックから構成することができる。
また、第2のガスセンサ素子は一体的に積層したセラミックヒータを持つことができる。
The output adjustment method according to the first aspect of the present invention is an air-fuel ratio sensor element used for combustion control of an internal combustion engine, a limit current type oxygen sensor element, or a gas sensor element for detecting various gas concentrations such as NOx, CO, and HC. Can be applied.
In the gas sensor element according to the second aspect of the invention, the diffusion resistance layer can be configured to cover only the measured gas side electrode, or the entire surface of the solid electrolyte body provided with the measured gas side electrode or It can also be configured to cover the part.
Furthermore, the diffusion resistance layer can be composed of a gas impermeable dense layer and a gas permeable porous layer (see FIG. 2).
Similarly to a general gas sensor element, the solid electrolyte body in the gas sensor element of the second invention can be composed of an oxygen ion conductive ceramic, and the diffusion resistance layer is composed of a porous ceramic. Can do.
Further, the second gas sensor element can have a ceramic heater integrally laminated.

次に、上記被測定ガス側電極は1枚の主電極と該主電極よりも面積の小さい複数の調整電極とからなり、かつ上記主電極に対する拡散距離をL1、上記調整電極に対する拡散距離をL2とすると、L2≦L1であり、
出力調整量に応じて、上記調整電極を上記主電極から電気的に切断または接続することが好ましい(請求項2)。
これにより、少なくとも1つの調整電極により生じる出力電流の大きさに応じた調整を行うことができる(後述する図1参照)。
Next, the measurement gas side electrode is composed of one main electrode and a plurality of adjustment electrodes having a smaller area than the main electrode, and the diffusion distance to the main electrode is L1, and the diffusion distance to the adjustment electrode is L2. Then, L2 ≦ L1, and
It is preferable that the adjustment electrode is electrically disconnected or connected from the main electrode in accordance with the output adjustment amount.
Thereby, the adjustment according to the magnitude of the output current generated by the at least one adjustment electrode can be performed (see FIG. 1 described later).

ところで、ガスセンサ素子における特定ガス濃度検出のメカニズムについて説明すると、酸素濃度を測定する場合は、被測定ガス側電極の表面において、酸素をイオン化して、酸素イオンが被測定ガス側電極から基準電極に移動する際の電流を出力電流として検出することで、酸素濃度を測定する。NOx等の場合は、NOx等を被測定ガス側電極の表面で分解して生じた酸素イオンに拠る酸素イオン電流を出力電流として検出することで、NOx等の濃度を測定する。
このように、第1の発明のガスセンサ素子は、特定ガスが分解されて生じた酸素イオン等を利用して、測定を行っている。
By the way, the mechanism of the specific gas concentration detection in the gas sensor element will be described. When measuring the oxygen concentration, oxygen is ionized on the surface of the gas side electrode to be measured, and the oxygen ions are transferred from the gas side electrode to be measured to the reference electrode. The oxygen concentration is measured by detecting the current at the time of movement as the output current. In the case of NOx or the like, the concentration of NOx or the like is measured by detecting, as an output current, an oxygen ion current due to oxygen ions generated by decomposing NOx or the like on the surface of the gas side electrode to be measured.
As described above, the gas sensor element of the first invention performs measurement using oxygen ions or the like generated by decomposing a specific gas.

仮にL2>L1である場合、被測定ガスは調整電極に達する前に、主電極に到達する。
そのため、検出したい特定ガスの濃度が薄い場合等に、主電極において特定ガスの大半が分解して酸素イオンとなり、調整電極に到達し難くなる。そのため、出力電流は常に主電極にのみ依存することとなり、調整電極を設ける意味がなくなる。
なお、上記L1、L2はガス導入部と主電極や調整電極の端部との間の最短距離であり、具体的な寸法は後述する図5、図9に示した。
If L2> L1, the gas to be measured reaches the main electrode before reaching the adjustment electrode.
For this reason, when the concentration of the specific gas to be detected is low, most of the specific gas is decomposed into oxygen ions at the main electrode, so that it is difficult to reach the adjustment electrode. For this reason, the output current always depends only on the main electrode, and the meaning of providing the adjustment electrode is lost.
Note that L1 and L2 are the shortest distances between the gas introduction part and the ends of the main electrode and the adjustment electrode, and specific dimensions are shown in FIGS.

そして、上記調整電極を上記主電極から電気的に切断または接続する方法として、例えば次に記載するような方法がある。
すなわち、調整電極から測定回路に接続する調整リード部を別途設けておき、該調整リード部を必要に応じて切断または接続する(実施例1参照)。
上記調整リード部は固体電解質体上に設けることもできるし(図5参照)、固体電解質体の外部に設けておくこともできる(実施例2、図8参照)。
また、調整リード部の電気的導通をオン/オフするスイッチ構造を設けておいて(実施例2、図8参照)、このスイッチの操作により、切断と接続を実現することで、従来と異なりスイッチだけの簡単な回路により、本発明にかかる効果を得ることができる。
更に、スイッチを設けた構成は、調整リード部の再接続が可能であり、調整リード部切断のやり直しもでき、調整の範囲や自由度がより広くなる。
As a method for electrically disconnecting or connecting the adjustment electrode from the main electrode, for example, there is a method as described below.
That is, an adjustment lead portion that connects the adjustment electrode to the measurement circuit is provided separately, and the adjustment lead portion is disconnected or connected as necessary (see Example 1).
The adjustment lead portion can be provided on the solid electrolyte body (see FIG. 5) or can be provided outside the solid electrolyte body (see Example 2 and FIG. 8).
In addition, a switch structure for turning on / off the electrical continuity of the adjustment lead portion is provided (see Example 2 and FIG. 8), and disconnection and connection are realized by operating this switch. The effect according to the present invention can be obtained with only a simple circuit.
Furthermore, in the configuration provided with the switch, the adjustment lead portion can be reconnected, the adjustment lead portion can be recut, and the range of adjustment and the degree of freedom become wider.

また、リード部の切断方法として、固体電解質体上にリード部を設けた場合は、レーザー照射等を利用してリード部を焼き切る方法がある。または、ガスセンサ素子の側面等からブラスト加工や切削加工を利用して、固体電解質体ごとリード部を切断する方法もある(実施例1参照)。   Further, as a method of cutting the lead portion, there is a method of burning the lead portion using laser irradiation or the like when the lead portion is provided on the solid electrolyte body. Alternatively, there is a method of cutting the lead part together with the solid electrolyte body by using blasting or cutting from the side surface of the gas sensor element or the like (see Example 1).

次に、ガスセンサ素子の出力を測定しつつ、該出力の大きさに応じて出力調整量を定めて、出力を調整することが好ましい(請求項3)(実施例1参照)。
これにより、出力を測定しつつ調整することができるため、より精度高い出力調整が可能となる。
Next, it is preferable to adjust the output by measuring the output of the gas sensor element and determining an output adjustment amount according to the magnitude of the output (Claim 3) (see Example 1).
Thereby, since it can adjust, measuring an output, output adjustment with higher precision is attained.

次に、上記主電極と上記調整電極とは組成が異なることが好ましい(請求項4)。
組成を変更することで、主電極及び各調整電極によって生じる出力電流の大小を制御することができる。従って、よりきめ細かい出力調整を可能とすることができる。
そして、組成を違える具体的な方法としては、例えば、上記主電極と上記調整電極は共にAuを含有するが、Auの含有量を主電極と調整電極において違えるか、上記調整電極のみにAuを含有させる方法がある(請求項5)。
または、上記主電極と上記調整電極は共にRhを含有するが、Rhの含有量を主電極と調整電極において違えるか、上記調整電極のみにRhを含有させる方法がある(請求項6)。
電極がAuを含むことで、電極の酸素吸着力が低下するため、出力電流が小さくなる。また、電極がRhを含むことで、電極の酸素吸着力が増大するため、出力電流が大きくなる。従って、AuやRhを添加し、その含有量を主電極と調整電極とで違えることで、主電極と調整電極によって生じる出力電流の大きさを違えることができる。
Next, it is preferable that the main electrode and the adjustment electrode have different compositions.
By changing the composition, the magnitude of the output current generated by the main electrode and each adjustment electrode can be controlled. Therefore, finer output adjustment can be made possible.
As a specific method for changing the composition, for example, the main electrode and the adjustment electrode both contain Au, but the Au content is different between the main electrode and the adjustment electrode, or only the adjustment electrode contains Au. There is a method of containing (Claim 5).
Alternatively, although both the main electrode and the adjustment electrode contain Rh, there is a method in which the content of Rh is different between the main electrode and the adjustment electrode, or only the adjustment electrode contains Rh (Claim 6).
When the electrode contains Au, the oxygen adsorption force of the electrode is reduced, and the output current is reduced. In addition, since the electrode includes Rh, the oxygen adsorption force of the electrode increases, so that the output current increases. Therefore, by adding Au or Rh and making the content different between the main electrode and the adjustment electrode, the magnitude of the output current generated by the main electrode and the adjustment electrode can be made different.

(実施例1)
本発明にかかるガスセンサ素子とその出力調整方法について説明する。
本例にかかるガスセンサ素子1は、図1〜図5に示すごとく、固体電解質体11と該固体電解質体11の表面に設けた一対の基準電極4と被測定ガス側電極3とからなり、上記一対の電極3、4は、該一対の電極3、4から出力を取り出すよう構成した測定回路(図示略)に電気的に接続されてなり、かつ上記被測定ガス側電極3における被測定ガスと対面する面を覆うように拡散抵抗層2が設けてあり、少なくとも上記拡散抵抗層2から上記被測定ガス側電極3に向けて被測定ガスを導入するよう、上記拡散抵抗層2の表面はガス導入部20を有する。
この素子1の出力を調整するに当たり、出力調整量に応じて、拡散抵抗層2により覆われた被測定ガス側電極3の面積を調整する。
具体的には、上記被測定ガス側電極3は1枚の主電極31と該主電極31よりも面積の小さい6枚の調整電極32a〜32fとからなり、かつ上記主電極31に対する拡散距離をL1、上記調整電極32a〜32fに対する拡散距離をL2とすると、L2≦L1である。
そして、出力調整量に応じて、上記調整電極32a〜32fを上記主電極31から電気的に切断または接続する。
(Example 1)
The gas sensor element and its output adjustment method according to the present invention will be described.
As shown in FIGS. 1 to 5, the gas sensor element 1 according to this example includes a solid electrolyte body 11, a pair of reference electrodes 4 provided on the surface of the solid electrolyte body 11, and a measured gas side electrode 3. The pair of electrodes 3, 4 are electrically connected to a measurement circuit (not shown) configured to extract output from the pair of electrodes 3, 4, and the measurement gas in the measurement gas side electrode 3 A diffusion resistance layer 2 is provided so as to cover the facing surface, and the surface of the diffusion resistance layer 2 is a gas so that the measurement gas is introduced from at least the diffusion resistance layer 2 toward the measurement gas side electrode 3. It has an introduction part 20.
In adjusting the output of the element 1, the area of the measured gas side electrode 3 covered with the diffusion resistance layer 2 is adjusted according to the output adjustment amount.
Specifically, the measured gas side electrode 3 includes one main electrode 31 and six adjustment electrodes 32a to 32f having a smaller area than the main electrode 31, and has a diffusion distance with respect to the main electrode 31. L1, L2 ≦ L1 where L2 is a diffusion distance with respect to the adjustment electrodes 32a to 32f.
Then, the adjustment electrodes 32 a to 32 f are electrically disconnected from or connected to the main electrode 31 according to the output adjustment amount.

以下、詳細に説明する。
本例のガスセンサ素子は、図1、図2、図3に示すごとく、拡散抵抗層2、酸素イオン導電性の固体電解質体11、基準ガス室形成用のスペーサ12、発熱体130等を設けたヒータ基板13とを積層してなる。
本例の拡散抵抗層2は、ガス透過性の多孔層22にガス不透過の遮蔽層21を積層してなる。
被測定ガスは、遮蔽層21で覆われた面から入ることができないため、本例の構成にかかるガスセンサ素子1におけるガス導入部20は、図2、図5に示すごとく、多孔層22の側面115、116、117を構成する端面となる。
固体電解質体11の拡散抵抗層2を設けた側の表面111には、被測定ガス側電極3と、端子部391と、被測定ガス側電極3と端子部391とを電気的に接続する電極リード部39とを設ける。
Details will be described below.
As shown in FIGS. 1, 2 and 3, the gas sensor element of this example is provided with a diffusion resistance layer 2, an oxygen ion conductive solid electrolyte body 11, a spacer 12 for forming a reference gas chamber, a heating element 130, and the like. The heater substrate 13 is laminated.
The diffusion resistance layer 2 of this example is formed by laminating a gas impermeable shielding layer 21 on a gas permeable porous layer 22.
Since the gas to be measured cannot enter from the surface covered with the shielding layer 21, the gas introduction part 20 in the gas sensor element 1 according to the configuration of this example has a side surface of the porous layer 22 as shown in FIGS. 2 and 5. 115, 116 and 117 constitute end faces.
On the surface 111 of the solid electrolyte body 11 on the side where the diffusion resistance layer 2 is provided, the measured gas side electrode 3, the terminal portion 391, and the electrode that electrically connects the measured gas side electrode 3 and the terminal portion 391. A lead portion 39 is provided.

また、スペーサ12は溝部120を有し、この溝部120と固体電解質体11の表面112とで囲まれた空間が基準ガス室となる。
固体電解質体11の面112側には、基準ガス室と対面する基準電極4と、内部端子部490と、基準電極4と内部端子部490とを電気的に接続する電極リード部49とを設ける。そして、内部端子部490に導電スルーホール(図示略)を設けて、面111側に設けた端子部491と電気的に導通させる。
端子部391と端子部491は素子の外部に露出しており、電極3、4に電圧を印加したり、素子の出力電流を取り出すよう構成した測定回路(図示略)を、上記端子部391、491に電気的に接続する。
The spacer 12 has a groove 120, and a space surrounded by the groove 120 and the surface 112 of the solid electrolyte body 11 serves as a reference gas chamber.
On the surface 112 side of the solid electrolyte body 11, a reference electrode 4 facing the reference gas chamber, an internal terminal portion 490, and an electrode lead portion 49 that electrically connects the reference electrode 4 and the internal terminal portion 490 are provided. . Then, a conductive through hole (not shown) is provided in the internal terminal portion 490 so as to be electrically connected to the terminal portion 491 provided on the surface 111 side.
The terminal portion 391 and the terminal portion 491 are exposed to the outside of the element, and a measurement circuit (not shown) configured to apply a voltage to the electrodes 3 and 4 and take out an output current of the element is connected to the terminal portion 391, 491 is electrically connected.

被測定ガス側電極3について詳細に説明する。
図4、図5に示すごとく、被測定ガス側電極3は、主電極31とこれより小さい調整電極32とからなり、調整電極32は調整リード部33及びリード部339によって、電極リード部39に電気的に接続される。
調整電極32は全部で6枚で、主電極に近い順に32a〜32fと符号を与えた。
各調整電極32a〜32fはそれぞれ調整リード部33a〜33fによってリード部339に接続され、更にリード部339はリード部39に接続される。
主電極は、長手方向の素子先端側に設けてあり、調整電極は主電極より基端側に設けてある。
なお、素子の先端側、基端側は図4に記載したように被測定ガス側電極を設けた側が先端側、端子部を設けた側を基端側とした。
The measured gas side electrode 3 will be described in detail.
As shown in FIGS. 4 and 5, the measured gas side electrode 3 includes a main electrode 31 and a smaller adjustment electrode 32. The adjustment electrode 32 is connected to the electrode lead portion 39 by the adjustment lead portion 33 and the lead portion 339. Electrically connected.
There are six adjustment electrodes 32 in total, and reference numerals 32a to 32f are given in order from the closest to the main electrode.
The adjustment electrodes 32 a to 32 f are connected to the lead portion 339 by adjustment lead portions 33 a to 33 f, respectively, and the lead portion 339 is further connected to the lead portion 39.
The main electrode is provided on the distal end side of the element in the longitudinal direction, and the adjustment electrode is provided on the proximal end side from the main electrode.
As shown in FIG. 4, the tip side and the base end side of the element were the tip side on the side provided with the gas side electrode to be measured, and the base side was the side provided with the terminal portion.

本例において各調整電極32a〜32fはいずれも同組成、同面積である。
すなわち、主電極31及び各調整電極32a〜32fはいずれもPtからなる。
そして、本例のガスセンサ素子において、被測定ガスは、図1に示す矢線hに示すごとく、拡散抵抗層2における多孔層22の側面から導入されるため、主電極31の拡散距離と調整電極の拡散距離とは、図5に図示する通りであり、L2=L1となる。
In this example, each of the adjustment electrodes 32a to 32f has the same composition and the same area.
That is, the main electrode 31 and the adjustment electrodes 32a to 32f are all made of Pt.
In the gas sensor element of this example, the gas to be measured is introduced from the side surface of the porous layer 22 in the diffusion resistance layer 2 as indicated by the arrow h in FIG. The diffusion distance is as shown in FIG. 5 and L2 = L1.

本例のガスセンサ素子1の出力調整の方法について詳細に説明する。
本例のガスセンサ素子1では、調整電極32a〜32fをリード部39から電気的に切り離すことで、出力調整を実現する。
更に、この出力調整は、ガスセンサ素子の出力を測定しつつ、該出力の大きさに応じて出力調整量を定めて、出力を調整する。
すなわち、図5に示すごとく、本例の調整電極32a〜32fをリード部39に接続する調整リード部33は、33a〜33fの6本からなり、33aが最も素子の外側に、33fが最も内側に位置する。33aは調整電極32aと導通し、33fは調整電極32fと導通する。
そして、カッターを用いて図5に示す破線330に沿って、拡散抵抗層や固体電解質体ごと素子に切れ目を入れる。
A method for adjusting the output of the gas sensor element 1 of this example will be described in detail.
In the gas sensor element 1 of this example, the output adjustment is realized by electrically disconnecting the adjustment electrodes 32 a to 32 f from the lead portion 39.
Further, in this output adjustment, while measuring the output of the gas sensor element, the output adjustment amount is determined according to the magnitude of the output to adjust the output.
That is, as shown in FIG. 5, the adjustment lead part 33 for connecting the adjustment electrodes 32a to 32f of this example to the lead part 39 is composed of six parts 33a to 33f, 33a being the outermost element and 33f being the innermost part. Located in. 33a is electrically connected to the adjustment electrode 32a, and 33f is electrically connected to the adjustment electrode 32f.
Then, along the broken line 330 shown in FIG. 5, the diffusion resistor layer and the solid electrolyte body are cut into the element using a cutter.

その結果、図6に示すごとく、調整リード部33を切断していない状態の出力電流は、主電極31と6枚の調整電極32とから得られる出力電流の合計であり、かつ主電極から得た出力電流をA(mA)、調整電極32の1枚当たりから得られる出力電流をB(mA)とすると、A+6Bである。(なお、調整電極32はすべて同面積であることから、同じ出力電流Bが得られる。)
ここで切れ目を入れ、最も外側に位置する調整リード部33aを切断すると、出力電流はBだけ低下し、A+5Bとなる。
切れ目をどんどん大きくすることで、各調整リード部33が切断され、1本切断されるごとにBずつ出力電流が低下し、最後は出力電流がAとなる。
As a result, as shown in FIG. 6, the output current in a state where the adjustment lead portion 33 is not cut is the sum of the output currents obtained from the main electrode 31 and the six adjustment electrodes 32, and obtained from the main electrode. Assuming that the output current is A (mA) and the output current obtained from one adjustment electrode 32 is B (mA), A + 6B. (In addition, since all the adjustment electrodes 32 have the same area, the same output current B is obtained.)
If the cut is made here and the adjustment lead portion 33a located on the outermost side is cut, the output current decreases by B, and becomes A + 5B.
By making the cut larger and larger, each adjustment lead portion 33 is cut, and the output current decreases by B each time one is cut, and finally the output current becomes A.

従って、本例によれば、図7に示すごとき出力電流の分布を備えたガスセンサ素子を製造し、このガスセンサ素子に許される出力電流の範囲がIa0〜Ia1である。
この場合、同図に示すX部の範囲(範囲n)に当たるガスセンサ素子は出力電流が大きく、未調整のままでは使用することができない。それ以外の範囲mに当たるセンサ素子は調整せずとも用いることができる。
Therefore, according to this example, a gas sensor element having an output current distribution as shown in FIG. 7 is manufactured, and the range of output current allowed for this gas sensor element is Ia0 to Ia1.
In this case, the gas sensor element corresponding to the range (range n) of the portion X shown in the figure has a large output current and cannot be used without being adjusted. Other sensor elements falling in the range m can be used without adjustment.

そこでこのガスセンサ素子1を出力電流を測定する電流計と一対の電極3、4に電圧を印加する電源を備えた測定回路に接続する。
まず、電圧を印加して、全ての調整リード部33が切断されていない状態での出力電流を測定する。
測定した値が、Ia1より大であった場合、上記した方法でカッターを用いて、拡散抵抗層2、固体電解質体11ごと素子1に切れ目を設けて、調整リード部33a〜33fを1本切断した。
再び電圧を印加して出力電流を測定し、出力電流がIa1より小さくなったら、加工は中断し、素子1を良品として取り分ける。
出力電流がIa1より大きい場合は、これがIa1より小さくなるまで1づつ調整リード部33を切断して、出力電流の範囲が上記Ia0〜Ia1となるようにした。
これにより範囲nにあった不良品は、すべて範囲mに収まり良品として使用できる。
Therefore, the gas sensor element 1 is connected to an ammeter for measuring an output current and a measurement circuit having a power source for applying a voltage to the pair of electrodes 3 and 4.
First, a voltage is applied, and the output current in a state where all the adjustment lead portions 33 are not cut is measured.
When the measured value is larger than Ia1, using the cutter as described above, the element 1 is cut along with the diffusion resistance layer 2 and the solid electrolyte body 11, and one adjustment lead portion 33a to 33f is cut. did.
The voltage is applied again to measure the output current. When the output current becomes smaller than Ia1, the processing is interrupted and the element 1 is separated as a non-defective product.
When the output current is larger than Ia1, the adjustment lead portions 33 are cut one by one until the output current becomes smaller than Ia1, so that the range of the output current becomes Ia0 to Ia1.
Thereby, all defective products in the range n are within the range m and can be used as good products.

本例の作用効果について説明する。
本例にかかるガスセンサ素子1では、被測定ガス側電極3が拡散抵抗層2に覆われている。従って、被測定ガスは、ガス導入部20から拡散抵抗層2の内部を経由して、拡散抵抗層2と被測定ガス側電極3との境界面を通じて、被測定ガス側電極3の表面に到達する。
本例は、被測定ガス側電極3の面積を調整する手段として、従来技術に記載したような外部回路や抵抗体を用いず、被測定ガス側電極3を主電極31と6枚の調整電極32で構成し、拡散抵抗層2や固体電解質体11ごと素子1に切り目を入れることで調整電極32とリード部39との間を導通させる調整リード部33を切断する。
これにより、低コストな素子、単純構成の素子を得ることができる。
更に、本例では、拡散距離でなく、拡散断面積を調整する方法で出力調整を行うため、
という効果を得ることができる。
以上、本例によれば、特性個体差を吸収可能で、低コスト、素子構成が単純であるガスセンサ素子及び出力調整方法を提供することができる。
The effect of this example will be described.
In the gas sensor element 1 according to this example, the measured gas side electrode 3 is covered with the diffusion resistance layer 2. Therefore, the gas to be measured reaches the surface of the gas side electrode 3 to be measured from the gas introduction part 20 through the inside of the diffusion resistance layer 2 through the boundary surface between the diffusion resistance layer 2 and the gas side electrode 3 to be measured. To do.
In this example, as a means for adjusting the area of the gas side electrode 3 to be measured, an external circuit and a resistor as described in the prior art are not used, and the gas side electrode 3 to be measured is composed of the main electrode 31 and six adjustment electrodes. 32, and the adjustment lead portion 33 that conducts between the adjustment electrode 32 and the lead portion 39 by cutting the element 1 together with the diffusion resistance layer 2 and the solid electrolyte body 11 is cut.
Thereby, a low-cost element and a simple element can be obtained.
Furthermore, in this example, because the output is adjusted by a method of adjusting the diffusion cross section instead of the diffusion distance,
The effect that can be obtained.
As described above, according to this example, it is possible to provide a gas sensor element and an output adjustment method that can absorb individual characteristic differences, are low in cost, and have a simple element configuration.

なお、レーザーを拡散抵抗層を介して照射することで、調整リード部を焼き切って、出力調整を行うことができる。   Note that the output adjustment can be performed by irradiating the laser through the diffusion resistance layer to burn out the adjustment lead portion.

(実施例2)
本例のガスセンサ素子1は、図8に示すごとく、実施例1と同様の主電極31及び調整電極32からなる被測定ガス側電極3を備えている。
ただし、調整リード部33の末端は、素子1の外部に引き出され、主電極31に対するリード部39に導通するよう調整リード部339を設けて、上記調整リード33で素子1の外部に引き出された部分に対しスイッチ331を設ける。
なお、主電極31のリード部39も途中から素子の外部に引き出してある。
(Example 2)
As shown in FIG. 8, the gas sensor element 1 of this example includes a measured gas side electrode 3 including a main electrode 31 and an adjustment electrode 32 similar to those of the first embodiment.
However, the end of the adjustment lead portion 33 is drawn out of the element 1, provided with an adjustment lead portion 339 so as to be electrically connected to the lead portion 39 for the main electrode 31, and drawn out of the element 1 by the adjustment lead 33. A switch 331 is provided for the part.
Note that the lead portion 39 of the main electrode 31 is also drawn out of the device from the middle.

このガスセンサ素子1の出力調整は、次のように行う。
すなわち、スイッチ331が全てオンとすると、素子1の出力電流は主電極31と6枚の調整電極32とから得られる出力電流の合計であり、かつ主電極から得た出力電流をA(mA)、調整電極32の1枚当たりから得られる出力電流をB(mA)とすると、A+6Bである。(なお、調整電極32はすべて同面積であることから、同じ出力電流Bが得られる。)
ここでスイッチ331のひとつをオフにする。出力電流はBだけ低下し、A+5Bとなる。
オフにするスイッチ331の数を増やすことで、Bずつ出力電流が低下し、最後は出力電流がAとなる。
これを利用して出力電流を調整する。
その他詳細な構成は実施例1と同様であり、また実施例1と同様の作用効果を有する。
The output adjustment of the gas sensor element 1 is performed as follows.
That is, when all the switches 331 are turned on, the output current of the element 1 is the sum of the output currents obtained from the main electrode 31 and the six adjustment electrodes 32, and the output current obtained from the main electrode is A (mA). When the output current obtained from one adjustment electrode 32 is B (mA), A + 6B. (In addition, since all the adjustment electrodes 32 have the same area, the same output current B is obtained.)
Here, one of the switches 331 is turned off. The output current decreases by B and becomes A + 5B.
By increasing the number of switches 331 to be turned off, the output current decreases by B, and finally the output current becomes A.
This is used to adjust the output current.
The other detailed configuration is the same as that of the first embodiment, and has the same effects as those of the first embodiment.

(実施例3)
本例は、図9に示すごとき配列の主電極31及び調整電極32からなる被測定ガス側電極3を持ったガスセンサ素子1について説明する。
本例のガスセンサ素子1は、素子の長手方向先端側から順に、リード部339、6枚の調整電極33、主電極31と配列した。
被測定ガスの導入が素子の側面116のみからなるように、拡散抵抗層を多孔層と遮蔽層とで構成する(図示略)。
そして、主電極31に対する拡散距離L1と調整電極に対する拡散距離L2は、図9に示すような状態となり、L2≦L1となる。
その他詳細な構成は実施例1と同様であり、また実施例1と同様の作用効果を有する。
(Example 3)
In this example, a gas sensor element 1 having a measured gas side electrode 3 including a main electrode 31 and an adjustment electrode 32 arranged as shown in FIG. 9 will be described.
In the gas sensor element 1 of this example, the lead part 339, the six adjustment electrodes 33, and the main electrode 31 were arranged in this order from the front end side in the longitudinal direction of the element.
The diffusion resistance layer is composed of a porous layer and a shielding layer so that the gas to be measured is introduced only from the side surface 116 of the element (not shown).
The diffusion distance L1 with respect to the main electrode 31 and the diffusion distance L2 with respect to the adjustment electrode are as shown in FIG. 9, and L2 ≦ L1.
The other detailed configuration is the same as that of the first embodiment and has the same effects as the first embodiment.

(実施例4)
本例は、図10に示すごとく、実施例1と同様の配列の主電極31及び調整電極32からなる被測定ガス側電極3を持ったガスセンサ素子1である。
但し、実施例1と異なり、被測定ガスの導入を素子1の側面115と117から行い、116から被測定ガスが入らないように、拡散抵抗層を多孔層と遮蔽層とで構成する(図示略)。
その他詳細な構成は実施例1と同様であり、また実施例1と同様の作用効果を有する。
Example 4
As shown in FIG. 10, this example is a gas sensor element 1 having a measured gas side electrode 3 composed of a main electrode 31 and an adjustment electrode 32 in the same arrangement as in the first embodiment.
However, unlike Example 1, the gas to be measured is introduced from the side surfaces 115 and 117 of the element 1, and the diffusion resistance layer is composed of a porous layer and a shielding layer so that the gas to be measured does not enter from 116 (illustrated). Abbreviation).
The other detailed configuration is the same as that of the first embodiment and has the same effects as the first embodiment.

実施例1にかかる、ガスセンサ素子の説明図。FIG. 3 is an explanatory diagram of a gas sensor element according to the first embodiment. 実施例1にかかる、ガスセンサ素子の断面説明図。Sectional explanatory drawing of the gas sensor element concerning Example 1. FIG. 実施例1にかかる、ガスセンサ素子の斜視展開図。1 is a perspective development view of a gas sensor element according to Embodiment 1. FIG. 実施例1にかかる、固体電解質体と被測定ガス側電極の説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 実施例1にかかる、固体電解質体と被測定ガス側電極の要部説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a main part explanatory diagram of a solid electrolyte body and a measured gas side electrode according to Example 1; 実施例1にかかる、出力電流と調整リード部の切断本数との関係を示す線図。FIG. 3 is a diagram illustrating a relationship between an output current and the number of cuts of an adjustment lead portion according to the first embodiment. 実施例1にかかる、出力電流とガスセンサ素子の個数との関係を示す線図。FIG. 3 is a diagram illustrating a relationship between an output current and the number of gas sensor elements according to the first embodiment. 実施例2にかかる、固体電解質体と被測定ガス側電極の説明図。Explanatory drawing of the solid electrolyte body concerning to Example 2, and a to-be-measured gas side electrode. 実施例3にかかる、固体電解質体と被測定ガス側電極の要部説明図。FIG. 6 is an explanatory diagram of a main part of a solid electrolyte body and a measured gas side electrode according to Example 3; 実施例4にかかる、固体電解質体と被測定ガス側電極の要部説明図。Explanatory drawing of the principal part of the solid electrolyte body concerning to Example 4, and a to-be-measured gas side electrode. 従来技術にかかる、ガスセンサ素子の平面図。The top view of the gas sensor element concerning a prior art. 従来技術にかかる、ガスセンサ素子の断面説明図。Cross-sectional explanatory drawing of the gas sensor element concerning a prior art. ガスセンサ素子における、出力電流と印加電圧との関係を示す線図。The diagram which shows the relationship between an output current and an applied voltage in a gas sensor element. 出力電流とガスセンサ素子の個数との関係を示す線図。The diagram which shows the relationship between an output electric current and the number of gas sensor elements.

符号の説明Explanation of symbols

1 ガスセンサ素子
11 固体電解質体
2 拡散抵抗層
3 被測定ガス側電極
31 主電極
32 調整電極
4 基準電極
DESCRIPTION OF SYMBOLS 1 Gas sensor element 11 Solid electrolyte body 2 Diffusion resistance layer 3 Gas to be measured side electrode 31 Main electrode 32 Adjustment electrode 4 Reference electrode

Claims (7)

固体電解質体と該固体電解質体の表面に設けた一対の基準電極と被測定ガス側電極とからなり、上記一対の電極は、該一対の電極から出力を取り出すよう構成した測定回路に電気的に接続されてなり、
かつ上記被測定ガス側電極における被測定ガスと対面する面を覆うように拡散抵抗層が設けてあり、少なくとも上記拡散抵抗層から上記被測定ガス側電極に向けて被測定ガスを導入するよう、上記拡散抵抗層の表面はガス導入部を有するガスセンサ素子の出力を調整するにあたり、
出力調整量に応じて、拡散抵抗層により覆われた被測定ガス側電極の面積を調整することを特徴とするガスセンサ素子の出力調整方法。
It consists of a solid electrolyte body, a pair of reference electrodes provided on the surface of the solid electrolyte body, and a gas side electrode to be measured, and the pair of electrodes is electrically connected to a measurement circuit configured to extract output from the pair of electrodes. Connected,
And a diffusion resistance layer is provided so as to cover the surface of the measurement gas side electrode facing the measurement gas, and at least the measurement gas is introduced from the diffusion resistance layer toward the measurement gas side electrode. In adjusting the output of the gas sensor element having the gas introduction part, the surface of the diffusion resistance layer is
A method for adjusting an output of a gas sensor element, comprising adjusting an area of a gas-side electrode to be measured covered by a diffusion resistance layer according to an output adjustment amount.
請求項1において、上記被測定ガス側電極は1枚の主電極と該主電極よりも面積の小さい複数の調整電極とからなり、かつ上記主電極に対する拡散距離をL1、上記調整電極に対する拡散距離をL2とすると、L2≦L1であり、
出力調整量に応じて、上記調整電極を上記主電極から電気的に切断または接続することを特徴とするガスセンサ素子の出力調整方法。
2. The measured gas side electrode according to claim 1, comprising one main electrode and a plurality of adjustment electrodes having a smaller area than the main electrode, and the diffusion distance to the main electrode is L1, and the diffusion distance to the adjustment electrode Is L2, L2 ≦ L1,
A gas sensor element output adjustment method, wherein the adjustment electrode is electrically disconnected from or connected to the main electrode according to an output adjustment amount.
請求項1または2において、ガスセンサ素子の出力を測定しつつ、該出力の大きさに応じて出力調整量を定めて、出力を調整することを特徴とするガスセンサ素子の出力調整方法。   3. The gas sensor element output adjustment method according to claim 1, wherein the output is adjusted by measuring an output of the gas sensor element and determining an output adjustment amount according to a magnitude of the output. 請求項2または3において、上記主電極と上記調整電極とは組成が異なることを特徴とするガスセンサ素子の出力調整方法。   4. The gas sensor element output adjustment method according to claim 2, wherein the main electrode and the adjustment electrode have different compositions. 請求項4において、上記主電極と上記調整電極は共にAuを含有するが、その含有量が異なる、または上記調整電極のみにAuを含有させることを特徴とするガスセンサ素子の出力調整方法。   5. The output adjustment method for a gas sensor element according to claim 4, wherein both the main electrode and the adjustment electrode contain Au, but the contents thereof are different or only the adjustment electrode contains Au. 請求項4において、上記主電極と上記調整電極は共にRhを含有するが、その含有量が異なる、または上記調整電極のみにRhを含有させることを特徴とするガスセンサ素子の出力調整方法。   5. The gas sensor element output adjustment method according to claim 4, wherein both the main electrode and the adjustment electrode contain Rh, but their contents are different, or only the adjustment electrode contains Rh. 固体電解質体と該固体電解質体の表面に設けた一対の基準電極と被測定ガス側電極とからなり、上記一対の電極は、該一対の電極から出力を取り出すよう構成した測定回路に電気的に接続されてなり、
上記被測定ガス側電極は1枚の主電極と該主電極よりも面積の小さい複数の調整電極とからなり、かつ上記主電極に対する拡散距離をL1、上記調整電極に対する拡散距離をL2とすると、L2≦L1であることを特徴とするガスセンサ素子。
It consists of a solid electrolyte body, a pair of reference electrodes provided on the surface of the solid electrolyte body, and a gas side electrode to be measured. The pair of electrodes is electrically connected to a measurement circuit configured to extract output from the pair of electrodes. Connected,
The measured gas side electrode is composed of one main electrode and a plurality of adjustment electrodes having a smaller area than the main electrode, and the diffusion distance to the main electrode is L1, and the diffusion distance to the adjustment electrode is L2. A gas sensor element, wherein L2 ≦ L1.
JP2004066172A 2004-03-09 2004-03-09 Gas sensor element output adjustment method Expired - Fee Related JP4401825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066172A JP4401825B2 (en) 2004-03-09 2004-03-09 Gas sensor element output adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066172A JP4401825B2 (en) 2004-03-09 2004-03-09 Gas sensor element output adjustment method

Publications (2)

Publication Number Publication Date
JP2005257334A true JP2005257334A (en) 2005-09-22
JP4401825B2 JP4401825B2 (en) 2010-01-20

Family

ID=35083216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066172A Expired - Fee Related JP4401825B2 (en) 2004-03-09 2004-03-09 Gas sensor element output adjustment method

Country Status (1)

Country Link
JP (1) JP4401825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866026B1 (en) * 2006-08-01 2011-01-11 Abbott Diabetes Care Inc. Method for making calibration-adjusted sensors

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866026B1 (en) * 2006-08-01 2011-01-11 Abbott Diabetes Care Inc. Method for making calibration-adjusted sensors
US7895740B2 (en) 2006-08-01 2011-03-01 Abbott Diabetes Care Inc. Methods of making analyte sensors
US7918012B2 (en) * 2006-08-01 2011-04-05 Abbott Diabetes Care Inc. Method of making calibration-adjusted analyte sensors
US7996988B2 (en) 2006-08-01 2011-08-16 Abbott Diabetes Care Inc. Method of making a plurality of calibration-adjusted sensors
AU2007281648B2 (en) * 2006-08-01 2013-01-17 Abbott Diabetes Care, Inc. Methods of making calibrated analyte sensors
US8375574B2 (en) 2006-08-01 2013-02-19 Abbott Diabetes Care Inc. Method of making analyte sensor
US8677611B2 (en) 2006-08-01 2014-03-25 Abbott Diabates Care Inc. Methods of making calibration-adjusted sensors
US9625411B2 (en) 2006-08-01 2017-04-18 Abbott Diabetes Care Inc. Methods of making a test sensor

Also Published As

Publication number Publication date
JP4401825B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP5065413B2 (en) Sensor element with an anode inside
JP3973900B2 (en) Gas sensor element
JPH08510840A (en) Sensor for measuring the concentration of gas components in a mixture
JPH0473101B2 (en)
RU2143679C1 (en) Method measuring concentration of gases in gas mixture and electrochemical sensitive element determining gas concentration
JP5186472B2 (en) Hydrogen gas concentration detection system and gas sensor element having the same
EP0310063A3 (en) Sensor for measurement of air/fuel ratio
JP4283686B2 (en) Gas sensor element and control method and manufacturing method of gas sensor element.
US20030213692A1 (en) Oxygen sensor and method of manufacturing same
JP2001141696A (en) Gas-detecting apparatus
US7037415B2 (en) Sensor element of a gas sensor
US6940287B2 (en) Unheated planar sensor element for determining the concentration of a gas component in a gas mixture
US6889536B2 (en) Air/fuel-ratio detecting apparatus
US6554983B2 (en) Gas sensing element employable in an exhaust system of an internal combustion engine
JP2003083936A (en) Gas sensor element
JP2002139468A (en) Gas sensor
JP4401825B2 (en) Gas sensor element output adjustment method
JP2004157063A (en) Gas sensor element and its manufacturing method
JP3771569B2 (en) NOx sensor
JP4625261B2 (en) Sensor element of gas sensor
JP3973851B2 (en) Gas sensor element
JP2004151018A (en) Laminated gas sensing element
JP4003879B2 (en) Method for manufacturing gas sensor element and gas sensor element
JP2004514904A (en) Heating equipment
WO2020195080A1 (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees