JP2005257117A - Combustion air variable mechanism for gas turbine combustor - Google Patents

Combustion air variable mechanism for gas turbine combustor Download PDF

Info

Publication number
JP2005257117A
JP2005257117A JP2004066859A JP2004066859A JP2005257117A JP 2005257117 A JP2005257117 A JP 2005257117A JP 2004066859 A JP2004066859 A JP 2004066859A JP 2004066859 A JP2004066859 A JP 2004066859A JP 2005257117 A JP2005257117 A JP 2005257117A
Authority
JP
Japan
Prior art keywords
air
gas turbine
cylinder
combustion air
variable mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004066859A
Other languages
Japanese (ja)
Inventor
Tetsuo Murayama
哲郎 村山
Toshiyuki Takagi
俊幸 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004066859A priority Critical patent/JP2005257117A/en
Publication of JP2005257117A publication Critical patent/JP2005257117A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To promote the reduction of cost and NOx by mounting a bypass valve particularly in an outer cylinder of a compact gas turbine. <P>SOLUTION: This combustion air variable mechanism of the gas turbine combustor 1 comprising the outer cylinder 2 and an inner cylinder 5 having a bypass hole 8, further comprises an air introducing part 21 mounted between the outer cylinder and the inner cylinder extended to an outer side from the bypass hole of the inner cylinder, introducing the air discharged from a compressor and flowing between the outer cylinder and the inner cylinder, into the inner cylinder, and provided with a valve seat 24 on an outer end part, a valve element 31 kept into contact with the valve seat of the air introducing part for closing the valve, and forbidding the flowing of the air discharged from the compressor, into the cylinder, and a driving part 41 for opening and closing the valve element from the outside of the outer cylinder. The air introducing part is composed of a movable part flexibly moved in the radial or axial direction of the inner cylinder, and detachably fitted to the bypass hole of the inner cylinder at its inner end part, and the air introducing part and the valve element are detachably mounted on the outer cylinder from the outside of the outer cylinder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特に小型ガスタービンに用いられて好適な、ガスタービン燃焼器の燃焼空気可変機構に関する。   The present invention relates to a combustion air variable mechanism of a gas turbine combustor that is particularly suitable for use in a small gas turbine.

ガスタービンの高出力化に伴い急激に増大するNOX 排出量を低減することは、ガスタービンの環境対策において極めて重要な問題である。特に小型ガスタービンの場合、運転費や設置スペース等の関係から、脱硝装置を設けることが困難な場合が多い。このため、小型ガスタービンにおいては、燃焼改善によってNOX 排出量を減少させる必要がある。 Reducing the NO X emissions increase rapidly due to the higher output of the gas turbine is a critical problem in environmental gas turbine. In particular, in the case of a small gas turbine, it is often difficult to provide a denitration device because of operating costs, installation space, and the like. Therefore, in the small gas turbine, it is necessary to reduce the NO X emissions by improving combustion.

ガスタービン燃焼器の低NOX 化は、これまで主に水噴射や蒸気噴射によって行われてきた。しかしながら、これらの方式は、熱効率の低下や設備の維持管理の困難性等の問題があるため、この水噴射や蒸気噴射を行わない乾式の低NOX 燃焼器の開発が急務となっている。このための一つの方式として、大型ガスタービンにおいては、外筒の内部に燃焼空気可変機構付きの尾筒を備え、この燃焼空気可変機構付きの燃焼器による予混合燃焼により、低NOX 化を図るものがある(例えば、非特許文献1参照)。 Low NO X of the gas turbine combustor has been carried out mainly by water injection or steam injection so far. However, these methods, because of the difficulties such as the maintenance of reduction in the thermal efficiency and equipment problems, there is an urgent need development of low NO X combustor dry Without this water injection or steam injection. As one method for this, in a large gas turbine, an internal combustion air adjustment mechanism with a transition piece of the outer tube, the premixed combustion by the combustion air variable mechanism with a combustor, the low NO X reduction There is something to plan (for example, see Non-Patent Document 1).

予混合燃焼方式による大型ガスタービンでは、例えば、図7に示すように、圧縮機吐出空気は、燃焼器100内へ流入し、燃料と混合して燃焼する。燃焼後の高温ガスは、尾筒101を通してタービン102へ導かれる。燃焼空気可変機構103は、燃焼器において適切な空燃比が確保できるように、低負荷時には全開となり、圧縮機吐出空気の一部をバイパスして直接尾筒101内へ導く。負荷の上昇に伴い、燃料噴射量が増加すると共に、燃焼空気可変機構103のバイパス弁104が順次閉じ、定格負荷運転近辺ではかなり絞られた状態となる。バイパス弁104は、外筒105の内部に配設された、例えば、バタフライ弁から成る。
萬代重実,青山邦明、“予混合型燃焼器”、日本ガスタービン学会誌(Vol.16、No.64)、日本ガスタービン学会、1989年3月10日、p.26(図2)
In a large gas turbine based on the premixed combustion method, for example, as shown in FIG. 7, the compressor discharge air flows into the combustor 100 and is mixed with fuel and combusted. The hot gas after combustion is guided to the turbine 102 through the tail cylinder 101. The variable combustion air mechanism 103 is fully opened at a low load so that an appropriate air-fuel ratio can be secured in the combustor, and bypasses a part of the compressor discharge air and directly guides it into the transition piece 101. As the load increases, the fuel injection amount increases, and the bypass valve 104 of the combustion air variable mechanism 103 is sequentially closed, so that the throttle valve is considerably throttled near the rated load operation. The bypass valve 104 is formed of, for example, a butterfly valve disposed inside the outer cylinder 105.
Shigemi Sashiro, Kuniaki Aoyama, “Premixed Combustor”, Journal of the Gas Turbine Society of Japan (Vol. 16, No. 64), Japan Gas Turbine Society, March 10, 1989, p. 26 (Fig. 2)

このように、従来の大型ガスタービンにおいては、例えば、バタフライ弁から成るバイパス弁を用いた燃焼空気可変機構付きの尾筒を外筒の内部に備え、燃焼空気可変機構付き燃焼器による予混合燃焼により、低NOX 化を行ってきた。しかしながら、小型ガスタービンにおいては、設置スペース等の関係から、外筒を含むガスタービン全体を小型化する必要があり、外筒の内部に大型ガスタービンと同様構造の、例えばバタフライ弁から成るバイパス弁を備えることは困難である。 Thus, in a conventional large gas turbine, for example, a tail cylinder with a combustion air variable mechanism using a bypass valve composed of a butterfly valve is provided inside the outer cylinder, and premixed combustion by a combustor with a combustion air variable mechanism is provided. by, we went the low-NO X reduction. However, in a small gas turbine, it is necessary to downsize the entire gas turbine including the outer cylinder because of the installation space and the like, and a bypass valve composed of a butterfly valve, for example, having the same structure as the large gas turbine inside the outer cylinder. It is difficult to provide

一方、燃焼空気可変機構を外筒の外部に配設した場合、燃焼空気可変機構の構成が複雑となり、コスト高を招くという問題がある。   On the other hand, when the variable combustion air mechanism is disposed outside the outer cylinder, there is a problem that the configuration of the variable combustion air mechanism is complicated and the cost is increased.

本発明はこのような問題を解決するためになされたもので、小型化により、特に小型ガスタービンの外筒内へのバイパス弁の配設を可能にし、これにより低コスト化を図ると共に、低NOX 化の促進を図ることができる、ガスタービン燃焼器の燃焼空気可変機構を提供することを課題とする。 The present invention has been made to solve such a problem. By downsizing, it is possible to dispose a bypass valve particularly in the outer cylinder of a small gas turbine, thereby reducing the cost and reducing the cost. It is an object of the present invention to provide a combustion air variable mechanism of a gas turbine combustor that can promote NO x conversion.

上述の課題を解決するために、本発明が採用する手段は、外筒とバイパス孔を有する内筒とを備えたガスタービン燃焼器の燃焼空気可変機構であって、この燃焼空気可変機構は、筒状に形成され外筒と内筒との間に配設されて内筒のバイパス孔から外側へ延出し外筒と内筒との間に流入した圧縮機吐出空気を内筒内へ導入すると共に外端部に弁座が形成された空気導入部と、空気導入部の弁座に当接して閉弁し圧縮機吐出空気の内筒内への流入を禁止する弁体と、弁体を外筒の外側から開閉させる駆動部とを備える。   In order to solve the above-mentioned problem, the means employed by the present invention is a combustion air variable mechanism of a gas turbine combustor provided with an outer cylinder and an inner cylinder having a bypass hole, and the combustion air variable mechanism includes: Compressor discharge air that is formed in a cylindrical shape and is disposed between the outer cylinder and the inner cylinder, extends outward from the bypass hole of the inner cylinder, and flows between the outer cylinder and the inner cylinder is introduced into the inner cylinder. And an air introduction portion having a valve seat formed at the outer end, a valve body that abuts against the valve seat of the air introduction portion and closes the valve body to prohibit the flow of compressor discharge air into the inner cylinder, and a valve body. And a drive unit that opens and closes from the outside of the outer cylinder.

したがって、駆動部を操作することにより、弁体を空気導入部の弁座に対して開閉させることができ、これにより圧縮機吐出空気をガスタービン燃焼器の内筒内へ流入させ、又はその流入を禁止させることができるから、ガスタービンの出力に応じて、ガスタービン燃焼器内の空燃比を適切に変化させることができる。また、燃焼空気可変機構は、空気導入部と弁体と駆動部とを備えることにより構成され、小型化することができ、特にバイパス弁を構成する空気導入部と弁体とを、小型ガスタービンの外筒内へ配設することが可能となる。   Therefore, by operating the drive unit, the valve body can be opened and closed with respect to the valve seat of the air introduction unit, whereby the compressor discharge air flows into the inner cylinder of the gas turbine combustor or the inflow thereof. Therefore, the air-fuel ratio in the gas turbine combustor can be appropriately changed according to the output of the gas turbine. Further, the combustion air variable mechanism is configured by including an air introduction unit, a valve body, and a drive unit, and can be downsized. In particular, the air introduction unit and the valve body that constitute the bypass valve are connected to a small gas turbine. It becomes possible to arrange | position in the outer cylinder.

空気導入部は、内筒の径方向及び又は軸方向に柔軟に動く可動部を有することが望ましい。ガスタービン燃焼器の外筒と内筒との間には、熱膨張、振動等により、寸法差が生ずる。空気導入部が、内筒の径方向及び又は軸方向に柔軟に動く可動部を有することにより、この寸法差を吸収することができる。   The air introduction part desirably has a movable part that moves flexibly in the radial direction and / or the axial direction of the inner cylinder. There is a dimensional difference between the outer cylinder and the inner cylinder of the gas turbine combustor due to thermal expansion, vibration, and the like. By having the movable part that moves flexibly in the radial direction and / or the axial direction of the inner cylinder, the air introduction part can absorb this dimensional difference.

空気導入部は、内端部が内筒のバイパス孔に挿脱自在に嵌合することが望ましい。空気導入部を内筒のバイパス孔に挿脱自在に嵌合させることにより、空気導入部の着脱が極めて容易となり、空気導入部及び内筒の整備性が向上する。   As for an air introduction part, it is desirable for the inner end part to fit in the bypass hole of an inner cylinder so that insertion or removal is possible. By fitting the air introduction part into the bypass hole of the inner cylinder so as to be detachable, the air introduction part can be easily attached and detached, and the maintainability of the air introduction part and the inner cylinder is improved.

弁体と空気導入部は、外筒に外筒の外側から着脱自在に固定されることが望ましい。弁体と空気導入部とを、外筒に外筒の外側から着脱自在に固定することにより、ガスタービン本体の分解を行うことなく、弁体と空気導入部とを取り付け及び取り外しすることができ、弁体及び空気導入部の整備性が向上する。   It is desirable that the valve body and the air introduction part are fixed to the outer cylinder so as to be detachable from the outside of the outer cylinder. By fixing the valve body and the air introduction part to the outer cylinder detachably from the outside of the outer cylinder, the valve body and the air introduction part can be attached and detached without disassembling the gas turbine body. In addition, the maintainability of the valve body and the air introduction part is improved.

バイパス孔と燃焼空気可変機構は、複数から成り、燃焼空気可変機構は、ガスタービンの低出力時から高出力時にかけて弁体を順次閉弁させることが望ましい。複数の燃焼空気可変機構を設け、ガスタービンの低出力時から高出力時にかけて弁体を順次閉弁させることにより、ガスタービンの全出力領域において、低NOX 化の促進を図ることができる。 The bypass hole and the combustion air variable mechanism are composed of a plurality, and the combustion air variable mechanism desirably closes the valve bodies sequentially from the low output to the high output of the gas turbine. A plurality of combustion air variable mechanism, by sequentially closing the valve body subjected at high power from the time of low power output of the gas turbine, the entire power range of the gas turbine, it is possible to enhance the low NO X reduction.

駆動部は、外筒の外側に固定されて圧縮機吐出空気により作動する空気シリンダと、空気シリンダの作動を制御するコントローラとにより開閉されることが望ましい。駆動部をこのように構成することにより、弁体の開閉を自動制御することができる。特に、空気シリンダは圧縮機吐出空気によって作動するから、シリンダ作動源を別途装備する必要がない。   The drive unit is preferably opened and closed by an air cylinder fixed to the outside of the outer cylinder and operated by compressor discharge air, and a controller for controlling the operation of the air cylinder. By configuring the drive unit in this manner, the opening and closing of the valve body can be automatically controlled. In particular, since the air cylinder is operated by compressor discharge air, it is not necessary to separately provide a cylinder operating source.

コントローラは、ガスタービンの発電出力、吸込み空気温度、圧縮機出口空気圧力若しくは軸回転数、燃焼器入口空気温度のいずれか1つ以上に基づいて弁体を開閉させることが望ましい。このように、ガスタービンの発電出力、吸込み空気温度、圧縮機出口空気圧力若しくは軸回転数、燃焼器入口空気温度に基づいて弁体の開閉を制御することにより、ガスタービンのあらゆる運転状態において、理想的な開閉制御を行なうことができる。   The controller desirably opens and closes the valve body based on any one or more of the power generation output of the gas turbine, the intake air temperature, the compressor outlet air pressure or shaft rotational speed, and the combustor inlet air temperature. Thus, by controlling the opening and closing of the valve body based on the power generation output of the gas turbine, the intake air temperature, the compressor outlet air pressure or shaft rotation speed, the combustor inlet air temperature, in any operating state of the gas turbine, Ideal open / close control can be performed.

例えば、燃焼器は、単筒型である。本発明のガスタービン燃焼器の燃焼空気可変機構は、大型から小型までのすべてのガスタービンに実施可能であるが、特に単筒型燃焼器を有する小型ガスタービンに用いられて好適である。   For example, the combustor is a single cylinder type. The combustion air variable mechanism of the gas turbine combustor of the present invention can be implemented in all gas turbines from large to small, but is particularly suitable for use in a small gas turbine having a single cylinder combustor.

以上詳細に説明したように、本発明のガスタービン燃焼器の燃焼空気可変機構は、外筒とバイパス孔を有する内筒とを備えたガスタービン燃焼器の燃焼空気可変機構であって、この燃焼空気可変機構は、筒状に形成され外筒と内筒との間に配設されて内筒のバイパス孔から外側へ延出し外筒と内筒との間に流入した圧縮機吐出空気を内筒内へ導入すると共に外端部に弁座が形成された空気導入部と、空気導入部の弁座に当接して閉弁し圧縮機吐出空気の内筒内への流入を禁止する弁体と、弁体を外筒の外側から開閉させる駆動部とを備えるから、燃焼空気可変機構を小型化することができ、特に小型ガスタービンの外筒内へのバイパス弁の配設を可能にし、これにより低コスト化を図ると共に、低NOX 化の促進を図ることができるという優れた効果を奏する。 As described above in detail, the variable combustion air mechanism for a gas turbine combustor according to the present invention is a variable combustion air mechanism for a gas turbine combustor including an outer cylinder and an inner cylinder having a bypass hole. The variable air mechanism is formed in a cylindrical shape and is disposed between the outer cylinder and the inner cylinder, extends outward from the bypass hole of the inner cylinder and flows into the compressor discharge air flowing between the outer cylinder and the inner cylinder. An air introduction portion that is introduced into the cylinder and has a valve seat formed at the outer end portion thereof, and a valve body that abuts the valve seat of the air introduction portion and closes the valve body to inhibit the discharge of the compressor discharge air into the inner cylinder And a drive part that opens and closes the valve body from the outside of the outer cylinder, the combustion air variable mechanism can be reduced in size, and in particular, the bypass valve can be disposed in the outer cylinder of the small gas turbine, Yu that thereby with cost reduction, it is possible to enhance the low NO X reduction It was an effect.

本発明に係るガスタービン燃焼器の燃焼空気可変機構を実施するための最良の形態を、図1ないし図6を参照して詳細に説明する。   A best mode for carrying out a combustion air variable mechanism of a gas turbine combustor according to the present invention will be described in detail with reference to FIGS.

図1は、本発明のガスタービン燃焼器の燃焼空気可変機構を示す断面図、図2は、図1の燃焼空気可変機構を示す断面図、図3は、図2の弁座を示す平面図、図4は、図2とは別の作動状態を示す断面図、図5(a)ないし(d)は、弁体の開閉状態を示す模試図、図6は、図1の燃焼空気可変機構を用いた燃焼制御を示すグラフである。   1 is a cross-sectional view showing a combustion air variable mechanism of a gas turbine combustor according to the present invention, FIG. 2 is a cross-sectional view showing the combustion air variable mechanism of FIG. 1, and FIG. 3 is a plan view showing the valve seat of FIG. 4 is a cross-sectional view showing an operating state different from FIG. 2, FIGS. 5A to 5D are schematic views showing the open / close state of the valve body, and FIG. 6 is a combustion air variable mechanism of FIG. It is a graph which shows the combustion control using.

図1に示すように、ガスタービンの燃焼器1は単筒型であり、燃焼器ケースとしての外筒2と、内部で燃焼を行わせる内筒5とから成る。内筒5は、さらに主燃焼器6と尾筒7とから成り、複数の固定ピン10によって外筒2に固定される。主燃焼器6には、燃料噴射ノズル11と点火プラグ12が配設される。また、尾筒7には、円周上等間隔に、4つのバイパス孔8が穿設される。この4つのバイパス孔8には、後述する燃焼空気可変機構20が、それぞれ取り付けられる。図示下部の外筒2と内筒5との間の通路3は、図示しない圧縮機出口と連通し、圧縮機吐出空気がこの通路3を通って燃焼器1内へ流入する。一方、尾筒7の出口9は、図示しないタービン入口と連通し、燃焼ガスがタービンへ導かれる。   As shown in FIG. 1, a combustor 1 of a gas turbine is a single cylinder type, and includes an outer cylinder 2 as a combustor case and an inner cylinder 5 that performs combustion inside. The inner cylinder 5 further includes a main combustor 6 and a tail cylinder 7 and is fixed to the outer cylinder 2 by a plurality of fixing pins 10. The main combustor 6 is provided with a fuel injection nozzle 11 and a spark plug 12. Further, four bypass holes 8 are formed in the tail cylinder 7 at equal intervals on the circumference. The four bypass holes 8 are each provided with a combustion air variable mechanism 20 described later. A passage 3 between the outer cylinder 2 and the inner cylinder 5 in the lower part of the drawing communicates with a compressor outlet (not shown), and compressor discharge air flows into the combustor 1 through the passage 3. On the other hand, the outlet 9 of the transition piece 7 communicates with a turbine inlet (not shown), and the combustion gas is guided to the turbine.

図2に示すように、各燃焼空気可変機構20は、空気導入部21と弁体31と駆動部41とから成り、バイパス弁を構成する空気導入部21と弁体31とが、外筒2から径方向外側へ突出する4つの円筒状の燃焼空気可変機構収容部51の内部に、それぞれ配設される。この燃焼空気可変機構収容部51も、外筒2の一部を形成する。   As shown in FIG. 2, each combustion air variable mechanism 20 includes an air introduction portion 21, a valve body 31, and a drive portion 41, and the air introduction portion 21 and the valve body 31 that constitute a bypass valve include the outer cylinder 2. Are disposed in the four cylindrical combustion air variable mechanism accommodating portions 51 projecting radially outward from the cylinders. This combustion air variable mechanism accommodating part 51 also forms a part of the outer cylinder 2.

図2及び図3に示すように、空気導入部21の支持板22は、その中心部に短円筒状の蛇腹部材支持部23を有し、その図示左端部(外端部)に弁座24が形成される。蛇腹部材支持部23の周囲には、3つの空気挿通孔25が形成される。図2に示すように、空気導入部21の蛇腹部材支持部23には、円筒状の蛇腹部材(可動部)26が固着され、蛇腹部材26の図示右端部(内端部)には、先端が円筒状又は先細円筒状に形成され、尾筒7のバイパス孔8に着脱自在に嵌合することができる嵌合部27が固着される。   As shown in FIGS. 2 and 3, the support plate 22 of the air introduction portion 21 has a short cylindrical bellows member support portion 23 at the center thereof, and a valve seat 24 at the left end portion (outer end portion) shown in the drawing. Is formed. Three air insertion holes 25 are formed around the bellows member support portion 23. As shown in FIG. 2, a cylindrical bellows member (movable portion) 26 is fixed to the bellows member support portion 23 of the air introduction portion 21, and a tip end is shown at the right end portion (inner end portion) of the bellows member 26. Is formed in a cylindrical shape or a tapered cylindrical shape, and a fitting portion 27 that can be detachably fitted into the bypass hole 8 of the tail tube 7 is fixed.

このように、空気導入部21は、尾筒7のバイパス孔8から径方向外側へ延出し、外筒2と内筒5との間に流入した圧縮機吐出空気を、蛇腹部材26、バイパス孔8を通して、尾筒7内へ導入する。また、蛇腹部材26は、尾筒7の径方向のみならず、尾筒7の軸方向へも柔軟に動くことができるから、熱膨張、振動等により、燃焼器1の外筒2と内筒5との間に寸法差が生じても、嵌合部27を内筒5の径方向に伸縮自在に移動させ、また内筒5の軸方向にも柔軟に移動させて、この寸法差を吸収することができる。   Thus, the air introduction part 21 extends radially outward from the bypass hole 8 of the tail cylinder 7, and discharges the compressor discharge air flowing between the outer cylinder 2 and the inner cylinder 5 into the bellows member 26 and the bypass hole. 8 is introduced into the transition piece 7. Further, since the bellows member 26 can move flexibly not only in the radial direction of the tail cylinder 7 but also in the axial direction of the tail cylinder 7, the outer cylinder 2 and the inner cylinder of the combustor 1 are caused by thermal expansion, vibration, or the like. Even if a dimensional difference occurs with respect to 5, the fitting portion 27 is moved in an elastic manner in the radial direction of the inner cylinder 5 and flexibly moved in the axial direction of the inner cylinder 5 to absorb this dimensional difference. can do.

弁体31は、弁軸(駆動部)42の先端に固定され、弁軸42は、蓋部材52をシール53を介して気密に貫通し、外筒2の外側に固定された空気シリンダ(駆動部)43に連結される。このため、空気シリンダ43の作動により弁軸42が往復し、弁体31を空気導入部21の弁座24に当接させて閉弁させ、これにより圧縮機吐出空気の尾筒7内への流入を禁止することができる。空気シリンダ43は、ガスタービンの圧縮機吐出空気により作動し、図示しないコントローラによってその作動が自動制御される。コントローラには、ガスタービンの発電出力、吸込み空気温度、圧縮機出口空気圧力若しくは軸回転数、燃焼器入口空気温度の各信号が入力され、これら発電出力と、吸込み空気温度と、圧縮機出口空気圧力若しくは軸回転数と、燃焼器入口空気温度とに基づいて、空気シリンダ43の作動が制御される。   The valve body 31 is fixed to the tip of a valve shaft (drive unit) 42, and the valve shaft 42 penetrates the lid member 52 airtightly through a seal 53 and is fixed to the outside of the outer cylinder 2 (drive). Part) 43. For this reason, the valve shaft 42 reciprocates due to the operation of the air cylinder 43, and the valve body 31 is brought into contact with the valve seat 24 of the air introduction portion 21 to close the valve, whereby the compressor discharge air enters the tail cylinder 7. Inflow can be prohibited. The air cylinder 43 is operated by the compressor discharge air of the gas turbine, and its operation is automatically controlled by a controller (not shown). The controller receives the power generation output of the gas turbine, the intake air temperature, the compressor outlet air pressure or shaft rotation speed, and the combustor inlet air temperature signals. These power generation output, the intake air temperature, and the compressor outlet air The operation of the air cylinder 43 is controlled based on the pressure or shaft rotational speed and the combustor inlet air temperature.

これは、発電出力によって燃料流量が変化するため、発電出力をパラメータとして弁体31を開閉させて、作動空燃比を一定範囲内に収める必要があるためである。また、ガスタービンの吸込み空気温度によって、吸込み空気流量が変化するため、吸込み空気温度をパラメータとして、作動空燃比を一定範囲内に収める必要があるためである。吸込み空気温度は、空気中の水分量にも大きく影響し、空気中の水分量によって燃焼状態も変化する。この燃焼状態の変化に対応するため、吸込み空気温度をパラメータとして弁体31を開閉させて、作動空燃比を調整する必要がある。   This is because the flow rate of the fuel changes depending on the power generation output, and therefore it is necessary to open and close the valve body 31 using the power generation output as a parameter to keep the operating air-fuel ratio within a certain range. Further, since the intake air flow rate changes depending on the intake air temperature of the gas turbine, it is necessary to keep the operating air-fuel ratio within a certain range using the intake air temperature as a parameter. The intake air temperature greatly affects the amount of moisture in the air, and the combustion state changes depending on the amount of moisture in the air. In order to cope with this change in the combustion state, it is necessary to adjust the operating air-fuel ratio by opening and closing the valve body 31 using the intake air temperature as a parameter.

一方、起動中の排出NOX を低減する場合、起動時の燃料と連続運転時の燃料とを異なるものにすることがある。このような場合、圧縮機出口空気圧力若しくは軸回転数をパラメータとして、起動時又は連続運転時の別を検出する必要がある。また、再生サイクルシステム等では、再生サイクルの運転状態によって燃焼器入口空気温度が変化する。この燃焼器入口空気温度の変化による影響を補償するため、燃焼器入口空気温度をパラメータとして弁体31を開閉させて、作動空燃比を調整する必要がある。 On the other hand, may reduce the emissions NO X in startup, it is possible to the the fuel at startup and fuel at the time of continuous operation different. In such a case, it is necessary to detect the start or the continuous operation using the compressor outlet air pressure or the shaft rotational speed as a parameter. In a regeneration cycle system or the like, the combustor inlet air temperature varies depending on the operation state of the regeneration cycle. In order to compensate for the influence of the change in the combustor inlet air temperature, it is necessary to adjust the operating air-fuel ratio by opening and closing the valve body 31 using the combustor inlet air temperature as a parameter.

蓋部材52及び支持板22は、燃焼空気可変機構収容部51に、ボルト54及びナット55により固定される。また、空気導入部21の蛇腹部材26の嵌合部27は、上述のように尾筒7のバイパス孔8に着脱自在に嵌合している。したがって、弁体31及び空気導入部21は、外筒2に対し外側から着脱自在であり、ガスタービン本体の分解を行うことなく取り外し及び取り付けすることができ、弁体31及び空気導入部21の整備性は極めてよい。   The lid member 52 and the support plate 22 are fixed to the combustion air variable mechanism housing portion 51 by bolts 54 and nuts 55. Moreover, the fitting part 27 of the bellows member 26 of the air introduction part 21 is detachably fitted into the bypass hole 8 of the tail cylinder 7 as described above. Therefore, the valve body 31 and the air introduction part 21 are detachable from the outside with respect to the outer cylinder 2, and can be removed and attached without disassembling the gas turbine main body. Serviceability is very good.

次に、本ガスタービン燃焼器の燃焼空気可変機構が、例えばガスタービンの発電出力により制御される場合の作動について説明する。   Next, the operation when the combustion air variable mechanism of the gas turbine combustor is controlled by, for example, the power generation output of the gas turbine will be described.

図5(a)に示すように、ガスタービンの始動時及び低出力時には、コントローラは、4つの燃焼空気可変機構20をすべて開弁させる。図2に示すように、外筒2と内筒5との間の通路3を通り、燃焼空気可変機構収容部51と空気導入部21の蛇腹部材26との間に流入した圧縮機吐出空気は、空気導入部21の支持板22の3つの空気挿通孔25を通って、蛇腹部材26内へ流入する。蛇腹部材26内へ流入した圧縮機吐出空気は、さらにバイパス孔8を通って尾筒7内へ導入される。   As shown in FIG. 5A, the controller opens all four combustion air variable mechanisms 20 when the gas turbine is started and when the output is low. As shown in FIG. 2, the compressor discharge air flowing through the passage 3 between the outer cylinder 2 and the inner cylinder 5 and flowing between the combustion air variable mechanism housing portion 51 and the bellows member 26 of the air introduction portion 21 is Then, the air flows into the bellows member 26 through the three air insertion holes 25 of the support plate 22 of the air introduction portion 21. The compressor discharge air flowing into the bellows member 26 is further introduced into the tail cylinder 7 through the bypass hole 8.

図6は、上述の燃焼空気可変機構20を装備した、一例としての1,100PS級単純開放サイクル一軸式小型ガスタービンにおける燃焼制御を示すグラフであり、発電出力0%においては、NOX 排出量は約50ppmである。NOX 排出量は発電出力の上昇に伴って増加し、発電出力約25%においては約65ppmとなる。 6, equipped with a combustion air adjustment mechanism 20 described above is a graph showing a combustion control in 1,100PS class simple open-cycle, single-shaft small gas turbine as an example, in the power generation output 0%, NO X emissions Is about 50 ppm. NO X emissions increases with increasing power output is about 65ppm in power output of about 25%.

発電出力が25%に達すると、図5(b)に示すように、コントローラは1つの燃焼空気可変機構20を閉弁させる。詳細には、図4に示すように、コントローラが空気シリンダ43を作動させ、弁体31を空気導入部21の弁座24に当接させて閉弁させる。これにより、燃焼空気可変機構収容部51と空気導入部21の蛇腹部材26との間に流入した圧縮機吐出空気は、蛇腹部材26内、及び尾筒7内への流入が禁止される。これにより、図6に示すように、発電出力25%において約65ppmであったNOX 排出量は、約45ppmまで低下する。 When the power generation output reaches 25%, the controller closes one combustion air variable mechanism 20 as shown in FIG. Specifically, as shown in FIG. 4, the controller activates the air cylinder 43 to bring the valve body 31 into contact with the valve seat 24 of the air introduction unit 21 to close the valve. Thereby, the compressor discharge air that has flowed in between the combustion air variable mechanism housing portion 51 and the bellows member 26 of the air introduction portion 21 is prohibited from flowing into the bellows member 26 and the tail cylinder 7. Thereby, as shown in FIG. 6, the NO x emission amount that was about 65 ppm at the power generation output 25% is reduced to about 45 ppm.

コントローラは、発電出力が50%に達すると、図5(c)に示すように、2つの燃焼空気可変機構20を閉弁させる。これにより、図6に示すように、発電出力が50%において約65ppmまで上昇したNOX 排出量を、約40ppmまで低下させる。さらに、コントローラは、発電出力が75%に達すると、図5(d)に示すように、4つの燃焼空気可変機構20をすべて閉弁させる。これにより、図6に示すように、発電出力が75%において約50ppmまで上昇したNOX 排出量を、約35ppmまで低下させる。そして、発電出力が100%に達したとき、NOX 排出量は約40ppmとなる。 When the power generation output reaches 50%, the controller closes the two combustion air variable mechanisms 20 as shown in FIG. As a result, as shown in FIG. 6, the NO x emission amount in which the power generation output is increased to about 65 ppm at 50% is reduced to about 40 ppm. Further, when the power generation output reaches 75%, the controller closes all the four combustion air variable mechanisms 20 as shown in FIG. As a result, as shown in FIG. 6, the NO x emission amount in which the power generation output increases to about 50 ppm at 75% is reduced to about 35 ppm. When the power generation output reaches 100%, the NO x emission amount is about 40 ppm.

このように、本ガスタービン燃焼器の燃焼空気可変機構によれば、一例としての1,100PS級単純開放サイクル一軸式小型ガスタービンにおいて、4つのバイパス孔8に対して4つの燃焼空気可変機構20を設け、ガスタービンの低出力時から高出力時にかけて弁体31を順次閉弁させることにより、ガスタービンの全出力領域において、NOX 排出量を最大約65ppmに抑えることができ、低NOX 化の促進を図ることができる。すなわち、ガスタービンの出力に応じて、ガスタービン燃焼器1の空燃比を適切に変化させることができる。 Thus, according to the combustion air variable mechanism of the present gas turbine combustor, in the 1,100 PS class simple open-cycle single-shaft small gas turbine as an example, four combustion air variable mechanisms 20 with respect to four bypass holes 8. the provided, by sequentially closing the valve body 31 toward the time of high output from the time of low power output of the gas turbine, the entire power range of the gas turbine, it is possible to suppress the NO X emissions up to about 65 ppm, the low NO X Can be promoted. That is, the air-fuel ratio of the gas turbine combustor 1 can be appropriately changed according to the output of the gas turbine.

また、上述の燃焼空気可変機構20は、空気導入部21と弁体31と駆動部41とを備えることにより構成されるから、小型化することができ、特にバイパス弁を構成する空気導入部21と弁体31とが、小型ガスタービンの外筒2内へ配設される。このため、低コスト化を図ることができると共に、低NOX 化の促進を図ることができる。さらに、空気シリンダ43は、ガスタービンの圧縮機吐出空気によって作動するから、シリンダ作動源を別途装備する必要がない。 Moreover, since the combustion air variable mechanism 20 described above is configured by including the air introduction part 21, the valve body 31, and the drive part 41, it can be reduced in size, and in particular, the air introduction part 21 constituting the bypass valve. And the valve body 31 are disposed in the outer cylinder 2 of the small gas turbine. Therefore, it is possible to reduce the cost, it is possible to enhance the low NO X reduction. Furthermore, since the air cylinder 43 is operated by the compressor discharge air of the gas turbine, it is not necessary to separately provide a cylinder operating source.

なお、本ガスタービン燃焼器1の燃焼空気可変機構20は、上述のように、特に小型ガスタービンに実施されて好適であるが、必ずしも小型ガスタービンに限定されるものではなく、中型ないし大型ガスタービンに実施することもできる。燃焼空気可変機構20も、必ずしもすべてのバイパス孔8に対して配設する必要はなく、また、複数とする必要もない。   As described above, the variable combustion air mechanism 20 of the gas turbine combustor 1 is preferably implemented in a small gas turbine, but is not necessarily limited to a small gas turbine. It can also be implemented in a turbine. The combustion air variable mechanism 20 does not necessarily need to be provided for all the bypass holes 8, and does not need to be plural.

一方、整備性がやや劣ることにはなるが、必ずしも空気導入部21を尾筒7のバイパス孔8に挿脱自在に嵌合する必要はなく、また、空気導入部21と弁体31を外筒2に、外筒2の外側から着脱自在に取り付ける必要もない。さらに、弁体31を、ガスタービンの発電出力と、吸込み空気温度と、圧縮機出口空気圧力若しくは軸回転数と、燃焼器入口空気温度とに基づいて開閉させるのではなく、これらの一部に基づいて、又は、他のパラメータ若しくはこれらと他のパラメータとの組合せに基づいて、開閉させるようにしてもよい。   On the other hand, although the serviceability is somewhat inferior, it is not always necessary to removably fit the air introduction portion 21 into the bypass hole 8 of the tail cylinder 7, and the air introduction portion 21 and the valve body 31 are not attached. It is not necessary to attach to the cylinder 2 detachably from the outside of the outer cylinder 2. Further, the valve body 31 is not opened / closed based on the power generation output of the gas turbine, the intake air temperature, the compressor outlet air pressure or shaft rotational speed, and the combustor inlet air temperature, but a part thereof. You may make it open and close based on other parameters or the combination of these and other parameters.

本発明のガスタービン燃焼器の燃焼空気可変機構を示す断面図である。It is sectional drawing which shows the combustion air variable mechanism of the gas turbine combustor of this invention. 図1の燃焼空気可変機構の詳細を示す断面図である。It is sectional drawing which shows the detail of the combustion air variable mechanism of FIG. 図2の弁座を示す平面図である。It is a top view which shows the valve seat of FIG. 図2とは別の作動状態を示す断面図である。It is sectional drawing which shows the operation state different from FIG. 図2の弁体がすべて開いた状態を示す模試図である。FIG. 3 is a schematic diagram showing a state in which all of the valve body of FIG. 2 is opened. 図2の弁体が1つ閉じた状態を示す模試図である。FIG. 3 is a schematic diagram showing a state in which one valve body of FIG. 2 is closed. 図2の弁体が2つ閉じた状態を示す模試図である。FIG. 3 is a schematic diagram showing a state in which two valve bodies in FIG. 2 are closed. 図2の弁体がすべて閉じた状態を示す模試図である。FIG. 3 is a schematic diagram showing a state where all the valve bodies in FIG. 2 are closed. 図1の燃焼空気可変機構を用いた燃焼制御を示すグラフである。It is a graph which shows the combustion control using the combustion air variable mechanism of FIG. 従来の燃焼空気可変機構を示す断面図である。It is sectional drawing which shows the conventional combustion air variable mechanism.

符号の説明Explanation of symbols

1 燃焼器
2 外筒
3 通路
5 内筒
6 主燃焼器
7 尾筒
8 バイパス孔
9 出口
10 固定ピン
11 燃料噴射ノズル
12 点火プラグ
20 燃焼空気可変機構
21 空気導入部
22 支持板
23 蛇腹部材支持部
24 弁座
25 空気挿通孔
26 蛇腹部材
27 嵌合部
31 弁体
41 駆動部
42 弁軸
43 空気シリンダ
51 燃焼空気可変機構収容部
52 蓋部材
53 シール
54 ボルト
55 ナット
100 燃焼器
101 尾筒
102 タービン
103 燃焼空気可変機構
104 バイパス弁
105 外筒
Reference Signs List 1 combustor 2 outer cylinder 3 passage 5 inner cylinder 6 main combustor 7 tail cylinder 8 bypass hole 9 outlet 10 fixing pin 11 fuel injection nozzle 12 spark plug 20 combustion air variable mechanism 21 air introduction part 22 support plate 23 bellows member support part 24 Valve seat 25 Air insertion hole 26 Bellows member 27 Fitting part 31 Valve body 41 Drive part 42 Valve shaft 43 Air cylinder 51 Combustion air variable mechanism accommodating part 52 Lid member 53 Seal 54 Bolt 55 Nut 100 Combustor 101 Tail 102 Turbine 103 Combustion air variable mechanism 104 Bypass valve 105 Outer cylinder

Claims (8)

外筒(2)とバイパス孔(8)を有する内筒(5)とを備えたガスタービン燃焼器(1)の燃焼空気可変機構であって、前記燃焼空気可変機構(20)は、筒状に形成され前記外筒と前記内筒との間に配設されて前記内筒の前記バイパス孔から外側へ延出し前記外筒と前記内筒との間に流入した圧縮機吐出空気を前記内筒内へ導入すると共に外端部に弁座(24)が形成された空気導入部(21)と、前記空気導入部の前記弁座に当接して閉弁し前記圧縮機吐出空気の前記内筒内への流入を禁止する弁体(31)と、前記弁体を前記外筒の外側から開閉させる駆動部(41)とを備えたことを特徴とするガスタービン燃焼器の燃焼空気可変機構。   A combustion air variable mechanism of a gas turbine combustor (1) having an outer cylinder (2) and an inner cylinder (5) having a bypass hole (8), wherein the combustion air variable mechanism (20) is cylindrical. Formed between the outer cylinder and the inner cylinder, extending outward from the bypass hole of the inner cylinder and flowing in between the outer cylinder and the inner cylinder. An air introduction portion (21) having a valve seat (24) formed at the outer end thereof while being introduced into the cylinder, and a valve contacted with the valve seat of the air introduction portion to close the inside of the compressor discharge air A combustion air variable mechanism for a gas turbine combustor, comprising: a valve body (31) that prohibits inflow into the cylinder; and a drive section (41) that opens and closes the valve body from the outside of the outer cylinder. . 前記空気導入部(21)は、前記内筒(5)の径方向及び又は軸方向に柔軟に動く可動部(26)を有することを特徴とする請求項1に記載のガスタービン燃焼器の燃焼空気可変機構。   The combustion of a gas turbine combustor according to claim 1, wherein the air introduction part (21) has a movable part (26) that moves flexibly in a radial direction and / or an axial direction of the inner cylinder (5). Air variable mechanism. 前記空気導入部(21)は、内端部が前記内筒(5)の前記バイパス孔(8)に挿脱自在に嵌合することを特徴とする請求項1又は2に記載のガスタービン燃焼器の燃焼空気可変機構。   3. The gas turbine combustion according to claim 1, wherein an inner end portion of the air introduction portion (21) is removably fitted into the bypass hole (8) of the inner cylinder (5). Variable combustion air mechanism. 前記空気導入部(21)と前記弁体(31)は、前記外筒(2)に前記外筒の外側から着脱自在に固定されることを特徴とする請求項1ないし3のいずれかに記載のガスタービン燃焼器の燃焼空気可変機構。   The said air introduction part (21) and the said valve body (31) are detachably fixed to the said outer cylinder (2) from the outer side of the said outer cylinder, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. Variable combustion air mechanism of gas turbine combustor. 前記バイパス孔(8)と前記燃焼空気可変機構(20)は、複数から成り、前記燃焼空気可変機構は、前記ガスタービンの低出力時から高出力時にかけて前記弁体(31)を順次閉弁させることを特徴とする請求項1ないし4のいずれかに記載のガスタービン燃焼器の燃焼空気可変機構。   The bypass hole (8) and the combustion air variable mechanism (20) are composed of a plurality, and the combustion air variable mechanism sequentially closes the valve bodies (31) from a low output to a high output of the gas turbine. The combustion air variable mechanism of the gas turbine combustor according to any one of claims 1 to 4, wherein the variable combustion air mechanism is provided. 前記弁体(31)は、前記外筒(2)の外側に固定された空気シリンダ(43)と、前記空気シリンダの作動を制御するコントローラとにより開閉されることを特徴とする請求項1ないし5のいずれかに記載のガスタービン燃焼器の燃焼空気可変機構。   The said valve body (31) is opened and closed by the air cylinder (43) fixed to the outer side of the said outer cylinder (2), and the controller which controls the action | operation of the said air cylinder. The combustion air variable mechanism of the gas turbine combustor according to any one of claims 5 to 6. 前記コントローラは、前記ガスタービンの発電出力、吸込み空気温度、圧縮機出口空気圧力若しくは軸回転数、燃焼器入口空気温度のいずれか1つ以上に基づいて前記弁体(31)を開閉させることを特徴とする請求項6に記載のガスタービン燃焼器の燃焼空気可変機構。   The controller opens and closes the valve body (31) based on any one or more of the power generation output of the gas turbine, the intake air temperature, the compressor outlet air pressure or shaft rotational speed, and the combustor inlet air temperature. The combustion air variable mechanism of the gas turbine combustor according to claim 6. 前記燃焼器(1)は、単筒型であることを特徴とする請求項1ないし7のいずれかに記載のガスタービン燃焼器の燃焼空気可変機構。   The combustion air variable mechanism of a gas turbine combustor according to any one of claims 1 to 7, wherein the combustor (1) is a single cylinder type.
JP2004066859A 2004-03-10 2004-03-10 Combustion air variable mechanism for gas turbine combustor Pending JP2005257117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066859A JP2005257117A (en) 2004-03-10 2004-03-10 Combustion air variable mechanism for gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066859A JP2005257117A (en) 2004-03-10 2004-03-10 Combustion air variable mechanism for gas turbine combustor

Publications (1)

Publication Number Publication Date
JP2005257117A true JP2005257117A (en) 2005-09-22

Family

ID=35083013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066859A Pending JP2005257117A (en) 2004-03-10 2004-03-10 Combustion air variable mechanism for gas turbine combustor

Country Status (1)

Country Link
JP (1) JP2005257117A (en)

Similar Documents

Publication Publication Date Title
KR101370117B1 (en) Turbo supercharger
RU2626047C2 (en) Method of operation a gas turbine engine including the system of air recirculation in the combustion chamber shell
RU2005102777A (en) TWO-CIRCUIT TUBE-REACTIVE ENGINE
US8820091B2 (en) External cooling fluid injection system in a gas turbine engine
JP2014181899A (en) System for controlling flow rate of compressed working fluid to combustor fuel injector
KR101571046B1 (en) Turbocharger
JP2011149425A (en) Nonlinear unsymmetrical variable guide vane schedule
RU2595465C1 (en) Air circulation system shell of combustion chambers in gas turbine engine
US20110131976A1 (en) Exhaust gas turbocharger for an internal combustion engine
CN109937306B (en) Compressor, exhaust gas turbocharger, and internal combustion engine
US20090196739A1 (en) Axial flow fluid device
RU2570480C2 (en) Mixing of diluting air in gas turbine sequential combustion system
CN104612818B (en) Turbine wastegate
RU2316662C1 (en) Gas-turbine engine
JP4204057B2 (en) Cooling device for pilot fuel injection valve for gas engine
EP4141234A1 (en) Turbocharger turbine rotary bypass valve providing waste gate regulation and full turbine bypass functions
US10309319B2 (en) Compressor arrangement and gas turbine engine
JP5342594B2 (en) Turbocharger
JP2005257117A (en) Combustion air variable mechanism for gas turbine combustor
JP2009114934A (en) Exhaust emission control device of internal combustion engine
KR20140114787A (en) Cleaning device of an exhaust gas turbine
EP3483416B1 (en) Variable nozzle apparatus
CN112805461B (en) Exhaust turbine of an exhaust turbocharger with a sealing wastegate valve arrangement and exhaust turbocharger
WO2015037410A1 (en) Turbocharger, turbine nozzle, and ship
JP2004108595A (en) Gas turbine combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A02