JP2005256589A - Safe anti-theft key using two-stage gear mechanism and permanent magnet - Google Patents

Safe anti-theft key using two-stage gear mechanism and permanent magnet Download PDF

Info

Publication number
JP2005256589A
JP2005256589A JP2004114811A JP2004114811A JP2005256589A JP 2005256589 A JP2005256589 A JP 2005256589A JP 2004114811 A JP2004114811 A JP 2004114811A JP 2004114811 A JP2004114811 A JP 2004114811A JP 2005256589 A JP2005256589 A JP 2005256589A
Authority
JP
Japan
Prior art keywords
permanent magnet
pole
circular permanent
rack
latch bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004114811A
Other languages
Japanese (ja)
Inventor
Yukihiro Toyoda
幸弘 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004114811A priority Critical patent/JP2005256589A/en
Publication of JP2005256589A publication Critical patent/JP2005256589A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe anti-theft lock preventing illegal unlocking by picking, thumb-turn turning, or the like. <P>SOLUTION: The inside of outdoor and indoor frames of a vestibule door with only a handle mounted to the right side or left side of the door without a keyhole in the outdoor surface of the door, is provided with a latch bolt 1 energized to project by the repulsion of circular permanent magnets 6a, 6b; a pinion gear 9 meshed with a rack 5 mounted to the latch bolt; two-stage gear mechanisms 10, 14 interlocked with the pinion gear; and a rack 11. A multipolar circular permanent magnet 13 is mounted to the rack 11. When the multipolar permanent magnet corresponding to the circular permanent magnet 13 is brought close to the outdoor surface of the vestibule door, the circular permanent magnet 13 is attracted to put the rack 11 in linear motion, and interlocked with this, the latch bolt recedes to unlock. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、図2に示すように玄関扉に鍵穴は無く、扉の室外にはハンドルだけである。玄関扉の室外と室内の枠内に安全な盗難防止用鍵を装荷し、永久磁石を用いて室外から玄関扉を開閉できる盗難防止用鍵に関するものである。  In the present invention, as shown in FIG. 2, the entrance door has no keyhole, and only the handle is provided outside the door. The present invention relates to an anti-theft key in which a safe anti-theft key is loaded on the outside of an entrance door and inside an indoor frame, and the entrance door can be opened and closed from the outside using a permanent magnet.

従来から図1に示すようにシリンダが取り付けられ、更に補助鍵を取り付けられてある。鍵穴に鍵を挿入して開錠し玄関扉を開閉する。最も代表的な鍵が採用されている。  Conventionally, a cylinder is attached as shown in FIG. 1, and an auxiliary key is further attached. Insert the key into the keyhole and unlock it to open and close the front door. The most representative key is used.

現在主流となっている玄関扉の鍵については図1に示す。現在騒がれているピッキングと玄関扉の室外の一部に電動ドリルで穴をあけて細い針金を挿入してサムターン回しをするか或いは郵便受けから腕を入れて鍵を10分以内で開錠する方法、これ以外に鍵のにぎりを壊して玄関扉をあけて泥棒が侵入する場合が非常に多い。  Fig. 1 shows the main entrance door keys. A method of unlocking the key within 10 minutes by drilling a hole with an electric drill and inserting a thin wire and turning the thumb turn or putting an arm from the mailbox to the part of the outside of the picking and entrance door that is currently noisy Besides this, there are very many cases where a thief invades by breaking the key and opening the entrance door.

従って本発明は3種類の安全な盗難防止用鍵を開発した。最初の安全な盗難防止用鍵の装置を図3に示す。2番目の安全な盗難防止用鍵の装置は図5に示す。3番目の安全な盗難防止用鍵の装置は図6に示す。3種類の安全な盗難防止用鍵は2段歯車機構と傘歯車及び円形または角形永久磁石を用いた安全な盗難防止用鍵を考案した。
これらの3種類の安全な盗難防止用鍵を用いると玄関扉の室外表面には鍵穴は無く、玄関扉の右側或いは左側にはハンドルだけが取り付けてある。
使用する家人が3種類の安全な盗難防止用鍵の装置の内1つを選択して玄関扉の室外と室内のアルミニュウム板の枠内に2段歯車機構と永久磁石を丸形多極或いは角形多極を用いた安全な盗難防止用鍵を装荷する。
永久磁石を丸形多極或いは角形多極にすれば暗証番号と同じで永久磁石の磁極数が分からないと簡単に玄関扉を開ける事が出来ない。泥棒の侵入を防ぐ安全な盗難防止用鍵を実現することを目的とする。
Therefore, the present invention has developed three types of secure anti-theft keys. The first secure anti-theft key device is shown in FIG. A second secure anti-theft key device is shown in FIG. A third secure anti-theft key device is shown in FIG. Three types of safe anti-theft keys have been devised, including a safe anti-theft key using a two-stage gear mechanism, a bevel gear and a circular or square permanent magnet.
When these three types of safe antitheft keys are used, there is no keyhole on the exterior surface of the entrance door, and only a handle is attached to the right or left side of the entrance door.
The householder to use chooses one of the three types of safe anti-theft key devices, and installs a two-stage gear mechanism and permanent magnet in the round multi-pole or square shape outside the entrance door and inside the aluminum plate frame. Load a secure anti-theft key with multiple poles.
If the permanent magnet is a round multi-pole or a square multi-pole, the entrance door cannot be easily opened unless the number of magnetic poles of the permanent magnet is known. It aims to realize a secure anti-theft key that prevents thieves from entering.

課題を解決しようとする手段Means to solve the problem

上記の目的を達成するために、本発明に拘わる最初の鍵穴の無い玄関扉に取り付ける安全な歯車機構と永久磁石を用いた盗難防止用鍵の構造を図3に示す。固定した玄関扉に取り付けたストライク(2)の中へラッチボルト(1)を挿入する時に玄関扉は鍵が掛かった状態になる。玄関扉を強く引いてもラッチボルト(1)が強度に十分耐えられるように容器(4)で支えた。
ストライク(2)の中へラッチボルト(1)が挿入する時の動作について詳細に述べる。ラッチボルト(1)の後方に細い円柱棒に円形永久磁石M(6a)を固定した。Mの後方に間隔を隔てて円形のヨークの中に装荷した永久磁石M(6b)を置く。
2個の円形永久磁石M(6a)の磁極面の磁極が(N極或いはS極)と円形永久磁石M(6b)の磁極面の磁極を(N極或いはS極)にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。この反発力でストライク(2)の中へラッチボルト(1)が挿入し、自動的に鍵が掛かる。
円形永久磁石M(6a)とM(6b)の同極間の反発力の大きさを微調整するときに永久磁石Mを回転出来るようにネジを切った円柱棒(7a)に結合して、円柱棒(7a)を支持台(8a)で支えた。円柱棒(7a)を動かして反発力の大きさを調整する。反発力の大きさを微調整して最適値が決まれば円形永久磁石MとMの間隔 を保持するために円柱棒(7a)を支持台(8a)の横に設けた六角ナット(8b)で固定した。
ラッチボルト(1)の側面にある長さのラック(5)を止めネジで固定した。ストライク(2)の中からラッチボルト(1)を抽出する時はラッチボルト(1)の側面に取り付けてあるラック(5)が往復直線運動するにはラック(5)と噛み合う相手のピニオン歯車(9)が時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的にするためには図3aに示す2段歯車機構(10)と図3bに示すようにピニオン歯車(9)の軸と2段歯車機構(10)のAの歯車の軸を直接結合した。Dの歯車の軸と2段歯車機構(14)のDの歯車の軸も直接結合した。
ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車の軸を介して(10)と(14)の2個の2段歯車機構の各歯車が連動するとラック(11)の下部に取り付けた円形永久磁石M(13)も作動する。
ラック(11)が滑らかに往復直線運動できるように、ラック(11)の両面にベアリング(12)の幅の溝を付けた。このラック(11)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11)が往復直線運動すると左右2個のベアリングはそれぞれ回転する。
図4aと図4bに示すようにラック(11)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)がある。ベアリング(12)を設ける事によってラック(11)が滑らかに往復直線運動する。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内にこの装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13)の磁極面の磁極がS極である。このN極をS極に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13)の間に異極間が生じる。異極間に吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13)が引き寄せられる。
この吸引力でラック(11)が往復直線運動すると2段歯車機構(14)の各々の歯車が連動して2段歯車機構(10)も作動する。ピニオン歯車が回転するとラック(5)も往復直線運動してストライク(2)の中からラッチボルト(1)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13)への吸引力は無くなる。吸引力が無くなると円形永久磁石M(6a)とM(6b)の同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1)が挿入する。ラッチボルト(1)を挿入するとラッチボルト(1)の側面に取り付けたラック(5)が往復直線運動する。ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車の軸を介して(10)と(14)の2個の2段歯車機構の各歯車が連動するとラック(11)の下部に取り付けた円形永久磁石M(13)も作動し、円形永久磁石M(13)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
もし偶然に円形永久磁石M(13)の磁極面の磁極が分からなくてもM(13)の配置した場所さえわかれば、玄関扉の室外アルミニュウム板に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極或いはS極にする。このN極或いはS極を円形永久磁石M(13)に近づけて吸引力が働けば玄関扉は簡単に開けられ家人が大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために円形永久磁石M(13)と玄関扉の室外アルミニュウム板に沿って動かす角形又は円形永久磁石も図4cに示す丸形多極或いは角形多極を用いれば磁極数がわからない限り暗証番号と同じで簡単に玄関扉は開かない。
安全な盗難防止用鍵の装置に用いた永久磁石を電気磁石にして用いる事も出来る。その場合商用周波数50Hz或いは60Hzで、交流電圧が100Vから変圧器で低電圧にして用いる方法がある。交流電圧は+−が交互に変化するので(電気磁石の磁極はN極とS極が交互にかわる)騒音が出やすい。騒音を無くすには交流電圧を直流電圧に変換して使用する。電気磁石を用いると装置が大きくなり、又停電した時には蓄電池に切り替える装置が不可欠であり、費用もかなり高くなる欠点がある。
現在市販されている角形又は円形永久磁石は小型で色々の種類のものがあって磁力もかなり強い。停電しても心配ないし、価額もかなり安いという利点がある。
以上の利点から安全な盗難防止用鍵の装置には現在市販に出ている永久磁石を用いた。
全て歯車機構と永久磁石を利用しているので簡単な回路構成で出来るので最も安全な盗難防止用鍵の装置を備えている。
In order to achieve the above object, FIG. 3 shows the structure of an antitheft key using a permanent gear and a safe gear mechanism attached to the first keyhole-less entrance door according to the present invention. When the latch bolt (1) is inserted into the strike (2) attached to the fixed entrance door, the entrance door is locked. Even if the entrance door was pulled strongly, the latch bolt (1) was supported by the container (4) so that it could withstand the strength sufficiently.
The operation when the latch bolt (1) is inserted into the strike (2) will be described in detail. A circular permanent magnet M 1 (6a) was fixed to a thin cylindrical rod behind the latch bolt (1). A permanent magnet M 2 (6b) loaded in a circular yoke is placed behind M 1 at a distance.
When the magnetic pole of the magnetic pole face of the two circular permanent magnets M 1 (6a) is (N pole or S pole) and the magnetic pole of the magnetic pole face of the circular permanent magnet M 2 (6b) is (N pole or S pole), the magnet The same poles repel each other. A repulsive force acts between the same poles of M 1 and M 2 . With this repulsive force, the latch bolt (1) is inserted into the strike (2) and automatically locked.
Coupled to a cylinder rod (7a) of the threaded to allow rotation of the permanent magnet M 2 when finely adjusting the magnitude of the repulsion between the same poles of the circular permanent magnet M 1 (6a) and M 2 (6b) The cylindrical rod (7a) was supported by the support base (8a). Move the cylindrical rod (7a) to adjust the magnitude of the repulsive force. Hex nut provided on the side of the repulsive force of the magnitude of the fine adjustment to the optimum value cylindrical bar to hold the spacing of the circular permanent magnet M 1 and M 2 once the support base of (7a) (8a) (8b ).
The rack (5) having a length on the side surface of the latch bolt (1) was fixed with a set screw. When the latch bolt (1) is extracted from the strike (2), the rack (5) attached to the side surface of the latch bolt (1) moves in a reciprocating linear motion so that the mating pinion gear ( 9) may be rotated clockwise or counterclockwise.
In order to make this operation automatic, the two-stage gear mechanism (10) shown in FIG. 3a and the pinion gear (9) shaft and the A gear of the two-stage gear mechanism (10) as shown in FIG. The shafts were connected directly. The shaft of the D gear and the shaft of the D gear of the two-stage gear mechanism (14) were also directly coupled.
The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two two-stage gear mechanisms (10) and (14) are linked via the pinion gear shaft, the circular permanent magnet M 3 (13) attached to the lower portion of the rack (11) also operates.
A groove having a width of the bearing (12) was provided on both sides of the rack (11) so that the rack (11) could smoothly move back and forth linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11). When the rack (11) reciprocates linearly, the left and right bearings rotate respectively.
As shown in FIGS. 4a and 4b, there are two bearings (12) on the left and right sides of the frame (12a) that vertically supports the rack (11). By providing the bearing (12), the rack (11) smoothly reciprocates linearly.
This apparatus is loaded outside the entrance door shown in FIG. 2 and inside the aluminum plate frame. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole. The magnetic poles of the magnetic pole surfaces of the circular permanent magnet M 3 (13) loaded outside the entrance door and inside the frame of the aluminum plate in the room are the S poles. When this N pole is brought close to the S pole, the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13). When the attractive force acts between the different poles, the circular permanent magnet M 3 (13) is attracted toward the aluminum plate outside the entrance door.
When the rack (11) reciprocates linearly by this suction force, the gears of the two-stage gear mechanism (14) are interlocked to operate the two-stage gear mechanism (10). When the pinion gear rotates, the rack (5) also reciprocates linearly to extract the latch bolt (1) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13) is lost. When the attraction force disappears, the repulsive force between the same poles of the circular permanent magnets M 1 (6a) and M 2 (6b) is always working, so the latch bolt (1) is inserted into the strike (2). When the latch bolt (1) is inserted, the rack (5) attached to the side surface of the latch bolt (1) reciprocates linearly. The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two two-stage gear mechanisms (10) and (14) are interlocked via the pinion gear shaft, the circular permanent magnet M 3 (13) attached to the lower portion of the rack (11) is also operated, The permanent magnet M 3 (13) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
Even if the magnetic pole face of the circular permanent magnet M 3 (13) is accidentally unknown, if the location of the M 3 (13) is known, the square or circular permanent magnet moving along the outdoor aluminum plate of the entrance door The magnetic pole of the magnetic pole surface is set to N or S pole. If this N pole or S pole is brought close to the circular permanent magnet M 3 (13) and a suction force is applied, the entrance door can be easily opened and the housekeeper is in trouble.
As a countermeasure against this, the round permanent magnet M 3 (13) and the square or round permanent magnet that moves along the outdoor aluminum plate of the front door to enhance the safety of the developed antitheft key are also shown in FIG. 4c. Alternatively, if you use a square multipole, the entrance door will not open easily because it is the same as your PIN unless you know the number of magnetic poles.
The permanent magnet used in the secure anti-theft key device can also be used as an electric magnet. In that case, there is a method of using an AC voltage from 100 V to a low voltage with a transformer at a commercial frequency of 50 Hz or 60 Hz. Since the alternating voltage changes alternately between + and-(the magnetic poles of the electromagnet alternate between N poles and S poles), noise is likely to occur. To eliminate noise, AC voltage is converted to DC voltage. If an electromagnet is used, the device becomes large, and a device for switching to a storage battery in the event of a power failure is indispensable, and there is a disadvantage that the cost is considerably increased.
The square or circular permanent magnets currently on the market are small and various types, and the magnetic force is quite strong. There is an advantage that there is no worry about the power outage and the price is quite low.
Because of the above advantages, a permanent magnet that is currently on the market is used as a safe anti-theft key device.
Since all gear mechanisms and permanent magnets are used, a simple circuit configuration is possible, so the most secure anti-theft device is provided.

更に本発明では、2番目の鍵穴の無い玄関扉に取り付ける最も安全な歯車機構と永久磁石を用いた盗難防止用鍵の構造を図5に示す。固定した玄関扉に取り付けたストライク(2)の中へラッチボルト(1A)と(1B)を挿入した時に玄関扉は鍵が掛かった状態になる。玄関扉を強く引いてもラッチボルト(1A)と(1B)が強度に十分耐えられるように容器(4)で支えた。
ストライク(2)の中へラッチボルト(1Aと1B)を挿入する時は図5に示すようにラッチボルト(1A)の後方に細い円柱棒に円形永久磁石M(15a)を固定し、ラッチボルト(1B)の後方にも細い円柱棒に円形永久磁石M(15b)を固定にした。図5に示すように円形永久磁石MとMは並列に並んだ後方に間隔 を隔てて角形のヨークの中に装荷した永久磁石M(16)を置く。
2個の円形永久磁石M(15a)とM(15b)の磁極面の磁極は(N極か或いはS極)で角形永久磁石M(16)の磁極面の磁極は(N極か或いはS極)である。3個のMとM及びMの永久磁石の磁極面の磁極をN極にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。2個の円形永久磁石(MとM)と角形永久磁石Mの同極間でも反発力が働く。この反発力でストライク(2)の中へ2個のラッチボルト(1Aと1B)が挿入し、自動的に鍵が掛かる。
2個の円形永久磁石(MとM)と角形永久磁石Mの同極間の反発力の大きさを微調整するために角形永久磁石Mを円柱棒(7b)に結合して、円柱棒(7b)を支持台(8a)で支えた。円柱棒(7b)を可動して最適値が決まると2個の円形永久磁石永久磁石(MとM)と角形永久磁石Mの間隔 を保持するために円柱棒(7b)を支持台(8a)の横に設けた止めネジ(8c)で固定した。
図5に示すようにこの盗難防止用鍵は1つのストライク(2)の中に独立した2個のラッチボルト(1A)と(1B)が抽出或いは挿入できるような構造にしてある。
最初にラッチボルト(1A)の動作について述べる。
ストライク(2)の中からラッチボルト(1A)を抽出或いは挿入する場合ラッチボルト(1A)の側面に取り付けてあるラック(5a)が往復直線運動する。ラック(5a)が滑らかに往復直線運動するようにラック(5a)と噛み合う相手のピニオン歯車(9a)も時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的に出来るようにするには図5に示す2段歯車機構(10a)と図3bに示すようにピニオン歯車(9a)の軸と2段歯車機構(10a)のAの歯車の軸を直接結合した。Dの歯車の軸と2段歯車機構(14a)のDの歯車の軸もサンエス・フレックスシャフト(18a)を用いて結合した。
円形永久磁石M(15a)の磁極面の磁極がN極で角形永久磁石M(16)の磁極面の磁極がN極であると同極間で反発力が働く。この反発力でストライク(2)の中へラッチボルト(1A)が挿入する。ラッチボルト(1A)の側面に取り付けてあるラック(5a)も往復直線運動してピニオン歯車(9a)が回転するとピニオン歯車の軸を介して(10a)と(14a)の2個の2段歯車機構の各歯車が連動する。図4bに示すようにラック(11a)の下部に取り付けた円形永久磁石M(13a)は玄関扉の室外アルミニュウム板から離れる。
ラック(11a)が滑らかに往復直線運動できるように、ラック(11a)の両面にベアリング(12)の幅の溝を付けた。このラック(11a)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11a)が往復直線運動すると左右2個のベアリング(12)は回転する。
図4aに示すようにラック(11a)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)がある。ベアリング(12)を設ける事によってラック(11a)が滑らかに往復直線運動できる。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に上に述べた装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13a)の磁極面の磁極はS極である。このN極をM(13a)に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13a)の間に異極間が生じる。異極間に吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13a)が引き寄せられる。
この吸引力でラック(11a)が往復直線運動すると2段歯車機構(14a)の各々の歯車が連動して2段歯車機構(10a)も作動する。ピニオン歯車(9a)が回転するとラック(5a)も往復直線運動してストライク(2)の中からラッチボルト(1A)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13a)への吸引力は無くなる。この吸引力がないとM(13a)は室外アルミニュウム板から離れると2段歯車機構は動作しない。ラッチボルト(1A)はストライク(2)の中へ挿入する。その動作を説明する。
円形永久磁石M(15a)と角形永久磁石M(16)の両方の磁極面の磁極はN極である。M(15a)とM(16)の磁石の同極同士は反発する。同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1A)が挿入する。ラッチボルト(1A)が挿入するとラッチボルト(1A)の側面に取り付けたラック(5a)が往復直線運動する。ラック(5a)が往復直線運動してピニオン歯車(9a)が回転する。ピニオン歯車(9a)を介して(10a)と(14a)の2個の2段歯車機構の各歯車が連動するとラック(11a)の下部に取り付けた円形永久磁石M(13a)も作動し、円形永久磁石M(13a)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
次にラッチボルト(1B)の動作について述べる。
ストライク(2)の中からラッチボルト(1B)を抽出又は挿入する時にラッチボルト(1B)の側面に取り付けてあるラック(5b)が往復直線運動するとラック(5b)と噛み合う相手のピニオン歯車(9b)を時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的に出来るようにするためには図5に示す2段歯車機構(10b)と図3bに示すようにピニオン歯車(9b)の軸と2段歯車機構(10b)のAの歯車の軸を直接結合し、Dの歯車の軸と2段歯車機構(14b)のDの歯車の軸もサンエス・フレックスシャフト(18b)を用いて結合した。
円形永久磁石M(15b)の磁極面の磁極がN極で角形永久磁石M(16)の磁極面の磁極がN極であると同極間で反発力が働く。この反発力でストライク(2)の中へラッチボルト(1B)が挿入する。ラッチボルト(1B)の側面に取り付けてあるラック(5b)も往復直線運動してピニオン歯車(9b)が回転するとピニオン歯車の軸を介して(10b)と(14b)の2個の2段歯車機構の各歯車が連動する。図4bに示すようにラック(11b)の下部に取り付けた円形永久磁石M(13b)は玄関扉の室外アルミニュウム板から離れる。
ラック(11b)が滑らかに往復直線運動できるように、ラック(11b)の両面にベアリング(12)の幅の溝を付けた。このラック(11b)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11b)が往復直線運動すると左右2個のベアリングは回転する。
図4aに示すようにラック(11b)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)を設けた。ベアリング(12)を設ける事によってラック(11b)が滑らかに往復直線運動できる。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に上に述べた装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。
玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13b)の磁極面の磁極はS極である。このN極をS極を近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13b)の間に異極間が生じる。異極間には吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13b)が引き寄せられる。
この吸引力でラック(11b)が往復直線運動すると2段歯車機構(14b)の各々の歯車が連動し2段歯車機構(10b)も作動する。ピニオン歯車(9b)が回転するとラック(5b)も往復直線運動してストライク(2)の中からラッチボルト(1B)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13b)への吸引力は無くなる。この吸引力がないとM(13b)は室外アルミニュウム板から離れると2段歯車機構は動作しない。ラッチボルト(1B)ストライク(2)の中へ挿入する。その動作を説明する。
円形永久磁石M(15b)と角形永久磁石M(16)の両方の磁極面の磁極はN極である。M(15b)とM(16)の磁石の同極同士は反発する。同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1B)が挿入する。ラッチボルト(1B)が挿入するとラッチボルト(1B)の側面に取り付けたラック(5b)が往復直線運動する。ラック(5b)が往復直線運動してピニオン歯車(9b)が回転する。ピニオン歯車(9b)を介して(10b)と(14b)の2個の2段歯車機構の各歯車が連動するとラック(11b)の下部に取り付けた円形永久磁石M(13b)も作動し、円形永久磁石M(13b)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
ラッチボルト(1A)と(1B)を別々にしたのは玄関扉の室外から角形永久磁石を室内の円形永久磁石M(13a)に近ずけてラッチボルト(1A)の回路だけ動作させてもストライク(2)の中からラッチボルト(1A)を抽出してもストライク(2)の中にはラッチボルト(1B)が挿入されたままになっているので玄関扉は開かない。
また、この逆の場合も同じである。ラッチボルト(1A)と(1B)の2回路が同時に作動しないと玄関扉は開かない。
サンエス・フレックスシャフト(18a)と(18b)の長さを変えてラッチボルト(1A)と(1B)の2つの回路内の2段歯車機構(14a)と(14b)の位置を任意に決められるし、円形永久磁石のM(13a)の磁極面の磁極をS極にし(13b)の磁極面の磁極をN極にする方法がある。
もし偶然に2個の円形永久磁石M(13a)の磁極面の磁極をS極と(13b)の磁極面の磁極をN極であることが分かり、2個の円形永久磁石M(13a)と(13b)の配置した場所も分かれば磁石の異極間には吸引力が作用する。
玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をS極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13a)の磁極面の磁極がN極である。このS極をN極に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13b)の間に異極間が生じる。異極間には吸引力が働くと、玄関扉は簡単に開けられ家人が大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために図4cに示すように円形永久磁石のM(13a)と(13b)および玄関扉の室外アルミニュウ厶板の表面に沿って円形永久磁石のM(13a)と(13b)を吸引する2個の角形永久磁石も丸形多極或いは角形多極にすれば暗証番号と同じで簡単に玄関扉は開かない。
図5に示すように2つの回路系にして全て歯車機構と永久磁石を利用しているので簡単な回路構成で出来る最も安全な盗難防止用鍵の装置。
Furthermore, in the present invention, the structure of the anti-theft key using the safest gear mechanism and permanent magnet attached to the entrance door without the second keyhole is shown in FIG. When the latch bolts (1A) and (1B) are inserted into the strike (2) attached to the fixed entrance door, the entrance door is locked. Even if the entrance door was pulled strongly, the latch bolts (1A) and (1B) were supported by the container (4) so that they could withstand the strength sufficiently.
When inserting the latch bolts (1A and 1B) into the strike (2), the circular permanent magnet M 4 (15a) is fixed to the thin cylindrical rod behind the latch bolt (1A) as shown in FIG. A circular permanent magnet M 5 (15b) was fixed to a thin cylindrical rod also behind the bolt (1B). Figure circular permanent magnet M 4 and M 5, as shown in 5 put a permanent magnet M 6 (16) Loaded into rectangular yoke spaced rearwardly arranged in parallel.
The magnetic poles of the magnetic faces of the two circular permanent magnets M 4 (15a) and M 5 (15b) are (N pole or S pole) and the magnetic poles of the square permanent magnet M 6 (16) are (N poles). Or S pole). When the magnetic poles of the magnetic faces of the three M 4 , M 5, and M 6 permanent magnets are N poles, the same poles of the magnets repel each other. A repulsive force acts between the same poles of M 1 and M 2 . A repulsive force also acts between the same polarities of the two circular permanent magnets (M 4 and M 5 ) and the square permanent magnet M 6 . With this repulsive force, two latch bolts (1A and 1B) are inserted into the strike (2) and automatically locked.
In order to finely adjust the magnitude of the repulsive force between the same polarities of the two circular permanent magnets (M 4 and M 5 ) and the square permanent magnet M 6 , the square permanent magnet M 6 is coupled to the cylindrical rod (7b). The cylindrical rod (7b) was supported by the support base (8a). When the optimum value cylindrical rods (7b) and movable determines the support base of the cylindrical bar (7b) in order to hold the two intervals of the circular permanent magnet the permanent magnet (M 4 and M 5) and rectangular permanent magnet M 6 It was fixed with a set screw (8c) provided beside (8a).
As shown in FIG. 5, this anti-theft key is structured such that two independent latch bolts (1A) and (1B) can be extracted or inserted into one strike (2).
First, the operation of the latch bolt (1A) will be described.
When the latch bolt (1A) is extracted or inserted from the strike (2), the rack (5a) attached to the side surface of the latch bolt (1A) reciprocates linearly. The other pinion gear (9a) meshing with the rack (5a) may be rotated clockwise or counterclockwise so that the rack (5a) smoothly reciprocates linearly.
In order to enable such an operation automatically, the two-stage gear mechanism (10a) shown in FIG. 5 and the shaft of the pinion gear (9a) and the A of the two-stage gear mechanism (10a) as shown in FIG. The gear shaft was directly coupled. The shaft of the D gear and the shaft of the D gear of the two-stage gear mechanism (14a) were also coupled using the San-S flex shaft (18a).
When the magnetic pole of the magnetic pole face of the circular permanent magnet M 4 (15a) is N-pole and the magnetic pole face of the magnetic pole face of the square permanent magnet M 6 (16) is N-pole, a repulsive force acts between the same poles. With this repulsive force, the latch bolt (1A) is inserted into the strike (2). When the rack (5a) attached to the side surface of the latch bolt (1A) also reciprocates linearly and the pinion gear (9a) rotates, two two-stage gears (10a) and (14a) are passed through the pinion gear shaft. The gears of the mechanism are linked. As shown in FIG. 4b, the circular permanent magnet M 3 (13a) attached to the lower part of the rack (11a) is separated from the outdoor aluminum plate of the entrance door.
A groove having a width of the bearing (12) was provided on both sides of the rack (11a) so that the rack (11a) can smoothly reciprocate linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11a). When the rack (11a) reciprocates linearly, the left and right bearings (12) rotate.
As shown in FIG. 4a, there are two bearings (12) on the left and right sides of the frame (12a) that vertically supports the rack (11a). By providing the bearing (12), the rack (11a) can smoothly reciprocate linearly.
The apparatus described above is loaded outside the entrance door and inside the aluminum plate frame shown in FIG. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole. The magnetic pole of the magnetic pole surface of the circular permanent magnet M 3 (13a) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole. When this N pole is brought close to M 3 (13a), the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13a). When the attractive force acts between the different poles, the circular permanent magnet M 3 (13a) is attracted toward the aluminum plate outside the entrance door.
When the rack (11a) reciprocates linearly with this suction force, the gears of the two-stage gear mechanism (14a) are interlocked to operate the two-stage gear mechanism (10a). When the pinion gear (9a) rotates, the rack (5a) also reciprocates linearly to extract the latch bolt (1A) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13a) is lost. Without this suction force, M 3 (13a) does not operate when the M 3 (13a) is separated from the outdoor aluminum plate. The latch bolt (1A) is inserted into the strike (2). The operation will be described.
The magnetic poles of both the circular permanent magnet M 4 (15a) and the square permanent magnet M 6 (16) are N poles. Magnets of M 4 (15a) and M 6 (16) repel each other. Since the repulsive force between the same poles is always working, the latch bolt (1A) is inserted into the strike (2). When the latch bolt (1A) is inserted, the rack (5a) attached to the side surface of the latch bolt (1A) reciprocates linearly. The rack (5a) reciprocates linearly and the pinion gear (9a) rotates. When the gears of the two two-stage gear mechanisms (10a) and (14a) are interlocked via the pinion gear (9a), the circular permanent magnet M 3 (13a) attached to the lower portion of the rack (11a) is also operated, The circular permanent magnet M 3 (13a) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
Next, the operation of the latch bolt (1B) will be described.
When the rack (5b) attached to the side surface of the latch bolt (1B) is reciprocated linearly when the latch bolt (1B) is extracted or inserted from the strike (2), the mating pinion gear (9b) meshes with the rack (5b). ) May be rotated clockwise or counterclockwise.
In order to automatically perform such an operation, the two-stage gear mechanism (10b) shown in FIG. 5 and the pinion gear (9b) shaft and the two-stage gear mechanism (10b) A shown in FIG. 3b are used. The shaft of the gear of No. 4 was directly coupled, and the shaft of the gear of D and the shaft of the gear of D of the two-stage gear mechanism (14b) were also coupled using the San-S flex shaft (18b).
When the magnetic pole of the magnetic pole face of the circular permanent magnet M 5 (15b) is N pole and the magnetic pole of the magnetic pole face of the square permanent magnet M 6 (16) is N pole, a repulsive force acts between the same poles. With this repulsive force, the latch bolt (1B) is inserted into the strike (2). When the rack (5b) attached to the side surface of the latch bolt (1B) also reciprocates linearly and the pinion gear (9b) rotates, two two-stage gears (10b) and (14b) are passed through the pinion gear shaft. The gears of the mechanism are linked. As shown in FIG. 4b, the circular permanent magnet M 3 (13b) attached to the lower part of the rack (11b) is separated from the outdoor aluminum plate of the entrance door.
A groove having a width of the bearing (12) was provided on both sides of the rack (11b) so that the rack (11b) could smoothly reciprocate linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11b). When the rack (11b) reciprocates linearly, the left and right bearings rotate.
As shown in FIG. 4a, two upper and lower bearings (12) are provided on both left and right sides of a frame (12a) that vertically supports the rack (11b). By providing the bearing (12), the rack (11b) can smoothly reciprocate linearly.
The apparatus described above is loaded outside the entrance door and inside the aluminum plate frame shown in FIG. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole.
The magnetic pole of the magnetic pole face of the circular permanent magnet M 3 (13b) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole. When this N pole is brought closer to the S pole, the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13b). When an attractive force acts between the different poles, the circular permanent magnet M 3 (13b) is attracted toward the aluminum plate outside the entrance door.
When the rack (11b) reciprocates linearly with this suction force, the gears of the two-stage gear mechanism (14b) are interlocked to operate the two-stage gear mechanism (10b). When the pinion gear (9b) rotates, the rack (5b) also reciprocates linearly to extract the latch bolt (1B) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13b) is lost. Without this suction force, M 2 (13b) does not operate when the M 3 (13b) is separated from the outdoor aluminum plate. Insert into the latch bolt (1B) strike (2). The operation will be described.
The magnetic poles of both the circular permanent magnet M 5 (15b) and the square permanent magnet M 6 (16) are N poles. The same polarity of the magnets of M 5 (15b) and M 6 (16) repel each other. Since the repulsive force between the same poles is always working, the latch bolt (1B) is inserted into the strike (2). When the latch bolt (1B) is inserted, the rack (5b) attached to the side surface of the latch bolt (1B) reciprocates linearly. The rack (5b) reciprocates linearly and the pinion gear (9b) rotates. When the gears of the two two-stage gear mechanisms (10b) and (14b) are interlocked via the pinion gear (9b), the circular permanent magnet M 3 (13b) attached to the lower portion of the rack (11b) is also operated. The circular permanent magnet M 3 (13b) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
The latch bolts (1A) and (1B) are separated by moving the square permanent magnet from the outside of the entrance door close to the circular permanent magnet M 3 (13a) in the room and operating only the circuit of the latch bolt (1A). Even if the latch bolt (1A) is extracted from the strike (2), the latch bolt (1B) remains inserted in the strike (2), so the entrance door does not open.
The reverse is also true. If the two circuits of the latch bolts (1A) and (1B) do not operate simultaneously, the entrance door will not open.
The positions of the two-stage gear mechanisms (14a) and (14b) in the two circuits of the latch bolts (1A) and (1B) can be arbitrarily determined by changing the lengths of the San-S flex shafts (18a) and (18b). Then, there is a method in which the magnetic pole of the magnetic pole face of M 3 (13a) of the circular permanent magnet is changed to the S pole, and the magnetic pole of the magnetic pole face of (13b) is changed to the N pole.
If it happens that the magnetic poles of the two circular permanent magnets M 3 (13a) are S poles and the magnetic poles of the magnetic pole faces of (13b) are N poles, the two circular permanent magnets M 3 (13a) ) And (13b) are known, the attractive force acts between the different poles of the magnet.
The magnetic pole of the magnetic pole face of the square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as the S pole. The magnetic poles of the circular permanent magnet M 3 (13a) loaded outside the entrance door and inside the frame of the aluminum plate in the room are N poles. When this S pole is brought close to the N pole, the magnetic lines of force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13b). When suction force works between different poles, the entrance door can be easily opened and the housekeeper is in trouble.
As countermeasures, in order to enhance the security of the developed anti-theft key, as shown in FIG. 4C, along the surfaces of the M 3 (13a) and (13b) of the circular permanent magnet and the outdoor aluminum new wall of the entrance door If the two rectangular permanent magnets attracting M 3 (13a) and (13b) of the circular permanent magnet are also round multipolar or rectangular multipolar, they are the same as the password, and the entrance door cannot be opened easily.
As shown in FIG. 5, since the gear mechanism and the permanent magnet are all used in two circuit systems, the safest anti-theft device that can be realized with a simple circuit configuration.

更に本発明では、3番目の鍵穴の無い玄関扉に取り付ける最も安全な2段歯車機構と永久磁石を用いた盗難防止用鍵の構造を図6に示す。固定した玄関扉に取り付けたストライク(2)の中へラッチボルト(1)を挿入した時に玄関扉の鍵が掛かった状態になる。玄関扉を強く引いてもラッチボルト(1)が強度に十分耐えられる容器(4)で支えた。
永久磁石を用いて自動的にストライク(2)の中へラッチボルト(1)が挿入する状態を述べる。
図6に示すようにラッチボルト(1)の後方に細い円柱棒に円形永久磁石M(6a)を結合した。円形永久磁石M(6a)の後方に間隔を隔てて円形の永久磁石M(6b)を置いた。2個の永久磁石M(6a)の磁極面の磁極を(N極或いはS極)とM(6b)の磁極面の磁極を(N極或いはS極)にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。この反発力でストライク(2)の中へラッチボルト(1)が挿入し、自動的に鍵が掛かる。
円形永久磁石M(6a)とM(6b)の同極間の反発力の大きさを微調整するに永久磁石Mを回転出来るようにネジを切った円柱棒(7a)に結合して、円柱棒(7a)を支持台(8a)で支えた。円柱棒(7a)を動かして反発力の大きさを調整する。反発力の大きさを微調整して最適値が決まれば円形永久磁石MとMの間隔 を保持するために円柱棒(7a)を支持台(8a)の横に設けた六角ナット(8b)で固定した。
ラッチボルト(1)の側面にある長さのラック(5)を止めネジで固定した。ストライク(2)の中からラッチボルト(1)を抽出する時はラッチボルト(1)の側面に取り付けてあるラック(5)が往復直線運動するにはラック(5)と噛み合う相手のピニオン歯車(9)を時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的にするには図3aに示すように2段歯車機構(10)と図3bに示すようにピニオン歯車(9)の軸と2段歯車機構(10)のAの歯車の軸を直接結合した。Dの歯車の軸と2個の2段歯車機構(14aと14b)との結合間に傘歯車を用いた2分配回路を作成して結合した。
傘歯車を用いた2分配回路の入力(19a)の歯車軸と2段歯車機構(10)のDの歯車の軸と直接結合し、出力(19b)の歯車軸は歯車機構(20)を介して2段歯車機構(14a)へ結合する。もう一方の出力(19c)の歯車軸は歯車機構(21)を介して2段歯車機構(14b)へ結合した。
傘歯車を用いた2分配回路の入力(19a)の歯車の回転方向と2個の2段歯車機構(14aと14b)の回転方向を同じ回転方向にするために回転方向を正または負方向に変えられる変換歯車機構(20)と(21)を用いた。
ラック(5)も同時に往復直線運動してピニオン歯車(9)が回転するとピニオン歯車の軸を介して2段歯車機構から2分配回路系(19a)を介し、2個の2段歯車機構(14a)と(14b)の各歯車が連動すると図4aに示すように(14a)と(14b)のラック(11)との下部に取り付けた円形永久磁石M(13a)と(13b)も作動する。
2個の2段歯車機構(14a)と(14b)に用いているラック(11)を(11a)と(11b)とする。ラック(11a)と(11b)が滑らかに往復直線運動できるようにラック(11a)と(11b)の両面にベアリング(12)の幅の溝を付けた。このラック(11a)と(11b)の両面に付けた溝に各々左右2個のベアリング(12)を沿わす。ラック(11a)と(11b)が往復直線運動すると左右2個のベアリング(12)は回転する。
I番目に図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に図6に示す装置を装荷する。玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の磁極面の磁極がN極とし、一方の角形又は円形永久磁石の磁極面の磁極はS極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13a)の磁極面の磁極をS極とし、一方のM(13b)の磁極面の磁極はN極とする。角形又は円形永久磁石のN極を玄関扉の室外アルミニュウム板を介して円形永久磁石M(13a)のS極に近づける。次に角形又は円形永久磁石のS極を円形永久磁石M(13b)のN極に近づける。M(13a)とM(13b)の両方に異極間が生じる。異極間には吸引力が働くと円形永久磁石M(13a)とM(13b)は玄関扉の室外のアルミニュウム板の方へ引き寄せられる。この吸引力でラック(11a)と(11b)が往復直線運動すると2段歯車機構(14a)と(14b)の各々の歯車機構が連動し、傘歯車も回転して2段歯車機構(10)も作動する。ピニオン歯車(9)が回転するとラック(5)も往復直線運動してストライク(2)の中からラッチボルト(1)を抽出して玄関扉が開く。
II番目に玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の両方を取り除くと、玄関扉の室外と室内の枠内に装荷してある円形永久磁石M(13a)とM(13b)の両方には吸引力は無い。吸引力がなくなると円形永久磁石M(6a)とM(6b)の同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1)が挿入する。ラッチボルト(1)が挿入するとラッチボルト(1)の側面に取り付けたラック(5)が往復直線運動する。ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車(9)を介して2段歯車機構(10)の各歯車が連動して傘歯車を用いた2分配回路から2個の歯車機構(14a)と(14b)の各々の歯車が連動するとラック(11a)と(11b)の下部に取り付けた円形永久磁石M(13a)とM(13b)も作動し、円形永久磁石M(13a)とM(13b)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
III番目に玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の磁極面の磁極をN極とし、もう一方の角形又は円形永久磁石を取り除く。
角形又は円形永久磁石の磁極面の磁極がN極と円形永久磁石M(13a)の磁極面の磁極がS極の間に異極間が生じて吸引力が働く。この吸引力で円形永久磁石M(13a)は玄関扉の室外アルミニュウム板の方へ引き寄せようとするが、2段歯車機構(14a)の各々の歯車が作動しにくい。その理由は2段歯車機構(14a)の歯車軸から傘歯車の軸へ連動して2段歯車機構(14b)へと連動しようとするが、M(13b)は吸引力が無いので室外アルミニュウ厶板から離れているので、2段歯車機構(14b)は作動しない。
なぜならば2段歯車機構(14a)の軸から傘歯車を用いた2分配回路系を経て2段歯車機搆(14b)の方向と2段歯車機構(10)の方向へと分かれ、それぞれ大きな負荷が掛かった事になる。2段歯車機構(14a)の各々の歯車が作動しにくいのでストライク(2)の中へラッチボルト(1)が挿入したままでは抽出出来ないので玄関扉は開かない。この逆の場合も同じである。
2段歯車機構(10)のD歯車の軸と2分配回路の入力側の軸をサンエス・フレックスシャフトで結合し、2分配回路の2つの出力側の軸から2段歯車機構(14a)と(14b)サンエス・フレックスシャフト(18)で結合する。サンエス・フレックスシャフト(18)の長さを変えて用いると2分配回路の位置と2段歯車機構(14a)および(14b)の配置をそれぞれ任意に決められるし、円形永久磁石のM(13a)の磁極面の磁極をS極にし(13b)の磁極をN極にする方法がある。
もし偶然に2個の円形永久磁石M(13a)の磁極面の磁極をS極と(13b)の磁極がN極であることが分かり、2個の円形永久磁石M(13a)と(13b)の配置した場所もわかれば磁石の異極間には吸引力が作用するから玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極も(13a)に対してN極にし、(13b)に対してはS極にすれば玄関扉は簡単に開けられて家人は大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために円形永久磁石のM(13a)と(13b)および玄関扉の室外アルミニュウム板の表面に沿って動かす2個の角形又は円形永久磁石も図4cに示す丸形多極或いは角形多極を用いれば磁極数がわからない限り暗証番号と同じで簡単に玄関扉が開かない。
図6に示すような回路系にして構成した安全な盗難防止用鍵の装置を備えている。
Furthermore, in the present invention, the structure of the anti-theft key using the safest two-stage gear mechanism and permanent magnet attached to the entrance door without the third keyhole is shown in FIG. When the latch bolt (1) is inserted into the strike (2) attached to the fixed entrance door, the entrance door is locked. Even if the entrance door was pulled strongly, the latch bolt (1) was supported by a container (4) that could withstand the strength sufficiently.
A state in which the latch bolt (1) is automatically inserted into the strike (2) using a permanent magnet will be described.
As shown in FIG. 6, a circular permanent magnet M 1 (6a) was coupled to a thin cylindrical rod behind the latch bolt (1). A circular permanent magnet M 2 (6b) was placed behind the circular permanent magnet M 1 (6a) at an interval. When the magnetic poles of the two permanent magnets M 1 (6a) are (N pole or S pole) and the magnetic poles of M 2 (6b) are (N pole or S pole), the same poles of the magnets Repels. A repulsive force acts between the same poles of M 1 and M 2 . With this repulsive force, the latch bolt (1) is inserted into the strike (2) and automatically locked.
In order to finely adjust the magnitude of the repulsive force between the same poles of the circular permanent magnets M 1 (6a) and M 2 (6b), the permanent magnet M 2 is coupled to a cylindrical rod (7a) that is threaded so that it can rotate. The cylindrical rod (7a) was supported by the support base (8a). Move the cylindrical rod (7a) to adjust the magnitude of the repulsive force. Hex nut provided on the side of the repulsive force of the magnitude of the fine adjustment to the optimum value cylindrical bar to hold the spacing of the circular permanent magnet M 1 and M 2 once the support base of (7a) (8a) (8b ).
The rack (5) having a length on the side surface of the latch bolt (1) was fixed with a set screw. When the latch bolt (1) is extracted from the strike (2), the rack (5) attached to the side surface of the latch bolt (1) moves in a reciprocating linear motion so that the mating pinion gear ( 9) may be rotated clockwise or counterclockwise.
In order to automatically perform such operation, a two-stage gear mechanism (10) as shown in FIG. 3a and a pinion gear (9) shaft and a gear A of the two-stage gear mechanism (10) as shown in FIG. The shafts were directly connected. A two-distribution circuit using a bevel gear was created and coupled between the shaft of the D gear and the two two-stage gear mechanisms (14a and 14b).
The gear shaft of the input (19a) of the two distribution circuit using the bevel gear is directly coupled to the shaft of the gear D of the two-stage gear mechanism (10), and the gear shaft of the output (19b) is connected via the gear mechanism (20). To the two-stage gear mechanism (14a). The gear shaft of the other output (19c) was coupled to the two-stage gear mechanism (14b) via the gear mechanism (21).
In order to make the rotational direction of the input (19a) of the two distribution circuit using the bevel gear and the rotational direction of the two two-stage gear mechanisms (14a and 14b) the same rotational direction, the rotational direction is positive or negative. Conversion gear mechanisms (20) and (21) that can be changed were used.
When the rack (5) is also reciprocated linearly and the pinion gear (9) is rotated, the two-stage gear mechanism (14a) from the two-stage gear mechanism via the pinion gear shaft to the two distribution circuit system (19a) is rotated. ) And (14b) are interlocked with each other, the circular permanent magnets M 3 (13a) and (13b) attached to the lower part of the rack (11) of (14a) and (14b) are also operated as shown in FIG. 4a. .
Let the rack (11) used for the two two-stage gear mechanisms (14a) and (14b) be (11a) and (11b). The racks (11a) and (11b) were provided with grooves having the width of the bearing (12) on both sides of the racks (11a) and (11b) so that the racks (11a) and (11b) can smoothly reciprocate linearly. The two left and right bearings (12) are placed along the grooves formed on both sides of the racks (11a) and (11b). When the racks (11a) and (11b) reciprocate linearly, the left and right bearings (12) rotate.
First, the apparatus shown in FIG. 6 is loaded in the frame of the aluminum plate outside and inside the entrance door shown in FIG. The outdoor aluminum plate of the front door is also assumed to have an N pole as the magnetic pole face of the two rectangular or circular permanent magnets moved along the surface, and the magnetic pole of the magnetic pole face of one of the square or circular permanent magnets as the S pole. The magnetic pole of the magnetic pole face of the circular permanent magnet M 3 (13a) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole, and the magnetic pole of the magnetic face of the other M 3 (13b) is the N pole. . The N pole of the square or circular permanent magnet is brought close to the S pole of the circular permanent magnet M 3 (13a) through the outdoor aluminum plate of the entrance door. Next, the S pole of the square or circular permanent magnet is brought close to the N pole of the circular permanent magnet M 3 (13b). Different polarities occur in both M 3 (13a) and M 3 (13b). When an attractive force acts between the different poles, the circular permanent magnets M 3 (13a) and M 3 (13b) are attracted toward the aluminum plate outside the entrance door. When the racks (11a) and (11b) are reciprocated linearly by this suction force, the gear mechanisms of the two-stage gear mechanisms (14a) and (14b) are interlocked, and the bevel gear is rotated to rotate the two-stage gear mechanism (10). Also works. When the pinion gear (9) rotates, the rack (5) also reciprocates linearly to extract the latch bolt (1) from the strike (2) and open the entrance door.
II. If both the two rectangular or circular permanent magnets moving along the surface of the outdoor aluminum plate of the front door are removed, the circular permanent magnet M 3 (13a) loaded in the outdoor door frame and the indoor frame is removed. ) And M 3 (13b) have no suction. When the attractive force is lost, the repulsive force between the same polarities of the circular permanent magnets M 1 (6a) and M 2 (6b) is always working, so the latch bolt (1) is inserted into the strike (2). When the latch bolt (1) is inserted, the rack (5) attached to the side surface of the latch bolt (1) reciprocates linearly. The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two-stage gear mechanism (10) are interlocked via the pinion gear (9) and the two gear mechanisms (14a) and (14b) are interlocked from the two distribution circuit using the bevel gear. The circular permanent magnets M 3 (13a) and M 3 (13b) attached to the lower portions of the racks (11a) and (11b) also operate, and the circular permanent magnets M 3 (13a) and M 3 (13b) are located outside the entrance door. The entrance door closes automatically away from the aluminum plate.
III. The outdoor aluminum plate of the front door also moves along the surface of the two square or circular permanent magnets with the N pole as the magnetic pole, and the other square or circular permanent magnet is removed.
A magnetic pole on the magnetic pole face of the square or circular permanent magnet has an N pole and a magnetic pole face on the magnetic pole face of the circular permanent magnet M 3 (13a) has a different polarity between the S poles. With this attractive force, the circular permanent magnet M 3 (13a) tends to be drawn toward the outdoor aluminum plate of the entrance door, but each gear of the two-stage gear mechanism (14a) is difficult to operate. The reason is that the gear shaft of the two-stage gear mechanism (14a) is linked to the shaft of the bevel gear and tries to link to the two-stage gear mechanism (14b). However, since M 3 (13b) has no suction force, the outdoor aluminum The two-stage gear mechanism (14b) does not operate because it is away from the New York plate.
This is because the shaft of the two-stage gear mechanism (14a) is divided into the direction of the two-stage gear machine shaft (14b) and the direction of the two-stage gear mechanism (10) through a two-distribution circuit system using a bevel gear. It will be hung. Since each gear of the two-stage gear mechanism (14a) is difficult to operate, the door cannot be opened because the latch bolt (1) cannot be extracted while it is inserted into the strike (2). The reverse is also true.
The shaft of the D gear of the two-stage gear mechanism (10) and the input shaft of the two-distribution circuit are coupled by a San-S flex shaft, and the two-stage gear mechanism (14a) and ( 14b) It couple | bonds with a Sanes flex shaft (18). If the length of the San-S flex shaft (18) is changed, the position of the two distribution circuits and the arrangement of the two-stage gear mechanisms (14a) and (14b) can be determined arbitrarily, and M 3 (13a) of the circular permanent magnet can be determined. There is a method in which the magnetic pole of the magnetic pole surface is made the S pole and the magnetic pole of (13b) is made the N pole.
If it happens that the magnetic poles of the two circular permanent magnets M 3 (13a) are S poles and the magnetic poles of (13b) are N poles, the two circular permanent magnets M 3 (13a) and ( If the location of 13b) is known, an attractive force acts between the opposite poles of the magnet, so the magnetic pole of the square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is also in relation to (13a). If it is set to N pole and (13b) is set to S pole, the entrance door can be opened easily and the housekeeper is in trouble.
As countermeasures, in order to increase the security of the developed anti-theft key, two permanent or circular permanent magnets moved along the surfaces of the circular permanent magnets M 3 (13a) and (13b) and the outdoor aluminum plate of the entrance door. If a round multi-pole or a square multi-pole shown in FIG.
A secure anti-theft key device configured as a circuit system as shown in FIG. 6 is provided.

発明の効果The invention's effect

本発明の3種類の最も安全な盗難防止用鍵の装置は全て2段歯車機構と丸形多極或いは角形多極を利用しており、ラックの下部に丸形多極或いは角形多極の磁石を取り付けた2段歯車機構(14)と(14a及び14b)はサンエス・フレックスシャフトを用いて結合するので玄関扉の室外と室内の枠内の自由な位置に取り付ける事ができる。
この盗難防止用鍵の装置を用いれば玄関扉の室外扉に鍵穴は不要である。もし永久磁石を用いて鍵を開ける事が分かっても2段歯車機構(14)と(14a及び14b)の配置した場所が分からないし、図4cに示すように永久磁石(13)と(13aと13b)及び玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石も丸形多極或いは角形多極を用いれば磁石の磁極数が分からない限り簡単に玄関扉を開かない利点がある。
The three safest anti-theft key devices of the present invention all utilize a two-stage gear mechanism and a round multi-pole or square multi-pole, and a round multi-pole or square multi-pole magnet at the bottom of the rack. Since the two-stage gear mechanism (14) and (14a and 14b) to which is attached is coupled using the San-S flex shaft, it can be attached to any position outside the entrance door and inside the indoor frame.
If this anti-theft key device is used, a keyhole is not required in the outdoor door of the entrance door. Even if it is known that the key can be opened using a permanent magnet, the location of the two-stage gear mechanisms (14) and (14a and 14b) is not known, and the permanent magnets (13) and (13a and 13b) and a rectangular or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is also advantageous in that it does not easily open the entrance door unless the number of magnetic poles of the magnet is known. .

次に本発明の実施の形態を述べると、本発明した3種類の2段歯車機構と丸形多極或いは角形多極の磁石を用いた最も安全な盗難防止用鍵を実現した。  Next, an embodiment of the present invention will be described. The safest anti-theft key using the three types of two-stage gear mechanism of the present invention and a round multi-pole or square multi-pole magnet has been realized.

本発明の最初の装置の実施の形態を述べると、詳細な構造を図3を用いて説明する。
図3に示すように玄関扉の固定した扉に取り付けたストライク(2)の中へラッチボルト(1)を挿入した時に玄関扉の鍵が掛かった状態になる。玄関扉を強く引いてもラッチボルト(1)は強度に十分耐えられる容器(4)で支えた。
ラッチボルト(1)を一時的に停止したい時には容器の中央にあるネジ(3)を閉めればラッチボルト(1)は動かなくなる。通常はネジ(3)を緩めておかないと自動的に鍵が開閉出来ない。
永久磁石を用いて自動的にストライク(2)の中へラッチボルト(1)が挿入する状態を述べる。図3に示すようにラッチボルト(1)の後方に細い円柱棒に円形永久磁石M(6a)を固定した。円形永久磁石M(6a)の後方に間隔 を隔てて円形永久磁石M(6b)を置いた。2個の円形永久磁石M(6a)の磁極面の磁極が(N極或いはS極)と円形永久磁石M(6b)の磁極面の磁極が(N極或いはS極)にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。この反発力でストライク(2)の中へラッチボルト(1)が挿入し、自動的に鍵が掛かる。
円形永久磁石M(6a)とM(6b)の同極間の反発力の大きさを微調整するときに永久磁石M2を回転出来るようにネジを切った円柱棒(7a)に結合して、円柱棒(7a)を支持台(8a)で支えた。円柱棒(7a)を動かして反発力の大きさを調整する。反発力の大きさを微調整して最適値が決まれば円形永久磁石MとMの間隔を保持するために円柱棒(7a)を支持台(8a)の横に設けたネジ(8b)で固定した。
ラッチボルト(1)の側面にある長さのラック(5)を止めネジで固定した。ストライク(2)の中からラッチボルト(1)を抽出する時はラッチボルト(1)の側面に取り付けてあるラック(5)が往復直線運動するにはラック(5)と噛み合う相手のピニオン歯車(9)が時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的にするためには図3aに示すように2段歯車機構(10)と図3bに示すようにピニオン歯車(9)の軸と2段歯車機構(10)のAの歯車の軸を直接結合した。Dの歯車の軸と2段歯車機構(14)のDの歯車の軸も直接結合した。
ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車の軸を介して(10)と(14)の2個の2段歯車機構の各歯車が連動するとラック(11)の下部に取り付けた円形永久磁石M(13)も作動する。
ラック(11)が滑らかに往復直線運動できるように、ラック(11)の両面にベアリング(12)の幅の溝を付けた。このラック(11)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11)が往復直線運動すると左右2個のベアリングはそれぞれ回転する。
図4aに示すようにラック(11)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)がある。ベアリング(12)を設ける事によってラック(11)が滑らかに往復直線運動する。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内にこの装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13)の磁極面の磁極がS極である。このN極をS極に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13)の間に異極間が生じる。異極間に吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13)が引き寄せられる。
この吸引力でラック(11)が往復直線運動すると2段歯車機構(14)の各々の歯車が連動して2段歯車機構(10)も作動する。ピニオン歯車が回転するとラック(5)も往復直線運動してストライク(2)の中からラッチボルト(1)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13)への吸引力は無くなる。吸引力が無くなると円形永久磁石M(6a)とM(6b)の同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1)が挿入する。ラッチボルト(1)を挿入するとラッチボルト(1)の側面に取り付けたラック(5)が往復直線運動する。ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車の軸を介して(10)と(14)の2個の2段歯車機構の各歯車が連動するとラック(11)の下部に取り付けた円形永久磁石M(13)も作動し、円形永久磁石M(13)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
もし偶然に円形永久磁石M(13)の磁極面の磁極が分からなくてもM(13)の配置した場所さえわかれば、玄関扉の室外アルミニュウム板に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極或いはS極にする。このN極或いはS極を円形永久磁石M(13)に近づけて吸引力が働けば玄関扉は簡単に開けられ家人が大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために円形永久磁石M(13)と玄関扉の室外アルミニュウム板に沿って動かす角形又は円形永久磁石も図4cに示す丸形多極或いは角形多極を用いれば磁極数がわからない限り暗証番号と同じで簡単に玄関扉は開かない。
安全な盗難防止用鍵の装置に用いた永久磁石を電気磁石にして用いる事も出来る。その場合商用周波数50Hz或いは60Hzで、交流電圧が100Vから変圧器で低電圧にして用いる方法がある。交流電圧は+−が交互に変化するので(電気磁石の磁極はN極とS極が交互にかわる)騒音が出やすい。騒音を無くすには交流電圧を直流電圧に変換して使用する。電気磁石を用いると装置が大きくなり、又停電した時には蓄電池に切り替える装置が不可欠であり、費用もかなり高くなる欠点がある。
現在市販されている角形又は円形永久磁石は小型で色々の種類のものがあって磁力もかなり強い。停電しても心配ないし、価額もかなり安いという利点がある。
以上の利点から安全な盗難防止用鍵の装置には現在市販に出ている永久磁石を用いた。
図3に示すように2個の2段歯車機構とラックおよびピニオン歯車そうして円形永久磁石M(13)を丸形多極或いは角形多極にして構成した安全な盗難防止用鍵の装置。
このような鍵を利用すると玄関扉の室外には鍵穴がないので泥棒にとってはピッキングやサムターン回しは通用せず、どの様な鍵構造か分からないので泥棒は侵入する事が出来ない。
The first embodiment of the present invention will be described. The detailed structure will be described with reference to FIG.
As shown in FIG. 3, when the latch bolt (1) is inserted into the strike (2) attached to the door fixed to the entrance door, the entrance door is locked. Even if the entrance door was pulled strongly, the latch bolt (1) was supported by a container (4) that could withstand the strength sufficiently.
When it is desired to temporarily stop the latch bolt (1), the latch bolt (1) will not move if the screw (3) at the center of the container is closed. Normally, the key cannot be opened or closed automatically unless the screw (3) is loosened.
A state in which the latch bolt (1) is automatically inserted into the strike (2) using a permanent magnet will be described. As shown in FIG. 3, a circular permanent magnet M 1 (6a) was fixed to a thin cylindrical rod behind the latch bolt (1). The circular permanent magnet M 2 (6b) was placed behind the circular permanent magnet M 1 (6a) at a distance. When the magnetic pole of the magnetic pole face of the two circular permanent magnets M 1 (6a) is (N pole or S pole) and the magnetic pole of the magnetic pole face of the circular permanent magnet M 2 (6b) is (N pole or S pole), the magnet The same polarity of each other will repel. A repulsive force acts between the same poles of M 1 and M 2 . With this repulsive force, the latch bolt (1) is inserted into the strike (2) and automatically locked.
When the magnitude of the repulsive force between the same poles of the circular permanent magnets M 1 (6a) and M 2 (6b) is finely adjusted, the permanent magnet M2 is coupled to a cylindrical rod (7a) that is threaded so that the permanent magnet M2 can be rotated. The cylindrical rod (7a) was supported by the support base (8a). Move the cylindrical rod (7a) to adjust the magnitude of the repulsive force. Screws provided on the side of the repulsive force of the magnitude of the fine adjustment to the optimum value cylindrical bar to hold the spacing of the circular permanent magnet M 1 and M 2 once the (7a) support base of (8a) (8b) Fixed with.
The rack (5) having a length on the side surface of the latch bolt (1) was fixed with a set screw. When the latch bolt (1) is extracted from the strike (2), the rack (5) attached to the side surface of the latch bolt (1) moves in a reciprocating linear motion so that the mating pinion gear ( 9) may be rotated clockwise or counterclockwise.
In order to automatically perform such an operation, the two-stage gear mechanism (10) as shown in FIG. 3a and the pinion gear (9) shaft and the two-stage gear mechanism (10) as shown in FIG. The gear shaft was directly coupled. The shaft of the D gear and the shaft of the D gear of the two-stage gear mechanism (14) were also directly coupled.
The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two two-stage gear mechanisms (10) and (14) are linked via the pinion gear shaft, the circular permanent magnet M 3 (13) attached to the lower portion of the rack (11) also operates.
A groove having a width of the bearing (12) was provided on both sides of the rack (11) so that the rack (11) could smoothly move back and forth linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11). When the rack (11) reciprocates linearly, the left and right bearings rotate respectively.
As shown in FIG. 4a, there are two bearings (12) on the left and right sides of the frame (12a) that vertically supports the rack (11). By providing the bearing (12), the rack (11) smoothly reciprocates linearly.
This apparatus is loaded outside the entrance door shown in FIG. 2 and inside the aluminum plate frame. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole. The magnetic poles of the magnetic pole surfaces of the circular permanent magnet M 3 (13) loaded outside the entrance door and inside the frame of the aluminum plate in the room are the S poles. When this N pole is brought close to the S pole, the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13). When the attractive force acts between the different poles, the circular permanent magnet M 3 (13) is attracted toward the aluminum plate outside the entrance door.
When the rack (11) reciprocates linearly by this suction force, the gears of the two-stage gear mechanism (14) are interlocked to operate the two-stage gear mechanism (10). When the pinion gear rotates, the rack (5) also reciprocates linearly to extract the latch bolt (1) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13) is lost. When the attraction force disappears, the repulsive force between the same poles of the circular permanent magnets M 1 (6a) and M 2 (6b) is always working, so the latch bolt (1) is inserted into the strike (2). When the latch bolt (1) is inserted, the rack (5) attached to the side surface of the latch bolt (1) reciprocates linearly. The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two two-stage gear mechanisms (10) and (14) are interlocked via the pinion gear shaft, the circular permanent magnet M 3 (13) attached to the lower portion of the rack (11) is also operated, The permanent magnet M 3 (13) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
Even if the magnetic pole face of the circular permanent magnet M 3 (13) is accidentally unknown, if the location of the M 3 (13) is known, the square or circular permanent magnet moving along the outdoor aluminum plate of the entrance door The magnetic pole of the magnetic pole surface is set to N or S pole. If this N pole or S pole is brought close to the circular permanent magnet M 3 (13) and a suction force is applied, the entrance door can be easily opened and the housekeeper is in trouble.
As a countermeasure against this, the round permanent magnet M 3 (13) and the square or round permanent magnet that moves along the outdoor aluminum plate of the front door to enhance the safety of the developed antitheft key are also shown in FIG. 4c. Alternatively, if you use a square multipole, the entrance door will not open easily because it is the same as your PIN unless you know the number of magnetic poles.
The permanent magnet used in the secure anti-theft key device can also be used as an electric magnet. In that case, there is a method of using an AC voltage from 100 V to a low voltage with a transformer at a commercial frequency of 50 Hz or 60 Hz. Since the alternating voltage changes alternately between + and-(the magnetic poles of the electromagnet alternate between N poles and S poles), noise is likely to occur. To eliminate noise, AC voltage is converted to DC voltage. If an electromagnet is used, the device becomes large, and a device for switching to a storage battery in the event of a power failure is indispensable, and there is a disadvantage that the cost is considerably increased.
The square or circular permanent magnets currently on the market are small and various types, and the magnetic force is quite strong. There is an advantage that there is no worry about the power outage and the price is quite low.
Because of the above advantages, a permanent magnet that is currently on the market is used as a safe anti-theft key device.
As shown in FIG. 3, a device for a safe anti-theft key comprising two two-stage gear mechanisms, a rack and a pinion gear, and a circular permanent magnet M 3 (13) having a round multi-pole or a square multi-pole. .
If such a key is used, there is no keyhole outside the entrance door, so the thief cannot pick up or turn the thumb, and the thief cannot enter because he does not know what the key structure is.

本発明の2番目の装置の実施の形態を述べると、詳細な構造を図5を用いて説明する。
図5に示すように固定の玄関扉に取り付けたストライク(2)の中へラッチボルト(1A)と(1B)を挿入する時に玄関扉は鍵の掛かった状態になる。玄関扉を強く引いてもラッチボルト(1A)と(1B)が強度に十分耐えられるような容器(4)で支えた。
ストライク(2)の中へラッチボルト(1A)と(1B)を挿入する時は図5に示すようにラッチボルト(1A)の後方に細い円柱棒に円形永久磁石M(15a)を固定し、ラッチボルト(1B)の後方にも細い円柱棒に円形永久磁石M(15b)も固定にした。
図5に示すように円形永久磁石MとMは並列に並んだ後方に間隔を隔てて角形永久磁石M(16)を置く。
2個の円形永久磁石M(15a)とM(15b)の磁極面の磁極は(N極か或いはS極)で角形永久磁石M(16)の磁極面の磁極は(N極か或いはS極)である。3個のMとM及びMの永久磁石の磁極面の磁極をN極にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。2個の円形永久磁石(MとM)と角形永久磁石Mの同極間でも反発力が働く。この反発力でストライク(2)の中へ2個のラッチボルト(1Aと1B)が挿入し、自動的に鍵が掛かる。
2個の円形永久磁石(MとM)と角形永久磁石M6の同極間の反発力の大きさを微調整するために角形永久磁石Mを円柱棒(7b)に結合して、円柱棒(7b)を支持台(8a)で支えた。円柱棒(7b)を可動して最適値が決まると2個の円形永久磁石永久磁石(MとM)と角形永久磁石Mの間隔 を保持するために円柱棒(7b)を支持台(8a)の横に設けたネジ(8c)で固定した。
図5に示すようにこの盗難防止用鍵は1つのストライク(2)の中に独立した2個のラッチボルト(1A)と(1B)が抽出或いは挿入できるような構造にしてある。
最初にラッチボルト(1A)の動作について述べる。
ストライク(2)の中からラッチボルト(1A)を抽出或いは挿入する場合ラッチボルト(1A)の側面に取り付けてあるラック(5a)が往復直線運動する。ラック(5a)が滑らかに往復直線運動するようにラック(5a)と噛み合う相手のピニオン歯車(9a)も時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的に出来るようにするには図5に示す2段歯車機構(10a)と図3bに示すようにピニオン歯車(9a)の軸と2段歯車機構(10a)のAの歯車の軸を直接結合した。Dの歯車の軸と2段歯車機構(14a)のDの歯車の軸もサンエス・フレックスシャフト(18a)を用いて結合した。
円形永久磁石M(15a)の磁極面の磁極がN極で角形永久磁石M(16)の磁極面の磁極がN極であると同極間で反発力が働く。この反発力でストライク(2)の中へラッチボルト(1A)が挿入する。ラッチボルト(1A)の側面に取り付けてあるラック(5a)も往復直線運動してピニオン歯車(9a)が回転するとピニオン歯車の軸を介して(10a)と(14a)の2個の2段歯車機構の各歯車が連動する。図4bに示すようにラック(11a)の下部に取り付けた円形永久磁石M(13a)は玄関扉の室外アルミニュウム板から離れる。
ラック(11a)が滑らかに往復直線運動できるように、ラック(11a)の両面にベアリング(12)の幅の溝を付けた。このラック(11a)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11a)が往復直線運動すると左右2個のベアリングは回転する。
図4aに示すようにラック(11a)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)がある。ベアリング(12)を設ける事によってラック(11a)が滑らかに往復直線運動できる。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に上に述へた装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13a)の磁極面の磁極はS極である。このN極をM(13a)に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13a)の間に異極間が生じる。異極間に吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13a)が引き寄せられる。
この吸引力でラック(11a)が往復直線運動すると2段歯車機構(14a)の各々の歯車が連動して2段歯車機構(10a)も作動する。ピニオン歯車(9a)が回転するとラック(5a)も往復直線運動してストライク(2)の中からラッチボルト(1A)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13a)への吸引力は無くなる。この吸引力がないとM(13a)は室外アルミニュウム板から離れると2段歯車機構は動作しない。ラッチボルト(1A)はストライク(2)の中へ挿入する。その動作を説明する。
円形永久磁石M(15a)と角形永久磁石M(16)の両方の磁極面の磁極はN極である。M(15a)とM(16)の磁石の同極同士は反発する。同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1A)が挿入する。ラッチボルト(1A)が挿入するとラッチボルト(1A)の側面に取り付けたラック(5a)が往復直線運動する。ラック(5a)が往復直線運動してピニオン歯車(9a)が回転する。ピニオン歯車(9a)を介して(10a)と(14a)の2個の2段歯車機構の各歯車が連動するとラック(11)の下部に取り付けた円形永久磁石M(13a)も作動し、円形永久磁石M(13a)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
次にラッチボルト(1B)の動作について述べる。
ストライク(2)の中からラッチボルト(1B)を抽出又は挿入する時にラッチボルト(1B)の側面に取り付けてあるラック(5b)が往復直線運動するとラック(5b)と噛み合う相手のピニオン歯車(9b)を時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的に出来るようにするためには図5に示す2段歯車機構(10b)と図3bに示すようにピニオン歯車(9b)の軸と2段歯車機構(10b)のAの歯車の軸を直接結合し、Dの歯車の軸と2段歯車機構(14b)のDの歯車の軸もサンエス・フレックスシャフト(18b)を用いて結合した。
円形永久磁石M(15b)の磁極面の磁極がN極で角形永久磁石M(16)の磁極面の磁極がN極であると同極間で反発力が働く。この反発力でストライク(2)の中へラッチボルト(1B)が挿入する。ラッチボルト(1B)の側面に取り付けてあるラック(5b)も往復直線運動してピニオン歯車(9b)が回転するとピニオン歯車の軸を介して(10b)と(14b)の2個の2段歯車機構の各歯車が連動する。図4bに示すようにラック(11b)の下部に取り付けた円形永久磁石M(13b)は玄関扉の室外アルミニュウム板から離れる。
ラック(11b)が滑らかに往復直線運動できるように、ラック(11b)の両面にベアリング(12)の幅の溝を付けた。このラック(11b)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11b)が往復直線運動すると左右2個のベアリング(12)はそれぞれ回転する。
図4aに示すようにラック(11b)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)がある。ベアリング(12)を設ける事によってラック(11b)が滑らかに往復直線運動できる。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に上に述べた装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。
玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13b)の磁極面の磁極はS極である。このN極をS極を近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13b)の間に異極間が生じる。異極間には吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13b)が引き寄せられる。
この吸引力でラック(11)が往復直線運動すると2段歯車機構(14b)の各々の歯車が連動し2段歯車機構(10b)も作動する。ピニオン歯車(9b)が回転するとラック(5b)も往復直線運動してストライク(2)の中からラッチボルト(1B)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13b)への吸引力は無くなる。この吸引力がないとM(13b)は室外アルミニュウム板から離れると2段歯車機構は動作しない。ラッチボルト(1B)ストライク(2)の中へ挿入する。その動作を説明する。
円形永久磁石M(15b)と角形永久磁石M(16)の両方の磁極面の磁極はN極である。M(15b)とM(16)の磁石の同極同士は反発する。同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1B)が挿入する。ラッチボルト(1B)が挿入するとラッチボルト(1B)の側面に取り付けたラック(5b)が往復直線運動する。ラック(5b)が往復直線運動してピニオン歯車(9b)が回転する。ピニオン歯車(9b)を介して(10b)と(14b)の2個の2段歯車機構の各歯車が連動するとラック(11b)の下部に取り付けた円形永久磁石M(13b)も作動し、円形永久磁石M(13b)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
ラッチボルト(1A)と(1B)を別々にしたのは玄関扉の室外から角形永久磁石を室内の円形永久磁石M(13a)に近ずけてラッチボルト(1A)の回路だけ動作させてもストライク(2)の中からラッチボルト(1A)を抽出してもストライク(2)の中にはラッチボルト(1B)が挿入されたままになっているので玄関扉は開かない。
また、この逆の場合も同じである。ラッチボルト(1A)と(1B)の2回路が同時に作動しないと玄関扉は開かない。
サンエス・フレックスシャフト(18a)と(18b)の長さを変えてラッチボルト(1A)と(1B)の2つの回路内の2段歯車機構(14a)と(14b)の位置を任意に決められるし、円形永久磁石のM(13a)の磁極面の磁極をS極にし(13b)の磁極面の磁極をN極にする方法がある。
もし偶然に2個の円形永久磁石M(13a)の磁極面の磁極をS極と(13b)の磁極面の磁極をN極であることが分かり、2個の円形永久磁石M(13a)と(13b)の配置した場所も分かれば磁石の異極間には吸引力が作用する。
玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をS極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13b)の磁極面の磁極がN極である。このS極をN極に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13b)の間に異極間が生じる。異極間には吸引力が働くと、玄関扉は簡単に開けられ家人が大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために図4cに示すように円形永久磁石のM(13a)と(13b)および玄関扉の室外アルミニュウム板の表面に沿って円形永久磁石のM(13a)と(13b)を吸引する2個の角形永久磁石も丸形多極或いは角形多極にすれば暗証番号と同じで簡単に玄関扉を開かない。
このような鍵を利用すると玄関扉の室外には鍵穴がないので泥棒にとってはピッキングやサムターン回しは通用せず、どの様な鍵構造か分からないので泥棒は侵入する事が出来ない。
An embodiment of the second device of the present invention will be described. A detailed structure will be described with reference to FIG.
As shown in FIG. 5, when the latch bolts (1A) and (1B) are inserted into the strike (2) attached to the fixed entrance door, the entrance door is locked. The latch bolts (1A) and (1B) were supported by a container (4) that could withstand the strength sufficiently even when the entrance door was pulled strongly.
When inserting the latch bolts (1A) and (1B) into the strike (2), as shown in FIG. 5, the circular permanent magnet M 4 (15a) is fixed to a thin cylindrical rod behind the latch bolt (1A). The circular permanent magnet M 5 (15b) was also fixed to a thin cylindrical rod also behind the latch bolt (1B).
As shown in FIG. 5, the circular permanent magnets M 4 and M 5 are arranged with a square permanent magnet M 6 (16) at an interval behind the parallel permanent magnets M 4 and M 5 .
The magnetic poles of the magnetic faces of the two circular permanent magnets M 4 (15a) and M 5 (15b) are (N pole or S pole) and the magnetic poles of the square permanent magnet M 6 (16) are (N poles). Or S pole). When the magnetic poles of the magnetic faces of the three M 4 , M 5, and M 6 permanent magnets are N poles, the same poles of the magnets repel each other. A repulsive force acts between the same poles of M 1 and M 2 . A repulsive force also acts between the same polarities of the two circular permanent magnets (M 4 and M 5 ) and the square permanent magnet M 6 . With this repulsive force, two latch bolts (1A and 1B) are inserted into the strike (2) and automatically locked.
In order to finely adjust the magnitude of the repulsive force between the same polarities of the two circular permanent magnets (M 4 and M 5 ) and the square permanent magnet M6, the square permanent magnet M 6 is coupled to the cylindrical rod (7b), The cylindrical rod (7b) was supported by the support base (8a). When the optimum value cylindrical rods (7b) and movable determines the support base of the cylindrical bar (7b) in order to hold the two intervals of the circular permanent magnet the permanent magnet (M 4 and M 5) and rectangular permanent magnet M 6 It was fixed with a screw (8c) provided beside (8a).
As shown in FIG. 5, this anti-theft key is structured such that two independent latch bolts (1A) and (1B) can be extracted or inserted into one strike (2).
First, the operation of the latch bolt (1A) will be described.
When the latch bolt (1A) is extracted or inserted from the strike (2), the rack (5a) attached to the side surface of the latch bolt (1A) reciprocates linearly. The other pinion gear (9a) meshing with the rack (5a) may be rotated clockwise or counterclockwise so that the rack (5a) smoothly reciprocates linearly.
In order to enable such an operation automatically, the two-stage gear mechanism (10a) shown in FIG. 5 and the shaft of the pinion gear (9a) and the A of the two-stage gear mechanism (10a) as shown in FIG. The gear shaft was directly coupled. The shaft of the D gear and the shaft of the D gear of the two-stage gear mechanism (14a) were also coupled using the San-S flex shaft (18a).
When the magnetic pole of the magnetic pole face of the circular permanent magnet M 4 (15a) is N-pole and the magnetic pole face of the magnetic pole face of the square permanent magnet M 6 (16) is N-pole, a repulsive force acts between the same poles. With this repulsive force, the latch bolt (1A) is inserted into the strike (2). When the rack (5a) attached to the side surface of the latch bolt (1A) also reciprocates linearly and the pinion gear (9a) rotates, two two-stage gears (10a) and (14a) are passed through the pinion gear shaft. The gears of the mechanism are linked. As shown in FIG. 4b, the circular permanent magnet M 3 (13a) attached to the lower part of the rack (11a) is separated from the outdoor aluminum plate of the entrance door.
A groove having a width of the bearing (12) was provided on both sides of the rack (11a) so that the rack (11a) can smoothly reciprocate linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11a). When the rack (11a) reciprocates linearly, the left and right bearings rotate.
As shown in FIG. 4a, there are two bearings (12) on the left and right sides of the frame (12a) that vertically supports the rack (11a). By providing the bearing (12), the rack (11a) can smoothly reciprocate linearly.
The apparatus described above is loaded in the frame of the aluminum plate inside and outside the entrance door shown in FIG. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole. The magnetic pole of the magnetic pole surface of the circular permanent magnet M 3 (13a) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole. When this N pole is brought close to M 3 (13a), the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13a). When the attractive force acts between the different poles, the circular permanent magnet M 3 (13a) is attracted toward the aluminum plate outside the entrance door.
When the rack (11a) reciprocates linearly with this suction force, the gears of the two-stage gear mechanism (14a) are interlocked to operate the two-stage gear mechanism (10a). When the pinion gear (9a) rotates, the rack (5a) also reciprocates linearly to extract the latch bolt (1A) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13a) is lost. Without this suction force, M 3 (13a) does not operate when the M 3 (13a) is separated from the outdoor aluminum plate. The latch bolt (1A) is inserted into the strike (2). The operation will be described.
The magnetic poles of both the circular permanent magnet M 4 (15a) and the square permanent magnet M 6 (16) are N poles. Magnets of M 4 (15a) and M 6 (16) repel each other. Since the repulsive force between the same poles is always working, the latch bolt (1A) is inserted into the strike (2). When the latch bolt (1A) is inserted, the rack (5a) attached to the side surface of the latch bolt (1A) reciprocates linearly. The rack (5a) reciprocates linearly and the pinion gear (9a) rotates. When the gears of the two two-stage gear mechanisms (10a) and (14a) are interlocked via the pinion gear (9a), the circular permanent magnet M 3 (13a) attached to the lower portion of the rack (11) is also operated, The circular permanent magnet M 3 (13a) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
Next, the operation of the latch bolt (1B) will be described.
When the rack (5b) attached to the side surface of the latch bolt (1B) is reciprocated linearly when the latch bolt (1B) is extracted or inserted from the strike (2), the mating pinion gear (9b) meshes with the rack (5b). ) May be rotated clockwise or counterclockwise.
In order to automatically perform such an operation, the two-stage gear mechanism (10b) shown in FIG. 5 and the pinion gear (9b) shaft and the two-stage gear mechanism (10b) A shown in FIG. 3b are used. The shaft of the gear of No. 4 was directly coupled, and the shaft of the gear of D and the shaft of the gear of D of the two-stage gear mechanism (14b) were also coupled using the San-S flex shaft (18b).
When the magnetic pole of the magnetic pole face of the circular permanent magnet M 5 (15b) is N pole and the magnetic pole of the magnetic pole face of the square permanent magnet M 6 (16) is N pole, a repulsive force acts between the same poles. With this repulsive force, the latch bolt (1B) is inserted into the strike (2). When the rack (5b) attached to the side surface of the latch bolt (1B) also reciprocates linearly and the pinion gear (9b) rotates, two two-stage gears (10b) and (14b) are passed through the pinion gear shaft. The gears of the mechanism are linked. As shown in FIG. 4b, the circular permanent magnet M 3 (13b) attached to the lower part of the rack (11b) is separated from the outdoor aluminum plate of the entrance door.
A groove having a width of the bearing (12) was provided on both sides of the rack (11b) so that the rack (11b) could smoothly reciprocate linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11b). When the rack (11b) reciprocates linearly, the left and right bearings (12) rotate.
As shown in FIG. 4a, there are two bearings (12) on the left and right sides of the frame (12a) that vertically supports the rack (11b). By providing the bearing (12), the rack (11b) can smoothly reciprocate linearly.
The apparatus described above is loaded outside the entrance door and inside the aluminum plate frame shown in FIG. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole.
The magnetic pole of the magnetic pole face of the circular permanent magnet M 3 (13b) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole. When this N pole is brought closer to the S pole, the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13b). When an attractive force acts between the different poles, the circular permanent magnet M 3 (13b) is attracted toward the aluminum plate outside the entrance door.
When the rack (11) reciprocates linearly with this suction force, the gears of the two-stage gear mechanism (14b) are interlocked and the two-stage gear mechanism (10b) is also operated. When the pinion gear (9b) rotates, the rack (5b) also reciprocates linearly to extract the latch bolt (1B) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13b) is lost. Without this suction force, M 2 (13b) does not operate when the M 3 (13b) is separated from the outdoor aluminum plate. Insert into the latch bolt (1B) strike (2). The operation will be described.
The magnetic poles of both the circular permanent magnet M 5 (15b) and the square permanent magnet M 6 (16) are N poles. The same polarity of the magnets of M 5 (15b) and M 6 (16) repel each other. Since the repulsive force between the same poles is always working, the latch bolt (1B) is inserted into the strike (2). When the latch bolt (1B) is inserted, the rack (5b) attached to the side surface of the latch bolt (1B) reciprocates linearly. The rack (5b) reciprocates linearly and the pinion gear (9b) rotates. When the gears of the two two-stage gear mechanisms (10b) and (14b) are interlocked via the pinion gear (9b), the circular permanent magnet M 3 (13b) attached to the lower portion of the rack (11b) is also operated. The circular permanent magnet M 3 (13b) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
The latch bolts (1A) and (1B) are separated by moving the square permanent magnet from the outside of the entrance door close to the circular permanent magnet M 3 (13a) in the room and operating only the circuit of the latch bolt (1A). Even if the latch bolt (1A) is extracted from the strike (2), the latch bolt (1B) remains inserted in the strike (2), so the entrance door does not open.
The reverse is also true. If the two circuits of the latch bolts (1A) and (1B) do not operate simultaneously, the entrance door will not open.
The positions of the two-stage gear mechanisms (14a) and (14b) in the two circuits of the latch bolts (1A) and (1B) can be arbitrarily determined by changing the lengths of the San-S flex shafts (18a) and (18b). Then, there is a method in which the magnetic pole of the magnetic pole face of M 3 (13a) of the circular permanent magnet is changed to the S pole, and the magnetic pole of the magnetic pole face of (13b) is changed to the N pole.
If it happens that the magnetic poles of the two circular permanent magnets M 3 (13a) are S poles and the magnetic poles of the magnetic pole faces of (13b) are N poles, the two circular permanent magnets M 3 (13a) ) And (13b) are known, the attractive force acts between the different poles of the magnet.
The magnetic pole of the magnetic pole face of the square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as the S pole. The magnetic poles of the magnetic pole surfaces of the circular permanent magnet M 3 (13b) loaded outside the entrance door and inside the frame of the aluminum plate in the room are N poles. When this S pole is brought close to the N pole, the magnetic lines of force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13b). When suction force works between different poles, the entrance door can be easily opened and the housekeeper is in trouble.
As a countermeasure, the circular along the surface of the outdoor aluminum plate of M 3 (13a) and (13b) and the entrance door of the circular permanent magnet as shown in Figure 4c in order to enhance the security of the key anti-theft developed permanent If the two rectangular permanent magnets that attract the magnets M 3 (13a) and (13b) are also round multi-pole or square multi-pole, they are the same as the password and the door is not easily opened.
If such a key is used, there is no keyhole outside the entrance door, so the thief cannot pick up or turn the thumb, and the thief cannot enter because he does not know what the key structure is.

本発明の3番目の装置の実施の形態を述べると、詳細な構造を図6を用いて説明する。
図6に示すように固定の玄関扉に取り付けたストライク(2)の中にラッチボルト(1)を挿入した時に玄関扉の鍵が掛かった状態になる。玄関扉を強く引いてもラッチボルト(1A)と(1B)が強度に十分耐えられるように容器(4)で支えた。
ストライク(2)の中へラッチボルト(1)を挿入する時は図6に示すようにラッチボルト(1)の後方に細い円柱棒に永久磁石M(6a)を固定し、Mの後方に間隔を隔ててM(6b)を置いた。2個の円形の永久磁石Mの磁極面の磁極を(N極或いはS極)とMの磁極面の磁極を(N極或いはS極)にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。この反発力でストライク(2)の中へラッチボルト(1)が挿入し、自動的に鍵が掛かる。
円形永久磁石M(6a)とM(6b)の同極間の反発力の大きさを微調整するに永久磁石Mを回転出来るようにネジを切った円柱棒(7a)に結合して、円柱棒(7a)を支持台(8a)で支えた。円柱棒(7a)を動かして反発力の大きさを調整する。反発力の大きさを微調整して最適値が決まれば円形永久磁石MとMの間隔 を保持するために円柱棒(7a)を支持台(8a)の横に設けた六角ナット(8b)で固定した。
ラッチボルト(1)の側面にある長さのラック(5)を止めネジで固定した。ストライク(2)の中からラッチボルト(1)を抽出する時はラッチボルト(1)の側面に取り付けてあるラック(5)が往復直線運動するにはラック(5)と噛み合う相手のピニオン歯車(9)を時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的にするには図3aに示すように2段歯車機構(10)と図3bに示すようにピニオン歯車(9)の軸と2段歯車機構(10)のAの歯車の軸を直接結合した。Dの歯車の軸と2個の2段歯車機構(14aと14b)との結合間に傘歯車を用いた2分配回路を作成して結合した。
傘歯車を用いた2分配回路の入力(19a)の歯車軸と2段歯車機構(10)のDの歯車の軸と直接結合し、出力(19b)の歯車軸は歯車機構(20)を介して2段歯車機構(14a)へ結合する。もう一方の出力(19c)の歯車軸は歯車機構(21)を介して2段歯車機構(14b)へ結合した。
傘歯車を用いた2分配回路の入力(19a)の歯車の回転方向と2個の2段歯車機構(14aと14b)の回転方向を同じ回転方向にするために回転方向を正または負方向に変えられる変換歯車機構(20)と(21)を用いた。
ラック(5a)と(5b)も同時に往復直線運動してピニオン歯車(9a)と(9b)が回転するとピニオン歯車の軸を介して2段歯車機構から2分配回路系(19a)を介し、2個の2段歯車機構(14a)と(14b)の各歯車が連動すると図4に示すように(14a)と(14b)のラック(11)の下部に取り付けた円形永久磁石M(13a)と(13b)も作動する。
2個の2段歯車機構(14a)と(14b)に用いているラックを(11)を(11a)と(11b)とする。ラック(11a)と(11b)が滑らかに往復直線運動できるようにラック(11a)と(11b)の両面にベアリング(12)の幅の溝を付けた。このラック(11a)と(11b)の両面に付けた溝に各々左右2個のベアリング(12)を沿わす。ラック(11a)と(11b)が往復直線運動すると左右2個のベアリング(12)は回転する。
I番目に図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に図6に示す装置を装荷する。玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の磁極面の磁極をN極とし、一方の角形又は円形永久磁石の磁極面の磁極をS極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13a)の磁極面の磁極をS極とし、一方のM(13b)の磁極面の磁極はN極とする。角形又は円形永久磁石のN極を玄関扉の室外アルミニュウム板を介して円形永久磁石M(13a)のS極に近づける。次に角形又は円形永久磁石のS極を円形永久磁石M(13b)のN極に近づける。M(13a)とM(13b)の両方に異極間が生じる。異極間に吸引力が働くと円形永久磁石M(13a)とはM(13b)は玄関扉の室外のアルミニュウム板の方へ引き寄せられる。この吸引力でラック(11a)と(11b)が往復直線運動すると2段歯車機構(14a)と(14b)の各々の歯車機構が連動し、傘歯車も回転して2段歯車機構(10)も作動する。ピニオン歯車(9)が回転するとラック(5)も往復直線運動してストライク(2)の中からラッチボルト(1)を抽出して玄関扉が開く。
II番目に玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の両方を取り除くと、玄関扉の室外と室内の枠内に装荷してある円形永久磁石M(13a)とM(13b)の両方には吸引力は無い。吸引力がなくなると円形永久磁石M(6a)とM(6b)の同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1)が挿入する。ラッチボルト(1)が挿入するとラッチボルト(1)の側面に取り付けたラック(5)が往復直線運動する。ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車(9)を介して2段歯車機構(10)の各歯車が連動して傘歯車を用いた2分配回路から2個の歯車機構(14a)と(14b)の各々の歯車が連動するとラック(11a)と(11b)の下部に取り付けた円形永久磁石M(13a)とM(13b)も作動し、円形永久磁石M(13a)とM(13b)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
III番目に玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の磁極面の磁極をN極とし、もう一方の角形又は円形永久磁石を取り除く。
角形又は円形永久磁石の磁極面の磁極がN極と円形永久磁石M(13a)の磁極面の磁極がS極の間に異極間が生じて吸引力が働く。この吸引力で円形永久磁石M(13a)は玄関扉の室外アルミニュウム板の方へ引き寄せようとするが、2段歯車機構(14a)の各々の歯車が作動しにくい。その理由は2段歯車機構(14a)の歯車軸から傘歯車の軸へ連動して2段歯車機構(14b)へと連動しようとするが、M(13b)は吸引力が無いので室外アルミニュウム板から離れているので、2段歯車機構(14b)は作動しない。
なぜならば2段歯車機構(14a)の軸から傘歯車を用いた2分配回路系を経て2段歯車機構(14b)の方向と2段歯車機構(10)の方向へと分かれ、それぞれ大きな負荷が掛かった事になる。2段歯車機構(14a)の各々の歯車が作動しにくいのでストライク(2)の中へラッチボルト(1)が挿入したままでは抽出出来ないので玄関扉は開かない。この逆の場合も同じである。
2段歯車機構(10)のD歯車の軸と2分配回路の入力側の軸をサンエス・フレックスシャフトで結合し、2分配回路の2つの出力側の軸から2段歯車機構(14a)と(14b)サンエス・フレックスシャフト(18)で結合する。サンエス・フレックスシャフト(18)の長さを変えて用いると2分配回路の位置と2段歯車機構(14a)および(14b)の配置をそれぞれ任意に決められるし、円形永久磁石のM(13a)の磁極面の磁極をS極にし(13b)の磁極をN極にする方法がある。
もし偶然に2個の円形永久磁石M(13a)の磁極面の磁極をS極と(13b)の磁極がN極であることがわかり、2個の円形永久磁石M(13a)と(13b)の配置した場所もわかれば磁石の異極間には吸引力が作用するから玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極も(13a)に対してN極にし、(13b)に対してはS極にすれば玄関扉は簡単に開けられて家人が大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために図4cに示すように円形永久磁石のM(13a)と(13b)および玄関扉の室外アルミニュウム板の表面に沿って円形永久磁石のM(13a)と(13b)を吸引する2個の角形又は円形永久磁石も丸形多極或いは角形多極にすれば暗証番号と同じで簡単に玄関扉を開かない。
開発した盗難防止用鍵はどの様な鍵構造か分からないので泥棒は侵入する事が出来ない。
The third embodiment of the present invention will be described in detail with reference to FIG.
As shown in FIG. 6, when the latch bolt (1) is inserted into the strike (2) attached to the fixed entrance door, the entrance door is locked. Even if the entrance door was pulled strongly, the latch bolts (1A) and (1B) were supported by the container (4) so that they could withstand the strength sufficiently.
When inserting the latch bolt (1) into the strike (2), as shown in FIG. 6, the permanent magnet M 1 (6a) is fixed to a thin cylindrical rod at the rear of the latch bolt (1), and the rear of the M 1 M 2 (6b) was spaced apart. When two circular magnetic pole of the magnetic pole face of the permanent magnet M 1 of the (N pole or S pole) and magnetic pole of the magnetic pole surface of the M 2 to (N-pole or S-pole), same poles of the magnets repel. A repulsive force acts between the same poles of M 1 and M 2 . With this repulsive force, the latch bolt (1) is inserted into the strike (2) and automatically locked.
In order to finely adjust the magnitude of the repulsive force between the same poles of the circular permanent magnets M 1 (6a) and M 2 (6b), the permanent magnet M 2 is coupled to a cylindrical rod (7a) that is threaded so that it can rotate. The cylindrical rod (7a) was supported by the support base (8a). Move the cylindrical rod (7a) to adjust the magnitude of the repulsive force. Hex nut provided on the side of the repulsive force of the magnitude of the fine adjustment to the optimum value cylindrical bar to hold the spacing of the circular permanent magnet M 1 and M 2 once the support base of (7a) (8a) (8b ).
The rack (5) having a length on the side surface of the latch bolt (1) was fixed with a set screw. When the latch bolt (1) is extracted from the strike (2), the rack (5) attached to the side surface of the latch bolt (1) moves in a reciprocating linear motion so that the mating pinion gear ( 9) may be rotated clockwise or counterclockwise.
In order to automatically perform such operation, a two-stage gear mechanism (10) as shown in FIG. 3a and a pinion gear (9) shaft and a gear A of the two-stage gear mechanism (10) as shown in FIG. The shafts were directly connected. A two-distribution circuit using a bevel gear was created and coupled between the shaft of the D gear and the two two-stage gear mechanisms (14a and 14b).
The gear shaft of the input (19a) of the two distribution circuit using the bevel gear is directly coupled to the shaft of the gear D of the two-stage gear mechanism (10), and the gear shaft of the output (19b) is connected via the gear mechanism (20). To the two-stage gear mechanism (14a). The gear shaft of the other output (19c) was coupled to the two-stage gear mechanism (14b) via the gear mechanism (21).
In order to make the rotational direction of the input (19a) of the two distribution circuit using the bevel gear and the rotational direction of the two two-stage gear mechanisms (14a and 14b) the same rotational direction, the rotational direction is positive or negative. Conversion gear mechanisms (20) and (21) that can be changed were used.
When the racks (5a) and (5b) simultaneously reciprocate linearly and the pinion gears (9a) and (9b) rotate, the two-stage gear mechanism via the pinion gear shaft and the two distribution circuit system (19a) number of double gear mechanism (14a) and the respective gears (14b) is interlocked as shown in FIG. 4 (14a) and racks (14b) (11) a circular permanent magnet M 3 attached to a lower portion of (13a) And (13b) also operate.
The racks used for the two two-stage gear mechanisms (14a) and (14b) are (11) and (11a) and (11b). The racks (11a) and (11b) were provided with grooves having the width of the bearing (12) on both sides of the racks (11a) and (11b) so that the racks (11a) and (11b) can smoothly reciprocate linearly. The two left and right bearings (12) are placed along the grooves formed on both sides of the racks (11a) and (11b). When the racks (11a) and (11b) reciprocate linearly, the left and right bearings (12) rotate.
First, the apparatus shown in FIG. 6 is loaded in the frame of the aluminum plate outside and inside the entrance door shown in FIG. The outdoor aluminum plate of the front door also has the magnetic poles of the two rectangular or circular permanent magnets moving along the surface as N poles, and the magnetic pole of one of the square or circular permanent magnets as S poles. The magnetic pole of the magnetic pole face of the circular permanent magnet M 3 (13a) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole, and the magnetic pole of the magnetic face of the other M 3 (13b) is the N pole. . The N pole of the square or circular permanent magnet is brought close to the S pole of the circular permanent magnet M 3 (13a) through the outdoor aluminum plate of the entrance door. Next, the S pole of the square or circular permanent magnet is brought close to the N pole of the circular permanent magnet M 3 (13b). Different polarities occur in both M 3 (13a) and M 3 (13b). When an attractive force acts between the different poles, the circular permanent magnet M 3 (13a) and M 3 (13b) are attracted toward the aluminum plate outside the entrance door. When the racks (11a) and (11b) are reciprocated linearly by this suction force, the gear mechanisms of the two-stage gear mechanisms (14a) and (14b) are interlocked, and the bevel gear is rotated to rotate the two-stage gear mechanism (10). Also works. When the pinion gear (9) rotates, the rack (5) also reciprocates linearly to extract the latch bolt (1) from the strike (2) and open the entrance door.
II. If both the two rectangular or circular permanent magnets moving along the surface of the outdoor aluminum plate of the front door are removed, the circular permanent magnet M 3 (13a) loaded in the outdoor door frame and the indoor frame is removed. ) And M 3 (13b) have no suction. When the attractive force is lost, the repulsive force between the same polarities of the circular permanent magnets M 1 (6a) and M 2 (6b) is always working, so the latch bolt (1) is inserted into the strike (2). When the latch bolt (1) is inserted, the rack (5) attached to the side surface of the latch bolt (1) reciprocates linearly. The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two-stage gear mechanism (10) are interlocked via the pinion gear (9) and the two gear mechanisms (14a) and (14b) are interlocked from the two distribution circuit using the bevel gear. The circular permanent magnets M 3 (13a) and M 3 (13b) attached to the lower portions of the racks (11a) and (11b) also operate, and the circular permanent magnets M 3 (13a) and M 3 (13b) are located outside the entrance door. The entrance door closes automatically away from the aluminum plate.
III. The outdoor aluminum plate of the front door also moves along the surface of the two square or circular permanent magnets with the N pole as the magnetic pole, and the other square or circular permanent magnet is removed.
A magnetic pole on the magnetic pole face of the square or circular permanent magnet has an N pole and a magnetic pole face on the magnetic pole face of the circular permanent magnet M 3 (13a) has a different polarity between the S poles. With this attractive force, the circular permanent magnet M 3 (13a) tends to be drawn toward the outdoor aluminum plate of the entrance door, but each gear of the two-stage gear mechanism (14a) is difficult to operate. The reason tries to work with the gear shaft of the double gear mechanism (14a) to the conjunction with the two-stage gear mechanism to the axis of the bevel gear (14b), the outdoor aluminum since M 3 (13b) is not attractive force Since it is away from the plate, the two-stage gear mechanism (14b) does not operate.
This is because the shaft of the two-stage gear mechanism (14a) is divided into the direction of the two-stage gear mechanism (14b) and the direction of the two-stage gear mechanism (10) through a two-distribution circuit system using a bevel gear. It will be hung. Since each gear of the two-stage gear mechanism (14a) is difficult to operate, the door cannot be opened because the latch bolt (1) cannot be extracted while it is inserted into the strike (2). The reverse is also true.
The shaft of the D gear of the two-stage gear mechanism (10) and the input shaft of the two-distribution circuit are coupled by a San-S flex shaft, and the two-stage gear mechanism (14a) and ( 14b) It couple | bonds with a Sanes flex shaft (18). If the length of the San-S flex shaft (18) is changed, the position of the two distribution circuits and the arrangement of the two-stage gear mechanisms (14a) and (14b) can be determined arbitrarily, and M 3 (13a) of the circular permanent magnet can be determined. There is a method in which the magnetic pole of the magnetic pole surface is made the S pole and the magnetic pole of (13b) is made the N pole.
If it happens that the magnetic poles of the two circular permanent magnets M 3 (13a) are S poles and the magnetic poles of (13b) are N poles, the two circular permanent magnets M 3 (13a) and ( If the location of 13b) is known, an attractive force acts between the opposite poles of the magnet, so the magnetic pole of the square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is also in relation to (13a). If it is set to N pole and (13b) is set to S pole, the entrance door can be easily opened and the housekeeper is in trouble.
As a countermeasure, in order to enhance the security of the developed anti-theft key, as shown in FIG. 4c, circular permanent magnets M 3 (13a) and (13b) and a circular permanent magnet along the surface of the outdoor aluminum plate of the entrance door If the two square or circular permanent magnets that attract the magnet M 3 (13a) and (13b) are also round multipole or square multipole, they are the same as the password and the door is not easily opened.
The developed anti-theft key doesn't know what the key structure is, so the thief can't enter.

本発明は、玄関扉に鍵穴は無く、扉の室外にはハンドルだけである。玄関扉の室外と室内の枠内に2段歯車機構と永久磁石の磁極数の多い角形多極或いは丸形多極で構成した盗難防止用鍵を装荷する。
玄関扉のストライクの中からラッチボルトを抽出するには玄関扉の室外アルミニュウム板の表面に沿って角形又は円形永久磁石を動かすと磁力線はアルミニュウム板を透磁して抽出装置(14)と(14a)及び(14b)内の円形永久磁石(13)と(13a)及び(13b)に吸引力が働く。この吸引力でストライク(2)の中からラッチボルト(1)を抽出して玄関扉が開く。
もし偶然に玄関扉の室外アルミニュウム板の表面に沿って動かす角形永久磁石の磁極と円形永久磁石(13)と(13a)及び(13b)の磁極が分かって合わされると玄関扉は簡単に開けられたら家人は大変困る。
その対策として、盗難防止用鍵をさらに安全性を高めるに円形永久磁石(13)と(13a)及び(13b)を永久磁石の磁極数が多い丸形多極或いは角形多極を用いることである。また玄関扉の室外アルミニュウム板の表面に沿って動かす角形永久磁石の磁極数が丸形多極或いは角形多極を用いて磁極数を合わさないと玄関扉は閉じたままで開かない。
家人以外はどうして玄関扉を開けたら良いか分からない安全な盗難防止用鍵の装置に関するものである。
In the present invention, there is no keyhole in the entrance door, and only the handle is provided outside the door. An anti-theft key composed of a square multi-pole or a round multi-pole having a large number of magnetic poles of a two-stage gear mechanism and permanent magnets is loaded outside the entrance door and inside the room frame.
In order to extract the latch bolt from the strike of the entrance door, when the square or circular permanent magnet is moved along the surface of the outdoor aluminum plate of the entrance door, the magnetic field lines are made to pass through the aluminum plate and extractor (14) and (14a ) And (14b), the attractive force acts on the circular permanent magnets (13) and (13a) and (13b). With this suction force, the latch bolt (1) is extracted from the strike (2) and the entrance door opens.
If the magnetic poles of the square permanent magnets and the circular permanent magnets (13), (13a), and (13b) that are moved along the surface of the outdoor aluminum plate of the entrance door are found by chance, the entrance door can be opened easily. Then the housekeeper is in trouble.
As a countermeasure, the round permanent magnets (13), (13a) and (13b) may be round multi-poles or square multi-poles having a large number of magnetic poles in order to further increase the safety of the anti-theft key. . Moreover, if the number of magnetic poles of the square permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is not the same as the number of magnetic poles using a round multipole or a square multipole, the entrance door will remain closed and will not open.
The present invention relates to a safe anti-theft key device for non-residents who does not know why to open the front door.

従来の玄関扉に取り付けた鍵の一例を示す図である。  It is a figure which shows an example of the key attached to the conventional entrance door. 本発明に関する盗難防止器用鍵を使用した為に玄関扉に鍵穴がない。  Since the anti-theft device key according to the present invention is used, the entrance door has no keyhole. 本発明の実施の一例を示す構造の全体図である。  1 is an overall view of a structure showing an example of implementation of the present invention. 本発明に関する構造図である。  1 is a structural diagram related to the present invention. 本発明の実施の一例を示す構造の全体図である。  1 is an overall view of a structure showing an example of implementation of the present invention. 本発明の実施の一例を示す構造の全体図である。  1 is an overall view of a structure showing an example of implementation of the present invention.

符号の説明Explanation of symbols

1 ラッチボルト
1A ラッチボルトA
1B ラッチボルトB
2 ストライク
3 ラッチボルトを固定するネジ
4 ラッチボルトを支える容器
5 ラック
5a ラック
5b ラック
6a 円形永久磁石M
6b 円形永久磁石M
7a 2枚の円形永久磁石MとM間の反発力を調整するネジ
7b 角形永久磁石Mを支える円柱棒
8a 円形永久磁石Mを支える軸受け台
8b 円形永久磁石Mを固定する六角ナット
8c (7b)を固定する止めネジ
9 ピニオン歯車
9a ピニオン歯車
9b ピニオン歯車
10 2段歯車機構
10a 2段歯車機構
10b 2段歯車機構
11 ラック
11a ラック
11b ラック
12 ベアリング
12a ベアリング
12b ラックを垂直に支える枠
13 円形永久磁石M
13a 円形永久磁石M
13b 円形永久磁石M
14 (11)の下部に(13)を取り付けて組み合わせた2段歯車機構
14a (11a)の下部に(13a)を取り付けて組み込んだ2段歯車機構
14b (11b)の下部に(13b)を取り付けて組み込んだ2段歯車機構
15a 円形永久磁石M
15b 円形永久磁石M
16 角形永久磁石M
18a サンエス・フレックスシャフト
18b サンエス・フレックスシャフト
19 傘歯車を用いた2分配回路
19a 傘歯車を用いた2分配回路の入力
19b 傘歯車を用いた2分配回路の出力
19c 傘歯車を用いた2分配回路の出力
20 2分配回路入力の歯車の回転方向と(14a)の回転方向を同じ方向にする変換歯車機構
21 2分配回路入力の歯車の回転方向と(14b)の回転方向を同じ方向にする変換歯車機構
1 Latch bolt 1A Latch bolt A
1B Latch bolt B
2 Strike 3 Screw for fixing latch bolt 4 Container supporting latch bolt 5 Rack 5a Rack 5b Rack 6a Circular permanent magnet M 1
6b Circular permanent magnet M 2
Hex to fix the bearing block 8b circular permanent magnet M 2 for supporting the cylindrical bar 8a circular permanent magnet M 2 for supporting the screw 7b rectangular permanent magnets M 6 for adjusting the repulsive force between 7a 2 sheets of circular permanent magnets M 1 and M 2 Set screw for fixing nut 8c (7b) 9 Pinion gear 9a Pinion gear 9b Pinion gear 10 Two-stage gear mechanism 10a Two-stage gear mechanism 10b Two-stage gear mechanism 11 Rack 11a Rack 11b Rack 12 Bearing 12a Bearing 12b The rack is supported vertically Frame 13 Circular permanent magnet M 3
13a circular permanent magnet M 3
13b Circular permanent magnet M 3
14 (11) is attached to the lower part of the two-stage gear mechanism 14a (11a) and (13a) is attached to the lower part of the two-stage gear mechanism 14b (11a). incorporating on 2-stage gear mechanism 15a circular permanent magnet M 4
15b circular permanent magnet M 5
16 square permanent magnet M 6
18a Sanes flex shaft 18b Sanes flex shaft 19 2 distribution circuit 19b using bevel gears 19a input of 2 distribution circuits using bevel gears 19b outputs of 2 distribution circuits using bevel gears 19c 2 distribution circuits using bevel gears The conversion gear mechanism 21 which makes the rotation direction of the gear of the input of the 2 distribution circuit and the rotation direction of (14a) the same direction The conversion of the rotation direction of the gear of the 2 distribution circuit input and the rotation direction of (14b) becomes the same direction Gear mechanism

Claims (3)

図3に示すようにラッチボルト(1)とストライク(2)及びラッチボルトを支える容器(4)と、
該ストライク(2)の中へラッチボルト(1)を挿入する時にラッチボルト(1)の後方に細い円柱棒に円形のヨークの中に装荷した永久磁石M(6a)を固定した。Mの後方に間隔 を隔てて円形のヨークの中に装荷した永久磁石M(6b)を置く。
2個の円形永久磁石M(6a)の磁極面の磁極が(N極或いはS極)と円形永久磁石M(6b)の磁極面の磁極を(N極或いはS極)にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。この反発力でストライク(2)の中へラッチボルト(1)が挿入し、自動的に鍵が掛かる。
円形永久磁石M(6a)とM(6b)の同極間の反発力の大きさを微調整するときに永久磁石Mを回転出来るようにネジを切った円柱棒(7a)に結合して、円柱棒(7a)を支持台(8a)で支えた。円柱棒(7a)を動かして反発力の大きさを調整する。反発力の大きさを微調整して最適値が決まれば円形永久磁石MとMの間隔を保持するために円柱棒(7a)を支持台(8a)の横に設けた六角ナット(8b)で固定した。
ラッチボルト(1)の側面にある長さのラック(5)を止めネジで固定した。ストライク(2)の中からラッチボルト(1)を抽出する時はラッチボルト(1)の側面に取り付けてあるラック(5)が往復直線運動するにはラック(5)と噛み合う相手のピニオン歯車(9)が時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的にするためには図3aに示すように2段歯車機構(10)と図3bに示すようにピニオン歯車(9)の軸と2段歯車機構(10)のAの歯車の軸を直接結合した。Dの歯車の軸と2段歯車機構(14)のDの歯車の軸も直接結合した。
ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車(9)の軸を介して(10)と(14)の2個の2段歯車機構の各歯車が連動するとラック(11)の下部に取り付けた円形永久磁石M(13)も作動する。
ラック(11)が滑らかに往復直線運動できるように、ラック(11)の両面にベアリング(12)の幅の溝を付けた。このラック(11)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11)が往復直線運動すると左右2個のベアリングはそれぞれ回転する。
図4aと図4bに示すようにラック(11)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)がある。ベアリンク(12)を設ける事によってラック(11)が滑らかに往復直線運動する。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内にこの装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13)の磁極面の磁極がS極である。このN極をS極に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13)の間に異極間が生じる。異極間に吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13)が引き寄せられる。
この吸引力でラック(11)が往復直線運動すると2段歯車機構(14)の各々の歯車が連動して2段歯車機構(10)も作動する。ピニオン歯車が回転するとラック(5)も往復直線運動してストライク(2)の中からラッチボルト(1)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13)への吸引力は無くなる。吸引力が無くなると円形永久磁石M(6a)とM(6b)の同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1)が挿入する。ラッチボルト(1)を挿入するとラッチボルト(1)の側面に取り付けたラック(5)が往復直線運動する。ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車の軸を介して(10)と(14)の2個の2段歯車機構の各歯車が連動するとラック(11)の下部に取り付けた円形永久磁石M(13)も作動し、円形永久磁石M(13)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
もし偶然に円形永久磁石M(13)の磁極面の磁極が分からなくてもM(13)の配置した場所さえわかれば、玄関扉の室外アルミニュウム板に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極或いはS極にする。このN極或いはS極を円形永久磁石M(13)に近づけて吸引力が働けば玄関扉は簡単に開けられ家人が大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために円形永久磁石M(13)と玄関扉の室外アルミニュウム板に沿って動かす角形又は円形永久磁石も図4cに示す丸形多極或いは角形多極を用いれば磁極数がわからない限り暗証番号と同じで簡単に玄関扉は開かない。
安全な盗難防止用鍵の装置に用いた永久磁石を電気磁石にして用いる事も出来る。その場合商用周波数50Hz或いは60Hzで、交流電圧が100Vから変圧器で低電圧にして用いる方法がある。交流電圧は+−が交互に変化するので(電気磁石の磁極はN極とS極が交互にかわる)騒音が出やすい。騒音を無くすには交流電圧を直流電圧に変換して使用する。電気磁石を用いると装置が大きくなり、又停電した時には蓄電池に切り替える装置が不可欠であり、費用もかなり高くなる欠点がある。
現在市販されている角形又は円形永久磁石は小型で色々の種類のものがあって磁力もかなり強い。停電しても心配ないし、価額もかなり安いという利点がある。
以上の利点から安全な盗難防止用鍵の装置には現在市販に出ている永久磁石を用いた。
図3に示すように2個の2段歯車機構とラックおよびピニオン歯車そうして円形永久磁石M(13)を図4cに示す丸形多極或いは角形多極にして構成した安全な盗難防止用鍵の装置。
As shown in FIG. 3, the latch bolt (1), the strike (2) and the container (4) for supporting the latch bolt,
When the latch bolt (1) was inserted into the strike (2), a permanent magnet M 1 (6a) loaded in a circular yoke was fixed to a thin cylindrical rod behind the latch bolt (1). A permanent magnet M 2 (6b) loaded in a circular yoke is placed behind M 1 at a distance.
When the magnetic pole of the magnetic pole face of the two circular permanent magnets M 1 (6a) is (N pole or S pole) and the magnetic pole of the magnetic pole face of the circular permanent magnet M 2 (6b) is (N pole or S pole), the magnet The same poles repel each other. A repulsive force acts between the same poles of M 1 and M 2 . With this repulsive force, the latch bolt (1) is inserted into the strike (2) and automatically locked.
Coupled to a cylinder rod (7a) of the threaded to allow rotation of the permanent magnet M 2 when finely adjusting the magnitude of the repulsion between the same poles of the circular permanent magnet M 1 (6a) and M 2 (6b) The cylindrical rod (7a) was supported by the support base (8a). Move the cylindrical rod (7a) to adjust the magnitude of the repulsive force. Hex nut provided on the side of the repulsive force of the magnitude of the fine adjustment to the optimum value cylindrical bar to hold the spacing of the circular permanent magnet M 1 and M 2 once the support base of (7a) (8a) (8b ).
The rack (5) having a length on the side surface of the latch bolt (1) was fixed with a set screw. When the latch bolt (1) is extracted from the strike (2), the rack (5) attached to the side surface of the latch bolt (1) moves in a reciprocating linear motion so that the mating pinion gear ( 9) may be rotated clockwise or counterclockwise.
In order to automatically perform such an operation, the two-stage gear mechanism (10) as shown in FIG. 3a and the pinion gear (9) shaft and the two-stage gear mechanism (10) as shown in FIG. The gear shaft was directly coupled. The shaft of the D gear and the shaft of the D gear of the two-stage gear mechanism (14) were also directly coupled.
The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two two-stage gear mechanisms (10) and (14) are interlocked via the pinion gear (9), the circular permanent magnet M 3 (13) attached to the lower portion of the rack (11) is also activated. To do.
A groove having a width of the bearing (12) was provided on both sides of the rack (11) so that the rack (11) could smoothly move back and forth linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11). When the rack (11) reciprocates linearly, the left and right bearings rotate respectively.
As shown in FIGS. 4a and 4b, there are two bearings (12) on the left and right sides of the frame (12a) that vertically supports the rack (11). By providing the bare link (12), the rack (11) smoothly reciprocates linearly.
This apparatus is loaded outside the entrance door shown in FIG. 2 and inside the aluminum plate frame. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole. The magnetic poles of the magnetic pole surfaces of the circular permanent magnet M 3 (13) loaded outside the entrance door and inside the frame of the aluminum plate in the room are the S poles. When this N pole is brought close to the S pole, the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13). When the attractive force acts between the different poles, the circular permanent magnet M 3 (13) is attracted toward the aluminum plate outside the entrance door.
When the rack (11) reciprocates linearly by this suction force, the gears of the two-stage gear mechanism (14) are interlocked to operate the two-stage gear mechanism (10). When the pinion gear rotates, the rack (5) also reciprocates linearly to extract the latch bolt (1) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13) is lost. When the attraction force disappears, the repulsive force between the same poles of the circular permanent magnets M 1 (6a) and M 2 (6b) is always working, so the latch bolt (1) is inserted into the strike (2). When the latch bolt (1) is inserted, the rack (5) attached to the side surface of the latch bolt (1) reciprocates linearly. The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two two-stage gear mechanisms (10) and (14) are interlocked via the pinion gear shaft, the circular permanent magnet M 3 (13) attached to the lower portion of the rack (11) is also operated, The permanent magnet M 3 (13) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
Even if the magnetic pole face of the circular permanent magnet M 3 (13) is accidentally unknown, if the location of the M 3 (13) is known, the square or circular permanent magnet moving along the outdoor aluminum plate of the entrance door The magnetic pole of the magnetic pole surface is set to N or S pole. If this N pole or S pole is brought close to the circular permanent magnet M 3 (13) and a suction force is applied, the entrance door can be easily opened and the housekeeper is in trouble.
As a countermeasure against this, the round permanent magnet M 3 (13) and the square or round permanent magnet that moves along the outdoor aluminum plate of the front door to enhance the safety of the developed antitheft key are also shown in FIG. 4c. Alternatively, if you use a square multipole, the entrance door will not open easily because it is the same as your PIN unless you know the number of magnetic poles.
The permanent magnet used in the secure anti-theft key device can also be used as an electric magnet. In that case, there is a method of using an AC voltage from 100 V to a low voltage with a transformer at a commercial frequency of 50 Hz or 60 Hz. Since the alternating voltage changes alternately between + and-(the magnetic poles of the electromagnet alternate between N poles and S poles), noise is likely to occur. To eliminate noise, AC voltage is converted to DC voltage. If an electromagnet is used, the device becomes large, and a device for switching to a storage battery in the event of a power failure is indispensable, and there is a disadvantage that the cost is considerably increased.
The square or circular permanent magnets currently on the market are small and various types, and the magnetic force is quite strong. There is an advantage that there is no worry about the power outage and the price is quite low.
Because of the above advantages, a permanent magnet that is currently on the market is used as a safe anti-theft key device.
As shown in FIG. 3, two the two-stage gear mechanism, the rack and the pinion gear, and thus the circular permanent magnet M 3 (13) shown in FIG. Key device.
図5に示すように2個のラッチボルト(1Aと1B)とストライク(2)及びラッチボルト(1Aと1B)を支える容器(4)と、
該ストライク(2)の中へラッチボルト(1Aと1B)を挿入する時は図5に示すようにラッチボルト(1A)の後方に細い円柱棒に円形永久磁石M(15a)を固定し、ラッチボルト(1B)の後方にも細い円柱棒に円形永久磁石M(15b)を固定にした。図5に示すように円形永久磁石MとMは並列に並んだ後方に間隔 を隔てて角形のヨークの中に装荷した永久磁石M(16)を置く。
2個の円形永久磁石M(15a)とM(15b)の磁極面の磁極は(N極か或いはS極)で角形永久磁石M(16)の磁極面の磁極は(N極か或いはS極)である。3個のMとM及びMの永久磁石の磁極面の磁極をN極にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。2個の円形永久磁石(MとM)と角形永久磁石Mの同極間でも反発力が働く。この反発力でストライク(2)の中へ2個のラッチボルト(1Aと1B)が挿入し、自動的に鍵が掛かる。
2個の円形永久磁石(MとM)と角形永久磁石Mの同極間の反発力の大きさを微調整するために角形永久磁石Mを円柱棒(7b)に結合して、円柱棒(7b)を支持台(8a)で支えた。円柱棒(7b)を可動して最適値が決まると2個の円形永久磁石永久磁石(MとM)と角形永久磁石Mの間隔 を保持するために円柱棒(7b)を支持台(8a)の横に設けた止めネジ(8c)で固定した。
図5に示すようにこの盗難防止用鍵は1つのストライク(2)の中に独立した2個のラッチボルト(1A)と(1B)が抽出或いは挿入できるような構造にしてある。
最初にラッチボルト(1A)の動作について述べる。
ストライク(2)の中からラッチボルト(1A)を抽出或いは挿入する場合ラッチボルト(1A)の側面に取り付けてあるラック(5a)が往復直線運動する。ラック(5a)が滑らかに往復直線運動するようにラック(5a)と噛み合う相手のピニオン歯車(9a)も時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的に出来るようにするには図5に示す2段歯車機構(10a)と図3bに示すようにピニオン歯車(9a)の軸と2段歯車機構(10a)のAの歯車の軸を直接結合した。Dの歯車の軸と2段歯車機構(14a)のDの歯車の軸もサンエス・フレックスシャフト(18a)を用いて結合した。
円形永久磁石M(15a)の磁極面の磁極がN極で角形永久磁石M(16)の磁極面の磁極がN極であると同極間で反発力が働く。この反発力でストライク(2)の中へラッチボルト(1A)が挿入する。ラッチボルト(1A)の側面に取り付けてあるラック(5a)も往復直線運動してピニオン歯車(9a)が回転するとピニオン歯車の軸を介して(10a)と(14a)の2個の2段歯車機構の各歯車が連動する。図4bに示すようにラック(11a)の下部に取り付けた円形永久磁石M(13a)は玄関扉の室外アルミニュウム板から離れる。
ラック(11a)が滑らかに往復直線運動できるように、ラック(11a)の両面にベアリング(12)の幅の溝を付けた。このラック(11a)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11a)が往復直線運動すると左右2個のベアリングは回転する。
図4aに示すようにラック(11a)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)がある。ベアリング(12)を設ける事によってラック(11a)が滑らかに往復直線運動できる。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に上に述べた装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13a)の磁極面の磁極はS極である。このN極をM(13a)に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13a)の間に異極間が生じる。異極間に吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13a)が引き寄せられる。
この吸引力でラック(11a)が往復直線運動すると2段歯車機構(14a)の各々の歯車が連動して2段歯車機構(10a)も作動する。ピニオン歯車(9a)が回転するとラック(5a)も往復直線運動してストライク(2)の中からラッチボルト(1A)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13a)への吸引力は無くなる。この吸引力がないとM(13a)は室外アルミニュウム板から離れると2段歯車機構は動作しない。ラッチボルト(1A)はストライク(2)の中へ挿入する。その動作を説明する。
円形永久磁石M(15a)と角形永久磁石M(16)の両方の磁極面の磁極はN極である。M(15a)とM(16)の磁石の同極同士は反発する。同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1A)が挿入する。ラッチボルト(1A)か挿入するとラッチボルト(1A)の側面に取り付けたラック(5a)が往復直線運動する。ラック(5a)が往復直線運動してピニオン歯車(9a)か回転する。ピニオン歯車(9a)を介して(10a)と(14a)の2個の2段歯車機構の各歯車が連動するとラック(11a)の下部に取り付けた円形永久磁石M(13a)も作動し、円形永久磁石M(13a)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
次にラッチボルト(1B)の動作について述べる。
ストライク(2)の中からラッチボルト(1B)を抽出又は挿入する時にラッチボルト(1B)の側面に取り付けてあるラック(5b)が往復直線運動するとラック(5b)と噛み合う相手のピニオン歯車(9b)を時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的に出来るようにするためには図5に示す2段歯車機構(10b)と図3bに示すようにピニオン歯車(9b)の軸と2段歯車機構(10b)のAの歯車の軸を直接結合し、Dの歯車の軸と2段歯車機構(14b)のDの歯車の軸もサンエス・フレックスシャフト(18b)を用いて結合した。
円形永久磁石M(15b)の磁極面の磁極がN極で角形永久磁石M(16)の磁極面の磁極がN極であると同極間で反発力が働く。この反発力でストライク(2)の中へラッチボルト(1B)が挿入する。ラッチボルト(1B)の側面に取り付けてあるラック(5b)も往復直線運動してピニオン歯車(9b)が回転するとピニオン歯車の軸を介して(10b)と(14b)の2個の2段歯車機構の各歯車が連動する。図4bに示すようにラック(11b)の下部に取り付けた円形永久磁石M(13b)は玄関扉の室外アルミニュウム板から離れる。
ラック(11b)が滑らかに往復直線運動できるように、ラック(11b)の両面にベアリング(12)の幅の溝を付けた。このラック(11b)の両面に付けた溝に左右2個のベアリング(12)を沿わす。ラック(11b)が往復直線運動すると左右2個のベアリング(12a)はそれぞれ回転する。
図4aに示すようにラック(11b)を垂直に支える枠(12a)の左右両側に上下2個ずつベアリング(12)がある。ベアリング(12)を設ける事によってラック(11b)が滑らかに往復直線運動できる。
図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に上に述べた装置を装荷する。玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をN極とする。
玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13b)の磁極面の磁極はS極である。このN極をS極を近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13b)の間に異極間が生じる。異極間には吸引力が働くと、玄関扉の室外のアルミニュウム板の方へ円形永久磁石M(13b)が引き寄せられる。
この吸引力でラック(11b)が往復直線運動すると2段歯車機構(14b)の各々の歯車が連動し2段歯車機構(10b)も作動する。ピニオン歯車(9b)が回転するとラック(5b)も往復直線運動してストライク(2)の中からラッチボルト(1B)を抽出して玄関扉が開く。
次に玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石を取り除くと円形永久磁石M(13b)への吸引力は無くなる。この吸引力がないとM(13b)は室外アルミニュウム板から離れると2段歯車機構(14b)は動作しない。ラッチボルト(1B)ストライク(2)の中へ挿入する。その動作を説明する。
円形永久磁石M(15b)と角形永久磁石M(16)の両方の磁極面の磁極はN極である。M(15b)とM(16)の磁石の同極同士は反発する。同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1B)が挿入する。ラッチボルト(1B)が挿入するとラッチボルト(1B)の側面に取り付けたラック(5b)が往復直線運動する。ラック(5b)が往復直線運動してピニオン歯車(9b)が回転する。ピニオン歯車(9b)を介して(10b)と(14b)の2個の2段歯車機構の各歯車が連動するとラック(11b)の下部に取り付けた円形永久磁石M(13b)も作動し、円形永久磁石M(13b)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
ラッチボルト(1A)と(1B)を別々にしたのは玄関扉の室外から角形永久磁石を室内の円形永久磁石M(13a)に近ずけてラッチボルト(1A)の回路だけ動作させてもストライク(2)の中からラッチボルト(1A)を抽出してもストライク(2)の中にはラッチボルト(1B)が挿入されたままになっているので玄関扉は開かない。
また、この逆の場合も同じである。ラッチボルト(1A)と(1B)の2回路が同時に作動しないと玄関扉は開かない。
サンエス・フレックスシャフト(18a)と(18b)の長さを変えてラッチボルト(1A)と(1B)の2つの回路内の2段歯車機構(14a)と(14b)の位置を任意に決められるし、円形永久磁石のM(13a)の磁極面の磁極をS極にし(13b)の磁極面の磁極をN極にする方法がある。
もし偶然に2個の円形永久磁石M(13a)の磁極面の磁極をS極と(13b)の磁極面の磁極をN極であることが分かり、2個の円形永久磁石M(13a)と(13b)の配置した場所も分かれば磁石の異極間には吸引力が作用する。
玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極をS極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13)の磁極面の磁極がN極である。このS極をN極に近づけると磁力線はアルミニュウム板を透磁して円形永久磁石M(13b)の間に異極間が生じる。異極間には吸引力が働くと、玄関扉は簡単に開けられ家人が大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために図4cに示すように円形永久磁石のM(13a)と(13b)および玄関扉の室外アルミニュウム板の表面に沿って円形永久磁石のM(13a)と(13b)を吸引する2個の角形又は円形永久磁石も丸形多極或いは角形多極にすれば暗証番号と同じで簡単に玄関扉は開かない。
図5に示すように2つの回路系にして全て歯車機構と永久磁石を利用しているので簡単な回路構成で出来る最も安全な盗難防止用鍵の装置。
A container (4) for supporting two latch bolts (1A and 1B), a strike (2) and a latch bolt (1A and 1B) as shown in FIG. 5;
When inserting the latch bolts (1A and 1B) into the strike (2), as shown in FIG. 5, the circular permanent magnet M 4 (15a) is fixed to a thin cylindrical rod behind the latch bolt (1A), A circular permanent magnet M 5 (15b) was fixed to a thin cylindrical rod also behind the latch bolt (1B). Figure circular permanent magnet M 4 and M 5, as shown in 5 put a permanent magnet M 6 (16) Loaded into rectangular yoke spaced rearwardly arranged in parallel.
The magnetic poles of the magnetic faces of the two circular permanent magnets M 4 (15a) and M 5 (15b) are (N pole or S pole) and the magnetic poles of the square permanent magnet M 6 (16) are (N poles). Or S pole). When the magnetic poles of the magnetic faces of the three M 4 , M 5, and M 6 permanent magnets are N poles, the same poles of the magnets repel each other. A repulsive force acts between the same poles of M 1 and M 2 . A repulsive force also acts between the same polarities of the two circular permanent magnets (M 4 and M 5 ) and the square permanent magnet M 6 . With this repulsive force, two latch bolts (1A and 1B) are inserted into the strike (2) and automatically locked.
In order to finely adjust the magnitude of the repulsive force between the same polarities of the two circular permanent magnets (M 4 and M 5 ) and the square permanent magnet M 6 , the square permanent magnet M 6 is coupled to the cylindrical rod (7b). The cylindrical rod (7b) was supported by the support base (8a). When the optimum value cylindrical rods (7b) and movable determines the support base of the cylindrical bar (7b) in order to hold the two intervals of the circular permanent magnet the permanent magnet (M 4 and M 5) and rectangular permanent magnet M 6 It was fixed with a set screw (8c) provided beside (8a).
As shown in FIG. 5, this anti-theft key is structured such that two independent latch bolts (1A) and (1B) can be extracted or inserted into one strike (2).
First, the operation of the latch bolt (1A) will be described.
When the latch bolt (1A) is extracted or inserted from the strike (2), the rack (5a) attached to the side surface of the latch bolt (1A) reciprocates linearly. The other pinion gear (9a) meshing with the rack (5a) may be rotated clockwise or counterclockwise so that the rack (5a) smoothly reciprocates linearly.
In order to enable such an operation automatically, the two-stage gear mechanism (10a) shown in FIG. 5 and the shaft of the pinion gear (9a) and the A of the two-stage gear mechanism (10a) as shown in FIG. The gear shaft was directly coupled. The shaft of the D gear and the shaft of the D gear of the two-stage gear mechanism (14a) were also coupled using the San-S flex shaft (18a).
When the magnetic pole of the magnetic pole face of the circular permanent magnet M 4 (15a) is N-pole and the magnetic pole face of the magnetic pole face of the square permanent magnet M 6 (16) is N-pole, a repulsive force acts between the same poles. With this repulsive force, the latch bolt (1A) is inserted into the strike (2). When the rack (5a) attached to the side surface of the latch bolt (1A) also reciprocates linearly and the pinion gear (9a) rotates, two two-stage gears (10a) and (14a) are passed through the pinion gear shaft. The gears of the mechanism are linked. As shown in FIG. 4b, the circular permanent magnet M 3 (13a) attached to the lower part of the rack (11a) is separated from the outdoor aluminum plate of the entrance door.
A groove having a width of the bearing (12) was provided on both sides of the rack (11a) so that the rack (11a) can smoothly reciprocate linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11a). When the rack (11a) reciprocates linearly, the left and right bearings rotate.
As shown in FIG. 4a, there are two bearings (12) on the left and right sides of the frame (12a) that vertically supports the rack (11a). By providing the bearing (12), the rack (11a) can smoothly reciprocate linearly.
The apparatus described above is loaded outside the entrance door and inside the aluminum plate frame shown in FIG. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole. The magnetic pole of the magnetic pole surface of the circular permanent magnet M 3 (13a) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole. When this N pole is brought close to M 3 (13a), the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13a). When the attractive force acts between the different poles, the circular permanent magnet M 3 (13a) is attracted toward the aluminum plate outside the entrance door.
When the rack (11a) reciprocates linearly with this suction force, the gears of the two-stage gear mechanism (14a) are interlocked to operate the two-stage gear mechanism (10a). When the pinion gear (9a) rotates, the rack (5a) also reciprocates linearly to extract the latch bolt (1A) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13a) is lost. Without this suction force, M 3 (13a) does not operate when the M 3 (13a) is separated from the outdoor aluminum plate. The latch bolt (1A) is inserted into the strike (2). The operation will be described.
The magnetic poles of both the circular permanent magnet M 4 (15a) and the square permanent magnet M 6 (16) are N poles. Magnets of M 4 (15a) and M 6 (16) repel each other. Since the repulsive force between the same poles is always working, the latch bolt (1A) is inserted into the strike (2). When the latch bolt (1A) is inserted, the rack (5a) attached to the side surface of the latch bolt (1A) reciprocates linearly. The rack (5a) reciprocates linearly and the pinion gear (9a) rotates. When the gears of the two two-stage gear mechanisms (10a) and (14a) are interlocked via the pinion gear (9a), the circular permanent magnet M 3 (13a) attached to the lower portion of the rack (11a) is also operated, The circular permanent magnet M 3 (13a) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
Next, the operation of the latch bolt (1B) will be described.
When the rack (5b) attached to the side surface of the latch bolt (1B) is reciprocated linearly when the latch bolt (1B) is extracted or inserted from the strike (2), the mating pinion gear (9b) meshes with the rack (5b). ) May be rotated clockwise or counterclockwise.
In order to automatically perform such an operation, the two-stage gear mechanism (10b) shown in FIG. 5 and the pinion gear (9b) shaft and the two-stage gear mechanism (10b) A shown in FIG. 3b are used. The shaft of the gear of No. 4 was directly coupled, and the shaft of the gear of D and the shaft of the gear of D of the two-stage gear mechanism (14b) were also coupled using the San-S flex shaft (18b).
When the magnetic pole of the magnetic pole face of the circular permanent magnet M 5 (15b) is N pole and the magnetic pole of the magnetic pole face of the square permanent magnet M 6 (16) is N pole, a repulsive force acts between the same poles. With this repulsive force, the latch bolt (1B) is inserted into the strike (2). When the rack (5b) attached to the side surface of the latch bolt (1B) also reciprocates linearly and the pinion gear (9b) rotates, two two-stage gears (10b) and (14b) are passed through the pinion gear shaft. The gears of the mechanism are linked. As shown in FIG. 4b, the circular permanent magnet M 3 (13b) attached to the lower part of the rack (11b) is separated from the outdoor aluminum plate of the entrance door.
A groove having a width of the bearing (12) was provided on both sides of the rack (11b) so that the rack (11b) could smoothly reciprocate linearly. The left and right bearings (12) are placed along the grooves formed on both sides of the rack (11b). When the rack (11b) reciprocates linearly, the left and right bearings (12a) rotate.
As shown in FIG. 4a, there are two bearings (12) on the left and right sides of the frame (12a) that vertically supports the rack (11b). By providing the bearing (12), the rack (11b) can smoothly reciprocate linearly.
The apparatus described above is loaded outside the entrance door and inside the aluminum plate frame shown in FIG. The magnetic pole of the magnetic pole face of a square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as N pole.
The magnetic pole of the magnetic pole face of the circular permanent magnet M 3 (13b) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole. When this N pole is brought closer to the S pole, the lines of magnetic force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13b). When an attractive force acts between the different poles, the circular permanent magnet M 3 (13b) is attracted toward the aluminum plate outside the entrance door.
When the rack (11b) reciprocates linearly with this suction force, the gears of the two-stage gear mechanism (14b) are interlocked to operate the two-stage gear mechanism (10b). When the pinion gear (9b) rotates, the rack (5b) also reciprocates linearly to extract the latch bolt (1B) from the strike (2) and open the entrance door.
Next, when the square or circular permanent magnet moved along the surface of the outdoor aluminum plate of the entrance door is removed, the attractive force to the circular permanent magnet M 3 (13b) is lost. Without this suction force, when M 3 (13b) is separated from the outdoor aluminum plate, the two-stage gear mechanism (14b) does not operate. Insert into the latch bolt (1B) strike (2). The operation will be described.
The magnetic poles of both the circular permanent magnet M 5 (15b) and the square permanent magnet M 6 (16) are N poles. The same polarity of the magnets of M 5 (15b) and M 6 (16) repel each other. Since the repulsive force between the same poles is always working, the latch bolt (1B) is inserted into the strike (2). When the latch bolt (1B) is inserted, the rack (5b) attached to the side surface of the latch bolt (1B) reciprocates linearly. The rack (5b) reciprocates linearly and the pinion gear (9b) rotates. When the gears of the two two-stage gear mechanisms (10b) and (14b) are interlocked via the pinion gear (9b), the circular permanent magnet M 3 (13b) attached to the lower portion of the rack (11b) is also operated. The circular permanent magnet M 3 (13b) is automatically separated from the outdoor aluminum plate of the entrance door and the entrance door is closed.
The latch bolts (1A) and (1B) are separated by moving the square permanent magnet from the outside of the entrance door close to the circular permanent magnet M 3 (13a) in the room and operating only the circuit of the latch bolt (1A). Even if the latch bolt (1A) is extracted from the strike (2), the latch bolt (1B) remains inserted in the strike (2), so the entrance door does not open.
The reverse is also true. If the two circuits of the latch bolts (1A) and (1B) do not operate simultaneously, the entrance door will not open.
The positions of the two-stage gear mechanisms (14a) and (14b) in the two circuits of the latch bolts (1A) and (1B) can be arbitrarily determined by changing the lengths of the San-S flex shafts (18a) and (18b). Then, there is a method in which the magnetic pole of the magnetic pole face of M 3 (13a) of the circular permanent magnet is changed to the S pole, and the magnetic pole of the magnetic pole face of (13b) is changed to the N pole.
If it happens that the magnetic poles of the two circular permanent magnets M 3 (13a) are S poles and the magnetic poles of the magnetic pole faces of (13b) are N poles, the two circular permanent magnets M 3 (13a) ) And (13b) are known, the attractive force acts between the different poles of the magnet.
The magnetic pole of the magnetic pole face of the square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is defined as the S pole. The magnetic pole of the magnetic pole face of the circular permanent magnet M 3 (13) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the N pole. When this S pole is brought close to the N pole, the magnetic lines of force pass through the aluminum plate and a different pole is generated between the circular permanent magnet M 3 (13b). When suction force works between different poles, the entrance door can be easily opened and the housekeeper is in trouble.
As a countermeasure, the circular along the surface of the outdoor aluminum plate of M 3 (13a) and (13b) and the entrance door of the circular permanent magnet as shown in Figure 4c in order to enhance the security of the key anti-theft developed permanent If the two rectangular or circular permanent magnets that attract the magnets M 3 (13a) and (13b) are also round multipolar or rectangular multipolar, they are the same as the password and the door is not easily opened.
As shown in FIG. 5, since the gear mechanism and the permanent magnet are all used in two circuit systems, the safest anti-theft device that can be realized with a simple circuit configuration.
図6に示すようにラッチボルト(1)とストライク(2)及びラッチボルトを支える容器(4)と、
該ストライク(2)の中へラッチボルト(1)を挿入する時にラッチボルト(1)の後方に細い円柱棒に永久磁石M(6a)を固定し、Mの後方に間隔 を隔ててM(6b)を置く。2個の円形の永久磁石Mの磁極面の磁極を(N極或いはS極)とMの磁極面の磁極を(N極或いはS極)にすると、磁石の同極同士は反発する。MとMの同極間には反発力が働く。この反発力でストライク(2)の中へラッチボルト(1)が挿入し、自動的に鍵が掛かる。
円形永久磁石M(6a)とM(6b)の同極間の反発力の大きさを微調整するに永久磁石Mを回転出来るようにネジを切った円柱棒(7a)に結合して、円柱棒(7a)を支持台(8a)で支えた。円柱棒(7a)を動かして反発力の大きさを調整する。反発力の大きさを微調整して最適値が決まれば円形永久磁石MとMの間隔 を保持するために円柱棒(7a)を支持台(8a)の横に設けた六角ナット(8b)で固定した。
ラッチボルト(1)の側面にある長さのラック(5)を止めネジで固定した。ストライク(2)の中からラッチボルト(1)を抽出する時はラッチボルト(1)の側面に取り付けてあるラック(5)が往復直線運動するにはラック(5)と噛み合う相手のピニオン歯車(9)を時計方向あるいは反時計方向に回転すれば良い。
このような動作を自動的にするには図3aに示すように2段歯車機構(10)と図3bに示すようにピニオン歯車(9)の軸と2段歯車機構(10)のAの歯車の軸を直接結合した。Dの歯車の軸と2個の2段歯車機構(14aと14b)との結合間に傘歯車を用いた2分配回路を作成して結合した。
傘歯車を用いた2分配回路の入力(19a)の歯車軸と2段歯車機構(10)のDの歯車の軸と直接結合し、出力(19b)の歯車軸は歯車機構(20)を介して2段歯車機構(14a)へ結合する。もう一方の出力(19c)の歯車軸は歯車機構(21)を介して2段歯車機構(14b)へ結合した。
傘歯車を用いた2分配回路の入力(19a)の歯車の回転方向と2個の2段歯車機構(14aと14b)の回転方向を同じ回転方向にするために回転方向を正または負方向に変えられる変換歯車機構(20)と(21)を用いた。
ラック(5)も同時に往復直線運動してピニオン歯車(9)が回転するとピニオン歯車の軸を介して2段歯車機構から2分配回路系(19a)を介し、2個の2段歯車機構(14a)と(14b)の各歯車が連動すると図4aと図4bに示すように(14a)と(14b)のラック(11)の下部に取り付けた円形永久磁石M(13a)と(13b)も作動する。
2個の2段歯車機構(14a)と(14b)に用いているラックを(11)を(11a)と(11b)とする。ラック(11a)と(11b)が滑らかに往復直線運動できるようにラック(11a)と(11b)の両面にベアリング(12)の幅の溝を付けた。このラック(11a)と(11b)の両面に付けた溝に各々左右2個のベアリング(12)を沿わす。ラック(11a)と(11b)が往復直線運動すると左右2個のベアリング(12)は回転する。
I番目に図2に示す玄関扉の室外と室内のアルミニュウム板の枠内に図6に示す装置を装荷する。玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の磁極面の磁極をN極とし、一方の角形又は円形永久磁石の磁極面の磁極をS極とする。玄関扉の室外と室内のアルミニュウム板の枠内に装荷した円形永久磁石M(13a)の磁極面の磁極をS極とし、一方のM(13b)の磁極面の磁極はN極とする。角形又は円形永久磁石のN極を玄関扉の室外アルミニュウム板を介して円形永久磁石M(13a)のS極に近づける。次に角形又は円形永久磁石のS極を円形永久磁石M(13b)のN極に近づける。M(13a)とM(13b)の両方に異極間が生じる。異極間に吸引力が働くと円形永久磁石M(13a)とはM(13b)は玄関扉の室外のアルミニュウム板の方へ引き寄せられる。この吸引力でラック(11)と(11b)が往復直線運動すると2段歯車機構(14a)と(14b)の各々の歯車機構が連動し、傘歯車も回転して2段歯車機構(10)も作動する。ピニオン歯車(9)が回転するとラック(5)も往復直線運動してストライク(2)の中からラッチボルト(1)を抽出して玄関扉が開く。
II番目に玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の両方を取り除くと、玄関扉の室外と室内の枠内に装荷してある円形永久磁石M(13a)とM(13b)の両方には吸引力は無い。吸引力がなくなると円形永久磁石M(6a)とM(6b)の同極間の反発力は常時働いているので、ストライク(2)の中へラッチボルト(1)が挿入する。ラッチボルト(1)が挿入するとラッチボルト(1)の側面に取り付けたラック(5)が往復直線運動する。ラック(5)が往復直線運動してピニオン歯車(9)が回転する。ピニオン歯車(9)を介して2段歯車機構(10)の各歯車が連動して傘歯車を用いた2分配回路から2個の歯車機構(14a)と(14b)の各々の歯車が連動するとラック(11a)と(11b)の下部に取り付けた円形永久磁石M(13a)とM(13b)も作動し、円形永久磁石M(13a)とM(13b)は玄関扉の室外アルミニュウム板から自動的に離れて玄関扉が閉まる。
III番目に玄関扉の室外アルミニュウム板も表面に沿って動かす2個の角形又は円形永久磁石の磁極面の磁極をN極とし、もう一方の角形又は円形永久磁石を取り除く。
角形又は円形永久磁石の磁極面の磁極がN極と円形永久磁石M(13a)の磁極面の磁極がS極の間に異極間が生じて吸引力が働く。この吸引力で円形永久磁石M(13a)は玄関扉の室外アルミニュウム板の方へ引き寄せようとするが、2段歯車機構(14a)の各々の歯車か作動しにくい。その理由は2段歯車機構(14a)の歯車軸から傘歯車の軸へ連動して2段歯車機構(14b)へと連動しようとするが、M(13b)は吸引力が無いので室外アルミニュウム板から離れているので、2段歯車機構(14b)は作動しない。
なぜならば2段歯車機構(14a)の軸から傘歯車を用いた2分配回路系を経て2段歯車機構(14b)の方向と2段歯車機構(10)の方向へと分かれ、それぞれ大きな負荷が掛かった事になる。2段歯車機構(14a)の各々の歯車が作動しにくいのでストライク(2)の中へラッチボルト(1)が挿入したままでは抽出出来ないので玄関扉は開かない。この逆の場合も同じである。
図3bに示すように2段歯車機構(10)のD歯車の軸と2分配回路の入力側の軸をサンエス・フレックスシャフトで結合し、2分配回路の2つの出力側の軸から2段歯車機構(14a)と(14b)サンエス・フレックスシャフト(18)で結合する。サンエス・フレックスシャフト(18)の長さを変えて用いると2分配回路の位置と2段歯車機構(14a)および(14b)の配置をそれぞれ任意に決められるし、円形永久磁石のM(13a)の磁極面の磁極をS極にし(13b)の磁極をN極にする方法がある。
もし偶然に2個の円形永久磁石M(13a)の磁極面の磁極をS極と(13b)の磁極がN極であることがわかり、2個の円形永久磁石M(13a)と(13b)の配置した場所もわかれば磁石の異極間には吸引力が作用するから玄関扉の室外アルミニュウム板の表面に沿って動かす角形又は円形永久磁石の磁極面の磁極も(13a)に対してN極にし、(13b)に対してはS極にすれば玄関扉は簡単に開けられて家人が大変困る。
その対策として、開発した盗難防止用鍵の安全性を高めるために円形永久磁石のM(13a)と(13b)および玄関扉の室外アルミニュウム板の表面に沿って動かす2個の角形又は円形永久磁石も図4cに示す丸形多極または角形多極を用いれば磁極数がわからない限り暗証番号と同じで簡単に玄関扉を開かない。
図6に示すような回路系にして構成した安全な盗難防止用鍵の装置。
A latch bolt (1) and strike (2) and a container (4) for supporting the latch bolt as shown in FIG. 6;
When the latch bolt (1) is inserted into the strike (2), the permanent magnet M 1 (6a) is fixed to a thin cylindrical rod behind the latch bolt (1), and M is spaced behind the M 1 with a gap. Put 2 (6b). When two circular magnetic pole of the magnetic pole face of the permanent magnet M 1 of the (N pole or S pole) and magnetic pole of the magnetic pole surface of the M 2 to (N-pole or S-pole), same poles of the magnets repel. A repulsive force acts between the same poles of M 1 and M 2 . With this repulsive force, the latch bolt (1) is inserted into the strike (2) and automatically locked.
In order to finely adjust the magnitude of the repulsive force between the same poles of the circular permanent magnets M 1 (6a) and M 2 (6b), the permanent magnet M 2 is coupled to a cylindrical rod (7a) that is threaded so that it can rotate. The cylindrical rod (7a) was supported by the support base (8a). Move the cylindrical rod (7a) to adjust the magnitude of the repulsive force. Hex nut provided on the side of the repulsive force of the magnitude of the fine adjustment to the optimum value cylindrical bar to hold the spacing of the circular permanent magnet M 1 and M 2 once the support base of (7a) (8a) (8b ).
The rack (5) having a length on the side surface of the latch bolt (1) was fixed with a set screw. When the latch bolt (1) is extracted from the strike (2), the rack (5) attached to the side surface of the latch bolt (1) moves in a reciprocating linear motion so that the mating pinion gear ( 9) may be rotated clockwise or counterclockwise.
In order to automatically perform such operation, a two-stage gear mechanism (10) as shown in FIG. 3a and a pinion gear (9) shaft and a gear A of the two-stage gear mechanism (10) as shown in FIG. The shafts were directly connected. A two-distribution circuit using a bevel gear was created and coupled between the shaft of the D gear and the two two-stage gear mechanisms (14a and 14b).
The gear shaft of the input (19a) of the two distribution circuit using the bevel gear is directly coupled to the shaft of the gear D of the two-stage gear mechanism (10), and the gear shaft of the output (19b) is connected via the gear mechanism (20). To the two-stage gear mechanism (14a). The gear shaft of the other output (19c) was coupled to the two-stage gear mechanism (14b) via the gear mechanism (21).
In order to make the rotational direction of the input (19a) of the two distribution circuit using the bevel gear and the rotational direction of the two two-stage gear mechanisms (14a and 14b) the same rotational direction, the rotational direction is positive or negative. Conversion gear mechanisms (20) and (21) that can be changed were used.
When the rack (5) also reciprocates linearly at the same time and the pinion gear (9) rotates, the two-stage gear mechanism (14a) passes from the two-stage gear mechanism via the pinion gear shaft to the two distribution circuit system (19a). ) And (14b), the circular permanent magnets M 3 (13a) and (13b) attached to the lower part of the rack (11) of (14a) and (14b) as shown in FIGS. 4a and 4b Operate.
The racks used for the two two-stage gear mechanisms (14a) and (14b) are (11) and (11a) and (11b). The racks (11a) and (11b) were provided with grooves having the width of the bearing (12) on both sides of the racks (11a) and (11b) so that the racks (11a) and (11b) can smoothly reciprocate linearly. The two left and right bearings (12) are placed along the grooves formed on both sides of the racks (11a) and (11b). When the racks (11a) and (11b) reciprocate linearly, the left and right bearings (12) rotate.
First, the apparatus shown in FIG. 6 is loaded in the frame of the aluminum plate outside and inside the entrance door shown in FIG. The outdoor aluminum plate of the front door also has the magnetic poles of the two rectangular or circular permanent magnets moving along the surface as N poles, and the magnetic pole of one of the square or circular permanent magnets as S poles. The magnetic pole of the magnetic pole face of the circular permanent magnet M 3 (13a) loaded outside the entrance door and inside the frame of the aluminum plate in the room is the S pole, and the magnetic pole of the magnetic face of the other M 3 (13b) is the N pole. . The N pole of the square or circular permanent magnet is brought close to the S pole of the circular permanent magnet M 3 (13a) through the outdoor aluminum plate of the entrance door. Next, the S pole of the square or circular permanent magnet is brought close to the N pole of the circular permanent magnet M 3 (13b). Different polarities occur in both M 3 (13a) and M 3 (13b). When an attractive force acts between the different poles, the circular permanent magnet M 3 (13a) and M 3 (13b) are attracted toward the aluminum plate outside the entrance door. When the racks (11) and (11b) are reciprocated linearly by this suction force, the gear mechanisms of the two-stage gear mechanisms (14a) and (14b) are interlocked, and the bevel gear is rotated to thereby rotate the two-stage gear mechanism (10). Also works. When the pinion gear (9) rotates, the rack (5) also reciprocates linearly to extract the latch bolt (1) from the strike (2) and open the entrance door.
II. If both the two rectangular or circular permanent magnets moving along the surface of the outdoor aluminum plate of the front door are removed, the circular permanent magnet M 3 (13a) loaded in the outdoor door frame and the indoor frame is removed. ) And M 3 (13b) have no suction. When the attractive force is lost, the repulsive force between the same polarities of the circular permanent magnets M 1 (6a) and M 2 (6b) is always working, so the latch bolt (1) is inserted into the strike (2). When the latch bolt (1) is inserted, the rack (5) attached to the side surface of the latch bolt (1) reciprocates linearly. The rack (5) reciprocates linearly and the pinion gear (9) rotates. When the gears of the two-stage gear mechanism (10) are interlocked via the pinion gear (9) and the two gear mechanisms (14a) and (14b) are interlocked from the two distribution circuit using the bevel gear. The circular permanent magnets M 3 (13a) and M 3 (13b) attached to the lower portions of the racks (11a) and (11b) also operate, and the circular permanent magnets M 3 (13a) and M 3 (13b) are located outside the entrance door. The entrance door closes automatically away from the aluminum plate.
III. The outdoor aluminum plate of the front door also moves along the surface of the two square or circular permanent magnets with the N pole as the magnetic pole, and the other square or circular permanent magnet is removed.
A magnetic pole on the magnetic pole face of the square or circular permanent magnet has an N pole and a magnetic pole face on the magnetic pole face of the circular permanent magnet M 3 (13a) has a different polarity between the S poles. With this attractive force, the circular permanent magnet M 3 (13a) tends to be drawn toward the outdoor aluminum plate of the entrance door, but each gear of the two-stage gear mechanism (14a) is difficult to operate. The reason tries to work with the gear shaft of the double gear mechanism (14a) to the conjunction with the two-stage gear mechanism to the axis of the bevel gear (14b), the outdoor aluminum since M 3 (13b) is not attractive force Since it is away from the plate, the two-stage gear mechanism (14b) does not operate.
This is because the shaft of the two-stage gear mechanism (14a) is divided into the direction of the two-stage gear mechanism (14b) and the direction of the two-stage gear mechanism (10) through a two-distribution circuit system using a bevel gear. It will be hung. Since each gear of the two-stage gear mechanism (14a) is difficult to operate, the door cannot be opened because the latch bolt (1) cannot be extracted while it is inserted into the strike (2). The reverse is also true.
As shown in FIG. 3b, the shaft of the D gear of the two-stage gear mechanism (10) and the shaft on the input side of the two-distribution circuit are coupled by a San-S flex shaft, and the two-stage gear from the two output-side shafts of the two-distribution circuit The mechanisms (14a) and (14b) are coupled by the San-S flex shaft (18). If the length of the San-S flex shaft (18) is changed, the position of the two distribution circuits and the arrangement of the two-stage gear mechanisms (14a) and (14b) can be determined arbitrarily, and M 3 (13a) of the circular permanent magnet can be determined. There is a method in which the magnetic pole of the magnetic pole surface is made the S pole and the magnetic pole of (13b) is made the N pole.
If it happens that the magnetic poles of the two circular permanent magnets M 3 (13a) are S poles and the magnetic poles of (13b) are N poles, the two circular permanent magnets M 3 (13a) and ( If the location of 13b) is known, an attractive force acts between the opposite poles of the magnet, so the magnetic pole of the square or circular permanent magnet that moves along the surface of the outdoor aluminum plate of the entrance door is also in relation to (13a). If it is set to N pole and (13b) is set to S pole, the entrance door can be easily opened and the housekeeper is in trouble.
As countermeasures, in order to enhance the security of the developed anti-theft key, two permanent or circular permanent magnets moved along the surfaces of the circular permanent magnets M 3 (13a) and (13b) and the outdoor aluminum plate of the entrance door. If a round multi-pole or a square multi-pole shown in FIG.
A secure anti-theft key device configured as a circuit system as shown in FIG.
JP2004114811A 2004-03-14 2004-03-14 Safe anti-theft key using two-stage gear mechanism and permanent magnet Pending JP2005256589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114811A JP2005256589A (en) 2004-03-14 2004-03-14 Safe anti-theft key using two-stage gear mechanism and permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114811A JP2005256589A (en) 2004-03-14 2004-03-14 Safe anti-theft key using two-stage gear mechanism and permanent magnet

Publications (1)

Publication Number Publication Date
JP2005256589A true JP2005256589A (en) 2005-09-22

Family

ID=35082588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114811A Pending JP2005256589A (en) 2004-03-14 2004-03-14 Safe anti-theft key using two-stage gear mechanism and permanent magnet

Country Status (1)

Country Link
JP (1) JP2005256589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588165A (en) * 2017-11-01 2018-01-16 郭俱全 A kind of rack and pinion drive mechanism
WO2022112815A1 (en) * 2020-11-26 2022-06-02 Zuo Sue Interior lock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588165A (en) * 2017-11-01 2018-01-16 郭俱全 A kind of rack and pinion drive mechanism
WO2022112815A1 (en) * 2020-11-26 2022-06-02 Zuo Sue Interior lock

Similar Documents

Publication Publication Date Title
US5876073A (en) Electrically operable door locking apparatus and method for operating the same
CN201198687Y (en) Anti-theft car door lock automatic control device
US20070007775A1 (en) Rotatable bipolar phased magnetic locking system for door
US20160356057A1 (en) Powered latching apparatus
WO2006070062A1 (en) Lock
JP2005256589A (en) Safe anti-theft key using two-stage gear mechanism and permanent magnet
US4991887A (en) Device for locking a sliding door of a showcase having a frame construction
JP2007040082A (en) High-performance burglarproof key using double-sided four pole permanent magnet and lock circuit
JP2005325668A (en) Safety auxiliary lock using three permanent magnets for preventing tubular lock picking
JP2006052623A (en) Gear mechanism and burglar-proof key using segment magnet
EP3918158B1 (en) Closing device for windows and doors and window and door
JP2005030185A (en) Safest key for theft prevention attached to entrance door having no keyhole
CN209859828U (en) Switch cabinet and grounding switch interlocking device for switch cabinet
CN218970901U (en) Automatic door opener for ground shaft type vertical hinged door
CN214754782U (en) Power distribution cabinet with self-locking mechanism and high safety performance
CN104328949B (en) Communication equipment electronic lock
CN210636980U (en) Hidden enamel decorative door
CN2110682U (en) Electromagnetic lock
CN213211122U (en) Community security entrance guard
KR101103385B1 (en) Window rotation handle
JP3090118U (en) Lock mechanism for fittings
WO2022269316A1 (en) Hidden magnetic lock and key
RU2202686C1 (en) Combined electromagnetic lock
WO2020157624A1 (en) Closing device for windows and doors
KR960010955B1 (en) Lock device for electric door lock