JP2005256009A - Curable resin composition and electronic component device - Google Patents

Curable resin composition and electronic component device Download PDF

Info

Publication number
JP2005256009A
JP2005256009A JP2005152982A JP2005152982A JP2005256009A JP 2005256009 A JP2005256009 A JP 2005256009A JP 2005152982 A JP2005152982 A JP 2005152982A JP 2005152982 A JP2005152982 A JP 2005152982A JP 2005256009 A JP2005256009 A JP 2005256009A
Authority
JP
Japan
Prior art keywords
group
epoxy resin
curable resin
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152982A
Other languages
Japanese (ja)
Inventor
Shinya Nakamura
真也 中村
Kayoko Hanada
佳代子 花田
Mitsuo Katayose
光雄 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005152982A priority Critical patent/JP2005256009A/en
Publication of JP2005256009A publication Critical patent/JP2005256009A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curable resin composition obtained by using a curing accelerator and having excellent curability in moist state, fluidity, cracking resistance in solder reflow, and characteristics after being left at high temperature; and to provide an electronic component device having an element sealed with the composition. <P>SOLUTION: The curable resin composition contains a curable resin, the curing accelerator represented by general formula (I) (wherein, R<SP>1</SP>to R<SP>3</SP>are the same or different and each a hydrogen atom or a 1-18C substituted or nonsubstituted hydrocarbon group, or may form a cyclic structure obtained by bonding two or more of them; R<SP>4</SP>to R<SP>7</SP>are the same or different and each a hydrogen atom or a 1-18C substituted or nonsubstituted monovalent organic group; Y<SP>-</SP>is a group obtained by releasing one proton from a 0-18C monovalent group having at least one releasable proton; with the proviso that two or more of R<SP>4</SP>to R<SP>7</SP>, and Y may be bonded to each other to form a cyclic structure), and an inorganic filler which includes an inorganic filler having a flame-retardant effect. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、硬化性樹脂の硬化促進剤、この硬化促進剤を用いた成形材料、積層板用又は接着剤の材料として好適な硬化性樹脂組成物、及びこの硬化性樹脂組成物により封止された素子を備えた電子部品装置に関する。   The present invention is sealed by a curing accelerator for a curable resin, a molding material using the curing accelerator, a curable resin composition suitable for a laminate or an adhesive, and the curable resin composition. The present invention relates to an electronic component device provided with an element.

従来から、成形材料、積層板用、接着剤用材料等にエポキシ樹脂等の硬化性樹脂が広範囲に使用されている。これらの硬化性樹脂は生産性向上の観点から速硬化性が要求されているため、硬化反応を促進する化合物、すなわち硬化促進剤が広く用いられている。また、トランジスタ、IC等の電子部品の素子封止の分野では、硬化性樹脂の中でも、特にエポキシ樹脂組成物が広く用いられている。この理由としては、エポキシ樹脂が成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性にバランスがとれているためである。特に、オルソクレゾールノボラック型エポキシ樹脂とフェノールノボラック硬化剤の組み合わせはこれらのバランスに優れており、IC封止用成形材料のベース樹脂として主流になっている。このようなエポキシ樹脂組成物にも、硬化促進剤として、3級アミン、イミダゾール等のアミン化合物、ホスフィン類、ホスホニウム等のリン化合物が一般に使用されている。   Conventionally, curable resins such as epoxy resins have been widely used for molding materials, laminates, adhesive materials, and the like. Since these curable resins are required to have fast curability from the viewpoint of improving productivity, compounds that accelerate the curing reaction, that is, curing accelerators are widely used. In the field of device sealing of electronic parts such as transistors and ICs, epoxy resin compositions are particularly widely used among curable resins. This is because epoxy resins are balanced in various properties such as moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesion to inserts. In particular, the combination of an ortho-cresol novolac type epoxy resin and a phenol novolac curing agent has an excellent balance between these, and has become the mainstream as a base resin for molding materials for IC sealing. In such epoxy resin compositions, amine compounds such as tertiary amines and imidazoles, and phosphorus compounds such as phosphines and phosphonium are generally used as curing accelerators.

近年、電子部品のプリント配線板への高密度実装化が進んでおり、これに伴い電子部品は従来のピン挿入型のパッケージから、表面実装型のパッケージが主流になりつつある。IC、LSIなどの表面実装型ICは、実装密度を高くするために素子のパッケージに対する占有体積がしだいに大きくなり、パッケージの肉厚は非常に薄くなってきた。さらに、ピン挿入型パッケージは、ピンを配線板に挿入した後に配線板裏面からはんだ付けが行われるためパッケージが直接高温にさらされることがなかったのに対し、表面実装型ICは配線板表面に仮止めを行った後、はんだバスやリフロー装置などで処理されるため、直接はんだ付け温度にさらされる。この結果、ICパッケージが吸湿した場合、はんだ付け時に吸湿水分が急激に膨張しパッケージクラックに至り、これが大きな問題になっている。   In recent years, high-density mounting of electronic components on printed wiring boards has progressed, and along with this, electronic components are becoming mainstream from conventional pin insertion type packages to surface mount type packages. In surface mount ICs such as ICs and LSIs, the volume occupied by the element package gradually increases in order to increase the mounting density, and the thickness of the package has become very thin. Furthermore, since the pin insertion type package is soldered from the back side of the wiring board after the pins are inserted into the wiring board, the package was not directly exposed to high temperature, whereas the surface mount type IC is not attached to the surface of the wiring board. After being temporarily fixed, it is exposed to the soldering temperature directly because it is processed by a solder bath or a reflow device. As a result, when the IC package absorbs moisture, the moisture absorption moisture rapidly expands at the time of soldering and leads to a package crack, which is a big problem.

このはんだ付け時のパッケージクラックに対する耐性、いわゆる耐リフロークラック性を改良するために、無機充填剤を多く含むエポキシ樹脂組成物が提案されている。しかし、無機充填剤量の増加は成形時の流動性の低下を招き、充填不良、ボイド発生等の成形上の障害やICチップのボンディングワイヤが断線し導通不良が発生するなど、成形品の性能低下を招くため、無機充填剤の増加量には限界があり、結果として耐リフロークラック性の著しい向上が望めないという問題があった。
特にトリフェニルホスフィン等のリン系硬化促進剤や1,8−ジアザビシクロ[5.4.0]ウンデセン−7等のアミン系硬化促進剤を用いた場合、流動性が低く、耐リフロークラック性の著しい向上が望めないのが実情である。
In order to improve the resistance against package cracks during soldering, so-called reflow crack resistance, an epoxy resin composition containing a large amount of an inorganic filler has been proposed. However, an increase in the amount of inorganic fillers leads to a decrease in fluidity during molding, and molding performance such as defective filling and voiding, and IC chip bonding wires are broken, resulting in poor continuity. Since the decrease causes an increase in the amount of the inorganic filler, there is a limit, and as a result, there is a problem that a remarkable improvement in reflow crack resistance cannot be expected.
In particular, when a phosphorus curing accelerator such as triphenylphosphine or an amine curing accelerator such as 1,8-diazabicyclo [5.4.0] undecene-7 is used, the fluidity is low and the reflow crack resistance is remarkable. The fact is that improvement cannot be expected.

このような問題点を改善するために、トリフェニルホスフィンと1,4−ベンゾキノンとの付加反応物を硬化促進剤として用いる方法が提案されている(特開平9−157497号公報参照。)。しかし、これを硬化促進剤として用いると樹脂組成物が外気に曝され吸湿したときの硬化性つまり吸湿時の硬化性に問題があった。吸湿時の硬化性が悪い成形材料が製造、輸送及び使用時に外気から吸湿した場合、ゲートブレーク、チップクラック、離型性低下等の成形上の障害を起こしやすく、また製造、輸送及び使用時の外気湿度の違い、特に季節の違いにより成形品の性能が安定しない等の問題もあった。また、安定した硬化性を有する硬化促進剤として提案されている有機ホスホラン化合物(特開平11−60906号公報参照。)を用いた場合、速硬化性が悪く、短時間で硬化しない等の問題があった。
このような問題点を改善するために、リン原子に少なくとも一つのアルキル基が結合したホスフィン化合物とキノン化合物との付加反応物を硬化促進剤として用いる方法が提案されている(特許文献1、特許文献2参照。)。
特開2002−3574号公報 特開2002−80563号公報
In order to improve such problems, a method of using an addition reaction product of triphenylphosphine and 1,4-benzoquinone as a curing accelerator has been proposed (see JP-A-9-157497). However, when this is used as a curing accelerator, there is a problem in the curability when the resin composition is exposed to the outside air and absorbs moisture, that is, the curability when absorbing moisture. When molding materials with poor curability during moisture absorption absorb moisture from the outside air during manufacture, transportation and use, molding failures such as gate breaks, chip cracks, and releasability are likely to occur. There was also a problem that the performance of the molded product was not stabilized due to the difference in outside air humidity, especially the difference in season. In addition, when an organic phosphorane compound proposed as a curing accelerator having stable curability (see JP-A-11-60906) is used, there are problems such as poor curability and not curing in a short time. there were.
In order to improve such problems, a method has been proposed in which an addition reaction product of a phosphine compound and a quinone compound in which at least one alkyl group is bonded to a phosphorus atom is used as a curing accelerator (Patent Document 1, Patent). Reference 2).
Japanese Patent Laid-Open No. 2002-3574 JP 2002-80563 A

しかし、これを硬化促進剤として用いた硬化性樹脂組成物により封止されたパッケージは高温に曝されたときに導通不良が起こりやすい、つまり高温放置特性が悪い等の問題もあった。
本発明は、このような状況に鑑みなされたもので、優れた吸湿時の硬化性、流動性、耐リフロークラック性、高温放置特性を発現させることができる硬化性樹脂の硬化促進剤、この硬化性樹脂の硬化促進剤を用いた硬化性樹脂組成物、及びこの硬化性樹脂組成物により封止された素子を備えた電子部品装置を提供しようとするものである。
However, a package sealed with a curable resin composition using this as a curing accelerator has problems such as poor conduction when exposed to high temperatures, that is, poor high-temperature storage characteristics.
The present invention has been made in view of such a situation, and is a curing accelerator for a curable resin capable of exhibiting excellent curability at the time of moisture absorption, fluidity, reflow crack resistance, and high temperature storage properties, and this curing. It is intended to provide a curable resin composition using a curing accelerator for a curable resin, and an electronic component device including an element sealed with the curable resin composition.

本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、特定のリン化合物を硬化促進剤として使用することにより、吸湿時の硬化性、流動性及び耐リフロークラック性に優れる硬化性樹脂組成物が得られ、上記の目的を達成しうることを見い出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a specific phosphorus compound as a curing accelerator, so that it has excellent curability at the time of moisture absorption, fluidity and reflow crack resistance. The present invention has been completed by finding that a functional resin composition is obtained and the above-mentioned object can be achieved.

すなわち、本発明は以下に関する。
(1) 硬化性樹脂、下記一般式(I)で示される硬化促進剤及び無機充填剤を含有し、無機充填剤に難燃効果のある無機充填剤を含有する硬化性樹脂組成物。

Figure 2005256009
(2) 無機充填剤が水酸化アルミニウム、水酸化マグネシウム、複合金属水酸化物、硼酸亜鉛から選ばれる1種類以上を含む上記(1)記載の硬化性樹脂組成物。
(3) 上記一般式(I)のR〜Rがアルキル基及びフェノール性水酸基又はメルカプト基を持たないアリール基から選ばれる一価の置換基である上記(1)又は(2)に記載の硬化性樹脂組成物。
(4) 上記一般式(I)のYが酸素アニオン又はフェノール性水酸基からプロトンが脱離した酸素アニオンを有する基である上記(1)〜(3)のいずれかに記載の硬化性樹脂組成物。
(5) 硬化性樹脂がエポキシ樹脂を含有する上記(1)〜(4)のいずれかに記載の硬化性樹脂組成物。
(6) エポキシ樹脂がビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトールとクレゾールの共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物のいずれかのエポキシ樹脂を少なくとも1種を含有してなる上記(5)記載の硬化性樹脂組成物。
(7) 硬化剤を更に含有する上記(1)〜(6)のいずれかに記載の硬化性樹脂組成物。
(8) 硬化剤がアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ベンズアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂の共重合型樹脂、ノボラック型フェノール樹脂のいずれかの少なくとも1種を含有してなる上記(7)記載の硬化性樹脂組成物。
(9) 上記(1)〜(8)のいずれかに記載の硬化性樹脂組成物により封止された素子を備えた電子部品装置。 That is, the present invention relates to the following.
(1) A curable resin composition containing a curable resin, a curing accelerator represented by the following general formula (I) and an inorganic filler, and an inorganic filler having a flame retardant effect in the inorganic filler.
Figure 2005256009
(2) The curable resin composition according to the above (1), wherein the inorganic filler contains one or more selected from aluminum hydroxide, magnesium hydroxide, composite metal hydroxide, and zinc borate.
(3) R < 1 > -R < 3 > of the said general formula (I) is a monovalent substituent chosen from the aryl group which does not have an alkyl group, a phenolic hydroxyl group, or a mercapto group, The description to said (1) or (2) Curable resin composition.
(4) The curable resin composition according to any one of (1) to (3), wherein Y − in the general formula (I) is a group having an oxygen anion or an oxygen anion in which a proton is eliminated from a phenolic hydroxyl group. Stuff.
(5) Curable resin composition in any one of said (1)-(4) in which curable resin contains an epoxy resin.
(6) The epoxy resin is biphenyl type epoxy resin, stilbene type epoxy resin, diphenylmethane type epoxy resin, sulfur atom containing type epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin, salicylaldehyde type epoxy resin, naphthol and cresol. The curable resin composition according to the above (5), comprising at least one epoxy resin selected from a copolymerization type epoxy resin and an epoxidized product of an aralkyl type phenol resin.
(7) The curable resin composition according to any one of (1) to (6), further including a curing agent.
(8) The curing agent is at least one of aralkyl type phenol resin, dicyclopentadiene type phenol resin, salicylaldehyde type phenol resin, copolymer type resin of benzaldehyde type phenol resin and aralkyl type phenol resin, and novolac type phenol resin. The curable resin composition according to the above (7), comprising:
(9) An electronic component device including an element sealed with the curable resin composition according to any one of (1) to (8).

本発明になる硬化性樹脂の硬化促進剤は優れた吸湿時の硬化性、流動性、耐リフロークラック性、高温放置特性を発現させることができ、この硬化性樹脂の硬化促進剤を用いた硬化性樹脂組成物は吸湿時の硬化性、流動性に優れ、この硬化性樹脂組成物を用いてIC、LSI等の電子部品を封止すれば、耐リフロークラック性及び高温放置特性が良好で、信頼性に優れる電子部品装置を得ることができるので、その工業的価値は大である。   The curing accelerator of the curable resin according to the present invention can exhibit excellent moisture-curing property, fluidity, reflow crack resistance, and high temperature storage properties, and curing using the curing accelerator of the curable resin. The curable resin composition has excellent curability and fluidity at the time of moisture absorption, and if this curable resin composition is used to seal electronic components such as IC and LSI, the reflow crack resistance and high temperature storage characteristics are good. Since an electronic component device having excellent reliability can be obtained, its industrial value is great.

本発明の(A)硬化性樹脂の硬化促進剤としては、下記一般式(I)で示すことができる化合物であれば特に限定されるものではない。   As a hardening accelerator of (A) curable resin of this invention, if it is a compound which can be shown by the following general formula (I), it will not specifically limit.

Figure 2005256009
(ここで、式(I)中のR1〜R3は、水素原子又は炭素数1〜18の置換又は非置換の炭化水素基を示し、それぞれ全てが同一でも異なっていてもよい。R1〜R3の中の2つ以上が結合して環状構造となっていてもよい。また、R4〜R7は、水素原子又は炭素数1〜18の置換又は非置換の一価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。また、Yは、炭素数0〜18の1つ以上の放出可能なプロトンを有する1価の基からプロトンを一つ放出した基を示す。R4〜R7及びYの中の2つ以上が結合して環状構造となっていてもよい。)
Figure 2005256009
(Here, R 1 to R 3 in the formula (I) represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 18 carbon atoms, and all may be the same or different. R 1 Two or more of ˜R 3 may be bonded to form a cyclic structure, and R 4 to R 7 are a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 18 carbon atoms. And Y represents a group in which one proton is released from a monovalent group having one or more releasable protons having 0 to 18 carbon atoms. Two or more of R 4 to R 7 and Y may be bonded to form a cyclic structure.)

上記一般式(I)のR1〜R3は、水素原子又は炭素数1〜18の置換又は非置換の炭化水素基を示すが、炭素数1〜18の置換又は非置換の炭化水素基としては特に制限はなく、例えば、炭素数1〜18の置換又は非置換の脂肪族炭化水素基、炭素数1〜18の置換又は非置換の脂環式炭化水素基、炭素数1〜18の置換又は非置換の芳香族炭化水素基等が挙げられる。
炭素数1〜18の置換又は非置換の脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基、アリル基、ビニル基等及びこれらにアルキル基、アルコキシ基、アリール基、水酸基、アミノ基、ハロゲン等が置換したものなどが挙げられる。
炭素数1〜18の置換又は非置換の脂環式炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロペンテニル基、シクロヘキセニル基等及びこれらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、水酸基、アミノ基、ハロゲン等が置換したものなどが挙げられる。
炭素数1〜18の置換又は非置換の芳香族炭化水素基としては、例えば、フェニル基、トリル基等のアリール基、ジメチルフェニル基、エチルフェニル基、ブチルフェニル基、tert−ブチルフェニル基等のアルキル基置換アリール基、メトキシフェニル基、エトキシフェニル基、ブトキシフェニル基、tert−ブトキシフェニル基等のアルコキシ基置換アリール基等及びこれらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン等が置換したもの等が挙げられる。
〜Rは、アルキル基と、フェノール性水酸基又はメルカプト基を持たないアリール基とから選ばれる一価の置換基であることが好ましい。中でもホスフィンの入手しやすさの観点から、R1〜R3は、フェニル基、p−トリル基、m−トリル基、o−トリル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基等の非置換或いはアルキル基又はアルコキシ基置換のフェニル基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、オクチル基、シクロヘキシル基等の鎖状又は環状のアルキル基が好ましい。
R 1 to R 3 in the general formula (I) represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 18 carbon atoms, but as a substituted or unsubstituted hydrocarbon group having 1 to 18 carbon atoms. Is not particularly limited, for example, a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 18 carbon atoms, a substituted or unsubstituted alicyclic hydrocarbon group having 1 to 18 carbon atoms, or a substitution having 1 to 18 carbon atoms. Or an unsubstituted aromatic hydrocarbon group etc. are mentioned.
Examples of the substituted or unsubstituted aliphatic hydrocarbon group having 1 to 18 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and a pentyl group. , Alkyl groups such as hexyl group, octyl group, decyl group, dodecyl group, allyl group, vinyl group and the like, and those substituted with alkyl group, alkoxy group, aryl group, hydroxyl group, amino group, halogen, etc. .
Examples of the substituted or unsubstituted alicyclic hydrocarbon group having 1 to 18 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, and the like, and an alkyl group, an alkoxy group, and an aryl group. And a group, aryloxy group, hydroxyl group, amino group, halogen and the like substituted.
Examples of the substituted or unsubstituted aromatic hydrocarbon group having 1 to 18 carbon atoms include aryl groups such as phenyl group and tolyl group, dimethylphenyl group, ethylphenyl group, butylphenyl group, and tert-butylphenyl group. Alkyl group-substituted aryl group, alkoxy group-substituted aryl group such as methoxyphenyl group, ethoxyphenyl group, butoxyphenyl group, tert-butoxyphenyl group and the like, and alkyl group, alkoxy group, aryl group, aryloxy group, amino group, etc. Examples include those substituted with halogen.
R 1 to R 3 are preferably a monovalent substituent selected from an alkyl group and an aryl group having no phenolic hydroxyl group or mercapto group. Among these, from the viewpoint of availability of phosphine, R 1 to R 3 are phenyl group, p-tolyl group, m-tolyl group, o-tolyl group, p-methoxyphenyl group, m-methoxyphenyl group, o- Non-substituted or alkyl group or alkoxy group-substituted phenyl group such as methoxyphenyl group, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, octyl group, cyclohexyl group, etc. A chain or cyclic alkyl group is preferred.

上記一般式(I)中のR4〜R7は、水素原子又は炭素数1〜18の一価の有機基を示すが、炭素数1〜18の一価の有機基としては特に制限はなく、例えば、炭素数1〜18の置換又は非置換の脂肪族炭化水素基、炭素数1〜18の置換又は非置換の脂環式炭化水素基、炭素数1〜18の置換又は非置換の芳香族炭化水素基、炭素数1〜18の置換又は非置換の脂肪族、脂環式化合物又は芳香族のオキシ基、炭素数1〜18の置換又は非置換の脂肪族、脂環式化合物又は芳香族のカルボニル基、炭素数1〜18の置換又は非置換の脂肪族、脂環式化合物又は芳香族のオキシカルボニル基、炭素数1〜18の置換又は非置換の脂肪族、脂環式化合物又は芳香族のカルボニルオキシ基等が挙げられる。
炭素数1〜18の置換又は非置換の、脂肪族炭化水素基、脂環式炭化水素基及び芳香族炭化水素基は、上述の通りである。
炭素数1〜18の置換又は非置換の脂肪族、脂環式化合物又は芳香族のオキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、シクロヘキトキシ基、アリロキシ基、ビニロキシ基等の脂肪族オキシ基、フェノキシ基、メチルフェノキシ基、エチルフェノキシ基、メトキシフェノキシ基、ブトキシフェノキシ基、フェノキシフェノキシ基等の芳香族オキシ基等及びこれらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン等が置換したもの等が挙げられる。
炭素数1〜18の置換又は非置換の脂肪族、脂環式化合物又は芳香族のカルボニル基としては、ホルミル基、アセチル基、エチルカルボニル基、ブチリル基、シクロヘキシルカルボニル基、アリルカルボニル等の脂肪族カルボニル基、フェニルカルボニル基、メチルフェニルカルボニル基等の芳香族カルボニル基等及びこれらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン等が置換したもの等が挙げられる。
炭素数1〜18の置換又は非置換の脂肪族、脂環式化合物又は芳香族のオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、アリロキシカルボニル基、シクロヘキシロキシカルボニル基等の脂肪族オキシカルボニル基、フェノキシカルボニル基、メチルフェノキシカルボニル基等の芳香族オキシカルボニル基等及びこれらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン等が置換したもの等が挙げられる。
炭素数1〜18の置換又は非置換の脂肪族、脂環式化合物又は芳香族のカルボニルオキシ基としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、アリルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等の脂肪族カルボニルオキシ基、フェニルカルボニルオキシ基、メチルフェニルカルボニルオキシ基等の芳香族カルボニルオキシ基等及びこれらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン等が置換したもの等が挙げられる。
式(I)中のR4〜R7の二つ以上が環状構造を形成している場合、例えば、1-(-2-ヒドロキシナフチル)基、1-(-4-ヒドロキシナフチル)基等が挙げられるがこれに限られるものではない。
R 4 to R 7 in the general formula (I) represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, but the monovalent organic group having 1 to 18 carbon atoms is not particularly limited. For example, a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 18 carbon atoms, a substituted or unsubstituted alicyclic hydrocarbon group having 1 to 18 carbon atoms, a substituted or unsubstituted aromatic group having 1 to 18 carbon atoms C1-C18 substituted or unsubstituted aliphatic, alicyclic compound or aromatic oxy group, C1-C18 substituted or unsubstituted aliphatic, alicyclic compound or aromatic Carbonyl group, substituted or unsubstituted aliphatic, alicyclic compound or aromatic oxycarbonyl group having 1 to 18 carbon atoms, substituted or unsubstituted aliphatic, alicyclic compound having 1 to 18 carbon atoms or An aromatic carbonyloxy group and the like can be mentioned.
The substituted or unsubstituted aliphatic hydrocarbon group, alicyclic hydrocarbon group and aromatic hydrocarbon group having 1 to 18 carbon atoms are as described above.
Examples of the substituted or unsubstituted aliphatic, alicyclic compound or aromatic oxy group having 1 to 18 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy Group, tert-butoxy group, cyclohexoxy group, allyloxy group, vinyloxy group and other aliphatic oxy groups, phenoxy group, methylphenoxy group, ethylphenoxy group, methoxyphenoxy group, butoxyphenoxy group, phenoxyphenoxy group, etc. Groups and the like, and those substituted with an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an amino group, a halogen, and the like.
The substituted or unsubstituted aliphatic, alicyclic compound or aromatic carbonyl group having 1 to 18 carbon atoms is aliphatic such as formyl group, acetyl group, ethylcarbonyl group, butyryl group, cyclohexylcarbonyl group, and allylcarbonyl. Aromatic carbonyl groups such as carbonyl group, phenylcarbonyl group, methylphenylcarbonyl group and the like, and those in which these are substituted with alkyl group, alkoxy group, aryl group, aryloxy group, amino group, halogen and the like can be mentioned.
Examples of the substituted or unsubstituted aliphatic, alicyclic compound or aromatic oxycarbonyl group having 1 to 18 carbon atoms include methoxycarbonyl group, ethoxycarbonyl group, butoxycarbonyl group, allyloxycarbonyl group, cyclohexyloxycarbonyl group and the like. Aromatic oxycarbonyl groups such as aliphatic oxycarbonyl groups, phenoxycarbonyl groups, methylphenoxycarbonyl groups, etc., and those substituted with alkyl groups, alkoxy groups, aryl groups, aryloxy groups, amino groups, halogens, etc. Can be mentioned.
Examples of the substituted or unsubstituted aliphatic, alicyclic compound or aromatic carbonyloxy group having 1 to 18 carbon atoms include methylcarbonyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, allylcarbonyloxy group, cyclohexylcarbonyl An aliphatic carbonyloxy group such as an oxy group, an aromatic carbonyloxy group such as a phenylcarbonyloxy group, a methylphenylcarbonyloxy group, etc., and an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an amino group, a halogen, etc. Substituted ones are listed.
When two or more of R 4 to R 7 in the formula (I) form a cyclic structure, for example, a 1-(-2-hydroxynaphthyl) group, a 1-(-4-hydroxynaphthyl) group, etc. It is mentioned, but not limited to this.

式(I)中のYは、炭素数0〜18の1つ以上の放出可能なプロトンを有する1価の基からプロトンが一つ脱離した基を示す。炭素数0〜18の1つ以上の放出可能なプロトンを有する1価の基からプロトンが一つ脱離した基としては、特に制限はなく、例えば、水酸基、メルカプト基、ハイドロセレノ基等の16族原子に水素原子が結合した基からプロトンが脱離した基、カルボキシル基、カルボキシメチル基、カルボキシエチル基、カルボキシフェニル基カルボキシナフチル基等のカルボキシル基を有する炭素数1〜18の基からカルボン酸プロトンが脱離した基、ヒドロキシフェニル基、ヒドロキシフェニルメチル基、ヒドロキシナフチル基、ヒドロキシフリル基、ヒドロキシチエニル基、ヒドロキシピリジル基等のフェノール性水酸基を有する炭素数1〜18の基からフェノール性プロトンが脱離した基等が挙げられる。なかでも、Yは、水酸基からプロトンが脱離した基である酸素アニオン、又はヒドロキシフェニル基、ヒドロキシフェニルメチル基、ヒドロキシナフチル基、ヒドロキシフリル基、ヒドロキシチエニル基、ヒドロキシピリジル基等のフェノール性水酸基からプロトンが脱離した酸素アニオンを有する基であるのが好ましい。
式(I)中のYがR4〜R7のいずれかと環状構造を形成している場合、例えば、2-(-6-ヒドロキシナフチル)基等が挙げられるがこれに限られるものではない。
Y in the formula (I) represents a group in which one proton is eliminated from a monovalent group having one or more releasable protons having 0 to 18 carbon atoms. The group in which one proton is eliminated from a monovalent group having one or more releasable protons having 0 to 18 carbon atoms is not particularly limited, and examples thereof include 16 groups such as a hydroxyl group, a mercapto group, and a hydroseleno group. A carboxylic acid from a group having 1 to 18 carbon atoms having a carboxyl group such as a group in which a proton is removed from a group in which a hydrogen atom is bonded to a group atom, a carboxyl group, a carboxymethyl group, a carboxyethyl group, a carboxyphenyl group or a carboxynaphthyl group A phenolic proton is derived from a group having 1 to 18 carbon atoms having a phenolic hydroxyl group such as a group from which a proton is eliminated, a hydroxyphenyl group, a hydroxyphenylmethyl group, a hydroxynaphthyl group, a hydroxyfuryl group, a hydroxythienyl group, or a hydroxypyridyl group. Examples include a leaving group. Among them, Y represents an oxygen anion which is a group in which a proton is eliminated from a hydroxyl group, or a phenolic hydroxyl group such as a hydroxyphenyl group, a hydroxyphenylmethyl group, a hydroxynaphthyl group, a hydroxyfuryl group, a hydroxythienyl group, or a hydroxypyridyl group. It is preferably a group having an oxygen anion from which a proton is eliminated.
In the case where Y in formula (I) forms a cyclic structure with any of R 4 to R 7 , for example, a 2-(-6-hydroxynaphthyl) group and the like are exemplified, but the present invention is not limited thereto. .

上記一般式(I)で示される化合物には、下記共鳴式(II)で示すことができる化合物も含まれる。   The compound represented by the general formula (I) includes a compound that can be represented by the following resonance formula (II).

Figure 2005256009
(ここで、式(II)中のR1〜R及びYは、式(I)中のR1〜R7及びYと共通である。R4〜R7及びY又はYの中の2つ以上が結合して環状構造となっていてもよい。)
Figure 2005256009
(Wherein in Formula (II) in the R 1 to R 7 and Y - have the formula (R 1 to R 7 and Y in I) - and a is .R 4 to R 7 and Y common - or Y of Two or more of them may be bonded to form a cyclic structure.)

共鳴式(II)で示すことができる化合物として、例えば、下記共鳴式(III)又は(IV)で示されるような、一般式(I)のYがPに対しオルト位かパラ位に位置し、オルト位かパラ位に結合している元素が孤立電子対を有する化合物が挙げられるがこれに限られるものではない。また、例えば、下記共鳴式(V)又は(VI)で示されるように、孤立電子対が共役していても構わない。 As a compound that can be represented by the resonance formula (II), for example, as shown by the following resonance formula (III) or (IV), Y − in the general formula (I) is in the ortho or para position with respect to P +. Examples include, but are not limited to, compounds in which the element located and bonded to the ortho or para position has a lone pair of electrons. Further, for example, as shown by the following resonance formula (V) or (VI), the lone pair of electrons may be conjugated.

Figure 2005256009
(ここで、式(III)及び(IV)中のR1〜Rは、式(I)中のR1〜R7と共通である。
また、Zは、炭素数0〜18の1つ以上の放出可能なプロトンを有する1価の基からプロトンを一つ放出し、かつベンゼン環に結合している原子が共役又は非共役の孤立電子対を有する基を示す。R4〜R7及びZ又はZの中の2つ以上が結合して環状構造となっていてもよい。)
Figure 2005256009
(Wherein, R 1 to R 7 in the formula (III) and (IV) is common to the R 1 to R 7 in formula (I).
Z is a monovalent group having one or more releasable protons having 0 to 18 carbon atoms and one isolated proton in which the atom bonded to the benzene ring is conjugated or non-conjugated. A group having an electron pair is shown. Two or more of R 4 to R 7 and Z or Z may be bonded to form a cyclic structure. )

Figure 2005256009
(ここで、式(V)及び(VI)中のR1〜Rは、式(I)中のR1〜R7と共通であり、Zは、式(III)及び(IV)中のZと共通である。また、R51〜R57は、水素原子又は炭素数1〜18の置換又は非置換の一価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R4〜R7、R51〜R57及びZ又はZの中の2つ以上が結合して環状構造となっていてもよい。)
Figure 2005256009
(Wherein, R 1 to R 7 in the formula (V) and (VI) are common to the R 1 to R 7 in formula (I), Z - is of formula (III) and in (IV) of Z -. common that addition, R 51 to R 57 represents a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 18 carbon atoms, all respectively may be the same or different. Two or more of R 4 to R 7 , R 51 to R 57 and Z or Z may be bonded to form a cyclic structure.)

共鳴式(II)で示すことができない化合物として、下記共鳴式(VII)又は(VIII)で示されるような、一般式(I)のYがPに対しメタ位に位置する化合物及びPに対しオルト位かパラ位に結合し、その結合している原子が孤立電子対を有しない化合物が挙げられるがこれに限られるものではない。 As compounds that cannot be represented by the resonance formula (II), compounds represented by the following resonance formula (VII) or (VIII), wherein Y − in the general formula (I) is located at the meta position with respect to P + , and P Examples thereof include, but are not limited to, compounds that are bonded to the ortho position or the para position with respect to + , and the bonded atoms do not have a lone electron pair.

Figure 2005256009
(ここで、式(VII)及び(VIII)中のR1〜Rは、式(I)中のR1〜R7と共通であり、式(VII)中のZは、式(III)及び(IV)中のZと共通である。式(VIII)中のWは、炭素数0〜18の1つ以上の放出可能なプロトンを有する1価の基からプロトンを一つ放出し、かつベンゼン環に結合している原子が孤立電子対を有しない基を示す。R4〜R7、Z及びWの中の2つ以上が結合して環状構造となっていてもよい。)
Figure 2005256009
(Wherein, R 1 to R 7 in the formula (VII) and (VIII) are common to the R 1 to R 7 in the formula (I), in formula (VII) Z - has the formula (III ) And (IV) are the same as Z , W in formula (VIII) releases one proton from a monovalent group having one or more releasable protons having 0 to 18 carbon atoms. And an atom bonded to the benzene ring represents a group having no lone pair, even if two or more of R 4 to R 7 , Z and W are bonded to form a cyclic structure. Good.)

上記一般式(I)で示される化合物の製法としては、目的の化合物が製造できる方法であれば特に限定されるものではないが、例えば、(a)ホスフィン化合物と(b)芳香環に置換したハロゲン原子1つ以上と放出可能なプロトン原子1つ以上を同一分子内に持つ化合物とを必要であれば、カップリング触媒を用いる及び紫外線を照射する等の手法を用いて反応させた後に、これを必要であれば、塩基性化合物等を用いて脱ハロゲン化水素させて得る方法やホスフィンジハライド化合物とフェノール類のアニオンと金属カチオンが対になった化合物を反応させた後に、これを脱ハロゲン化水素させて得る方法等が挙げられる。   The method for producing the compound represented by the general formula (I) is not particularly limited as long as the target compound can be produced. For example, (a) a phosphine compound and (b) an aromatic ring are substituted. If necessary, a compound having one or more halogen atoms and one or more releasable proton atoms in the same molecule is reacted after using a method such as using a coupling catalyst or irradiating ultraviolet rays. If necessary, a method obtained by dehydrohalogenation using a basic compound or the like, or reacting a phosphine dihalide compound with a compound in which a phenol anion and a metal cation are paired, is then dehalogenated. Examples thereof include a method obtained by hydrogenation.

本発明の硬化性樹脂組成物は、(A)本発明の硬化性樹脂の硬化促進剤を1種類以上と(B)硬化性樹脂とを含有する。
本発明において用いられる(B)硬化性樹脂としては、(A)硬化促進剤が硬化を促進する樹脂であれば、特に制限はないが、例えば、エポキシ樹脂、フェノール樹脂、ケイ素樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、アルキド樹脂等が挙げられ、これらのうち1種類を単独で用いても、2種類以上を組み合わせて用いてもかまわない。中でも(A)硬化促進剤の効果が十分に発揮されるという観点からは、(C)エポキシ樹脂が好ましい。
The curable resin composition of this invention contains (A) 1 or more types of hardening accelerators of the curable resin of this invention, and (B) curable resin.
The (B) curable resin used in the present invention is not particularly limited as long as the (A) curing accelerator is a resin that accelerates curing. For example, an epoxy resin, a phenol resin, a silicon resin, an amino resin, Examples thereof include unsaturated polyester resins, diallyl phthalate resins, alkyd resins, and the like. One of these may be used alone, or two or more may be used in combination. Among these, (C) an epoxy resin is preferable from the viewpoint that the effect of the (A) curing accelerator is sufficiently exhibited.

(B)成分としてエポキシ樹脂を使用する場合、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を用いることができる。そのようなエポキシ樹脂としては、これらに限定されるものではないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したノボラック型エポキシ樹脂;
ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール、スチルベン系フェノール類等のジグリシジルエーテル(ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂)、
ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテル;
フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸類のグリシジルエステル型エポキシ樹脂;
アニリン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したもの等のグリシジル型またはメチルグリシジル型のエポキシ樹脂;
分子内のオレフィン結合をエポキシ化して得られるビニルシクロヘキセンジエポキシド、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシ)シクロヘキシル−5,5−スピロ(3,4−エポキシ)シクロヘキサン−m−ジオキサン等の脂環型エポキシ樹脂;
パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル;
テルペン変性フェノール樹脂のグリシジルエーテル;
ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテル;
シクロペンタジエン変性フェノール樹脂のグリシジルエーテル;
多環芳香環変性フェノール樹脂のグリシジルエーテル;
ナフタレン環含有フェノール樹脂のグリシジルエーテル;
ハロゲン化フェノールノボラック型エポキシ樹脂;
ハイドロキノン型エポキシ樹脂;
トリメチロールプロパン型エポキシ樹脂;
オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;
ジフェニルメタン型エポキシ樹脂;
フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物;
硫黄原子含有エポキシ樹脂等が挙げられる。
When an epoxy resin is used as the component (B), an epoxy resin having two or more epoxy groups in one molecule can be used. Examples of such an epoxy resin include, but are not limited to, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol, including phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, and the like. F and other phenols and / or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene and a compound having an aldehyde group such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde are condensed or co-polymerized in an acidic catalyst. A novolak epoxy resin obtained by epoxidizing a novolak resin obtained by condensation;
Bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or unsubstituted biphenol, diglycidyl ethers such as stilbene phenols (bisphenol-type epoxy resin, biphenyl-type epoxy resin, stilbene-type epoxy resin),
Glycidyl ethers of alcohols such as butanediol, polyethylene glycol, polypropylene glycol;
Glycidyl ester type epoxy resins of carboxylic acids such as phthalic acid, isophthalic acid, tetrahydrophthalic acid;
Glycidyl-type or methylglycidyl-type epoxy resins such as those in which active hydrogen bonded to a nitrogen atom such as aniline or isocyanuric acid is substituted with a glycidyl group;
Vinylcyclohexene diepoxide obtained by epoxidizing an olefin bond in the molecule, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro ( 3,4-epoxy) cycloaliphatic epoxy resins such as cyclohexane-m-dioxane;
Glycidyl ether of paraxylylene and / or metaxylylene modified phenolic resin;
Glycidyl ether of terpene-modified phenolic resin;
Glycidyl ether of dicyclopentadiene-modified phenolic resin;
Glycidyl ether of cyclopentadiene modified phenolic resin;
Glycidyl ether of polycyclic aromatic ring-modified phenolic resin;
Glycidyl ether of a naphthalene ring-containing phenolic resin;
Halogenated phenol novolac epoxy resin;
Hydroquinone type epoxy resin;
Trimethylolpropane type epoxy resin;
A linear aliphatic epoxy resin obtained by oxidizing an olefinic bond with a peracid such as peracetic acid;
Diphenylmethane type epoxy resin;
Epoxidized products of aralkyl-type phenol resins such as phenol aralkyl resins and naphthol aralkyl resins;
A sulfur atom containing epoxy resin etc. are mentioned.

これらを単独で用いても2種以上を組み合わせて用いてもよい。これらのエポキシ樹脂の中でも、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類の共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物が耐リフロークラック性及び流動性の点で好ましく、特に耐リフロークラック性の観点からは4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルがより好ましく、成形性及び耐熱性の観点からは4,4’−ビス(2,3−エポキシプロポキシ)−ビフェニルが好ましい。ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類の共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物は、いずれか1種を単独で用いても2種以上を組み合わせて用いてもよいが、その性能を発揮するためには、エポキシ樹脂全量に対して、合わせて30重量%以上使用することが好ましく、50重量%以上使用することがより好ましい。   These may be used alone or in combination of two or more. Among these epoxy resins, biphenyl type epoxy resins, stilbene type epoxy resins, diphenylmethane type epoxy resins, sulfur atom containing type epoxy resins, novolac type epoxy resins, dicyclopentadiene type epoxy resins, salicylaldehyde type epoxy resins, naphthols and the like Phenol copolymer epoxy resins and aralkyl phenol resin epoxidized products are preferred in terms of reflow crack resistance and fluidity, and 4,4′-bis (2,3-epoxy is particularly preferred from the viewpoint of reflow crack resistance. Propoxy) -3,3 ′, 5,5′-tetramethylbiphenyl is more preferable, and 4,4′-bis (2,3-epoxypropoxy) -biphenyl is preferable from the viewpoint of moldability and heat resistance. Biphenyl type epoxy resin, stilbene type epoxy resin, diphenylmethane type epoxy resin, sulfur atom containing type epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin, salicylaldehyde type epoxy resin, copolymerized epoxy of naphthols and phenols The epoxidized resin or aralkyl-type phenol resin may be used alone or in combination of two or more, but in order to demonstrate its performance, the total amount of epoxy resin 30% by weight or more is preferably used, and 50% by weight or more is more preferably used.

ビフェニル型エポキシ樹脂としては、ビフェニル骨格を有するエポキシ樹脂であれば特に限定されるものではないが、下記一般式(IX)で示されるエポキシ樹脂が好ましい。下記一般式(IX)で示されるエポキシ樹脂の中でもRのうち酸素原子が置換している位置を4及び4’位とした時の3,3’,5,5’位がメチル基でそれ以外が水素原子であるYX−4000H(ジャパンエポキシレジン株式会社製商品名)、すべてのRが水素原子である4,4’−ビス(2,3−エポキシプロポキシ)ビフェニル、すべてのRが水素原子の場合及びRのうち酸素原子が置換している位置を4及び4’位とした時の3,3’,5,5’位がメチル基でそれ以外が水素原子である場合の混合品であるYL−6121H(ジャパンエポキシレジン株式会社製商品名)等が市販品として入手可能である。 The biphenyl type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton, but an epoxy resin represented by the following general formula (IX) is preferable. Among the epoxy resins represented by the following general formula (IX), the positions where the oxygen atom is substituted in R 8 are 4 and 4 'positions, and the 3, 3', 5, 5 'positions are methyl groups. Except for YX-4000H (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), 4,4′-bis (2,3-epoxypropoxy) biphenyl, in which all R 8 are hydrogen atoms, and all R 8 are In the case of a hydrogen atom, and when the position where the oxygen atom is substituted in R 8 is the 4 and 4 'positions, the 3, 3', 5, 5 'positions are methyl groups, and the others are hydrogen atoms YL-6121H (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), which is a mixed product, is available as a commercial product.

Figure 2005256009
(ここで、一般式(IX)中のRは水素原子又は炭素数1〜12のアルキル基又は炭素数4〜18のアリール基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 8 in the general formula (IX) represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 4 to 18 carbon atoms, and all may be the same or different. (It is an average value and indicates a positive number from 0 to 10.)

スチルベン型エポキシ樹脂としては、スチルベン骨格を有するエポキシ樹脂であれば特に限定されるものではないが、下記一般式(X)で示されるエポキシ樹脂が好ましい。下記一般式(X)で示されるエポキシ樹脂の中でも、Rのうち酸素原子が置換している位置を4及び4’位とした時の3,3’,5,5’位がメチル基でそれ以外が水素原子でありR10の全てが水素原子の場合と3,3’,5,5’位のうちの3つがメチル基、1つがtert−ブチル基でそれ以外が水素原子でありR10の全てが水素原子の場合の混合品であるESLV−210(ジャパンエポキシレジン株式会社製商品名)等が市販品として入手可能である。 The stilbene type epoxy resin is not particularly limited as long as it is an epoxy resin having a stilbene skeleton, but an epoxy resin represented by the following general formula (X) is preferable. Among the epoxy resins represented by the following general formula (X), 3, 9 ′, 5 ′ and 5 ′ positions when R 9 is substituted with oxygen atoms at positions 4 and 4 ′ are methyl groups. The other is a hydrogen atom and all of R 10 are hydrogen atoms, and three of the 3, 3 ′, 5, 5 ′ positions are methyl groups, one is a tert-butyl group, and the others are hydrogen atoms and R ESLV-210 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), which is a mixed product when all of 10 are hydrogen atoms, is available as a commercial product.

Figure 2005256009
(ここで、一般式(X)中のR及びR10は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 9 and R 10 in the general formula (X) represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and may be all the same or different. N is an average value. Yes, indicates a positive number from 0 to 10.)

ジフェニルメタン型エポキシ樹脂としては、ジフェニルメタン骨格を有するエポキシ樹脂であれば特に限定されるものではないが、下記一般式(XI)で示されるエポキシ樹脂が好ましい。下記一般式(XI)で示されるエポキシ樹脂の中でも、R11の全てが水素原子でありR12のうち酸素原子が置換している位置を4及び4’位とした時の3,3’,5,5’位がメチル基でそれ以外が水素原子であるYSLV−80XY(新日鐵化学株式会社製商品名)等が市販品として入手可能である。 The diphenylmethane type epoxy resin is not particularly limited as long as it is an epoxy resin having a diphenylmethane skeleton, but an epoxy resin represented by the following general formula (XI) is preferable. Among the epoxy resins represented by the following general formula (XI), 3, 3 'when all of R 11 are hydrogen atoms and the positions where oxygen atoms are substituted in R 12 are the 4 and 4' positions. YSLV-80XY (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) in which the 5,5′-position is a methyl group and the other is a hydrogen atom is commercially available.

Figure 2005256009
(ここで、一般式(XI)中のR11及びR12は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 11 and R 12 in the general formula (XI) represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. N is an average value. Yes, indicates a positive number from 0 to 10.)

硫黄原子含有型エポキシ樹脂としては、硫黄原子を含有するエポキシ樹脂であれば特に限定されるものではないが、例えば下記一般式(XII)で示されるエポキシ樹脂が挙げられる。下記一般式(XII)で示されるエポキシ樹脂の中でも、R13のうち酸素原子が置換している位置を4及び4’位とした時の3,3’位がtert−ブチル基で6,6’位がメチル基でそれ以外が水素原子であるYSLV−120TE(新日鐵化学株式会社製商品名)等が市販品として入手可能である。 Although it will not specifically limit if it is an epoxy resin containing a sulfur atom as a sulfur atom containing type epoxy resin, For example, the epoxy resin shown by the following general formula (XII) is mentioned. Among the epoxy resins represented by the following general formula (XII), the tert-butyl group is the 6,3 'position when the positions where the oxygen atoms are substituted in the R 13 in the 4 and 4' positions are 6, 6 YSLV-120TE (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) in which the position is a methyl group and the other is a hydrogen atom is commercially available.

Figure 2005256009
(ここで、一般式(XII)中のR13は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 13 in the general formula (XII) represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. N is an average value, and 0 10 represents a positive number.)

ノボラック型エポキシ樹脂としては、ノボラック型フェノール樹脂をエポキシ化したエポキシ樹脂であれば、特に限定されるものではないが、フェノールノボラック、クレゾールノボラック、ナフトールノボラック等のノボラック型フェノール樹脂をグリシジルエーテル化等の手法を用いてエポキシ化したエポキシ樹脂が好ましく、例えば下記一般式(XIII)で示されるエポキシ樹脂がより好ましい。下記一般式(XIII)で示されるエポキシ樹脂の中でも、R14の全てが水素原子でありR15がメチル基でi=1であるESCN−190、ESCN−195(住友化学株式会社製商品名)等が市販品として入手可能である。 The novolak type epoxy resin is not particularly limited as long as it is an epoxy resin obtained by epoxidizing a novolak type phenol resin, but a novolak type phenol resin such as phenol novolak, cresol novolak, naphthol novolak or the like can be converted to glycidyl ether. Epoxy resins epoxidized using a technique are preferred, and for example, epoxy resins represented by the following general formula (XIII) are more preferred. Among the epoxy resins represented by the following general formula (XIII), ESCN-190 and ESCN-195 (trade names, manufactured by Sumitomo Chemical Co., Ltd.), in which all of R 14 are hydrogen atoms, R 15 is a methyl group and i = 1. Etc. are available as commercial products.

Figure 2005256009
(ここで、一般式(XIII)中のR14及びR15は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 14 and R 15 in the general formula (XIII) each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. , N is an average value and represents a positive number from 0 to 10.)

ジシクロペンタジエン型エポキシ樹脂としては、ジシクロペンタジエン骨格を有する化合物を原料としてエポキシ化したエポキシ樹脂であれば特に限定されるものではないが、下記一般式(XIV)で示されるエポキシ樹脂が好ましい。下記一般式(XIV)で示されるエポキシ樹脂の中でも、i=0であるHP−7200(大日本インキ化学株式会社製商品名)等が市販品として入手可能である。   The dicyclopentadiene type epoxy resin is not particularly limited as long as it is an epoxy resin obtained by epoxidizing a compound having a dicyclopentadiene skeleton as a raw material, but an epoxy resin represented by the following general formula (XIV) is preferable. Among epoxy resins represented by the following general formula (XIV), HP-7200 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) in which i = 0 is available as a commercial product.

Figure 2005256009
(ここで、一般式(XIV)中のR16は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 16 in the general formula (XIV) represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. I is an integer of 0 to 3, n is an average value and represents a positive number from 0 to 10.)

サリチルアルデヒド型エポキシ樹脂としてはサリチルアルデヒド骨格を持つ化合物を原料とするエポキシ樹脂であれば特に制限はないが、サリチルアルデヒド骨格を持つ化合物とフェノール性水酸基を有する化合物とのノボラック型フェノール樹脂等のサリチルアルデヒド型フェノール樹脂をグリシジルエーテル化したエポキシ樹脂等のサリチルアルデヒド型エポキシ樹脂が好ましく、下記一般式(XV)で示されるエポキシ樹脂がより好ましい。下記一般式(XV)で示されるエポキシ樹脂の中でも、i=0、k=0であるMEH−7500(明和化成株式会社製商品名)等が市販品として入手可能である。   The salicylaldehyde type epoxy resin is not particularly limited as long as it is an epoxy resin made from a compound having a salicylaldehyde skeleton, but a salicyl such as a novolak type phenolic resin of a compound having a salicylaldehyde skeleton and a compound having a phenolic hydroxyl group. A salicylaldehyde type epoxy resin such as an epoxy resin obtained by glycidyl etherification of an aldehyde type phenol resin is preferable, and an epoxy resin represented by the following general formula (XV) is more preferable. Among the epoxy resins represented by the following general formula (XV), MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) in which i = 0 and k = 0 is available as a commercial product.

Figure 2005256009
(ここで、一般式(XV)中のR17及びR18は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、kは0〜4の整数、nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 17 and R 18 in the general formula (XV) represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and they may all be the same or different. And k is an integer of 0 to 4, n is an average value and represents a positive number of 0 to 10.)

ナフトール類とフェノール類の共重合型エポキシ樹脂としては、ナフトール骨格を有する化合物及びフェノール骨格を有する化合物を原料とするエポキシ樹脂であれば、特に限定されるものではないが、ナフトール骨格を有する化合物及びフェノール骨格を有する化合物を用いたノボラック型フェノール樹脂をグリシジルエーテル化したものが好ましく、下記一般式(XVI)で示されるエポキシ樹脂がより好ましい。下記一般式(XVI)で示されるエポキシ樹脂の中でも、i=0、j=0、k=0であるNC−7300(日本化薬株式会社製商品名)等が市販品として入手可能である。   The copolymerized epoxy resin of naphthols and phenols is not particularly limited as long as it is an epoxy resin using a compound having a naphthol skeleton and a compound having a phenol skeleton as a raw material, and a compound having a naphthol skeleton and Those obtained by glycidyl etherification of a novolak type phenol resin using a compound having a phenol skeleton are preferred, and an epoxy resin represented by the following general formula (XVI) is more preferred. Among the epoxy resins represented by the following general formula (XVI), NC-7300 (trade name, manufactured by Nippon Kayaku Co., Ltd.) having i = 0, j = 0, and k = 0 is available as a commercial product.

Figure 2005256009
(ここで、一般式(XVI)中のR19〜R21は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、jは0〜2の整数、kは0〜4の整数を示す。pは平均値で0〜1の正数を示し、l、mはそれぞれ平均値で0〜11の正数であり(l+m)は1〜11の正数を示す。)
上記一般式(XVI)で示されるエポキシ樹脂としては、l個の構成単位及びm個の構成単位をランダムに含むランダム共重合体、交互に含む交互共重合体、規則的に含む共重合体、ブロック状に含むブロック共重合体が挙げられ、これらのいずれか1種を単独で用いても、2種以上を組み合わせて用いてもよい。
Figure 2005256009
(Here, R 19 to R 21 in the general formula (XVI) each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. I is 0 to 3). , J is an integer of 0 to 2, k is an integer of 0 to 4. p is an average value of 0 to 1 and l and m are average values of 0 to 11 respectively. Yes (l + m) represents a positive number from 1 to 11.)
As the epoxy resin represented by the general formula (XVI), a random copolymer containing 1 structural unit and m structural units randomly, an alternating copolymer containing alternately, a copolymer containing regularly, The block copolymer contained in a block shape is mentioned, Any one of these may be used independently or may be used in combination of 2 or more type.

フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物としては、フェノール、クレゾール等のフェノール類及び/又はナフトール、ジメチルナフトール等のナフトール類とジメトキシパラキシレンやビス(メトキシメチル)ビフェニルやこれらの誘導体から合成されるフェノール樹脂を原料とするエポキシ樹脂であれば、特に限定されるものではない。フェノール、クレゾール等のフェノール類及び/又はナフトール、ジメチルナフトール等のナフトール類とジメトキシパラキシレンやビス(メトキシメチル)ビフェニルやこれらの誘導体から合成されるフェノール樹脂をグリシジルエーテル化したものが好ましく、下記一般式(XVII)及び(XVIII)で示されるエポキシ樹脂がより好ましい。下記一般式(XVII)で示されるエポキシ樹脂の中でも、i=0、R23が水素原子であるNC−3000S(日本化薬株式会社製商品名)、i=0、R23が水素原子であるエポキシ樹脂と一般式(IX)のすべてのRが水素原子であるエポキシ樹脂とを重量比80:20で混合したCER−3000(日本化薬株式会社製商品名)等が市販品として入手可能である。また、下記一般式(XVIII)で示されるエポキシ樹脂の中でも、j=0、R25のk=0、R26のk=0であるESN−175(新日鐵化学株式会社商品名)等が市販品として入手可能である。 Epoxidized products of aralkyl-type phenol resins such as phenol aralkyl resins and naphthol aralkyl resins include phenols such as phenol and cresol and / or naphthols such as naphthol and dimethylnaphthol, dimethoxyparaxylene, bis (methoxymethyl) biphenyl, and the like. The epoxy resin is not particularly limited as long as it is made of a phenol resin synthesized from the above derivatives. Phenol resins such as phenol and cresol and / or naphthols such as naphthol and dimethylnaphthol, and phenol resins synthesized from dimethoxyparaxylene, bis (methoxymethyl) biphenyl, and derivatives thereof are preferably glycidyl etherified, Epoxy resins represented by the formulas (XVII) and (XVIII) are more preferable. Among epoxy resins represented by the following general formula (XVII), i = 0, R- 23 is a hydrogen atom, NC-3000S (trade name, manufactured by Nippon Kayaku Co., Ltd.), i = 0, R 23 is a hydrogen atom. epoxy CER-3000 (manufactured by Nippon Kayaku Co., Ltd. trade name) were mixed all R 8 is an epoxy resin which is a hydrogen atom in a weight ratio of 80:20 of the resin and general formula (IX) or the like is commercially available It is. Further, among epoxy resins represented by the following general formula (XVIII), ESN-175 (trade name of Nippon Steel Chemical Co., Ltd.) where j = 0, R 25 k = 0, R 26 k = 0, etc. It is available as a commercial product.

Figure 2005256009
(ここで、一般式(XVII)及び(XVIII)中のR22〜R26は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0〜10の正数を示す。iは0〜3の整数、jは0〜2の整数、kは0〜4の整数を示し、R25のkと、R26のkとは同一でも異なっていても良い。)
Figure 2005256009
(Here, R 22 to R 26 in the general formulas (XVII) and (XVIII) represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. Is an average value and represents a positive number from 0 to 10. i is an integer from 0 to 3, j is an integer from 0 to 2, k is an integer from 0 to 4, and k in R 25 and R 26 k may be the same or different.)

上記一般式(IX)〜(XVIII)中のR〜R26について、それぞれ全てが同一でも異なっていてもよいの意味は、例えば式(IX)中の8〜88個のRの全てが同一でも異なっていてもよいの意味である。他のR〜R26についても式中に含まれるそれぞれの個数について全てが同一でも異なっていてもよいとの意味である。また、R26はそれぞれが同一でも異なっていてもよい。例えばRとR10の全てについて同一でも異なっていてもよい。
上記一般式(IX)〜(XVIII)中のnは0〜10の範囲であり、10を超えた場合は(B)成分の溶融粘度が高くなるため、硬化性樹脂組成物の溶融成形時の粘度も高くなり、未充填不良やボンディングワイヤ(素子とリードを接続する金線)の変形を引き起こしやすくなる。1分子中の平均nは0〜4の範囲に設定されることが好ましい。また、上記一般式(XIII)〜(XVIII)中のi、j、kの値は、各Rの番号毎に独立である。
The meanings that R 8 to R 26 in the general formulas (IX) to (XVIII) may be the same as or different from each other include, for example, all 8 to 88 R 8 in the formula (IX) It means that they may be the same or different. It means that all of R 9 to R 26 may be the same or different with respect to the respective numbers included in the formula. R 8 to 26 may be the same as or different from each other. For example, all of R 9 and R 10 may be the same or different.
In the above general formulas (IX) to (XVIII), n is in the range of 0 to 10, and when it exceeds 10, the melt viscosity of the component (B) becomes high. Viscosity also increases, and unfilled defects and bonding wires (gold wires connecting elements and leads) are likely to be deformed. The average n per molecule is preferably set in the range of 0-4. In addition, the values of i, j, and k in the general formulas (XIII) to (XVIII) are independent for each R number.

硬化性樹脂組成物には、必要に応じて(D)硬化剤を用いることができる。(B)硬化性樹脂としてエポキシ樹脂を用いる場合、用いることができる硬化剤としては、エポキシ樹脂を硬化させることができる化合物であれば、特に限定されるものではないが、例えば、フェノール樹脂等のフェノール化合物、ジアミン、ポリアミン等のアミン化合物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等の無水有機酸、ジカルボン酸、ポリカルボン酸等のカルボン酸化合物等が挙げられ、これらのうち1種類を単独で用いても、2種類以上を組み合わせて用いてもかまわない。中でも、(A)硬化促進剤の効果が十分に発揮されるという観点からは、フェノール樹脂が好ましい。   In the curable resin composition, (D) a curing agent can be used as necessary. (B) When an epoxy resin is used as the curable resin, the curing agent that can be used is not particularly limited as long as it is a compound that can cure the epoxy resin. Examples include phenolic compounds, amine compounds such as diamine and polyamine, organic acid anhydrides such as phthalic anhydride, trimellitic anhydride and pyromellitic anhydride, and carboxylic acid compounds such as dicarboxylic acid and polycarboxylic acid. One type may be used alone, or two or more types may be used in combination. Among these, from the viewpoint that the effect of the (A) curing accelerator is sufficiently exhibited, a phenol resin is preferable.

エポキシ樹脂の硬化剤としてフェノール樹脂としては特に制限はないが、例えば、一般に使用されている1分子中に2個以上のフェノール性水酸基を有するフェノール樹脂で、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の1分子中に2個のフェノール性水酸基を有する化合物;
フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;
フェノール類及び/又はナフトール類とジメトキシパラキシレンやビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;
パラキシリレン及び/又はメタキシリレン変性フェノール樹脂;
メラミン変性フェノール樹脂;
テルペン変性フェノール樹脂;
フェノール類及び/又はナフトール類とジシクロペンタジエンから共重合により合成される、ジシクロペンタジエン型フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂;
シクロペンタジエン変性フェノール樹脂;
多環芳香環変性フェノール樹脂;
ビフェニル型フェノール樹脂;
トリフェニルメタン型フェノール樹脂;
これら2種以上を共重合して得たフェノール樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
There is no particular limitation on the phenolic resin as a curing agent for the epoxy resin. For example, a phenolic resin having two or more phenolic hydroxyl groups in one molecule generally used, resorcinol, catechol, bisphenol A, bisphenol F, Compounds having two phenolic hydroxyl groups in one molecule, such as substituted or unsubstituted biphenol;
Phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and other phenols and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and formaldehyde, acetaldehyde, propionaldehyde, A novolak-type phenolic resin obtained by condensation or cocondensation with aldehydes such as benzaldehyde and salicylaldehyde under an acidic catalyst;
Aralkyl-type phenol resins such as phenol aralkyl resins and naphthol aralkyl resins synthesized from phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl;
Paraxylylene and / or metaxylylene-modified phenolic resin;
Melamine-modified phenolic resin;
Terpene-modified phenolic resin;
Dicyclopentadiene type phenol resin, dicyclopentadiene type naphthol resin synthesized by copolymerization from phenols and / or naphthols and dicyclopentadiene;
Cyclopentadiene modified phenolic resin;
Polycyclic aromatic ring-modified phenolic resin;
Biphenyl type phenolic resin;
Triphenylmethane phenol resin;
Examples thereof include phenol resins obtained by copolymerizing two or more of these, and these may be used alone or in combination of two or more.

これらのフェノール樹脂の中でも、耐リフロークラック性の観点からはアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ベンズアルデヒド型とアラルキル型の共重合型フェノール樹脂、ノボラック型フェノール樹脂が好ましい。これらアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ベンズアルデヒド型とアラルキル型の共重合型フェノール樹脂、ノボラック型フェノール樹脂は、いずれか1種を単独で用いても2種以上を組み合わせて用いてもよいが、その性能を発揮するためには、フェノール樹脂全量に対して合わせて30重量%以上使用することが好ましく、50重量%以上使用することがより好ましい。   Among these phenol resins, aralkyl-type phenol resins, dicyclopentadiene-type phenol resins, salicylaldehyde-type phenol resins, benzaldehyde-type and aralkyl-type copolymer phenol resins, and novolak-type phenol resins are used from the viewpoint of reflow crack resistance. preferable. These aralkyl-type phenol resins, dicyclopentadiene-type phenol resins, salicylaldehyde-type phenol resins, benzaldehyde-type and aralkyl-type copolymer phenol resins, and novolak-type phenol resins can be used alone or in combination of two or more. May be used in combination, but in order to exert its performance, it is preferably used in an amount of 30% by weight or more, more preferably 50% by weight or more, based on the total amount of the phenol resin.

アラルキル型フェノール樹脂としては、フェノール類及び/又はナフトール類とジメトキシパラキシレンやビス(メトキシメチル)ビフェニルやこれらの誘導体から合成されるフェノール樹脂であれば特に限定されるものではないが、下記一般式(XIX)〜(XXI)で示されるフェノール樹脂が好ましい。
下記一般式(XIX)で示されるフェノール樹脂の中でもi=0、R28が全て水素原子であるMEH−7851(明和化成株式会社商品名)等が市販品として入手可能である。
下記一般式(XX)で示されるフェノール樹脂の中でもi=0、k=0であるXL−225、XLC(三井化学株式会社製商品名)、MEH−7800(明和化成株式会社商品名)等が市販品として入手可能である。
下記一般式(XXI)で示されるフェノール樹脂の中でもj=0、R32のk=0、R33のk=0であるSN−170(新日鐵化学株式会社商品名)等が市販品として入手可能である。
The aralkyl type phenolic resin is not particularly limited as long as it is a phenolic resin synthesized from phenols and / or naphthols and dimethoxyparaxylene, bis (methoxymethyl) biphenyl or a derivative thereof. Phenol resins represented by (XIX) to (XXI) are preferred.
Among phenolic resins represented by the following general formula (XIX), MEH-7851 (trade name of Meiwa Kasei Co., Ltd.) in which i = 0 and all R 28 are hydrogen atoms is commercially available.
Among the phenolic resins represented by the following general formula (XX), XL-225, XLC (trade name, manufactured by Mitsui Chemicals, Inc.), MEH-7800 (trade name, Meiwa Kasei Co., Ltd.), etc., where i = 0 and k = 0. It is available as a commercial product.
Among the phenol resins represented by the following general formula (XXI), SN-170 (trade name of Nippon Steel Chemical Co., Ltd.) in which j = 0, R 32 k = 0, and R 33 k = 0 is a commercially available product. It is available.

Figure 2005256009
(ここで、一般式(XIX)〜(XXI)中のR27〜R33は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、kは0〜4の整数、jは0〜2の整数、nは平均値であり、0〜10の正数を示す。R32のkと、R33のkとは同一でも異なっていても良い。)
Figure 2005256009
(Here, R 27 to R 33 in the general formulas (XIX) to (XXI) each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all may be the same or different. Is an integer from 0 to 3, k is an integer from 0 to 4, j is an integer from 0 to 2, n is an average value, and represents a positive number from 0 to 10. k of R 32 and k of R 33 May be the same or different.)

ジシクロペンタジエン型フェノール樹脂としては、ジシクロペンタジエン骨格を有する化合物を原料として用いたフェノール樹脂であれば特に限定されるものではないが、下記一般式(XXII)で示されるフェノール樹脂が好ましい。下記一般式(XXII)で示されるフェノール樹脂の中でもi=0であるDPP(日本石油化学株式会社製商品名)等が市販品として入手可能である。   The dicyclopentadiene type phenol resin is not particularly limited as long as it is a phenol resin using a compound having a dicyclopentadiene skeleton as a raw material, but a phenol resin represented by the following general formula (XXII) is preferable. Among the phenol resins represented by the following general formula (XXII), DPP (trade name, manufactured by Nippon Petrochemical Co., Ltd.) where i = 0 is available as a commercial product.

Figure 2005256009
(ここで、一般式(XXII)中のR34は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 34 in the general formula (XXII) represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. I is an integer of 0 to 3, n is an average value and represents a positive number from 0 to 10.)

サリチルアルデヒド型フェノール樹脂としては、サリチルアルデヒド骨格を有する化合物を原料として用いたフェノール樹脂であれば特に限定されるものではないが、下記一般式(XXIII)で示されるフェノール樹脂が好ましい。
下記一般式(XXIII)で示されるフェノール樹脂の中でもi=0、k=0であるMEH−7500(明和化成株式会社製商品名)等が市販品として入手可能である。
The salicylaldehyde type phenol resin is not particularly limited as long as it is a phenol resin using a compound having a salicylaldehyde skeleton as a raw material, but a phenol resin represented by the following general formula (XXIII) is preferable.
Among the phenol resins represented by the following general formula (XXIII), MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) in which i = 0 and k = 0 is available as a commercial product.

Figure 2005256009
(ここで、一般式(XXIII)中のR35及びR36は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、kは0〜4の整数、nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 35 and R 36 in the general formula (XXIII) each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. I is 0 to 3). And k is an integer of 0 to 4, n is an average value and represents a positive number of 0 to 10.)

ベンズアルデヒド型とアラルキル型の共重合型フェノール樹脂としては、ベンズアルデヒド骨格を有する化合物を原料として用いたフェノール樹脂とアラルキル型フェノール樹脂の共重合型フェノール樹脂であれば特に限定されるものではないが、下記一般式(XXIV)で示されるフェノール樹脂が好ましい。
下記一般式(XXIV)で示されるフェノール樹脂の中でもi=0、k=0、q=0であるHE−510(住金化工株式会社製商品名)等が市販品として入手可能である。
The benzaldehyde type and aralkyl type copolymeric phenol resin is not particularly limited as long as it is a copolymeric phenol resin of a phenol resin and an aralkyl type phenol resin using a compound having a benzaldehyde skeleton as a raw material. A phenol resin represented by the general formula (XXIV) is preferred.
Among phenol resins represented by the following general formula (XXIV), HE-510 (trade name, manufactured by Sumikin Kako Co., Ltd.) having i = 0, k = 0, and q = 0 is available as a commercial product.

Figure 2005256009
(ここで、一般式(XXIV)中のR37〜R39は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、kは0〜4の整数、qは0〜5の整数、l、mはそれぞれ平均値で0〜11の正数であり(l+m)は1〜11の正数を示す。)
Figure 2005256009
(Here, R 37 to R 39 in the general formula (XXIV) each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. I is 0 to 3). , K is an integer of 0 to 4, q is an integer of 0 to 5, l and m are average values of 0 to 11 and (l + m) is a positive number of 1 to 11, respectively.)

ノボラック型フェノール樹脂としては、フェノール類及び/又はナフトール類とアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるフェノール樹脂であれば特に限定されるものではないが、下記一般式(XXV)で示されるフェノール樹脂が好ましい。
下記一般式(XXV)で示されるフェノール樹脂の中でもi=0、R40が全て水素原子であるタマノル758、759(荒川化学工業株式会社製商品名)、HP−850N(日立化成工業株式会社商品名)等が市販品として入手可能である。
The novolac type phenol resin is not particularly limited as long as it is a phenol resin obtained by condensation or cocondensation of phenols and / or naphthols and aldehydes in the presence of an acidic catalyst, but the following general formula (XXV ) Is preferred.
I = 0 Among phenolic resin represented by the following general formula (XXV), R 40 are all hydrogen atoms TAMANOL 758, 759 (Arakawa Chemical Industries, Ltd., trade name), HP-850N (manufactured by Hitachi Chemical Co., Ltd. Product Name) etc. are commercially available.

Figure 2005256009
(ここで、一般式(XXV)中のR40及びR41は水素原子又は炭素数1〜18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは0〜3の整数、kは0〜4の整数、nは平均値であり、0〜10の正数を示す。)
Figure 2005256009
(Here, R 40 and R 41 in the general formula (XXV) each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and each may be the same or different. I is 0 to 3). And k is an integer of 0 to 4, n is an average value and represents a positive number of 0 to 10.)

上記一般式(XIX)〜(XXV)中のR27〜R41について、それぞれ全てが同一でも異なっていてもよいの意味は、例えば式(XXI)中のi個のR27の全てが同一でも相互に異なっていてもよいの意味である。他のR28〜R41についても式中に含まれるそれぞれの個数について全てが同一でも相互に異なっていてもよいとの意味である。また、R27〜R41はそれぞれが同一でも異なっていてもよい。例えばR27とR28の全てについて同一でも異なっていてもよく、R35とR36の全てについて同一でも異なっていてもよい。
上記一般式(XIX)〜(XXV)中のnは0〜10の範囲であり、10を超えた場合は(B)成分の溶融粘度が高くなるため、硬化性樹脂組成物の溶融成形時の粘度も高くなり、未充填不良やボンディングワイヤ(素子とリードを接続する金線)の変形を引き起こしやすくなる。1分子中の平均nは0〜4の範囲に設定されることが好ましい。また、上記一般式(XIX)〜(XXV)中のi、j、k、qの値は、各Rの番号毎に独立である。
The meaning that R 27 to R 41 in the general formulas (XIX) to (XXV) may be the same or different from each other means that, for example, all i R 27 in the formula (XXI) are the same. It means that they may be different from each other. It means that all the other R 28 to R 41 may be the same as or different from each other. R 27 to R 41 may be the same as or different from each other. For example, all of R 27 and R 28 may be the same or different, and all of R 35 and R 36 may be the same or different.
In the general formulas (XIX) to (XXV), n is in the range of 0 to 10, and when it exceeds 10, the melt viscosity of the component (B) becomes high. Viscosity also increases, and unfilled defects and bonding wires (gold wires connecting elements and leads) are likely to be deformed. The average n per molecule is preferably set in the range of 0-4. The values of i, j, k, and q in the general formulas (XIX) to (XXV) are independent for each R number.

本発明において(B)硬化性樹脂として(C)エポキシ樹脂を、エポキシ樹脂の(D)硬化剤としてフェノール樹脂を用いる場合、(C)成分と(D)成分の配合比率は、全エポキシ樹脂のエポキシ当量に対する全フェノール樹脂の水酸基当量の比率(フェノール樹脂中の水酸基数/エポキシ樹脂中のエポキシ基数)で0.5〜2.0の範囲に設定されることが好ましく、0.7〜1.5がより好ましく、0.8〜1.3がさらに好ましい。この比率が0.5未満ではエポキシ樹脂の硬化が不充分となり、硬化物の耐熱性、耐湿性及び電気特性が劣る傾向があり、2.0を超えるとフェノール樹脂成分が過剰なため硬化が不充分となったり、硬化樹脂中に多量のフェノール性水酸基が残るため電気特性及び耐湿性が悪くなったりする傾向がある。   In the present invention, when (C) an epoxy resin is used as the (B) curable resin and a phenol resin is used as the (D) curing agent of the epoxy resin, the blending ratio of the (C) component and the (D) component is as follows. The ratio of the hydroxyl equivalents of all phenol resins to the epoxy equivalents (number of hydroxyl groups in the phenol resin / number of epoxy groups in the epoxy resin) is preferably set in the range of 0.5 to 2.0. 5 is more preferable, and 0.8 to 1.3 is more preferable. If this ratio is less than 0.5, the epoxy resin is not sufficiently cured, and the heat resistance, moisture resistance and electrical properties of the cured product tend to be inferior. If it exceeds 2.0, the phenol resin component is excessive and curing is insufficient. There is a tendency that electrical properties and moisture resistance are deteriorated because of a sufficient amount of phenolic hydroxyl groups remaining in the cured resin.

また、本発明の硬化性樹脂組成物には、(A)の硬化促進剤成分以外に、硬化性樹脂の硬化反応を促進する硬化促進剤として一般に用いられているものを1種以上併用することができる。併用する硬化促進剤としては、例えば、1,5−ジアザビシクロ[4.3.0]ノネン−5、1,8−ジアザビシクロ[5.4.0]ウンデセン−7等のジアザビシクロアルケンなどのシクロアミジン化合物、その誘導体、それらのフェノールノボラック塩及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどのπ結合をもつ化合物を付加してなる分子内分極を有する化合物、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール類、テトラフェニルホスホニウム・テトラフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩、トリフェニルホスフィン、ジフェニル(p−トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の有機ホスフィン類、又はこれら有機ホスフィン類と有機ボロン類との錯体やこれら有機ホスフィン類と無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどのπ結合をもつ化合物を付加してなる分子内分極を有する化合物などが挙げられる。   In addition to the curing accelerator component (A), the curable resin composition of the present invention is used in combination with one or more kinds of those generally used as a curing accelerator that accelerates the curing reaction of the curable resin. Can do. Examples of the curing accelerator used in combination include cyclohexane such as diazabicycloalkene such as 1,5-diazabicyclo [4.3.0] nonene-5, 1,8-diazabicyclo [5.4.0] undecene-7. Amidine compounds, derivatives thereof, phenol novolac salts thereof and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethyl Π bonds such as benzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, quinone compounds such as phenyl-1,4-benzoquinone, and diazophenylmethane. A compound with intramolecular polarization formed by adding a compound having triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, etc. Imidazoles, tetrasubstituted phosphonium tetrasubstituted borates such as tetraphenylphosphonium tetraphenylborate, tetraphenylboron salts such as 2-ethyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetraphenylborate, tri Phenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phos Fins, Tris (dialkylphenyl) phosphine, Tris (trialkylphenyl) phosphine, Tris (tetraalkylphenyl) phosphine, Tris (dialkoxyphenyl) phosphine, Tris (trialkoxyphenyl) phosphine, Tris (tetraalkoxyphenyl) phosphine, Tris Organic phosphines such as alkylphosphine, dialkylarylphosphine, alkyldiarylphosphine, or complexes of these organic phosphines with organic borons, these organic phosphines and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4- Nzokinon, quinone compounds such as phenyl-1,4-benzoquinone, and compounds having an addition-intramolecular polarization comprising a compound having a π bond, such as diazo methane may be mentioned.

これらの硬化促進剤を併用する場合、(A)成分の配合量は、全硬化促進剤に対して30重量%以上が好ましく、より好ましくは50重量%以上である。(A)成分の配合量が30重量%未満であると吸湿時の硬化性及び/又は流動性が低下し、本発明の効果が少なくなる傾向がある。
(A)成分を含む全硬化促進剤の合計配合量は、硬化促進効果が得られれば特に制限はないが、吸湿時硬化性及び流動性の観点からは(B)硬化性樹脂の合計100重量部に対して0.1〜10重量部が好ましく、1〜7.0重量部がより好ましい。0.1重量部未満では短時間で硬化させることが困難で、10重量部を超えると硬化速度が速すぎて良好な成形品が得られない場合が生じる。
When these curing accelerators are used in combination, the amount of component (A) is preferably 30% by weight or more, more preferably 50% by weight or more, based on the total curing accelerator. When the blending amount of the component (A) is less than 30% by weight, curability and / or fluidity at the time of moisture absorption is lowered, and the effect of the present invention tends to be reduced.
(A) Although the total compounding quantity of all the hardening accelerators containing a component will not have a restriction | limiting especially if a hardening acceleration effect is acquired, from the viewpoint of sclerosis | hardenability at moisture absorption and fluidity | liquidity, (B) 100 weight of curable resin total 0.1-10 weight part is preferable with respect to a part, and 1-7.0 weight part is more preferable. If it is less than 0.1 part by weight, it is difficult to cure in a short time, and if it exceeds 10 parts by weight, the curing rate is too high and a good molded product may not be obtained.

本発明の硬化性樹脂組成物には、(E)無機充填剤を必要に応じてさらに配合することができる。特に硬化性樹脂組成物を封止用成形材料として用いる場合には、(E)無機充填剤を配合することが好ましい。本発明において用いられる(E)無機充填剤としては、一般に封止用成形材料に用いられるもので特に限定はないが、例えば、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の微粉未、又はこれらを球形化したビーズなどが挙げられる。さらに、難燃効果のある無機充填剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。中でも、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましい。これらの無機充填剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。   The curable resin composition of the present invention may further contain (E) an inorganic filler as necessary. In particular, when the curable resin composition is used as a molding material for sealing, it is preferable to blend (E) an inorganic filler. The (E) inorganic filler used in the present invention is not particularly limited as it is generally used for a molding material for sealing. For example, fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, Calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, talc, clay, mica, etc. Can be mentioned. Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxide of magnesium and zinc, and zinc borate. Among these, fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity. These inorganic fillers may be used alone or in combination of two or more.

(E)無機充填剤の配合量は、本発明の効果が得られれば特に制限はないが、硬化性樹脂組成物に対して70〜95重量%の範囲であることが好ましい。これら無機充填剤は硬化物の熱膨張係数、熱伝導率、弾性率等の改良を目的に配合するものであり、配合量が70重量%未満ではこれらの特性の改良が不十分となる傾向があり、95重量%を超えると硬化性樹脂組成物の粘度が上昇して流動性が低下し成形が困難になる傾向がある。
また、(E)無機充填剤の平均粒径は1〜50μmが好ましく、10〜30μmがより好ましい。1μm未満では硬化性樹脂組成物の粘度が上昇しやすく、50μmを超えると樹脂成分と無機充填剤とが分離しやすくなり、硬化物が不均一になったり硬化物特性がばらついたり、狭い隙間への充填性が低下したりする傾向がある。
流動性の観点からは、(E)無機充填剤の粒子形状は角形より球形が好ましく、(E)無機充填剤の粒度分布は広範囲に分布したものが好ましい。例えば、無機充填剤を60重量%以上配合する場合、その70重量%以上を球状粒子とし、0.1〜80μmという広範囲に分布したものが好ましい。このような無機充填剤は最密充填構造をとりやすいため配合量を増加させても材料の粘度上昇が少なく、流動性に優れた硬化性樹脂組成物を得ることができる。
(E) Although the compounding quantity of an inorganic filler will not have a restriction | limiting in particular if the effect of this invention is acquired, It is preferable that it is the range of 70 to 95 weight% with respect to curable resin composition. These inorganic fillers are blended for the purpose of improving the thermal expansion coefficient, thermal conductivity, elastic modulus, etc. of the cured product. If the blending amount is less than 70% by weight, these properties tend to be insufficiently improved. If it exceeds 95% by weight, the viscosity of the curable resin composition increases, the fluidity tends to decrease, and molding tends to be difficult.
Moreover, 1-50 micrometers is preferable and, as for the average particle diameter of (E) inorganic filler, 10-30 micrometers is more preferable. If it is less than 1 μm, the viscosity of the curable resin composition is likely to increase, and if it exceeds 50 μm, the resin component and the inorganic filler are easily separated, resulting in unevenness of the cured product and variations in the properties of the cured product. There is a tendency for the fillability of the to decrease.
From the viewpoint of fluidity, the particle shape of (E) inorganic filler is preferably spherical rather than square, and (E) the particle size distribution of inorganic filler is preferably distributed over a wide range. For example, when the inorganic filler is blended in an amount of 60% by weight or more, it is preferable that 70% by weight or more of them be spherical particles and distributed in a wide range of 0.1 to 80 μm. Since such an inorganic filler tends to have a close-packed structure, a curable resin composition excellent in fluidity can be obtained with little increase in the viscosity of the material even when the blending amount is increased.

本発明の硬化性樹脂組成物には、陰イオン交換体を必要に応じて配合することができる。特に硬化性樹脂組成物を封止用成形材料として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、陰イオン交換体を配合することが好ましい。本発明において用いられる陰イオン交換体としては特に制限はなく、従来公知のものを用いることができるが、例えば、ハイドロタルサイト類や、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマスから選ばれる元素の含水酸化物等が挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。中でも、下記一般式(XXVI)で示されるハイドロタルサイトが好ましい。   An anion exchanger can be mix | blended with the curable resin composition of this invention as needed. In particular, when a curable resin composition is used as a molding material for sealing, an anion exchanger may be blended from the viewpoint of improving moisture resistance and high-temperature storage characteristics of an electronic component device including an element to be sealed. preferable. The anion exchanger used in the present invention is not particularly limited, and conventionally known anion exchangers can be used. An oxide etc. are mentioned, These can be used individually or in combination of 2 or more types. Among these, hydrotalcite represented by the following general formula (XXVI) is preferable.

(化21)
Mg1−XAl(OH)(COX/2・mHO ……(XXVI)
(0<X≦0.5、mは正の整数)
これらの陰イオン交換体の配合量は、ハロゲンイオンなどの陰イオンを捕捉できる十分量であれば特に制限はないが、(B)硬化性樹脂に対して0.1〜30重量%の範囲が好ましく、1〜5重量%がより好ましい。
(Chemical formula 21)
Mg 1-X Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O (XXVI)
(0 <X ≦ 0.5, m is a positive integer)
The compounding amount of these anion exchangers is not particularly limited as long as it is a sufficient amount capable of capturing anions such as halogen ions, but is in the range of 0.1 to 30% by weight with respect to (B) curable resin. Preferably, 1 to 5% by weight is more preferable.

本発明の硬化性樹脂組成物には、必要に応じてカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を配合しても良い。   You may mix | blend well-known colorants, such as carbon black, an organic dye, an organic pigment, a titanium oxide, a red lead, a bengara, with the curable resin composition of this invention as needed.

本発明の硬化性樹脂組成物には、成形時に金型との良好な離型性を持たせるため離型剤を配合してもよい。本発明において用いられる離型剤としては特に制限はなく従来公知のものを用いることができるが、例えば、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックス等が挙げられ、これらの1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、酸化型又は非酸化型のポリオレフィン系ワックスが好ましく、その配合量としては(B)硬化性樹脂に対して0.01〜10重量%が好ましく、0.1〜5重量%がより好ましい。ポリオレフィン系ワックスの配合量が0.01重量%未満では離型性が不十分な傾向があり、10重量%を超えると接着性が阻害されるおそれがある。ポリオレフィン系ワックスとしては、例えば市販品ではヘキスト社製のH4、PE、PEDシリーズ等の数平均分子量が500〜10000程度の低分子量ポリエチレンなどが挙げられる。また、ポリオレフィン系ワックスに他の離型剤を併用する場合、その配合量は(B)硬化性樹脂に対して0.1〜10重量%が好ましく、0.5〜3重量%がより好ましい。   In the curable resin composition of the present invention, a mold release agent may be blended in order to give good mold releasability from the mold during molding. The release agent used in the present invention is not particularly limited and conventionally known release agents can be used. For example, higher fatty acids such as carnauba wax, montanic acid, stearic acid, higher fatty acid metal salts, montanic acid esters, etc. Examples thereof include polyolefin waxes such as ester wax, oxidized polyethylene and non-oxidized polyethylene, and these may be used alone or in combination of two or more. Among them, an oxidized or non-oxidized polyolefin wax is preferable, and the blending amount thereof is preferably 0.01 to 10% by weight, more preferably 0.1 to 5% by weight with respect to (B) the curable resin. If the blending amount of the polyolefin wax is less than 0.01% by weight, the releasability tends to be insufficient, and if it exceeds 10% by weight, the adhesion may be hindered. Examples of the polyolefin-based wax include low molecular weight polyethylene having a number average molecular weight of about 500 to 10,000 such as H4, PE, and PED series manufactured by Hoechst. Moreover, when using another mold release agent together with a polyolefin-type wax, 0.1 to 10 weight% is preferable with respect to (B) curable resin, and 0.5 to 3 weight% is more preferable.

本発明の硬化性樹脂組成物には、難燃性を付与するために必要に応じて難燃剤を配合することができる。本発明において用いられる難燃剤としては特に制限はなく、例えば、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む公知の有機若しくは無機の化合物、金属水酸化物などが挙げられ、これらの1種を単独で用いても2種以上を組み合わせて用いてもよい。難燃剤の配合量は、難燃効果が達成されれば特に制限はないが、(C)エポキシ樹脂に対して1〜30重量%が好ましく、2〜15重量%がより好ましい。   In the curable resin composition of the present invention, a flame retardant can be blended as necessary to impart flame retardancy. There is no restriction | limiting in particular as a flame retardant used in this invention, For example, the well-known organic or inorganic compound containing a halogen atom, an antimony atom, a nitrogen atom, or a phosphorus atom, a metal hydroxide, etc. are mentioned, These 1 type May be used alone or in combination of two or more. Although there will be no restriction | limiting in particular if the flame-retardant effect is achieved, the compounding quantity of a flame retardant is 1-30 weight% with respect to (C) epoxy resin, and 2-15 weight% is more preferable.

また、本発明の封止用硬化性樹脂組成物には、樹脂成分と無機充填剤との接着性を高めるために、必要に応じて、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を添加することができる。
カップリング剤の配合量は、(E)無機充填剤に対して0.05〜5重量%であることが好ましく、0.1〜2.5重量%がより好ましい。0.05重量%未満ではフレームとの接着性が低下する傾向があり、5重量%を超えるとパッケージの成形性が低下する傾向がある。
In addition, in the curable resin composition for sealing of the present invention, epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, as needed, in order to increase the adhesion between the resin component and the inorganic filler, Known coupling agents such as various silane compounds such as vinyl silane, titanium compounds, aluminum chelates, and aluminum / zirconium compounds can be added.
The blending amount of the coupling agent is preferably 0.05 to 5% by weight, more preferably 0.1 to 2.5% by weight, based on the inorganic filler (E). If it is less than 0.05% by weight, the adhesion to the frame tends to be lowered, and if it exceeds 5% by weight, the moldability of the package tends to be lowered.

上記カップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−アニリノプロピルメチルジメトキシシラン、γ−アニリノプロピルメチルジエトキシシラン、γ−アニリノプロピルエチルジエトキシシラン、γ−アニリノプロピルエチルジメトキシシラン、γ−アニリノメチルトリメトキシシラン、γ−アニリノメチルトリエトキシシラン、γ−アニリノメチルメチルジメトキシシラン、γ−アニリノメチルメチルジエトキシシラン、γ−アニリノメチルエチルジエトキシシラン、γ−アニリノメチルエチルジメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルトリメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルトリエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルメチルジメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルメチルジエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルエチルジエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルエチルジメトキシシラン、γ−(N−メチル)アミノプロピルトリメトキシシラン、γ−(N−エチル)アミノプロピルトリメトキシシラン、γ−(N−ブチル)アミノプロピルトリメトキシシラン、γ−(N−ベンジル)アミノプロピルトリメトキシシラン、γ−(N−メチル)アミノプロピルトリエトキシシラン、γ−(N−エチル)アミノプロピルトリエトキシシラン、γ−(N−ブチル)アミノプロピルトリエトキシシラン、γ−(N−ベンジル)アミノプロピルトリエトキシシラン、γ−(N−メチル)アミノプロピルメチルジメトキシシラン、γ−(N−エチル)アミノプロピルメチルジメトキシシラン、γ−(N−ブチル)アミノプロピルメチルジメトキシシラン、γ−(N−ベンジル)アミノプロピルメチルジメトキシシラン、γ−(β−アミノエチル)アミノプロピルトリメトキシシラン、γ−[ビス(β−ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルジメトキシメチルシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、
イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤等が挙げられるが、これらに限られるものではない。また、これらを単独で用いても2種以上を組み合わせて用いてもよい。これらのなかでも、二級アミノ基を有するカップリング剤が流動性及びワイヤ流れの観点から好ましい。
Examples of the coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, and γ-acryloxypropyl. Trimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxy Silane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropyltriethoxysilane, γ-anilinopropylmethyldimethoxysilane, γ-anilinopropyl Tildiethoxysilane, γ-anilinopropylethyldiethoxysilane, γ-anilinopropylethyldimethoxysilane, γ-anilinomethyltrimethoxysilane, γ-anilinomethyltriethoxysilane, γ-anilinomethylmethyldimethoxysilane , Γ-anilinomethylmethyldiethoxysilane, γ-anilinomethylethyldiethoxysilane, γ-anilinomethylethyldimethoxysilane, N- (p-methoxyphenyl) -γ-aminopropyltrimethoxysilane, N- ( p-methoxyphenyl) -γ-aminopropyltriethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylmethyldimethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylmethyldiethoxysilane, N -(P-methoxyphenyl) -γ-amino Propylethyldiethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylethyldimethoxysilane, γ- (N-methyl) aminopropyltrimethoxysilane, γ- (N-ethyl) aminopropyltrimethoxysilane, γ- (N-butyl) aminopropyltrimethoxysilane, γ- (N-benzyl) aminopropyltrimethoxysilane, γ- (N-methyl) aminopropyltriethoxysilane, γ- (N-ethyl) aminopropyltriethoxy Silane, γ- (N-butyl) aminopropyltriethoxysilane, γ- (N-benzyl) aminopropyltriethoxysilane, γ- (N-methyl) aminopropylmethyldimethoxysilane, γ- (N-ethyl) aminopropyl Methyldimethoxysilane, γ- (N-butyl) aminopropylmethyl Methoxysilane, γ- (N-benzyl) aminopropylmethyldimethoxysilane, γ- (β-aminoethyl) aminopropyltrimethoxysilane, γ- [bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β -(Aminoethyl) -γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltri Methoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimeth Silane coupling agents such as xylsilane and γ-mercaptopropylmethyldimethoxysilane,
Isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, isopropyltri (N-aminoethyl-aminoethyl) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl-1 -Butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, Isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctylfo Feto) titanate, isopropyl tricumylphenyl titanate, although tetraisopropyl bis (dioctyl phosphite) titanate coupling agents such as titanates and the like, not limited thereto. Moreover, you may use these individually or in combination of 2 or more types. Among these, a coupling agent having a secondary amino group is preferable from the viewpoints of fluidity and wire flow.

本発明の硬化性樹脂組成物には、シリコーンオイル、シリコーンゴム粉末等の応力緩和剤などを必要に応じて配合することができる。応力緩和剤を配合することにより、パッケージの反り変形量、パッケージクラックを低減させることができる。使用できる応力緩和剤としては、一般に使用されている公知の可とう剤(応力緩和剤)であれば特に限定されるものではない。一般に使用されている可とう剤としては、例えば、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル−ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル−スチレン−ブタジエン共重合体(MBS)、メタクリル酸メチル−シリコーン共重合体、メタクリル酸メチル−アクリル酸ブチル共重合体等のコア−シェル構造を有するゴム粒子等が挙げられ、これらを単独で用いても2種以上組み合わせて用いてもよい。なかでも、シリコーン系可とう剤が好ましく、シリコーン系可とう剤としては、エポキシ基を有するもの、アミノ基を有するもの、これらをポリエーテル変性したもの等が挙げられる。   The curable resin composition of the present invention may contain a stress relaxation agent such as silicone oil or silicone rubber powder as required. By blending a stress relaxation agent, the amount of warp deformation and package cracking of the package can be reduced. The stress relaxation agent that can be used is not particularly limited as long as it is a known flexible agent (stress relaxation agent) that is generally used. Commonly used flexible agents include, for example, silicone-based, styrene-based, olefin-based, urethane-based, polyester-based, polyether-based, polyamide-based, polybutadiene-based thermoplastic elastomers, NR (natural rubber), NBR, and the like. (Acrylonitrile-butadiene rubber), rubber particles such as acrylic rubber, urethane rubber, silicone powder, methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate Examples thereof include rubber particles having a core-shell structure such as a copolymer, and these may be used alone or in combination of two or more. Among these, silicone-based flexible agents are preferable, and examples of the silicone-based flexible agents include those having an epoxy group, those having an amino group, and those obtained by modifying these with a polyether.

本発明の硬化性樹脂組成物は、各種成分を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。例えば、上述した成分の所定量を均一に撹拌、混合し、予め70〜140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練、冷却し、粉砕するなどの方法で得ることができる。成形条件に合うような寸法及び重量でタブレット化すると使いやすい。   The curable resin composition of the present invention can be prepared by any method as long as various components can be uniformly dispersed and mixed. However, as a general method, components of a predetermined blending amount are sufficiently mixed by a mixer or the like. Then, after melt-kneading with a mixing roll, an extruder or the like, cooling and pulverization can be mentioned. For example, a predetermined amount of the above-mentioned components can be uniformly stirred and mixed, and can be obtained by a method such as kneading, cooling, and pulverizing with a kneader, roll, extruder, etc. that have been heated to 70 to 140 ° C. in advance. It is easy to use if it is tableted with dimensions and weight that match the molding conditions.

本発明で得られる硬化性樹脂組成物により素子を封止して得られる電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本発明の硬化性樹脂組成物で封止した、電子部品装置などが挙げられる。このような電子部品装置としては、例えば、リードフレーム上に半導体素子を固定し、ボンディングパッド等の素子の端子部とリード部をワイヤボンディングやバンプで接続した後、本発明の硬化性樹脂組成物を用いてトランスファ成形などにより封止してなる、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC、テープキャリアにバンプで接続した半導体チップを、本発明の硬化性樹脂組成物で封止したTCP(Tape Carrier Package)、配線板やガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子及び/又はコンデンサ、抵抗体、コイル等の受動素子を、本発明の硬化性樹脂組成物で封止したCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール、裏面に配線板接続用の端子を形成した有機基板の表面に素子を搭載し、バンプまたはワイヤボンディングにより素子と有機基板に形成された配線を接続した後、本発明の硬化性樹脂組成物で素子を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)などが挙げられる。また、プリント回路板にも本発明の硬化性樹脂組成物は有効に使用できる。   As an electronic component device obtained by sealing an element with the curable resin composition obtained in the present invention, a lead frame, a wired tape carrier, a wiring board, glass, a support member such as a silicon wafer, a semiconductor chip, Examples include electronic component devices in which active elements such as transistors, diodes, and thyristors, and passive elements such as capacitors, resistors, and coils are mounted, and necessary portions are sealed with the curable resin composition of the present invention. It is done. As such an electronic component device, for example, a semiconductor element is fixed on a lead frame, and a terminal portion and a lead portion of an element such as a bonding pad are connected by wire bonding or bump, and then the curable resin composition of the present invention. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-lead package) ), TSOP (Thin Small Outline Package), TQFP (Thin Quad Flat Package) and other general resin-encapsulated ICs, and semiconductor chips connected to tape carriers by bumps are encapsulated with the curable resin composition of the present invention. TCP (Tape Carrier Package), connected to wiring formed on a wiring board or glass by wire bonding, flip chip bonding, solder, etc. COB (Chip On Board) module, hybrid IC, in which active elements such as conductor chips, transistors, diodes, thyristors and / or passive elements such as capacitors, resistors and coils are sealed with the curable resin composition of the present invention. A multi-chip module, an element is mounted on the surface of an organic substrate on which a terminal for connecting a wiring board is formed on the back surface, the element and the wiring formed on the organic substrate are connected by bump or wire bonding, and then the curable resin of the present invention Examples thereof include BGA (Ball Grid Array) and CSP (Chip Size Package) in which the element is sealed with a composition. Moreover, the curable resin composition of this invention can be used effectively also for a printed circuit board.

本発明の硬化性樹脂組成物を用いて、電子部品装置を封止する方法としては、低圧トランスファ成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等を用いてもよい。   As a method for sealing an electronic component device using the curable resin composition of the present invention, a low-pressure transfer molding method is the most common, but an injection molding method, a compression molding method, or the like may be used.

次に実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention, the scope of the present invention is not limited to these Examples.

〔硬化性樹脂の硬化促進剤の合成例〕
合成例1
フラスコにトリフェニルホスフィン20.4g、4−ブロモフェノール26.9g、塩化ニッケル(II)六水和物3.5g及びDMF20gを仕込み、145℃で6時間攪拌した。減圧下、反応液を濃縮し、メタノールを60ml、次いで、水酸化ナトリウム9.3gを加え、水酸化ナトリウムが溶け終わるまで攪拌した。
得られた溶液をセライトろ過し、ろ液を全体量が約50mlとなるまで減圧下濃縮し、水1リットルの中に投入し、析出した結晶をろ過、水洗後、減圧下乾燥し、化合物を25.6g得た。元素分析の結果は計算値C:81.34%、H:5.40%、測定値C:81.21%、H:5.34%であった。
[Synthesis example of curing accelerator of curable resin]
Synthesis example 1
A flask was charged with 20.4 g of triphenylphosphine, 26.9 g of 4-bromophenol, 3.5 g of nickel (II) chloride hexahydrate and 20 g of DMF, and stirred at 145 ° C. for 6 hours. The reaction solution was concentrated under reduced pressure, 60 ml of methanol and then 9.3 g of sodium hydroxide were added, and the mixture was stirred until the sodium hydroxide was completely dissolved.
The resulting solution was filtered through Celite, and the filtrate was concentrated under reduced pressure until the total amount was about 50 ml, poured into 1 liter of water, the precipitated crystals were filtered, washed with water, dried under reduced pressure, 25.6 g was obtained. The results of elemental analysis were calculated value C: 81.34%, H: 5.40%, measured value C: 81.21%, and H: 5.34%.

合成例2
4−ブロモフェノールの代わりに4−クロロフェノール20gを仕込んだ以外は、合成例1と同様に行い化合物を24.5g得た。元素分析の結果は計算値C:81.34%、H:5.40%、測定値C:81.23%、H:5.33%であった。
Synthesis example 2
24.5g of compounds were obtained in the same manner as in Synthesis Example 1 except that 20g of 4-chlorophenol was used instead of 4-bromophenol. The results of elemental analysis were the calculated value C: 81.34%, H: 5.40%, measured value C: 81.23%, and H: 5.33%.

合成例3
フラスコにトリフェニルホスフィン20.4g、3−ブロモフェノール26.9g、塩化ニッケル(II)六水和物3.5g及びDMF20gを仕込み、145℃で6時間攪拌した。減圧下反応液を濃縮し、メタノールを60ml、次いで、水酸化ナトリウム9.3gを加え、水酸化ナトリウムが溶け終わるまで攪拌した。得られた溶液をセライトろ過し、全体量が約50mlとなるまで濃縮し、水1リットルの中に投入した。これを約200mlとなるまで濃縮後、析出した結晶をろ過、乾燥し、化合物を10.2g得た。元素分析の結果は計算値C:81.34%、H:5.40%、測定値C:81.15%、H:5.29%であった。
Synthesis example 3
A flask was charged with 20.4 g of triphenylphosphine, 26.9 g of 3-bromophenol, 3.5 g of nickel (II) chloride hexahydrate and 20 g of DMF, and stirred at 145 ° C. for 6 hours. The reaction solution was concentrated under reduced pressure, 60 ml of methanol and then 9.3 g of sodium hydroxide were added, and the mixture was stirred until sodium hydroxide was completely dissolved. The resulting solution was filtered through celite, concentrated until the total amount was about 50 ml, and poured into 1 liter of water. After concentrating this to about 200 ml, the precipitated crystals were filtered and dried to obtain 10.2 g of the compound. The results of elemental analysis were calculated C: 81.34%, H: 5.40%, measured C: 81.15%, H: 5.29%.

合成例4
4−ブロモフェノールの代わりに2−ブロモフェノール26.9gを仕込んだ以外は、合成例1と同様に行い化合物を24.3g得た。元素分析の結果は計算値C:81.34%、H:5.40%、測定値C:81.22%、H:5.32%であった。
Synthesis example 4
24.3 g of compounds were obtained in the same manner as in Synthesis Example 1 except that 26.9 g of 2-bromophenol was used instead of 4-bromophenol. The results of elemental analysis were calculated C: 81.34%, H: 5.40%, measured C: 81.22%, H: 5.32%.

合成例5
4−ブロモフェノールの代わりに2−クロロフェノール20gを仕込んだ以外は、合成例1と同様に行い化合物を25.2g得た。元素分析の結果は計算値C:81.34%、H:5.40%、測定値C:81.20%、H:5.34%であった。
Synthesis example 5
25.2g of compounds were obtained in the same manner as in Synthesis Example 1 except that 20g of 2-chlorophenol was used instead of 4-bromophenol. The results of elemental analysis were calculated C: 81.34%, H: 5.40%, measured C: 81.20%, H: 5.34%.

合成例6
4−ブロモフェノールの代わりに4−ブロモ−2,6−ジメチルフェノール31.3gを仕込んだ以外は、合成例1と同様に行い化合物を25.9g得た。元素分析の結果は計算値C:81.66%、H:6.06%、測定値C:81.47%、H:5.99%であった。
Synthesis Example 6
25.9g of compounds were obtained in the same manner as in Synthesis Example 1 except that 31.3g of 4-bromo-2,6-dimethylphenol was used instead of 4-bromophenol. The results of elemental analysis were the calculated value C: 81.66%, H: 6.06%, measured value C: 81.47%, H: 5.9%.

合成例7
トリフェニルホスフィンの代わりにトリ−p−トリルホスフィン23.7gを仕込んだ以外は、合成例2と同様に行い化合物を27.2g得た。元素分析の結果は計算値C:81.80%、H:6.36%、測定値C:81.67%、H:6.29%であった。
Synthesis example 7
27.2 g of compound was obtained in the same manner as in Synthesis Example 2 except that 23.7 g of tri-p-tolylphosphine was used instead of triphenylphosphine. The results of elemental analysis were calculated C: 81.80%, H: 6.36%, measured C: 81.67%, H: 6.29%.

合成例8
4−ブロモフェノールの代わりに6−ブロモ−2−ナフトール36.2gを仕込んだ以外は、合成例1と同様に行い化合物を25.9g得た。元素分析の結果は計算値C:83.15%、H:5.23%、測定値C:83.01%、H:5.18%であった。
Synthesis example 8
25.9g of compounds were obtained in the same manner as in Synthesis Example 1 except that 36.2g of 6-bromo-2-naphthol was used instead of 4-bromophenol. The results of elemental analysis were calculated C: 83.15%, H: 5.23%, measured C: 83.01%, H: 5.18%.

合成例9
トリフェニルホスフィンの代わりにシクロヘキシルジフェニルホスフィン20.9gを仕込んだ以外は、合成例2と同様に行い化合物を16.5g得た。元素分析の結果は計算値C:79.98%、H:6.99%、測定値C:79.86%、H:6.90%であった。
Synthesis Example 9
16.5 g of compound was obtained in the same manner as in Synthesis Example 2 except that 20.9 g of cyclohexyldiphenylphosphine was used instead of triphenylphosphine. The results of elemental analysis were as follows: calculated value C: 79.98%, H: 6.99%, measured value C: 79.86%, H: 6.90%.

合成例1〜9で得られた化合物について、次の方法で各分析を行った。
(1)H−NMR
化合物約10mgを約0.5mlの重メタノールに溶かし、φ5mmの試料管に入れ、日本ブルカー社製AC−250で測定した。シフト値は溶媒に微量含まれるCHDOH(3.3ppm)を基準とした。
(2)13C−NMR
化合物約100mgを約0.5mlの重メタノールに溶かし、φ5mmの試料管に入れ、日本ブルカー社製AC−250で測定した。シフト値は重メタノール(49ppm)を基準とした。
(3)31P−NMR
化合物約100mgを約0.5mlの重メタノールに溶かし、φ5mmの試料管に入れ、日本ブルカー社製AC−250で測定した。シフト値はリン酸トリフェニル(0ppm)を基準とした。
(4)IR
Bio−Rad社製FTS 3000MXを用い、KBr法で測定した。
Each analysis was performed by the following method about the compound obtained by the synthesis examples 1-9.
(1) 1 H-NMR
About 10 mg of the compound was dissolved in about 0.5 ml of deuterated methanol, placed in a φ5 mm sample tube, and measured with AC-250 manufactured by Nippon Bruker. The shift value was based on CHD 2 OH (3.3 ppm) contained in a trace amount in the solvent.
(2) 13 C-NMR
About 100 mg of the compound was dissolved in about 0.5 ml of deuterated methanol, placed in a φ5 mm sample tube, and measured with AC-250 manufactured by Nippon Bruker. The shift value was based on heavy methanol (49 ppm).
(3) 31 P-NMR
About 100 mg of the compound was dissolved in about 0.5 ml of deuterated methanol, placed in a φ5 mm sample tube, and measured with AC-250 manufactured by Nippon Bruker. The shift value was based on triphenyl phosphate (0 ppm).
(4) IR
Measurement was performed by KBr method using FTS 3000MX manufactured by Bio-Rad.

各分析の結果、合成例1及び2で合成した化合物は同一化合物であり(化合物1)、下記式(XXVII)で示される構造であることを確認した。収率はそれぞれ93%、89%であった。化合物1のH−NMR(CDOD)、13C−NMR(CDOD)、31P−NMR(CDOD)及びIR(KBr法)のスペクトルをそれぞれ図1、2、3及び4に示す。 As a result of each analysis, it was confirmed that the compounds synthesized in Synthesis Examples 1 and 2 were the same compound (Compound 1) and had a structure represented by the following formula (XXVII). Yields were 93% and 89%, respectively. 1 H-NMR (CD 3 OD), 13 C-NMR (CD 3 OD), 31 P-NMR (CD 3 OD) and IR (KBr method) spectra of Compound 1 are shown in FIGS. Shown in

各分析の結果、合成例3で合成した化合物(化合物2)は下記式(XXVIII)で示される構造であることを確認した。収率は37%であった。化合物2のH−NMR(CDOD)、13C−NMR(CDOD)、31P−NMR(CDOD)及びIR(KBr)のスペクトルをそれぞれ図5、6、7及び8に示す。 As a result of each analysis, it was confirmed that the compound (Compound 2) synthesized in Synthesis Example 3 had a structure represented by the following formula (XXVIII). The yield was 37%. 1 H-NMR (CD 3 OD), 13 C-NMR (CD 3 OD), 31 P-NMR (CD 3 OD) and IR (KBr) spectra of Compound 2 are shown in FIGS. 5, 6, 7 and 8, respectively. Show.

各分析の結果、合成例4及び5で合成した化合物は同一化合物であり(化合物3)、下記式(XXIX)で示される構造であることを確認した。収率はそれぞれ88%、91%であった。H−NMR(CDOD)、13C−NMR(CDOD)、31P−NMR(CDOD)及びIR(KBr)のスペクトルをそれぞれ図9、10、11及び12に示す。 As a result of each analysis, it was confirmed that the compounds synthesized in Synthesis Examples 4 and 5 were the same compound (Compound 3) and had a structure represented by the following formula (XXIX). Yields were 88% and 91%, respectively. The spectra of 1 H-NMR (CD 3 OD), 13 C-NMR (CD 3 OD), 31 P-NMR (CD 3 OD) and IR (KBr) are shown in FIGS. 9, 10, 11 and 12, respectively.

各分析の結果、合成例6で合成した化合物(化合物4)は下記式(XXX)で示される構造であることを確認した。収率は87%であった。H−NMR(CDOD)、13C−NMR(CDOD)、31P−NMR(CDOD)及びIR(KBr)のスペクトルをそれぞれ図13、14、15及び16に示す。 As a result of each analysis, it was confirmed that the compound (Compound 4) synthesized in Synthesis Example 6 had a structure represented by the following formula (XXX). The yield was 87%. The spectra of 1 H-NMR (CD 3 OD), 13 C-NMR (CD 3 OD), 31 P-NMR (CD 3 OD) and IR (KBr) are shown in FIGS. 13, 14, 15 and 16, respectively.

各分析の結果、合成例7で合成した化合物(化合物5)は下記式(XXXI)で示される構造であることを確認した。収率は88%であった。H−NMR(CDOD)、13C−NMR(CDOD)、31P−NMR(CDOD)及びIR(KBr)のスペクトルをそれぞれ図17、18、19及び20に示す。 As a result of each analysis, it was confirmed that the compound (Compound 5) synthesized in Synthesis Example 7 had a structure represented by the following formula (XXXI). The yield was 88%. The spectra of 1 H-NMR (CD 3 OD), 13 C-NMR (CD 3 OD), 31 P-NMR (CD 3 OD) and IR (KBr) are shown in FIGS. 17, 18, 19 and 20, respectively.

各分析の結果、合成例8で合成した化合物(化合物6)は下記式(XXXII)で示される
構造であることを確認した。収率は82%であった。H−NMR(CDOD)、13C−NMR(CDOD)、31P−NMR(CDOD)及びIR(KBr)のスペクトルをそれぞれ図21、22、23及び24に示す。
As a result of each analysis, it was confirmed that the compound (Compound 6) synthesized in Synthesis Example 8 had a structure represented by the following formula (XXXII). The yield was 82%. The spectra of 1 H-NMR (CD 3 OD), 13 C-NMR (CD 3 OD), 31 P-NMR (CD 3 OD) and IR (KBr) are shown in FIGS. 21, 22, 23 and 24, respectively.

各分析の結果、合成例9で合成した化合物(化合物7)は下記式(XXXIII)で示される構造であることを確認した。収率は59%であった。H−NMR(CDOD)、13C−NMR(CDOD)、31P−NMR(CDOD)及びIR(KBr)のスペクトルをそれぞれ図25、26、27及び28に示す。 As a result of each analysis, it was confirmed that the compound (Compound 7) synthesized in Synthesis Example 9 had a structure represented by the following formula (XXXIII). The yield was 59%. The spectra of 1 H-NMR (CD 3 OD), 13 C-NMR (CD 3 OD), 31 P-NMR (CD 3 OD) and IR (KBr) are shown in FIGS. 25, 26, 27 and 28, respectively.

Figure 2005256009
Figure 2005256009

上記化合物(XXVII)〜(XXXIII)のうち、(XXVIII)以外の化合物は、式(II)の共鳴で示すことができる化合物であり、(XXVIII)は式(II)の共鳴で示すことができない化合物である。   Among the compounds (XXVII) to (XXXIII), compounds other than (XXVIII) are compounds that can be represented by the resonance of formula (II), and (XXVIII) cannot be represented by the resonance of formula (II). A compound.

〔硬化性樹脂組成物の作製及び特性評価〕
(実施例1〜61、比較例1〜81)
エポキシ樹脂としては、エポキシ当量196、融点106℃のビフェニル型エポキシ樹脂(エポキシ樹脂1:ジャパンエポキシレジン株式会社製商品名YX−4000H)、
エポキシ当量245、融点110℃の硫黄原子含有型エポキシ樹脂(エポキシ樹脂2:新日鐵化学株式会社製商品名YSLV−120TE)、
エポキシ当量192、融点79℃のジフェニルメタン骨格型エポキシ樹脂(エポキシ樹脂3:新日鐡化学株式会社製商品名YSLV−80XY)、
エポキシ当量210、融点120℃のスチルベン型エポキシ樹脂(エポキシ樹脂4:住友化学工業株式会社製商品名ESLV−210)、
エポキシ当量195、軟化点62℃のオルトクレゾールノボラック型エポキシ樹脂(エポキシ樹脂5:住友化学工業株式会社製商品名ESCN−190−2)、エポキシ当量264、軟化点64℃のジシクロペンタジエン変性フェノールノボラック型エポキシ樹脂(エポキシ樹脂6:大日本インキ化学工業株式会社製商品名HP−7200)、
エポキシ当量167のサリチルアルデヒド型エポキシ樹脂(エポキシ樹脂7:日本化薬株式会社製商品名EPPN−502H)、
エポキシ当量242、軟化点95℃のアラルキル型フェノール樹脂のエポキシ化物とビフェニル型エポキシ樹脂との重量比80/20の混合物(エポキシ樹脂8:日本化薬株式会社製商品名CER−3000)、
エポキシ当量265、軟化点66℃のアラルキル型フェノール樹脂のエポキシ化物(エポキシ樹脂9:新日鐵化学株式会社商品名ESN−175)、
難燃効果のあるエポキシ樹脂として、エポキシ当量393、軟化点80℃、臭素含有量48重量%の臭素化ビスフェノールA型エポキシ樹脂(臭素化エポキシ樹脂)を用意した。
[Preparation and characteristic evaluation of curable resin composition]
(Examples 1-61, Comparative Examples 1-81)
As an epoxy resin, an epoxy equivalent of 196, a biphenyl type epoxy resin having a melting point of 106 ° C. (epoxy resin 1: trade name YX-4000H manufactured by Japan Epoxy Resin Co., Ltd.),
A sulfur atom-containing epoxy resin having an epoxy equivalent of 245 and a melting point of 110 ° C. (epoxy resin 2: trade name YSLV-120TE manufactured by Nippon Steel Chemical Co., Ltd.),
Diphenylmethane skeleton type epoxy resin having an epoxy equivalent of 192 and a melting point of 79 ° C. (epoxy resin 3: trade name YSLV-80XY, manufactured by Nippon Steel Chemical Co., Ltd.)
Stilbene type epoxy resin having an epoxy equivalent of 210 and a melting point of 120 ° C. (epoxy resin 4: trade name ESLV-210 manufactured by Sumitomo Chemical Co., Ltd.),
Ortho-cresol novolak type epoxy resin having an epoxy equivalent of 195 and a softening point of 62 ° C. (epoxy resin 5: trade name ESCN-190-2 manufactured by Sumitomo Chemical Co., Ltd.), dicyclopentadiene modified phenol novolac having an epoxy equivalent of 264 and a softening point of 64 ° C. Type epoxy resin (epoxy resin 6: trade name HP-7200 manufactured by Dainippon Ink & Chemicals, Inc.),
A salicylaldehyde type epoxy resin having an epoxy equivalent of 167 (epoxy resin 7: Nippon Kayaku Co., Ltd. trade name EPPN-502H),
Mixture of epoxidized aralkyl type phenol resin having an epoxy equivalent of 242 and a softening point of 95 ° C. and biphenyl type epoxy resin in a weight ratio of 80/20 (epoxy resin 8: trade name CER-3000 manufactured by Nippon Kayaku Co., Ltd.)
Epoxy product of aralkyl-type phenol resin having an epoxy equivalent of 265 and a softening point of 66 ° C. (epoxy resin 9: Nippon Steel Chemical Co., Ltd. trade name ESN-175),
A brominated bisphenol A type epoxy resin (brominated epoxy resin) having an epoxy equivalent of 393, a softening point of 80 ° C., and a bromine content of 48% by weight was prepared as an epoxy resin having a flame retardant effect.

硬化剤としては、水酸基当量176、軟化点70℃のフェノールアラルキル樹脂(硬化剤1:三井化学株式会社製商品名ミレックスXL−225)、
水酸基当量199、軟化点89℃のビフェニル骨格型フェノール樹脂(硬化剤2:明和化成株式会社製商品名MEH−7851)、
水酸基当量183、軟化点79℃のナフトールアラルキル樹脂(硬化剤3:新日鐵化学株式会社製商品名SN−170)、
水酸基当量170、軟化点93℃のジシクロペンタジエン変性フェノールノボラック樹脂(硬化剤4:日本石油化学株式会社製商品名DPP)、
水酸基当量106のフェノールノボラック樹脂(硬化剤5:日立化成工業株式会社製商品名HP−850N)、
水酸基当量156のベンズアルデヒド型とアラルキル型との共重合型フェノール樹脂(硬化剤6:住金ケミカル株式会社製商品名HE−510)、
水酸基当量106のサリチルアルデヒド型フェノール樹脂(硬化剤7:明和化成株式会社製商品名MEH−7500)
難燃効果のあるフェノール樹脂として、水酸基当量209、軟化点73℃のナフトールアラルキル樹脂にアセナフチレンを10重量%添加した樹脂(硬化剤8、新日鐵化学株式会社製商品名SN−170AR10)を用意した。
As a curing agent, a phenol aralkyl resin having a hydroxyl group equivalent of 176 and a softening point of 70 ° C. (curing agent 1: trade name Mirex XL-225 manufactured by Mitsui Chemicals, Inc.),
Biphenyl skeleton type phenol resin having a hydroxyl group equivalent of 199 and a softening point of 89 ° C. (curing agent 2: trade name MEH-7851 manufactured by Meiwa Kasei Co., Ltd.),
A naphthol aralkyl resin having a hydroxyl group equivalent of 183 and a softening point of 79 ° C. (curing agent 3: trade name SN-170 manufactured by Nippon Steel Chemical Co., Ltd.),
Dicyclopentadiene-modified phenol novolak resin having a hydroxyl group equivalent of 170 and a softening point of 93 ° C. (curing agent 4: trade name DPP manufactured by Nippon Petrochemical Co., Ltd.)
Phenol novolac resin having a hydroxyl group equivalent of 106 (curing agent 5: trade name HP-850N, manufactured by Hitachi Chemical Co., Ltd.),
A copolymerized phenol resin of a benzaldehyde type and an aralkyl type having a hydroxyl group equivalent of 156 (curing agent 6: trade name HE-510 manufactured by Sumikin Chemical Co., Ltd.),
Salicylaldehyde type phenol resin having a hydroxyl equivalent weight of 106 (curing agent 7: trade name MEH-7500 manufactured by Meiwa Kasei Co., Ltd.)
Prepared as a phenolic resin having a flame retardant effect is a resin obtained by adding 10% by weight of acenaphthylene to a naphthol aralkyl resin having a hydroxyl equivalent weight of 209 and a softening point of 73 ° C. (curing agent 8, trade name SN-170AR10 manufactured by Nippon Steel Chemical Co., Ltd.) did.

実施例の硬化促進剤としては、上記の化合物1(硬化促進剤1)、化合物2(硬化促進剤2)、化合物3(硬化促進剤3)、化合物4(硬化促進剤4)、化合物5(硬化促進剤5)、化合物6(硬化促進剤6)、化合物7(硬化促進剤7)、比較例の硬化促進剤としてはトリフェニルホスフィン(硬化促進剤A)、トリフェニルホスフィンと1,4−ベンゾキノンとの付加反応物(硬化促進剤B)、トリ−n−ブチルホスフィンと1,4−ベンゾキノンとの付加反応物(硬化促進剤C)、トリシクロヘキシルホスフィンと1,4−ベンゾキノンとの付加反応物(硬化促進剤D)、下記式(XXXIV)で示される(シクロペンタジエニリデン)トリフェニルホスホラン(硬化促進剤E)、下記式(XXXV)で示される2−(トリフェニルホスファアニリデン)サクシニックアンヒドリド(硬化促進剤F)、DBUのフェノールノボラック塩(硬化促進剤G:サンアプロ株式会社製商品名SA−841)を用意した。   As the curing accelerator of the examples, the above-mentioned compound 1 (curing accelerator 1), compound 2 (curing accelerator 2), compound 3 (curing accelerator 3), compound 4 (curing accelerator 4), compound 5 ( Curing accelerator 5), compound 6 (curing accelerator 6), compound 7 (curing accelerator 7), and as a curing accelerator of Comparative Example, triphenylphosphine (curing accelerator A), triphenylphosphine and 1,4- Addition reaction product of benzoquinone (curing accelerator B), addition reaction product of tri-n-butylphosphine and 1,4-benzoquinone (curing accelerator C), addition reaction of tricyclohexylphosphine and 1,4-benzoquinone Product (curing accelerator D), (cyclopentadienylidene) triphenylphosphorane (curing accelerator E) represented by the following formula (XXXIV), 2- (triphenylphosphaaniline represented by the following formula (XXXV) Down) succinate anhydrase hydride (curing accelerator F), phenol novolac salt (curing accelerator of DBU G: San-Apro Co., Ltd. trade name SA-841) was prepared.

Figure 2005256009
Figure 2005256009

無機充填剤としては平均粒径17.5μm、比表面積3.8m/gの球状溶融シリカを用い、その他の添加成分としてはカップリング剤としてエポキシシラン(γ−グリシドキシプロピルトリメトキシシラン)、着色剤としてカーボンブラック(三菱化学株式会社製商品名MA−100)、離型剤としてカルナバワックス(株式会社セラリカNODA製)、難燃剤として三酸化アンチモンを用意した。
これらを用いて表1〜表13に示す重量部で配合し、混練温度80℃、混練時間15分の条件でロール混練を行い、実施例1〜61、比較例1〜81の硬化性樹脂組成物を得た。
Spherical fused silica having an average particle size of 17.5 μm and a specific surface area of 3.8 m 2 / g is used as the inorganic filler, and epoxy silane (γ-glycidoxypropyltrimethoxysilane) is used as a coupling agent as the other additive component. Carbon black (trade name MA-100, manufactured by Mitsubishi Chemical Corporation) as a colorant, carnauba wax (manufactured by Celerica NODA) as a release agent, and antimony trioxide as a flame retardant were prepared.
These are blended in parts by weight shown in Tables 1 to 13 and roll kneaded under conditions of a kneading temperature of 80 ° C. and a kneading time of 15 minutes, and the curable resin compositions of Examples 1 to 61 and Comparative Examples 1 to 81 are used. I got a thing.

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

実施例、比較例の硬化性樹脂組成物を、次の各試験により評価した。評価結果を表14〜表26に示す。
なお、硬化性樹脂組成物の成形は、トランスファ成形機により、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で行った。また、後硬化は175℃で6時間行った。
(1)スパイラルフロー(流動性の指標)
EMMI−1−66に準じたスパイラルフロー測定用金型を用いて、上記条件で硬化性樹脂組成物を成形して流動距離(cm)を測定した。
(2)熱時硬度
硬化性樹脂組成物を上記条件で直径50mm×厚さ3mmの円板に成形し、成形後直ちにショアD型硬度計を用いて測定した。
(3)吸湿時熱時硬度
硬化性樹脂組成物を25℃/50%RHの条件で72時間放置後、上記(2)の条件でショアD型硬度計を用いて測定した。
(4)耐リフロークラック性:1
42アロイフレームに寸法8×10×0.4mmのテスト用シリコンチップを銀ペーストを用いて搭載した、外形寸法14×20×2.0mmのQFP80ピンのパッケージを、硬化性樹脂組成物を用いて上記条件で成形、後硬化して作製し、30℃、85%RHの条件で168時間吸湿させた後、ベーパーフェーズリフロー装置により、215℃、90秒の条件でリフロー処理を行って、クラックの発生の有無を確認し、試験パッケージ数(5)に対するクラック発生パッケージ数で評価した。
(5)耐リフロークラック性:2
85℃、60%RHの条件で168時間吸湿させた以外は、上記(4)と同じ条件で評価した。
(6)耐リフロークラック性:3
85℃、85%RHの条件で168時間吸湿させた以外は、上記(4)と同じ条件で評価した。
(7)高温放置特性
外形サイズ5×9mmで5μmの酸化膜を有するシリコンサブストレート上にライン/スペースが10μmのアルミ配線を形成したテスト素子を使用して、部分銀メッキを施した16ピン型DIP(Dual Inline Package)42アロイリードフレームに銀ペーストを用いて搭載し、サーモニックワイヤにより、200℃で素子のボンディングパッドとインナーリードをAu線にて接続したパッケージを硬化性樹脂組成物を用いて上記条件で成形、後硬化して作製し、200℃の条件で500時間、1000時間保管した後、取り出して導通試験を行い、不良パッケージ数を調べ、試験パッケージ数(10)に対する不良発生パッケージ数で評価した。
The curable resin compositions of Examples and Comparative Examples were evaluated by the following tests. The evaluation results are shown in Tables 14 to 26.
The curable resin composition was molded by a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. Further, post-curing was performed at 175 ° C. for 6 hours.
(1) Spiral flow (fluidity index)
Using a spiral flow measurement mold in accordance with EMMI-1-66, the curable resin composition was molded under the above conditions, and the flow distance (cm) was measured.
(2) Hardness upon heating The curable resin composition was molded into a disk having a diameter of 50 mm and a thickness of 3 mm under the above conditions, and was measured using a Shore D type hardness meter immediately after molding.
(3) Hardness at the time of moisture absorption When the curable resin composition was allowed to stand for 72 hours under the condition of 25 ° C./50% RH, it was measured using a Shore D type hardness tester under the condition (2).
(4) Reflow crack resistance: 1
A QFP80 pin package having an outer dimension of 14 × 20 × 2.0 mm, in which a test silicon chip having a size of 8 × 10 × 0.4 mm is mounted on a 42 alloy frame using a silver paste, is formed using a curable resin composition. Molding and post-curing under the above conditions, absorbing moisture for 168 hours at 30 ° C. and 85% RH, and then performing reflow treatment at 215 ° C. for 90 seconds with a vapor phase reflow device, The presence or absence of occurrence was confirmed, and the number of crack generation packages relative to the number of test packages (5) was evaluated.
(5) Reflow crack resistance: 2
Evaluation was performed under the same conditions as in the above (4) except that moisture was absorbed for 168 hours at 85 ° C. and 60% RH.
(6) Reflow crack resistance: 3
Evaluation was performed under the same conditions as in the above (4) except that moisture was absorbed for 168 hours under the conditions of 85 ° C. and 85% RH.
(7) High-temperature storage characteristics 16-pin type with partial silver plating using a test element in which an aluminum wiring with a line / space of 10 μm is formed on a silicon substrate with an outer size of 5 × 9 mm and an oxide film of 5 μm A DIP (Dual Inline Package) 42 alloy lead frame is mounted using silver paste, and a package in which the bonding pads of the element and the inner leads are connected by Au wires at 200 ° C with a thermonic wire is used with a curable resin composition. Molded and post-cured under the above conditions, stored at 200 ° C. for 500 hours and 1000 hours, then taken out, conducted a continuity test, examined the number of defective packages, and a defective package for the number of test packages (10) Evaluated by number.

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009

Figure 2005256009
Figure 2005256009


本発明の硬化性樹脂の硬化促進剤を含有する実施例1〜61は、いずれも流動性、保存安定性、熱時硬度、吸湿時熱時硬度、耐リフロークラック性及び高温放置特性に優れる。
これに対して、本発明の硬化性樹脂の硬化促進剤を含まない比較例1〜81では、同じ樹脂組成の実施例と比較して、保存安定性、熱時硬度、吸湿時熱時硬度、耐リフロークラック性及び高温放置特性のうち少なくともいずれかに劣っている。
Examples 1 to 61 containing a curing accelerator for a curable resin of the present invention are all excellent in fluidity, storage stability, hardness during heat, hardness during heat absorption, resistance to reflow cracking, and high temperature storage characteristics.
On the other hand, in Comparative Examples 1 to 81 that do not contain the curing accelerator of the curable resin of the present invention, compared to the examples of the same resin composition, storage stability, hot hardness, hot hardness during moisture absorption, It is inferior to at least one of reflow crack resistance and high temperature storage characteristics.

本発明の実施例で得た化合物1のH−NMRスペクトルである。1 is a 1 H-NMR spectrum of Compound 1 obtained in an example of the present invention. 本発明の実施例で得た化合物1の13C−NMRスペクトルである。It is a 13 C-NMR spectrum of compound 1 obtained in the example of the present invention. 本発明の実施例で得た化合物1の31P−NMRスペクトルである。It is a 31 P-NMR spectrum of the compound 1 obtained in the Example of this invention. 本発明の実施例で得た化合物1のIRスペクトルである。It is IR spectrum of the compound 1 obtained in the Example of this invention. 本発明の実施例で得た化合物2のH−NMRスペクトルである。 1 is a 1 H-NMR spectrum of Compound 2 obtained in an example of the present invention. 本発明の実施例で得た化合物2の13C−NMRスペクトルである。It is a 13 C-NMR spectrum of compound 2 obtained in the example of the present invention. 本発明の実施例で得た化合物2の31P−NMRスペクトルである。It is a 31 P-NMR spectrum of compound 2 obtained in the example of the present invention. 本発明の実施例で得た化合物2のIRスペクトルである。It is IR spectrum of the compound 2 obtained in the Example of this invention. 本発明の実施例で得た化合物3のH−NMRスペクトルである。 1 is a 1 H-NMR spectrum of Compound 3 obtained in an example of the present invention. 本発明の実施例で得た化合物3の13C−NMRスペクトルである。It is a 13 C-NMR spectrum of compound 3 obtained in the example of the present invention. 本発明の実施例で得た化合物3の31P−NMRスペクトルである。It is a 31 P-NMR spectrum of compound 3 obtained in the example of the present invention. 本発明の実施例で得た化合物3のIRスペクトルである。It is IR spectrum of the compound 3 obtained in the Example of this invention. 本発明の実施例で得た化合物4のH−NMRスペクトルである。Is a 1 H-NMR spectrum of Compound 4 obtained in Example of the present invention. 本発明の実施例で得た化合物4の13C−NMRスペクトルである。It is a 13 C-NMR spectrum of compound 4 obtained in the example of the present invention. 本発明の実施例で得た化合物4の31P−NMRスペクトルである。It is a 31 P-NMR spectrum of compound 4 obtained in the example of the present invention. 本発明の実施例で得た化合物4のIRスペクトルである。It is IR spectrum of the compound 4 obtained in the Example of this invention. 本発明の実施例で得た化合物5のH−NMRスペクトルである。 1 is a 1 H-NMR spectrum of Compound 5 obtained in an example of the present invention. 本発明の実施例で得た化合物5の13C−NMRスペクトルである。It is a 13 C-NMR spectrum of compound 5 obtained in the example of the present invention. 本発明の実施例で得た化合物5の31P−NMRスペクトルである。It is a 31 P-NMR spectrum of compound 5 obtained in the example of the present invention. 本発明の実施例で得た化合物5のIRスペクトルである。It is IR spectrum of the compound 5 obtained in the Example of this invention. 本発明の実施例で得た化合物6のH−NMRスペクトルである。 1 is a 1 H-NMR spectrum of compound 6 obtained in an example of the present invention. 本発明の実施例で得た化合物6の13C−NMRスペクトルである。It is a 13 C-NMR spectrum of compound 6 obtained in the example of the present invention. 本発明の実施例で得た化合物6の31P−NMRスペクトルである。It is a 31 P-NMR spectrum of compound 6 obtained in the example of the present invention. 本発明の実施例で得た化合物6のIRスペクトルである。It is IR spectrum of the compound 6 obtained in the Example of this invention. 本発明の実施例で得た化合物7のH−NMRスペクトルである。Is a 1 H-NMR spectrum of Compound 7 obtained in Example of the present invention. 本発明の実施例で得た化合物7の13C−NMRスペクトルである。It is a 13 C-NMR spectrum of compound 7 obtained in the example of the present invention. 本発明の実施例で得た化合物7の31P−NMRスペクトルである。It is a 31 P-NMR spectrum of compound 7 obtained in the example of the present invention. 本発明の実施例で得た化合物7のIRスペクトルである。It is IR spectrum of the compound 7 obtained in the Example of this invention.

Claims (9)

硬化性樹脂、下記一般式(I)で示される硬化促進剤及び無機充填剤を含有し、無機充填剤に難燃効果のある無機充填剤を含有する硬化性樹脂組成物。
Figure 2005256009
A curable resin composition comprising a curable resin, a curing accelerator represented by the following general formula (I), and an inorganic filler, and an inorganic filler having a flame retardant effect in the inorganic filler.
Figure 2005256009
無機充填剤が水酸化アルミニウム、水酸化マグネシウム、複合金属水酸化物、硼酸亜鉛から選ばれる1種類以上を含む請求項1記載の硬化性樹脂組成物。   The curable resin composition according to claim 1, wherein the inorganic filler contains one or more selected from aluminum hydroxide, magnesium hydroxide, composite metal hydroxide, and zinc borate. 上記一般式(I)のR〜Rがアルキル基及びフェノール性水酸基又はメルカプト基を持たないアリール基から選ばれる一価の置換基である請求項1又は2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein R 1 to R 3 in the general formula (I) are monovalent substituents selected from an alkyl group and an aryl group having no phenolic hydroxyl group or mercapto group. . 上記一般式(I)のYが酸素アニオン又はフェノール性水酸基からプロトンが脱離した酸素アニオンを有する基である請求項1〜3のいずれかに記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein Y − in the general formula (I) is an oxygen anion or a group having an oxygen anion in which a proton is eliminated from a phenolic hydroxyl group. 硬化性樹脂がエポキシ樹脂を含有する請求項1〜4のいずれかに記載の硬化性樹脂組成物。   The curable resin composition according to any one of claims 1 to 4, wherein the curable resin contains an epoxy resin. エポキシ樹脂がビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトールとクレゾールの共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物のいずれかのエポキシ樹脂を少なくとも1種を含有してなる請求項5記載の硬化性樹脂組成物。   Epoxy resin is biphenyl type epoxy resin, stilbene type epoxy resin, diphenylmethane type epoxy resin, sulfur atom containing type epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin, salicylaldehyde type epoxy resin, copolymerization type of naphthol and cresol The curable resin composition according to claim 5, comprising at least one epoxy resin selected from an epoxy resin and an epoxidized product of an aralkyl type phenol resin. 硬化剤を更に含有する請求項1〜6のいずれかに記載の硬化性樹脂組成物。   The curable resin composition according to any one of claims 1 to 6, further comprising a curing agent. 硬化剤がアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ベンズアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂の共重合型樹脂、ノボラック型フェノール樹脂のいずれかの少なくとも1種を含有してなる請求項7記載の硬化性樹脂組成物。   The curing agent contains at least one of aralkyl type phenol resin, dicyclopentadiene type phenol resin, salicylaldehyde type phenol resin, copolymer type resin of benzaldehyde type phenol resin and aralkyl type phenol resin, and novolac type phenol resin. The curable resin composition according to claim 7. 請求項1〜8のいずれかに記載の硬化性樹脂組成物により封止された素子を備えた電子部品装置。   The electronic component apparatus provided with the element sealed with the curable resin composition in any one of Claims 1-8.
JP2005152982A 2002-10-18 2005-05-25 Curable resin composition and electronic component device Pending JP2005256009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152982A JP2005256009A (en) 2002-10-18 2005-05-25 Curable resin composition and electronic component device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002304695 2002-10-18
JP2005152982A JP2005256009A (en) 2002-10-18 2005-05-25 Curable resin composition and electronic component device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003359287A Division JP2004156035A (en) 2002-10-18 2003-10-20 Curing accelerator for curable resin, curable resin composition and electronic component device

Publications (1)

Publication Number Publication Date
JP2005256009A true JP2005256009A (en) 2005-09-22

Family

ID=35082042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152982A Pending JP2005256009A (en) 2002-10-18 2005-05-25 Curable resin composition and electronic component device

Country Status (1)

Country Link
JP (1) JP2005256009A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190523A (en) * 1985-01-15 1986-08-25 モ−トン チオコ−ル インコ−ポレ−テツド Curable epoxy resin forming composition
JPH0340459A (en) * 1989-07-07 1991-02-21 Nitto Denko Corp Semiconductor device
JPH09157497A (en) * 1995-12-06 1997-06-17 Hitachi Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device sealed with the same
JPH1098136A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Resin seal type semiconductor device
JP2002003574A (en) * 2000-06-22 2002-01-09 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
JP2002080563A (en) * 2000-06-22 2002-03-19 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
JP2002249549A (en) * 2001-02-26 2002-09-06 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004115742A (en) * 2002-09-27 2004-04-15 Sumitomo Bakelite Co Ltd Curing agent composition for epoxy resin, epoxy resin composition using curing agent composition, and semiconductor device
JP2004115743A (en) * 2002-09-27 2004-04-15 Sumitomo Bakelite Co Ltd Curing accelerator, method for producing the same, epoxy resin composition and semiconductor device
JP2004149437A (en) * 2002-10-30 2004-05-27 Sumikin Air Water Chemical Inc Method for producing triarylphosphoniophenolate
JP2004156036A (en) * 2002-10-18 2004-06-03 Hitachi Chem Co Ltd Curing accelerator for curable resin, curable resin composition, electronic component device and method for producing phosphine derivative
JP2004176039A (en) * 2002-06-05 2004-06-24 Sumitomo Bakelite Co Ltd Curing accelerator, epoxy resin composition, and semiconductor device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190523A (en) * 1985-01-15 1986-08-25 モ−トン チオコ−ル インコ−ポレ−テツド Curable epoxy resin forming composition
JPH0340459A (en) * 1989-07-07 1991-02-21 Nitto Denko Corp Semiconductor device
JPH09157497A (en) * 1995-12-06 1997-06-17 Hitachi Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device sealed with the same
JPH1098136A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Resin seal type semiconductor device
JP2002003574A (en) * 2000-06-22 2002-01-09 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
JP2002080563A (en) * 2000-06-22 2002-03-19 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
JP2002249549A (en) * 2001-02-26 2002-09-06 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004176039A (en) * 2002-06-05 2004-06-24 Sumitomo Bakelite Co Ltd Curing accelerator, epoxy resin composition, and semiconductor device
JP2004115742A (en) * 2002-09-27 2004-04-15 Sumitomo Bakelite Co Ltd Curing agent composition for epoxy resin, epoxy resin composition using curing agent composition, and semiconductor device
JP2004115743A (en) * 2002-09-27 2004-04-15 Sumitomo Bakelite Co Ltd Curing accelerator, method for producing the same, epoxy resin composition and semiconductor device
JP2004156036A (en) * 2002-10-18 2004-06-03 Hitachi Chem Co Ltd Curing accelerator for curable resin, curable resin composition, electronic component device and method for producing phosphine derivative
JP2004149437A (en) * 2002-10-30 2004-05-27 Sumikin Air Water Chemical Inc Method for producing triarylphosphoniophenolate

Similar Documents

Publication Publication Date Title
JP4244777B2 (en) Curing accelerator for curable resin, curable resin composition, electronic component device, and method for producing phosphine derivative
KR100893022B1 (en) Curing accelerator, curable resin composition, and electronic part/device
JP2016014155A (en) Epoxy resin composition and electronic part device
JP4892984B2 (en) Curable resin composition and electronic component device
JP2004156035A (en) Curing accelerator for curable resin, curable resin composition and electronic component device
JP6176339B2 (en) Epoxy resin composition and electronic component device
JP2010024265A (en) Epoxy resin composition and electronic component device using same
JP4265187B2 (en) Electronic component apparatus provided with epoxy resin molding material and element for sealing
JP2005256011A (en) Curable resin composition and electronic component device
WO2018181813A1 (en) Epoxy resin composition and electronic component device
JP5008199B2 (en) Epoxy resin curing agent, epoxy resin composition, and electronic component device
JP5285208B2 (en) Novel compound and method for producing the same, and curable resin, epoxy resin composition and electronic component device containing novel compound
JP2014129485A (en) Epoxy resin composition and electronic component device
JP2006233189A (en) Hardening accelerator, hardenable resin composition, and electronic component device
JP4752333B2 (en) Curable resin composition and electronic component device
JP2007031698A (en) Epoxy resin composition and electronic part device
JP2006249222A (en) Epoxy resin curing agent, method for producing the same, epoxy resin composition and electronic part apparatus
JP4752332B2 (en) Curable resin composition and electronic component device
JP5045985B2 (en) Epoxy resin composition and electronic component device
JP5326184B2 (en) NOVEL COMPOUND AND PROCESS FOR PRODUCING THE SAME
JP2005240046A (en) Curable resin composition and electronic part device
JP6291729B2 (en) Curing accelerator for epoxy resin, epoxy resin composition and electronic component device
JP2005256009A (en) Curable resin composition and electronic component device
JP2005256010A (en) Curable resin composition and electronic component device
JP5395331B2 (en) Epoxy resin composition and electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426