JP2005255967A - Surface-reactive crenellated macromolecular microparticle and method for producing the same - Google Patents

Surface-reactive crenellated macromolecular microparticle and method for producing the same Download PDF

Info

Publication number
JP2005255967A
JP2005255967A JP2004111596A JP2004111596A JP2005255967A JP 2005255967 A JP2005255967 A JP 2005255967A JP 2004111596 A JP2004111596 A JP 2004111596A JP 2004111596 A JP2004111596 A JP 2004111596A JP 2005255967 A JP2005255967 A JP 2005255967A
Authority
JP
Japan
Prior art keywords
fine particles
polymer fine
polymer
polymerization
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004111596A
Other languages
Japanese (ja)
Inventor
Tatsuo Kaneko
達雄 金子
Kazuhiro Hamada
和博 濱田
Mitsuru Akashi
満 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANEKO DENKI BOSAI KK
Original Assignee
KANEKO DENKI BOSAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANEKO DENKI BOSAI KK filed Critical KANEKO DENKI BOSAI KK
Priority to JP2004111596A priority Critical patent/JP2005255967A/en
Publication of JP2005255967A publication Critical patent/JP2005255967A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide surface-reactive crenellated macromolecular microparticles higher in performance than conventional macromolecular microparticles, having such a shape as to have numerous projections on the surface in order to enlarge its specific surface area while keeping its size intact for the purpose of creating macromolecular microparticles usable in such wide-range fields as drug transport and sustained-releasing carriers, morbid state-catching carriers, gene-transferring carriers and carriers for diagnostic use, and to provide a method for producing the surface-reactive crenated macromolecular microparticles in a single step. <P>SOLUTION: The surface-reactive crenellated macromolecular microparticles are characterized by each having at least one kind of chemically reactive functional group, electrically chargeable functional group or functional group having physically interactive tendency such as hydrogen bond and also having numerous projections on the surface. The method for producing the surface-reactive crenellated macromolecular microparticles in a single step comprises carrying out a copolymerization between a plurality of monomers significantly differing in polymerization rate and solubility to a polymerization solvent and autoorganizing the resultant copolymer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面に他の分子と反応し得る官能基または他の分子と静電相互作用、水素結合、双極子相互作用、電荷移動相互作用、疎水性相互作用、ファンデルワールス相互作用、特異的親和力(アフィニティー)などの物理的な相互作用を示し得る官能基を一種類以上持つ高分子微粒子に関し、表面に多数の突起を持つ金平糖様形状のものであって、薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体の広範囲の分野に使用できる高分子微粒子に関する。また、当該高分子微粒子を一段階で容易に製造する方法に関する。  The present invention provides a functional group capable of reacting with other molecules on the surface or electrostatic interaction with other molecules, hydrogen bonding, dipole interaction, charge transfer interaction, hydrophobic interaction, van der Waals interaction, specific Polymeric fine particles having one or more types of functional groups capable of exhibiting physical interaction such as physical affinity (affinity), etc., which are of a flattened-like shape having a large number of protrusions on the surface, a drug transport sustained release carrier, a disease state The present invention relates to fine polymer particles that can be used in a wide range of fields such as capture carriers, carriers for gene introduction, and carriers for diagnostic agents. The present invention also relates to a method for easily producing the polymer fine particles in one step.

高分子微粒子は、数十ナノメートルから数マイクロメートルの直径を持つ粒子であり、その体積に比する表面積が著しく大きい。そのために他の物質を高効率に収着する特徴を持ち、様々な用途に使用可能である。例えば、色素を収着させた高分子微粒子は古くから塗料に使用されている。また、表面に強電解質性官能基を持つ高分子微粒子はイオン交換樹脂に使用され、他の化学的特性を持つ官能基を表面に持つ高分子微粒子はそれぞれの特徴を利用したクロマトグラフィーとして使用されている。  The polymer fine particle is a particle having a diameter of several tens of nanometers to several micrometers, and has a remarkably large surface area relative to its volume. Therefore, it has the characteristic of sorbing other substances with high efficiency and can be used for various purposes. For example, polymer fine particles on which a dye is sorbed have been used for paints for a long time. In addition, polymer fine particles with strong electrolyte functional groups on the surface are used for ion exchange resins, and polymer fine particles with functional groups with other chemical properties on the surface are used for chromatography utilizing their characteristics. ing.

特に、表面の親水性が高いことを特徴とする高分子微粒子は水中におけるコロイド分散安定性に優れ、他の水溶性物質を収着し、続く遠心分離処理により容易に沈降し回収可能となる特徴を持つために、薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体に使用できる。  In particular, polymer fine particles characterized by high hydrophilicity on the surface are excellent in colloidal dispersion stability in water, sorb other water-soluble substances, and can be easily settled and recovered by subsequent centrifugation. Therefore, it can be used as a drug transport sustained release carrier, a disease state capture carrier, a gene introduction carrier, and a diagnostic agent carrier.

一方、近年の新薬開発の著しい発展に伴う薬物種の多様化、医学の発展に伴う病原体の多様化および抗体種の多様化のために、従来の高分子微粒子よりも高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体が求められている。より高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体とは、より高い物質収着能力を持ち、かつ、物質収着時は十分に高いコロイド分散安定性を持ちつつ回収時にはより緩やかな条件で速やかに沈降回収できるものである。  On the other hand, in order to diversify drug species with recent significant development of new drugs, diversify pathogens and diversify antibody types with the development of medicine, sustained release of drug transport with higher performance than conventional polymer fine particles Carriers, disease state capture carriers, carriers for gene introduction, and carriers for diagnostic agents are required. Higher-performance drug transport sustained release carriers, disease state capture carriers, gene transfer carriers, and diagnostic drug carriers have higher substance sorption capacity and sufficiently high colloidal dispersion stability during substance sorption. On the other hand, at the time of recovery, the sediment can be recovered quickly under milder conditions.

物質収着能力を高めるためには、その体積に対する比表面積を上げることが有効である。その方法として、高分子微粒子のサイズを小さくすることが有効である。一方、体積を小さくすれば高分子微粒子は軽くなる。そのために高分子微粒子のコロイド分散安定性も高まる。このことは、沈降回収の際により厳しい沈降条件を要求する。例えば遠心分離を利用する場合には、より高い回転数でより長時間の遠心処理を要求する。これにより、収着した物質の変成が起こりやすくなる。つまり、高分子微粒子のサイズを変化させる方法では、物質収着能力と沈降回収性の両方を同時に高めることは不可能であり、より高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体の開発には不向きな方法である。  In order to increase the material sorption capacity, it is effective to increase the specific surface area relative to the volume. As such a method, it is effective to reduce the size of the polymer fine particles. On the other hand, if the volume is reduced, the polymer fine particles become lighter. For this reason, the colloidal dispersion stability of the polymer fine particles is also increased. This requires more severe settling conditions during settling recovery. For example, when centrifugation is used, a longer centrifugation process is required at a higher rotational speed. This makes the sorbed material more susceptible to transformation. In other words, the method of changing the size of the polymer microparticles cannot simultaneously improve both the substance sorption capacity and the sediment recovery ability, and it is possible to achieve a higher performance drug transport sustained release carrier, pathological condition capture carrier, and gene transfer This method is not suitable for the development of carriers and diagnostic agents.

高分子微粒子のサイズを変化させずに、その体積に対する比表面積を上げる方法として、形状を非球形にすることが有効である。しかし、非球形にすることは微粒子に物質収着の方向依存性を与える可能性がある。このことは物質が均等に収着しないため収着量が制限されたり、収着後の微粒子の水分散性や沈降性に特異性を与えるので、取り扱いが困難となることがある。  It is effective to make the shape non-spherical as a method of increasing the specific surface area relative to the volume without changing the size of the polymer fine particles. However, the non-spherical shape may give the fine particles direction dependency of substance sorption. This may limit the amount of sorption because the substance does not sorb evenly, and may give difficulty in water dispersibility and sedimentation of the fine particles after sorption, making handling difficult.

一方、非球形の中でも表面に多数の突起を有する金平糖型の微粒子は、球対称に近い対称性を持つので物質収着の方向依存性が最も小さい形状であると予想できる。従って、高分子微粒子を金平糖型にすることは、より高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体の開発に有効である。  On the other hand, a non-spherical confetti-type fine particle having a large number of protrusions on the surface has a symmetry close to a spherical symmetry, and thus can be expected to have a shape having the smallest dependence on the direction of substance sorption. Therefore, making the polymer fine particles into the confetti type is effective for the development of a higher-performance drug delivery sustained release carrier, a pathological condition capture carrier, a gene introduction carrier, and a diagnostic agent carrier.

高分子微粒子の形状を金平糖型にする方法の一例として、まず球状の高分子微粒子を作成し、その中に別のモノマーを含浸させ、高分子微粒子内でフリーラジカル重合を行うことを特徴とする、シード重合法と称される方法を用いれば、金平糖型を初めとする様々な形状の高分子微粒子が合成できることが知られている。(例えば、非特許文献1参照。)
大久保 政芳 高分子50巻9月号696頁2003年
As an example of a method of making the shape of the polymer fine particles into a confetti type, first, spherical polymer fine particles are prepared, and another monomer is impregnated therein, and free radical polymerization is performed in the polymer fine particles. It is known that polymer fine particles having various shapes including a confetti type can be synthesized by using a method called a seed polymerization method. (For example, refer nonpatent literature 1.)
Masayoshi Okubo Polymer Volume 50 September Issue 696 p. 2003

しかし、この方法は2段階の製造過程を必要とし煩雑である上、微粒子が分裂しやすく形状を維持しにくいという問題点がある。また、表面に様々な官能基を付与することが難しいという問題点もある。さらに、シードとなる高分子微粒子が小さい場合には作成が難しく、200ナノメートル以下の金平糖型微粒子の作成に関する報告はない。  However, this method requires a two-step manufacturing process and is complicated, and also has a problem that the fine particles are likely to be broken and the shape is difficult to maintain. There is also a problem that it is difficult to impart various functional groups to the surface. Furthermore, when the polymer fine particles used as seeds are small, the preparation is difficult, and there is no report on the preparation of gold flat sugar type fine particles of 200 nanometers or less.

高分子微粒子の形状を金平糖型にする別の方法として、まず大小2種類の球状の高分子微粒子を別々に作成し、大きい方の高分子微粒子の表面に小さい方の球状微粒子を集積させる、ヘテロアグリゲーションと称される方法で、表面に凹凸を有する高分子微粒子複合体を製造できることが知られている。(例えば、特許文献1と非特許文献2参照。)
特許公開平10−338710 藤本 啓二、高分子50巻9月号701頁2003年
As another method of making the shape of the polymer fine particles into a confetti type, first create two types of large and small spherical polymer particles separately, and accumulate the smaller spherical particles on the surface of the larger polymer particles. It is known that a polymer fine particle composite having irregularities on its surface can be produced by a method called aggregation. (For example, see Patent Document 1 and Non-Patent Document 2.)
Patent Publication 10-338710 Keiji Fujimoto, Polymer 50, September, 701, 2003

しかし、この方法は2段階以上の製造過程を必要とし煩雑である上、微粒子複合体が分裂しやすいという問題点がある。さらに、大きい方の高分子微粒子が小さくなるほど作成が難しく、200ナノメートル以下の金平糖型微粒子の作成に関する報告はない。  However, this method requires two steps or more of manufacturing processes and is troublesome, and also has a problem that the fine particle composite is easily split. Furthermore, the smaller the larger polymer fine particles, the more difficult it is to produce, and there is no report on the production of gold flat sugar-type fine particles of 200 nanometers or less.

表面に官能基を持つ高分子微粒子の一段階作成法としては、スチレンなどの非常に疎水性の高いポリマーの原料となるモノマーと、ポリエチレングリコールモノメタクリレートなどの分子量が数千の親水性オリゴマーで末端に重合性官能基を持つマクロモノマーと称されるモノマーを、極性溶媒中でフリーラジカル分散共重合する方法が知られている。また、この方法で高分子微粒子を作成する際、官能基を持つマクロモノマーを用いれば、その官能基が表面に集積した高分子微粒子となることも知られている。(例えば、非特許文献3参照。)また、この方法で作成された高分子微粒子は分散安定性が高く単一サイズであることが特徴であり、薬物輸送徐放担体(例えば、特許文献2と特許文献3参照。)、ウイルス捕捉担体(例えば、特許文献4参照。)、エイズワクチン素材(例えば、特許文献5参照。)として使用できる。
明石満、高分子加工、37巻120頁 特許公開平9−87204 特許公開平8−268916 特許公開平10−045601 特許公開2001−335510
One-step method for creating fine polymer particles with functional groups on the surface is a monomer that is a raw material for very hydrophobic polymers such as styrene, and a hydrophilic oligomer with a molecular weight of several thousand such as polyethylene glycol monomethacrylate. There is known a method of free-radical dispersion copolymerization of a monomer called a macromonomer having a polymerizable functional group in a polar solvent. It is also known that when polymer fine particles are produced by this method, if a macromonomer having a functional group is used, the polymer fine particles are accumulated on the surface thereof. (For example, see Non-Patent Document 3.) Further, the polymer fine particles prepared by this method are characterized by high dispersion stability and a single size, and a drug transport sustained release carrier (for example, Patent Document 2 and It can be used as a virus capture carrier (see, for example, Patent Document 4) and an AIDS vaccine material (see, for example, Patent Document 5).
Mitsuru Akashi, Polymer Processing, 37, 120 pages Patent Publication 9-87204 Patent Publication No. 8-268916 Patent Publication 10-045601 Patent Publication 2001-335510

マクロモノマーとは、重合性のモノマーとしての機能を有する重合体である。マクロモノマーは、主鎖ポリマーの合成と重合性官能基の導入とから組み立てられる。例えば、アニオンリビング重合(停止法、開始法)、カチオン重合(開環カチオンリビング重合、ビニルカチオン重合、イニファーターを利用したカチオン重合、等)、ラジカル重合における連鎖移動反応を利用する方法、あるいは、主鎖ポリマーの末端等の官能基に、クロルメチルスチレン、グリシジルメタクリレート、メタクリロイルイソシアネート、メタクロレイン、メタクリル酸クロライド、等を用いて重合性官能基を導入する方法などがある(例えば、非特許文献4参照。)
浅見柳三、高分子加工、33巻439頁
A macromonomer is a polymer having a function as a polymerizable monomer. Macromonomers are assembled from the synthesis of the main chain polymer and the introduction of polymerizable functional groups. For example, anionic living polymerization (termination method, initiation method), cationic polymerization (ring-opening cationic living polymerization, vinyl cationic polymerization, cationic polymerization using iniferter, etc.), a method using chain transfer reaction in radical polymerization, or There is a method of introducing a polymerizable functional group into a functional group such as a terminal of the main chain polymer using chloromethylstyrene, glycidyl methacrylate, methacryloyl isocyanate, methacrolein, methacrylic acid chloride or the like (for example, Non-Patent Document 4). reference.)
Asami Yanagi, Polymer Processing, 33: 439

本発明者等は、マクロモノマー法を改良して、スチレンとアクリロニトリルとポリエチレングリコールモノメタクリレートの3元フリーラジカル分散共重合を行い、表面にエーテル基を持つ金平糖型の形状を有する高分子微粒子を合成したことを先に報告した。しかし、この微粒子の表面にはエチレンオキシド基とメトキシ基のみが存在し、これらの官能基は薬物、病原体、抗体と化学反応または強い物理的相互作用を示さないために、薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体の分野に使用できない。(例えば、非特許文献5参照。)
陳 明清、金子達雄ら、Chemistry Letters 12月号1306頁2001年
The present inventors improved the macromonomer method to carry out ternary free radical dispersion copolymerization of styrene, acrylonitrile, and polyethylene glycol monomethacrylate to synthesize polymer fine particles having a confetti-shaped shape having an ether group on the surface. I reported earlier. However, there are only ethylene oxide groups and methoxy groups on the surface of these fine particles, and these functional groups do not show chemical reaction or strong physical interaction with drugs, pathogens, and antibodies. It cannot be used in the fields of capture carriers, gene introduction carriers, and diagnostic agents. (For example, refer nonpatent literature 5.)
Chen Mingqing, Kaneko Tatsuo et al., Chemistry Letters December 1306, 2001

この金平糖型微粒子の表面の官能基を、放射線などを用いて、薬物、病原体、抗体と容易に化学反応または物理的相互作用を示す官能基へ改質する方法もあるが、モノマーを出発物質として2段階以上の過程を必要とするために、製造方法が煩雑である。また、導入出来る官能基の種類も限られているために、多様な薬物、病原体、抗体と化学反応または物理的相互作用させることは難しいため、高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体の開発に不向きである。また、スチレンとアクリロニトリルと末端チオエトキシメチル−4−スチレン化ポリメタクリル酸の3元フリーラジカル分散共重合により得られる高分子微粒子は表面反応性ではあるが、金平糖型の形状を有しないので、薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体等の高性能化には不向きである。(例えば、非特許文献6参照。)
高分子学会予稿集 52巻499頁2003年
There is also a method of modifying the functional group on the surface of the confetti type microparticles to a functional group that easily shows chemical reaction or physical interaction with drugs, pathogens, and antibodies by using radiation or the like. Since the process of two steps or more is required, the manufacturing method is complicated. In addition, since the types of functional groups that can be introduced are limited, it is difficult to chemically react or physically interact with various drugs, pathogens, and antibodies. It is not suitable for the development of carriers for gene introduction and carriers for diagnostic agents. Further, although the polymer fine particles obtained by ternary free radical dispersion copolymerization of styrene, acrylonitrile and terminal thioethoxymethyl-4-styrenated polymethacrylic acid are surface-reactive, they do not have a confetti-shaped shape. It is not suitable for improving the performance of transport sustained release carriers, disease state capturing carriers, gene introduction carriers, diagnostic agent carriers, and the like. (For example, refer nonpatent literature 6.)
Proceedings of the Society of Polymer Science, Japan, Vol. 52, 499, 2003

本発明の課題は、従来の高分子微粒子より高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体等を作成するために、高い物質収着能力を持ち、かつ、物質収着時は十分に高いコロイド分散安定性を持つ一方、回収時にはより緩やかな条件で速やかに沈降回収できる高分子微粒子を提供し、さらにその一段階作成方法を提供することにある。  The object of the present invention is to create a drug delivery sustained release carrier, pathologic capture carrier, gene introduction carrier, diagnostic agent carrier and the like that have higher performance than conventional polymer fine particles, and has a high substance sorption ability, and An object of the present invention is to provide polymer fine particles that have sufficiently high colloidal dispersion stability at the time of substance sorption, and that can be quickly recovered by sedimentation under milder conditions at the time of recovery, and to provide a one-step preparation method thereof.

本発明は、前記課題を解決するため、表面に化学反応性官能基または荷電性官能基または水素結合などの物理的相互作用性を有する官能基を少なくとも一種を持ち、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子を提供する。この形状にすることで微粒子の体積に対する比表面積が大きくなるので、物質収着性と沈降回収性が高くなる一方、重量に変化はないのでコロイド分散性は維持される。  In order to solve the above problems, the present invention has at least one chemically reactive functional group, a charged functional group, or a functional group having a physical interaction property such as a hydrogen bond on the surface, and a large number of protrusions on the surface. Provided is a fine polymer particle characterized by having a confetti-like shape. By adopting this shape, the specific surface area with respect to the volume of the fine particles is increased, so that the material sorption property and the sediment recovery property are improved, while the weight is not changed, so that the colloidal dispersibility is maintained.

この構成によれば、表面官能性金平糖型高分子微粒子は、球体より高効率に薬物や病態や抗体と化学反応または相互作用し、球体よりも高い沈降回収性を持つので、より高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体等として使用可能となる。  According to this configuration, the surface functional confetti type polymer fine particles chemically react or interact with drugs, pathologies, and antibodies with higher efficiency than spheres, and have a higher sediment recovery than spheres. It can be used as a sustained transport carrier, a disease state capturing carrier, a gene introduction carrier, a diagnostic agent carrier, and the like.

本発明は前記課題を解決するため、表面に化学反応性官能基または荷電性官能基または水素結合などの物理的相互作用性を有する官能基を少なくとも一種を持ち、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子で、その突起が規則的に配列していることを特徴とする高分子微粒子を提供する。  In order to solve the above problems, the present invention has at least one chemically reactive functional group, a charged functional group, or a functional group having a physical interaction property such as a hydrogen bond on the surface, and has a large number of protrusions on the surface. Provided is a polymer fine particle characterized in that it has a confetti-like shape, and the protrusions are regularly arranged.

この構成によれば、突起の規則的配列により微粒子表面の収着部位の偏りが軽減されるため、均等に物質収着が起こるため、より高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体等として使用可能となる。  According to this configuration, since the uneven arrangement of the sorption site on the surface of the fine particles is reduced by the regular arrangement of the protrusions, the substance sorption occurs evenly. Therefore, a higher-performance drug transport sustained release carrier, pathological condition capture carrier, gene It can be used as a carrier for introduction, a carrier for diagnostic agents, and the like.

本発明は前記課題を解決するため、突起を除いた球体部の直径が300ナノメートル以下であり、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子を提供する。  In order to solve the above-mentioned problems, the present invention provides a polymer fine particle characterized in that a spherical portion excluding protrusions has a diameter of 300 nanometers or less, and has a shape of a confetti-like shape having a large number of protrusions on the surface. To do.

この構成によれば、直径が200ナノメートル以下の金平糖型高分子微粒子は体積に対する比表面積が最も大きく、最も高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体等として使用可能となる  According to this configuration, the gold flat sugar-type polymer fine particles having a diameter of 200 nanometers or less have the largest specific surface area relative to the volume, and the highest performance drug transport sustained release carrier, pathological condition capture carrier, gene introduction carrier, diagnostic drug carrier, etc. Can be used as

本発明は前記課題を解決するため、表面に化学反応性官能基または荷電性官能基または水素結合などの物理的相互作用性を有する官能基を少なくとも一種を持ち、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子を一段階で製造するための、重合速度と重合溶媒に対する溶解度の大きく異なる複数のモノマーを共重合すると同時に、その重合体を自己組織化させることを特徴とする方法を提供する。  In order to solve the above problems, the present invention has at least one chemically reactive functional group, a charged functional group, or a functional group having a physical interaction property such as a hydrogen bond on the surface, and has a large number of protrusions on the surface. Copolymerize multiple monomers with significantly different polymerization rates and solubility in polymerization solvent to produce polymer fine particles characterized by a confetti-like shape in one step, and at the same time self-assemble the polymer A method characterized by the above is provided.

本発明は前記課題を解決するため、表面に化学反応性官能基または荷電性官能基または水素結合などの物理的相互作用性を有する官能基を少なくとも一種を持ち、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子の多数を、均一な形状で製造するための、重合溶媒に対する溶解度と重合速度の大きく異なる複数のモノマーを出発物質として一段階で製造することを特徴とする方法を提供する。  In order to solve the above problems, the present invention has at least one chemically reactive functional group, a charged functional group, or a functional group having a physical interaction property such as a hydrogen bond on the surface, and has a large number of protrusions on the surface. To produce a large number of polymer fine particles characterized by a confetti-like shape in a uniform shape, starting with a plurality of monomers with greatly different solubility and polymerization rate in a polymerization solvent in one step A method is provided.

本発明は前記課題を解決するため、表面に化学反応性官能基または荷電性官能基または水素結合などの物理的相互作用性を有する官能基を少なくとも一種を持ち、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子で、その突起が規則正しく配列していることを特徴とする高分子微粒子を一段階で製造するための、重合溶媒に対する溶解度と重合速度の大きく異なる複数のモノマーを出発物質とすることを特徴とする方法を提供する。  In order to solve the above problems, the present invention has at least one chemically reactive functional group, a charged functional group, or a functional group having a physical interaction property such as a hydrogen bond on the surface, and has a large number of protrusions on the surface. Highly soluble in polymerization solvent and high polymerization rate to produce polymer fine particles characterized by a confetti-like shape, characterized in that the protrusions are regularly arranged, in one step Provided is a method characterized by starting from a plurality of different monomers.

この構成によれば、製造が一段階で行うことができるので、非常に簡便な方法を提供することができ、省エネルギー性が高く、大量生産に有利である。  According to this configuration, since manufacturing can be performed in one stage, a very simple method can be provided, energy saving is high, and it is advantageous for mass production.

本発明は前記課題を解決するため、表面に化学反応性官能基または荷電性官能基または水素結合などの物理的相互作用性を有する官能基を少なくとも一種を持ち、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子を一段階で製造するために、重合溶媒に対する溶解度と重合速度の大きく異なる複数のモノマーを出発物質として共重合する時、反応条件を種々に変化させることを特徴とする、高分子微粒子の形状とサイズを制御する方法を提供する。  In order to solve the above problems, the present invention has at least one chemically reactive functional group, a charged functional group, or a functional group having a physical interaction property such as a hydrogen bond on the surface, and has a large number of protrusions on the surface. In order to produce polymer fine particles characterized by the shape of a confetti like in one step, various reaction conditions can be used when copolymerizing a plurality of monomers with greatly different solubility and polymerization rate in the polymerization solvent as starting materials. The present invention provides a method for controlling the shape and size of polymer fine particles, which is characterized by being changed.

この構成によれば、微粒子の表面積を様々に制御できるので、その物質収着性と沈降回収性を幅広く制御可能となる。  According to this configuration, since the surface area of the fine particles can be controlled in various ways, the material sorption property and sedimentation recovery property can be widely controlled.

本発明は前記課題を解決するため、スチレンとアクリロニトリルと末端重合性ポリエチレングリコールと他の官能性マクロモノマー一つ以上をフリーラジカル分散共重合することを特徴とする、多数の突起物を表面に有する金平糖様の形状の高分子微粒子の多数を、均一な形状で一段階で製造し、当該高分子微粒子の形状とサイズを制御する方法を提供する。  In order to solve the above-mentioned problems, the present invention has a large number of protrusions on the surface, characterized in that styrene, acrylonitrile, terminal-polymerizable polyethylene glycol, and one or more other functional macromonomers are copolymerized by free radical dispersion. Provided is a method for producing a large number of polymer particles having a confetti-like shape in a single step in a uniform shape and controlling the shape and size of the polymer particles.

本発明によれば、金平糖型であるので同サイズの球状粒子の2倍以上の比表面積を持つので、従来よりも物質収着性と沈降回収性にすぐれた、より高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体等に利用できる表面官能性の高分子微粒子を提供することができる  According to the present invention, since it is a confetti type, it has a specific surface area that is twice or more that of spherical particles of the same size. It is possible to provide surface functional polymer fine particles that can be used as a carrier, a disease state capturing carrier, a gene introduction carrier, a diagnostic agent carrier, and the like.

本発明の表面官能性金平糖型高分子微粒子は、そのサイズが数マイクロメートルから数十ナノメートルの範囲にあり、表面に化学反応性官能基または荷電性官能基または水素結合などの物理的相互作用性を有する官能基の少なくとも一種を持ち、構成主要素が高分子であり、表面に多数の突起物を有する金平糖に似た形状の微粒子である。  The surface functional confetti type polymer fine particle of the present invention has a size in the range of several micrometers to several tens of nanometers, and has a physical interaction such as a chemically reactive functional group, a charged functional group or a hydrogen bond on the surface. It is a fine particle having a shape resembling that of confetti having at least one kind of functional group having a property, a constituent main component being a polymer, and a large number of protrusions on the surface.

表面官能性金平糖型高分子微粒子の製造方法の一例について説明する。ガラス製の反応管でスチレン(1.3mmol)(以下に示す一般式1で表される)とアクリロニトリル(2.6mmol)(以下に示す一般式2で表される)とマクロモノマーであるポリエチレングリコールモノメタクリレート(0.0189mmol)(以下に示す一般式3で表される)と官能性マクロモノマーである末端チオエトキシメチル−4−スチレン化ポリメタクリル酸(0.0081mmol)(以下に示す一般式4で表される)とラジカル開始剤を重合溶媒に溶かし込み、混合液が透明になるまで撹拌し、液体窒素で反応液を凍らせたまま真空下で脱気することにより溶存酸素を取り除き、反応管を真空下で封緘後に加熱することによりフリーラジカル重合を行った。時間経過とともに、反応溶液の濁度が上昇することが目視により確認できた。反応液の白濁化は分散重合がスムーズに起こったことを示している。反応後に未反応モノマーを除去するために透析を行った。このようにして得られた生成物の水分散液およびこれを凍結乾燥することにより得られた粉末を試料とし、種々の測定を行った。この高分子微粒子は水に分散後一週間以上沈降せずにコロイド状態を保つ高い水分散安定性を示した。ここで、表面官能性金平糖型高分子微粒子を製造する当たり、特にポリエチレングリコールモノメタクリレートはその限りでなく、末端重合性ポリエチレングリコールであればよい。また、末端チオエトキシメチル−4−スチレン化ポリメタクリル酸はその限りでなく、末端重合性反応性マクロモノマーであればよい。また、これら4種のモノマーを用いさえすれば、モル数とモル比はここに示す限りではない。  An example of a method for producing surface-functional confetti type polymer fine particles will be described. Polyethylene glycol as a macromonomer with styrene (1.3 mmol) (represented by general formula 1 shown below), acrylonitrile (2.6 mmol) (represented by general formula 2 shown below) in a glass reaction tube Monomethacrylate (0.0189 mmol) (represented by general formula 3 shown below) and terminal thioethoxymethyl-4-styrenated polymethacrylic acid (0.0081 mmol) as functional macromonomer (general formula 4 shown below) And a radical initiator are dissolved in a polymerization solvent, stirred until the mixed solution becomes transparent, and the reaction solution is frozen with liquid nitrogen and degassed under vacuum to remove dissolved oxygen and react. Free radical polymerization was performed by heating the tube after sealing under vacuum. It was confirmed visually that the turbidity of the reaction solution increased with time. The white turbidity of the reaction solution indicates that the dispersion polymerization occurred smoothly. Dialysis was performed to remove unreacted monomer after the reaction. Various measurements were performed using the aqueous dispersion of the product thus obtained and the powder obtained by freeze-drying the product as samples. The polymer fine particles showed high water dispersion stability that maintained a colloidal state without settling for more than a week after dispersion in water. Here, in producing the surface functional confetti type polymer fine particles, the polyethylene glycol monomethacrylate is not particularly limited as long as it is a terminal polymerizable polyethylene glycol. The terminal thioethoxymethyl-4-styrenated polymethacrylic acid is not limited to this, and may be any terminal polymerizable reactive macromonomer. Further, as long as these four monomers are used, the number of moles and the mole ratio are not limited to those shown here.

図1は生成物の粉末の全反射式(ATR)フーリエ変換赤外分光スペクトル(FTIR)である。FTIRはパーキンエルマー社製のspectrum oneを用いて、4000cm−1から600cm−1までの範囲を分解能4cm−1で測定することにより得た。2238、1727、1700、1602、1453、1108、701cm−1にはっきりとした鋭いピークが見られた。これらのピークはそれぞれ、アクリロニトリル単位のニトリル基、ポリメタクリル酸マクロモノマー単位のカルボン酸、ポリエチレングリコールマクロモノマー単位のエステル基、スチレン単位の芳香環、共重合体主鎖およびポリエチレングリコールマクロモノマー単位のアルキル基、ポリエチレングリコールマクロモノマー単位のエーテル基、スチレン単位の芳香環に帰属できるため、反応に仕込んだ全ての4つのモノマーが生成物の中に取り込まれていることがわかり、生成物はスチレン、アクリロニトリル、ポリエチレングリコールモノメタクリレート、ポリメタクリル酸マクロモノマーの4元共重合体(以下に示す一般式5で表される)であることが証明された。FIG. 1 is the total reflection (ATR) Fourier transform infrared spectroscopy spectrum (FTIR) of the product powder. The FTIR using spectrum one manufactured by Perkin Elmer, was obtained by measuring the range of from 4000 cm -1 to 600 cm -1 at a resolution 4 cm -1. Clear sharp peaks were observed at 2238, 1727, 1700, 1602, 1453, 1108, and 701 cm −1 . These peaks are respectively nitrile group of acrylonitrile unit, carboxylic acid of polymethacrylic acid macromonomer unit, ester group of polyethylene glycol macromonomer unit, aromatic ring of styrene unit, main chain of copolymer and alkyl of polyethylene glycol macromonomer unit. Group, ether group of polyethylene glycol macromonomer unit, aromatic ring of styrene unit, it can be seen that all four monomers charged in the reaction are incorporated into the product, the product is styrene, acrylonitrile , A quaternary copolymer of polyethylene glycol monomethacrylate and polymethacrylic acid macromonomer (represented by general formula 5 shown below).

図2に4元共重合体の重水素化ジメチルスルホキシド(DMSO)溶液を400MHzのプロトン核磁気共鳴スペクトル(H NMR、日本電子FX400)で測定した結果を示す。全てのピークの化学シフト値はTMS(テトラメチルシランのことを指す)のピークの化学シフト値を0.00ppmとした時の値である。6.5−7.5、3.5、1.2−2.9ppmに明確なピークがみられ、それぞれ芳香族水素、ポリエチレングリコールのエチレン基の水素、主鎖骨格の水素とポリメタクリル酸側鎖骨格の水素、に帰属される。この結果は4元共重合体の生成を支持するものである。また、それぞれの積分比から単純な計算を行いスチレンとアクリロニトリルの共重合体中に於ける組成を求めた。この時、マクロモノマーの仕込み組成は1%以下であるのでH NMR法で共重合体中における組成は算出が困難であるので、仕込み組成がそのまま保存されていると仮定した。その結果スチレン対アクリロニトリルの共重合組成は56mol%対42mol%と見積もられた。この結果はスチレンの組成は仕込み組成よりも大きく、アクリロニトリルの組成は仕込み組成よりも小さいので、スチレンの反応性が高いことが推測される。FIG. 2 shows the results of measurement of a deuterated dimethyl sulfoxide (DMSO) solution of a quaternary copolymer by 400 MHz proton nuclear magnetic resonance spectrum ( 1 H NMR, JEOL FX400). The chemical shift values of all the peaks are the values when the chemical shift value of the peak of TMS (referring to tetramethylsilane) is 0.00 ppm. Clear peaks are seen at 6.5-7.5, 3.5, and 1.2-2.9 ppm, respectively, aromatic hydrogen, ethylene glycol hydrogen of polyethylene glycol, main chain skeleton hydrogen and polymethacrylic acid side It is attributed to hydrogen of the chain skeleton. This result supports the formation of the quaternary copolymer. In addition, a simple calculation was performed from each integral ratio to determine the composition in the copolymer of styrene and acrylonitrile. At this time, since the charged composition of the macromonomer was 1% or less, it was difficult to calculate the composition in the copolymer by the 1 H NMR method, so it was assumed that the charged composition was preserved as it was. As a result, the copolymer composition of styrene and acrylonitrile was estimated to be 56 mol% to 42 mol%. As a result, the styrene composition is larger than the charged composition, and the acrylonitrile composition is smaller than the charged composition. Therefore, it is estimated that the reactivity of styrene is high.

図3に4元共重合体を透過型電子顕微鏡(TEM、日立社製H−700H)で加速電圧150kVで10万倍の倍率で撮影した時の写真を示す。試料は水分散状態からTEM測定用のコロジオン膜を貼った銅メッシュ上にキャストして一晩減圧乾燥した後、カーボンスパッタリング処理したものを用いた。黒い影となっている部分が4元共重合体であり、金平糖型微粒子の形状を持っていることが分かる。突起部分を半球とみなした場合の直径は約50nmであり、突起を除く中心球の直径は約280nmであった。突起間距離は約80nm、微粒子1個あたりの平均突起数は約30個であった。水分散状態でベックマンコールター社製のレーザー回折散乱法粒度分布測定装置により測定された粒径は280±38nmであり、TEMの結果とよい一致を示しているため、水中においてもTEMでみられる形状と同じ形状の高分子微粒子が分散しているものと考えられる。  FIG. 3 shows a photograph of the quaternary copolymer taken with a transmission electron microscope (TEM, Hitachi-H-700H) at an acceleration voltage of 150 kV and a magnification of 100,000. The sample was cast from a water-dispersed state on a copper mesh with a collodion film for TEM measurement, dried overnight under reduced pressure, and then subjected to carbon sputtering treatment. It can be seen that the black shaded portion is a quaternary copolymer and has the shape of a confetti type fine particle. The diameter when the protrusion was regarded as a hemisphere was about 50 nm, and the diameter of the central sphere excluding the protrusion was about 280 nm. The distance between protrusions was about 80 nm, and the average number of protrusions per fine particle was about 30. The particle size measured by a laser diffraction scattering method particle size distribution analyzer manufactured by Beckman Coulter in a water-dispersed state is 280 ± 38 nm, which is in good agreement with the TEM results. It is considered that polymer fine particles having the same shape as those in FIG.

図4に金平糖型高分子微粒子の表面の低角入射反射式赤外分光スペクトル(RAS、日本分光FT/IR−610)を示す。この方法では試料の表面付近のみの赤外分光スペクトルを測定することができる。図1と比べてスチレン単位の芳香環に帰属される1602と701cm−1付近のピークに比して、1727cm−1付近のピークが相対的に強くなり、マクロモノマー単位のカルボン酸が微粒子表面に集積していることが分かった。これにより当該金平糖型高分子微粒子が表面官能性であることが証明された。FIG. 4 shows a low-angle incident reflection type infrared spectroscopic spectrum (RAS, JASCO FT / IR-610) on the surface of the gold flat sugar type polymer fine particles. In this method, an infrared spectroscopic spectrum only near the surface of the sample can be measured. Compared to FIG. 1, the peaks near 1727 cm −1 are relatively stronger than the peaks near 1602 and 701 cm −1 attributed to the aromatic ring of the styrene unit, and the carboxylic acid of the macromonomer unit is present on the surface of the fine particles. It turned out to be accumulating. As a result, it was proved that the gold flat sugar type polymer fine particles had surface functionality.

ここで、表面の官能基に関して、化学反応性官能基としては、カルボキシル基、チオカルボキシル基、活性カルボン酸類、アミノ基、アミン誘導体、アルデヒド基、ケトン基、ヒドロキシル基、チオール基、ヒドラジン基、イソシアナート基、チオイソシアナート基、エポキシ基、チオエポキシ基、ハロゲン基、2重結合、3重結合などの官能基を選ぶことが出来、荷電性官能基としては、カルボキシル基、チオカルボキシル基、アミノ基、アミン誘導体、イミノ基、フェノール基、リン酸基、スルホン酸基、ボロン酸基などを選ぶことが出来、物理的相互作用性を有する官能基としては、カルボキシル基、チオカルボキシル基、カルボン酸誘導体、アミド基、チオアミド基、チオエーテル基、ジスルフィド基、ヒドラジン基、尿素基、チオ尿素基、ウレタン基、チオウレタン基、アゾメチン基、アミド基、イミド基、イソイミド基、チオイミド基、フタラジノン基、オキサゾール基、イソオキサゾール基、チアゾール基、イミダゾール基、トリアゾール基、トリアジン基、イミダゾロン基、イミダゾピロロン基、ヒダントイン基、ピラゾール基、ピロール基、オキサジノン基、キナゾロン基、キナゾリンジオン基、キノキサリン基、プリン基、ピリミジン基、ピリジン基、ピラジン基、ピペリジン基、ピペラジン基、炭素数が3つ以上の脂肪族鎖、環状脂肪鎖、芳香環などを選ぶことが出来る。ただし、炭素数が3つ以上の脂肪族鎖に関しては、ビニル重合系高分子の主鎖として存在する脂肪鎖を除く。また、表面官能性金平糖型高分子微粒子はここに示す全ての官能基の中から選択された1種以上の官能基を持つことを特徴とし、エステル基、エーテル基、ニトリル基、炭素数が2個以下の脂肪鎖などの極めて弱い相互作用の官能基のみを表面に持つ高分子微粒子は除外する。  Here, regarding the functional group on the surface, the chemically reactive functional group includes a carboxyl group, a thiocarboxyl group, an active carboxylic acid, an amino group, an amine derivative, an aldehyde group, a ketone group, a hydroxyl group, a thiol group, a hydrazine group, an isocyanic group. Functional groups such as nate group, thioisocyanate group, epoxy group, thioepoxy group, halogen group, double bond, triple bond, etc. can be selected, and as the charged functional group, carboxyl group, thiocarboxyl group, amino group , Amine derivatives, imino groups, phenol groups, phosphoric acid groups, sulfonic acid groups, boronic acid groups, etc., and as functional groups having physical interaction, carboxyl groups, thiocarboxyl groups, carboxylic acid derivatives Amide group, thioamide group, thioether group, disulfide group, hydrazine group, urea group, thio Element group, urethane group, thiourethane group, azomethine group, amide group, imide group, isoimide group, thioimide group, phthalazinone group, oxazole group, isoxazole group, thiazole group, imidazole group, triazole group, triazine group, imidazolone group, Imidazopyrrolone group, hydantoin group, pyrazole group, pyrrole group, oxazinone group, quinazolone group, quinazolinedione group, quinoxaline group, purine group, pyrimidine group, pyridine group, pyrazine group, piperidine group, piperazine group, 3 or more carbon atoms Aliphatic chain, cyclic aliphatic chain, aromatic ring and the like can be selected. However, with respect to aliphatic chains having 3 or more carbon atoms, the aliphatic chains existing as the main chain of the vinyl polymer are excluded. Further, the surface-functional confetti type polymer fine particles have one or more functional groups selected from all the functional groups shown here, and have an ester group, an ether group, a nitrile group, and 2 carbon atoms. Polymer fine particles having only a weakly interacting functional group on the surface, such as less than one fatty chain, are excluded.

図5に表面官能性金平糖型高分子微粒子の広角X線回折パターンを示す。透過法で微粒子全体を測定した結果、回折角2θが22度付近に非常に散漫な回折ピークが現れた。このことは試料が非晶性であることを示している。一方、薄膜反射測定法で測定した結果、2θが22度付近の散漫な回折ピークに加え17.5度付近に鋭い回折ピークが見られた。このピークはポリアクリロニトリルの結晶のピークと一致する。この結果は、金平糖型高分子微粒子の最表面では、アクリロニトリル単位が結晶化していることを示している。すなわち、結晶の不均一成長時に見られるパターン形成のように、高分子微粒子表面上でアクリロニトリルが不均一成長した結果、多数の突起が形成されたものと考えられる。  FIG. 5 shows a wide-angle X-ray diffraction pattern of the surface-functional confetti type polymer fine particles. As a result of measuring the whole fine particles by the transmission method, a very diffuse diffraction peak appeared at a diffraction angle 2θ of around 22 degrees. This indicates that the sample is amorphous. On the other hand, as a result of measurement by the thin film reflection measurement method, a sharp diffraction peak was observed at around 17.5 degrees in addition to a diffuse diffraction peak at 2θ of around 22 degrees. This peak coincides with the polyacrylonitrile crystal peak. This result shows that the acrylonitrile unit is crystallized on the outermost surface of the gold flat sugar type polymer fine particles. That is, it is considered that a large number of protrusions were formed as a result of nonuniform growth of acrylonitrile on the surface of the polymer fine particles as in the pattern formation seen during nonuniform growth of crystals.

次に、アクリロニトリルとスチレンの4元共重合体中における組成を変化させて、得られた微粒子の形状を調べた。組成は反応に用いるモノマーの組成を変化させることで制御した。未反応モノマーは遠心分離と透析により完全に取り除いた。収率は20−60%程度であり一般の系と比較して低かった。これはアクリロニトリルの低い反応性に起因していると考えられる。いずれの高分子微粒子も水に分散後一週間以上沈降せずコロイド状態を保つ高い水分散安定性を示した。全マクロモノマーの組成を0.7%に固定しアクリロニトリルの全モノマー量に対する組成、以下CANと示す、を0.00−0.99まで変化させたところ、アクリロニトリル単位の前繰り返し単位に対する4元重合体中に於ける組成FANがそれぞれ0.00−0.90まで制御できた。重量平均分子量は5.2x10−1.6x10と十分に高かった。分子量分布は6.1−7.2であり一般的なラジカル共重合の場合よりも広かったが、これはスチレンとアクリロニトリルの反応性の大きな違いや、これら2つのモノマーとマクロモノマーの分子量が互いに大きく異なることが原因と考えられる。表1にCANが0.66−0.92におけるモノマー組成と4元共重合組成と収率を示す。Next, the composition of the quaternary copolymer of acrylonitrile and styrene was changed, and the shape of the obtained fine particles was examined. The composition was controlled by changing the composition of the monomer used in the reaction. Unreacted monomer was completely removed by centrifugation and dialysis. The yield was about 20-60%, which was lower than that of a general system. This is thought to be due to the low reactivity of acrylonitrile. All the polymer fine particles showed high water dispersion stability that did not settle for more than one week after dispersion in water and kept a colloidal state. Composition to the total amount of monomers of acrylonitrile fixing the composition of the total macromonomer 0.7%, was varied are shown the following C AN to 0.00-0.99, quaternary against repeating units before acrylonitrile units polymer in composition F AN in could be controlled to the respective 0.00-0.90. The weight average molecular weight was sufficiently high at 5.2 × 10 4 -1.6 × 10 5 . The molecular weight distribution was 6.1-7.2, which was wider than in the case of general radical copolymerization, but this was due to the large difference in reactivity between styrene and acrylonitrile, and the molecular weight of these two monomers and macromonomer being different from each other. It seems to be caused by a large difference. Table 1 C AN indicates monomer composition and quaternary copolymer composition and yield in the 0.66-0.92.

図6にX線光電子分光法(XPS)により得られた各結合エネルギー領域に於ける図形を示す。この図から微粒子表面には炭素と窒素と酸素がいずれも存在していることが分かる。酸素はマクロモノマーのみに存在し、窒素はアクリロニトリルのみに存在することから、少なくともこれら2つのモノマー単位は微粒指標面に存在することが分かる。また、この図のピーク面積から求めた微粒子表面の元素組成を表1に示す。酸素原子の炭素原子に対する割合は0.50−0.69の値を示し、CANに依存しなかった。酸素原子は2つのマクロモノマー中にしか存在しないので、これらのマクロモノマーはCANに依存せず、常に微粒子再表面を覆っている状態であると考えられる。一方で、窒素原子の炭素原子に対する割合は0.31−0.15の値を示し、CANの現象に伴い小さくなる傾向を示した。これはアクリロニトリルの微粒子再表面の組成はバルクの組成と同じようにCANの影響を受けることを示している。FIG. 6 shows a figure in each binding energy region obtained by X-ray photoelectron spectroscopy (XPS). This figure shows that carbon, nitrogen, and oxygen are all present on the surface of the fine particles. Since oxygen is present only in the macromonomer and nitrogen is present only in acrylonitrile, it can be seen that at least these two monomer units are present in the fine particle index plane. In addition, Table 1 shows the elemental composition on the surface of the fine particles obtained from the peak area in this figure. Ratio of carbon atoms of oxygen atoms has a value of 0.50-0.69, it was not dependent on C AN. The oxygen atom is not present only in two macromonomer, these macromonomers is independent of C AN, it is always considered to be a state of covering the fine particle resurfacing. On the other hand, the ratio of carbon atoms of the nitrogen atom represents a value of 0.31-0.15, showed a small tendency due to the phenomenon of C AN. This indicates that the composition of the acrylonitrile microparticle resurface is affected by CAN as well as the bulk composition.

図7にCANを変化させて作成した高分子微粒子のTEM写真をしめす。FANが0.49−0.66の場合にはいずれの場合にも非球形の形態を有していることが分かった。図7の左図に示すようにFAN=0.66は形状が均等でなく、微粒子の物質収着に関する形状の効果も均一でないと予想される。しかし、FANが増えるとより均等な形状になっていくことが分かる。特に図7の右図に示すようにFAN=0.49の場合にはコロナウイルスに似た単一形状の微粒子が得られることが解った。サイズはTEMと動的光散乱法から300nm程度であることが判明し、ウイルスよりやや大きかった。スチレンとマクロモノマーのみからなる微粒子は完全に球形で、突起を有していなかった。一方、アクリロニトリルとマクロモノマーのみからは微粒子が得られなかった。このことは、表面官能性金平糖型微粒子を作製するには、スチレンとアクリロニトリルとマクロモノマーのいずれもが欠けてはならないことを示している。FANが0.66以上の場合には、マクロモノマーの組成を0.7%よりも大きくすることにより、または、分子量が1740よりも大きいポリエチレンマクロモノマーを用いることにより、サイズが200nm以下の金平糖型ナノ粒子を作成することが出来た。Changing the C AN Figure 7 shows the TEM photograph of polymer microparticles created. F AN was found to have the form also of non-spherical in all cases in the case of 0.49-0.66. As shown in the left diagram of FIG. 7, F AN = 0.66 is not uniform in shape, and it is expected that the shape effect on the material sorption of fine particles is not uniform. However, it can be seen that as the number of fans increases, the shape becomes more uniform. In particular, as shown in the right diagram of FIG. 7, it was found that fine particles having a single shape similar to coronavirus can be obtained when F AN = 0.49. The size was found to be about 300 nm from TEM and dynamic light scattering, and was slightly larger than the virus. The fine particles consisting only of styrene and macromonomer were completely spherical and had no protrusions. On the other hand, fine particles were not obtained only from acrylonitrile and macromonomer. This indicates that all of styrene, acrylonitrile and macromonomer must be absent in order to produce surface functional confetti type fine particles. When FAN is 0.66 or more, by using a macromonomer composition of greater than 0.7% or by using a polyethylene macromonomer having a molecular weight of greater than 1740, confetti having a size of 200 nm or less Type nanoparticles could be created.

ここで、スチレンの代わりに、例えば、スチレン誘導体、1−ビニルナフタレン、2−ビニルナフタレン、ビニルナフタレン誘導体、9−ビニルアントラセン、ビニルアントラセン誘導体、ビニルピレンおよびその誘導体、ビニルフェナントレンおよびその誘導体、ビニルビフェニルおよびその誘導体、ビニルテルフェニルおよびその誘導体、ビニルクアテルフェニルおよびその誘導体、ビニルキンケフェニルおよびその誘導体、ビニルトリフェニルおよびその誘導体、ビニルペリレンおよびその誘導体、ビニルカルバゾールおよびその誘導体、ビニル化核酸塩基およびその誘導体、ビニルスチルベンおよびその誘導体、ビニルベンゾフェノンおよびその誘導体、ビニルピリジンおよびその誘導体、ビニルピラジン及びその誘導体、ビニルトリアジンおよびその誘導体、ビニルチオフェンおよびその誘導体、ビニルピロールおよびその誘導体、ビニルベンゾオキサゾールおよびその誘導体、ビニルベンゾチアゾールおよびその誘導体、ビニルベンゾイミダゾールおよびその誘導体、ビニルベンゾトリアゾールおよびその誘導体、ビニルクマリンおよびその誘導体、ビニルキノリン及びその誘導体、ビニルフルオレセインおよびその誘導体、ビニルポルフィリンおよびその誘導体、ビニルクロロフィリンおよびその誘導体、ビニル基の付いた他の色素類などのように芳香環密度が高く重合反応性の高いモノマーであれば良い。  Here, instead of styrene, for example, styrene derivatives, 1-vinylnaphthalene, 2-vinylnaphthalene, vinylnaphthalene derivatives, 9-vinylanthracene, vinylanthracene derivatives, vinylpyrene and derivatives thereof, vinylphenanthrene and derivatives thereof, vinylbiphenyl and Derivatives thereof, vinyl terphenyl and derivatives thereof, vinyl quaterphenyl and derivatives thereof, vinyl quinkephenyl and derivatives thereof, vinyl triphenyl and derivatives thereof, vinyl perylene and derivatives thereof, vinyl carbazole and derivatives thereof, vinylated nucleobases and derivatives thereof Derivatives, vinyl stilbene and its derivatives, vinyl benzophenone and its derivatives, vinyl pyridine and its derivatives, vinyl pyrazine and its derivatives, vinyl Azine and its derivatives, vinyl thiophene and its derivatives, vinyl pyrrole and its derivatives, vinyl benzoxazole and its derivatives, vinyl benzothiazole and its derivatives, vinyl benzimidazole and its derivatives, vinyl benzotriazole and its derivatives, vinyl coumarin and its derivatives , Vinyl quinoline and its derivatives, vinyl fluorescein and its derivatives, vinyl porphyrin and its derivatives, vinyl chlorophyllin and its derivatives, other pigments with a vinyl group, etc. I just need it.

また、アクリロニトリルの代わりに、アクリルアミド及びその誘導体、アクリル酸エステルおよびその誘導体、N−ビニルアセトアミドやN−ビニルアルキルアミド類、ビニルピロリドンやビニルピロリジノン、ビニルエーテル類、などのように水やエタノールに対する溶解度がスチレンよりも高く、重合反応性がスチレンよりも低いモノマーであれば良い。  Further, instead of acrylonitrile, acrylamide and its derivatives, acrylic acid esters and its derivatives, N-vinylacetamide, N-vinylalkylamides, vinylpyrrolidone, vinylpyrrolidinone, vinyl ethers, and the like have solubility in water and ethanol. Any monomer that is higher than styrene and lower in polymerization reactivity than styrene may be used.

一般に、結晶の不均一成長によるパターン形成は時間に依存して起こる。そこで、CAN=0.66の系で反応時間を1時間から24時間まで変化させて、重合を行い、それぞれ得られた高分子微粒子の構造と物性を調べた。いずれの高分子微粒子も水に分散後一週間以上沈降せずコロイド状態を保つ高い水分散安定性を示した。表2に測定結果を示す。各重合時間で作製された高分子微粒子のFANH NMR法で測定した結果、0.53−0.56の値を示し、時間に寄らずほぼ一定値であった。また、収率は29−56%であり、3時間までは上昇傾向を示したがその後はほぼ一定値であった。このことは重合は3時間でほぼ終了したことを示している。In general, pattern formation by non-uniform crystal growth occurs depending on time. Therefore, by changing the reaction time in a system of C AN = 0.66 from 1 hour to 24 hours, operating polymerization was investigated the structure and physical properties of the obtained polymer microparticles, respectively. All the polymer fine particles showed high water dispersion stability that did not settle for more than one week after dispersion in water and kept a colloidal state. Table 2 shows the measurement results. A result of measuring the F AN of the produced polymer particles in each polymerization time 1 H NMR method showed a value of 0.53-0.56, was almost constant value irrespective of the time. Moreover, the yield was 29-56%, and showed an upward trend until 3 hours, but thereafter was almost constant. This indicates that the polymerization was almost completed in 3 hours.

図8にXPSにより求められた表面元素組成の反応時間依存性を示す。XPSにより測定された微粒子表面の窒素原子の炭素原子に対する割合N/Cは0.10−0.13であり、時間に寄らずほぼ一定であった。また、酸素原子の炭素原子に対する割合O/Cは0.29−0.62であり12時間までは反応時間に伴って上昇傾向を示した。このことはマクロモノマーの表面組成が増加していることを示している。3時間で収率の上昇が止まるにも関わらず、マクロモノマーの表面組成が増加しているのは、微粒子内部のマクロモノマーが時間と伴に表面付近に移動することを示している。一方、12時間以降ではO/Cの増加は見られなかった。  FIG. 8 shows the reaction time dependence of the surface element composition determined by XPS. The ratio N / C of nitrogen atoms to carbon atoms on the surface of the fine particles measured by XPS was 0.10 to 0.13 and was almost constant regardless of time. Further, the ratio O / C of oxygen atoms to carbon atoms was 0.29 to 0.62, and showed an upward trend with the reaction time up to 12 hours. This indicates that the surface composition of the macromonomer is increasing. The increase in the surface composition of the macromonomer even though the increase in yield stopped in 3 hours indicates that the macromonomer inside the fine particles moves to the vicinity of the surface with time. On the other hand, no increase in O / C was observed after 12 hours.

AN=0.66の系で反応時間を1時間から24時間まで変化させた時の高分子微粒子の形状をTEMにより撮影した結果を図9に示す。重合溶媒の組成を変化させることにより粒子表面に形成された突起のサイズに変化がみられた。1時間で作製された高分子微粒子の形状は球であったが、2時間で作製されたものには小さい突起が見られ、その後反応時間を増やすに従い突起が成長し、金平糖型の形状が形成されていく過程が観察された。また、2時間以降の突起の数は反応時間が変化しても全く変わらないことが分かった。The results of the shape of the polymer fine particles was taken by TEM at the time of changing C AN = 0.66 systems a reaction time of from 1 hour to 24 hours is shown in FIG. Changes in the size of the protrusions formed on the particle surface were observed by changing the composition of the polymerization solvent. The shape of the polymer particles prepared in 1 hour was a sphere, but small protrusions were seen in the one prepared in 2 hours, and then the protrusions grew as the reaction time increased, forming a confetti shape. The process of being done was observed. It was also found that the number of protrusions after 2 hours did not change at all even when the reaction time changed.

図9の写真から突起のサイズを半楕円球と見なして算出しその体積の合計を計算した。体積の反応時間に伴う変化を図10に示す。この図によると、体積は反応時間に伴い単調に増加することが分かった。重合は3時間で終了していることを考慮に入れると、突起の成長は高分子鎖の数の増加とは直接関係しないことがわかる。また、図7から想定されるマクロモノマーの表面組成の増加傾向と比較しても若干異なる。  From the photograph of FIG. 9, the size of the protrusion was calculated as a semi-elliptical sphere, and the total volume was calculated. The change with volume reaction time is shown in FIG. According to this figure, it was found that the volume increased monotonically with the reaction time. Taking into account that the polymerization has been completed in 3 hours, it can be seen that the growth of protrusions is not directly related to the increase in the number of polymer chains. Further, it is slightly different from the trend of increasing the surface composition of the macromonomer assumed from FIG.

図9の写真から突起の鋭さを半楕円球と見なした場合の、突起の高さと半値幅の比の平均値を算出し、その反応時間依存性を図11にプロットした。鋭さは12時間までは反応時間に伴って上昇傾向を示したが、それ以降は増加しなかった。重合は3時間で終了していることを考慮に入れると、鋭さは高分子鎖の数の増加とは直接関係しないことがわかる。一方、図9から想定されるマクロモノマーの表面組成の増加傾向とかなり似通っていることが分かる。つまり、突起の鋭さの増加にはマクロモノマーが強く関与しているものと考えられる。  The average value of the ratio between the height of the protrusion and the full width at half maximum when the sharpness of the protrusion was regarded as a semi-elliptical sphere was calculated from the photograph of FIG. 9, and the reaction time dependency was plotted in FIG. The sharpness showed a tendency to increase with the reaction time up to 12 hours, but did not increase thereafter. Taking into account that the polymerization has been completed in 3 hours, it can be seen that the sharpness is not directly related to the increase in the number of polymer chains. On the other hand, it can be seen from FIG. 9 that the tendency to increase the surface composition of the macromonomer is quite similar. That is, it is considered that the macromonomer is strongly involved in the increase in the sharpness of the protrusion.

図12にCAN=0.66で3時間重合した高分子微粒子の走査型電子顕微鏡写真(SEM、日立S−4100H SEM)を示す。試料には測定直前に約20nmの厚みの金コーティングをスパッタリング法を用いて行った。写真から分かるようにこの条件で合成した高分子微粒子の形状は突起がヘキサゴナルに規則的に配列していることが分かる。この場合には図13の下に示した模式図のように、高分子微粒子のサイズは390nmで突起の付け根の部分の直径は50nmで突起の頂点間距離は80nmであった。このように、適当な反応条件を選べば、突起配列が規則的な金平糖型高分子微粒子を均等に作製できることが分かった。FIG. 12 shows a scanning electron micrograph (SEM, Hitachi S-4100H SEM) of polymer fine particles polymerized for 3 hours at C AN = 0.66. The sample was coated with a gold film having a thickness of about 20 nm immediately before the measurement using a sputtering method. As can be seen from the photograph, the shape of the polymer fine particles synthesized under these conditions shows that the protrusions are regularly arranged in hexagonal form. In this case, as shown in the schematic diagram shown at the bottom of FIG. 13, the size of the polymer fine particles was 390 nm, the diameter of the base of the protrusion was 50 nm, and the distance between the apexes of the protrusion was 80 nm. Thus, it was found that if appropriate reaction conditions were selected, confetti sugar-type polymer fine particles having a regular protrusion arrangement could be produced uniformly.

図13に突起の形成過程を模式的に表した。反応時間一時間より短い重合初期において、最も反応性の高いモノマーであるスチレンが優先的に重合し、スチレン組成のかなり高い高分子鎖が生成していると考えている。この場合にはポリスチレンが重合溶媒に不要であることから、高分子鎖は析出し疎溶媒性の核を形成していると考えられる。重合時間1時間においては、反応はなお継続中であり、水分散安定性の高い球状の高分子微粒子の形成が確認されており、XPSより微粒子表面における存在が確認されたマクロモノマーが、微粒子の水分散安定性を高めていると考えられる。重合時間2時間においては、反応はなお継続中であり、水分散安定性の高い小さい突起を持つ金平糖型高分子微粒子の形成が確認されている。この時点で、アクリロニトリル単位とマクロモノマーは溶媒親和性が高いので、スチレン単位により形成した核の周りを覆うように殻を形成していると考えられる。重合時間3時間においては、反応は終了し、水分散安定性の高い十分に大きい突起を持つ金平糖型高分子微粒子の形成が確認されており、XPSにより微粒子表面におけるマクロモノマーの存在量のさらなる増加も確認されている。この時、突起の規則的配列も確認された。つまり、重合の進行と同時に突起が成長したことが分かる。XPSから1時間以降ではアクリロニトリルの表面組成は一定であることが分かっているので、突起の成長にはマクロモノマーの効果が大きいと考えられる。4時間以降において、重合が終了しているにも関わらず、突起の鋭さが大きくなることから、殻の内部に在ったマクロモノマーがその著しく高い溶媒親和性によりさらに外側に飛び出す時、溶媒を殻に呼び込むことで、殻のその部分のみが膨潤すると考えられる。それが突起の形成のメカニズムと考えている。膨潤はさらなるマクロモノマーの殻から外への飛び出しを促しそれがさらなる膨潤を促す。これにより突起の殻の垂直方向への成長を促進する。このことにより、突起の鋭さが増すと考えられる。12時間を越えマクロモノマーが殻から外へ新たに飛び出すことがなくなり、突起は均一にそのサイズを増し、鋭さは一定となった。1−3時間の時でも同様のマクロモノマーの飛び出しが起こっていると考えられるが、この時は同時に重合も進行している。従って、膨潤している突起の部分は分子運動が活発であるので、他の部分よりも重合が進行しやすい。つまり、この時には膨潤に加えて分子鎖量の増加も突起の成長に効果を示している。  FIG. 13 schematically shows the process of forming the protrusions. It is considered that styrene, which is the most reactive monomer, is preferentially polymerized at the initial stage of polymerization shorter than one hour of reaction time, and a polymer chain having a considerably high styrene composition is formed. In this case, since polystyrene is not required as a polymerization solvent, it is considered that polymer chains are precipitated to form a lyophobic nucleus. At the polymerization time of 1 hour, the reaction is still ongoing, and the formation of spherical polymer fine particles with high water dispersion stability has been confirmed. It is thought that the water dispersion stability is improved. At a polymerization time of 2 hours, the reaction is still ongoing, and formation of confetti-type polymer fine particles having small protrusions with high water dispersion stability has been confirmed. At this point, since the acrylonitrile unit and the macromonomer have high solvent affinity, it is considered that the shell is formed so as to cover the periphery of the nucleus formed by the styrene unit. At the polymerization time of 3 hours, the reaction was completed, and formation of gold flat sugar-type fine polymer particles with sufficiently large protrusions with high water dispersion stability was confirmed. XPS further increased the amount of macromonomer present on the fine particle surface. Has also been confirmed. At this time, the regular arrangement of protrusions was also confirmed. That is, it can be seen that the protrusions grew simultaneously with the progress of the polymerization. Since the surface composition of acrylonitrile is known to be constant after 1 hour from XPS, it is considered that the macromonomer has a large effect on the growth of protrusions. After 4 hours, the sharpness of the protrusions becomes large despite the completion of the polymerization. Therefore, when the macromonomer existing inside the shell jumps further to the outside due to its extremely high solvent affinity, the solvent is removed. By calling into the shell, it is thought that only that part of the shell swells. This is considered to be the mechanism of protrusion formation. Swelling encourages further macromonomer shells to jump out of the shell, which further swells. This promotes the vertical growth of the protrusion shell. This is thought to increase the sharpness of the protrusions. Over 12 hours, the macromonomer no longer jumped out of the shell, and the protrusions increased in size uniformly and the sharpness became constant. It is considered that the same macromonomer jumps out at the time of 1-3 hours, but at this time, the polymerization proceeds at the same time. Accordingly, since the swollen protrusion portion has active molecular motion, the polymerization proceeds more easily than the other portions. That is, at this time, in addition to swelling, an increase in the molecular chain amount also has an effect on the growth of protrusions.

表面官能性金平糖型高分子微粒子を作製するためのモノマーの組み合わせは、スチレンとアクリロニトリルとマクロモノマーの組み合わせの他に、疎水性が高くラジカル重合反応速度の速いモノマー(モノマー1)と重合溶媒親和性が適度でラジカル重合反応速度がモノマー1よりも小さいモノマー(モノマー2)と重合溶媒親和性が著しく高いマクロモノマー(モノマー3)と重合溶媒親和性が或る程度以上高く官能基を持つマクロモノマー(モノマー4)1種以上の4種以上からなるモノマーの組み合わせでも構わない。ただし、モノマー3がモノマー4の性状をも持ち合わせている場合には、モノマー1とモノマー2とモノマー3のみの組み合わせのみでも合成できることがある。  In addition to the combination of styrene, acrylonitrile and macromonomer, the combination of monomers for producing surface-functional confetti type polymer fine particles is not only a combination of styrene, acrylonitrile and macromonomer, but also a monomer having high hydrophobicity and a fast radical polymerization reaction rate (monomer 1). Is a monomer having a moderate radical polymerization reaction rate lower than that of monomer 1 (monomer 2), a macromonomer having extremely high affinity for the polymerization solvent (monomer 3), and a macromonomer having a polymerization solvent affinity having a certain degree of higher affinity (functional monomer). Monomer 4) A combination of one or more monomers of four or more types may be used. However, when the monomer 3 also has the properties of the monomer 4, it may be able to be synthesized only by a combination of the monomer 1, the monomer 2 and the monomer 3 alone.

モノマー1は具体的にはスチレン誘導体などの芳香環が直接ビニル基と結合している構造のモノマーなどであり、モノマー2はアクリル系モノマーなど極性基を持ち、2重結合または3重結合が一つのみ直接ビニル基に結合しているもの、モノマー3はポリエチレングリコールモノメタクリレートのように、ビニル基を持ちそのビニル基のラジカル重合性を抑制しない程度の分子量を持つ著しく溶媒親和性の高いオリゴマーに類するもの、モノマー4は末端がビニル基で修飾されたメタクリル酸オリゴマーなどのように、或る程度以上の溶媒親和性を持ち、化学反応性官能基、荷電性官能基、水素結合などの物理的相互作用性を有する官能基から選択された少なくとも一種の官能基を持つオリゴマーに類するものである。  The monomer 1 is specifically a monomer having a structure in which an aromatic ring such as a styrene derivative is directly bonded to a vinyl group, and the monomer 2 has a polar group such as an acrylic monomer and has a single double bond or triple bond. Monomer 3 is an oligomer with a very high solvent affinity, such as polyethylene glycol monomethacrylate, which has a vinyl group and a molecular weight that does not inhibit the radical polymerizability of the vinyl group, such as polyethylene glycol monomethacrylate. The monomer 4 has a certain degree of solvent affinity, such as a methacrylic acid oligomer whose terminal is modified with a vinyl group, and has a physical reactivity such as a chemically reactive functional group, a charged functional group, and a hydrogen bond. This is similar to an oligomer having at least one functional group selected from functional groups having interactive properties.

前記に示したメカニズムから、マクロモノマーと溶媒との間の親和性が突起形成において重要であることが予想される。そこで、溶媒中に於ける水のエタノールに対する体積比を変化させて、高分子微粒子を合成しその構造と形状を調べた。これらの微粒子のTEM写真を図14に示す。溶媒の水組成が20mol%以上60mol%未満で金平糖型の高分子微粒子が得られていることが判明した。その突起数は溶媒の水組成と伴に増え、突起サイズは溶媒の水組成と伴に小さくなり、突起間距離も溶媒の水組成と伴に小さくなった。その結果、比表面積は同サイズの突起のない球状微粒子の2倍以上に達した。  From the mechanism shown above, it is expected that the affinity between the macromonomer and the solvent is important in protrusion formation. Therefore, polymer fine particles were synthesized by changing the volume ratio of water to ethanol in the solvent, and the structure and shape were investigated. A TEM photograph of these fine particles is shown in FIG. It has been found that gold-peeled polymer fine particles are obtained when the water composition of the solvent is 20 mol% or more and less than 60 mol%. The number of protrusions increased with the water composition of the solvent, the protrusion size decreased with the water composition of the solvent, and the distance between protrusions also decreased with the water composition of the solvent. As a result, the specific surface area reached more than twice that of spherical fine particles having no projection of the same size.

いずれの微粒子も、水分散状態で一週間程度静置することにより、全く沈降がみられず、十分に高い分散安定性を持つことが分かった。一方、各微粒子の水分散液を9000rpmで10分間の球状の高分子微粒子が沈降しない緩やかな条件で遠心分離を行うことにより、沈降性を調べた結果、いずれも沈降し、沈降回収性に優れていることが分かった。しかも、突起サイズの増加に伴い沈降しやすくなり、微粒子のサイズに違いが無くても、形状を制御すればコロイド分散性を制御できることが示された。  It was found that all the fine particles had a sufficiently high dispersion stability with no precipitation at all when left in an aqueous dispersion state for about one week. On the other hand, as a result of investigating the sedimentation property by centrifuging the aqueous dispersion of each microparticle at 9000 rpm for 10 minutes under a gentle condition in which the spherical polymer microparticles do not settle, all settled and are excellent in sediment recovery. I found out. Moreover, it was shown that the colloidal dispersibility can be controlled by controlling the shape even if there is no difference in the size of the fine particles, since it becomes easy to settle as the protrusion size increases.

抗原モデル物質として良く使用される卵白アルブミンの、高分子微粒子の表面固定化能を調べるために、卵白アルブミンと縮合脱水剤と表面にカルボン酸を持つ金平糖型高分子微粒子をHEPESバッファー中で混合し、4℃で25時間反応させたところ、いずれの濃度条件においても、カルボン酸1molあたりの卵白アルブミン固定化量は球状高分子微粒子よりも金平糖型高分子微粒子の方が数倍から数十倍多かった。このことは金平糖型の形状は物質を表面に固定化出来る能力が著しく高いことを示している。  In order to investigate the surface immobilization ability of ovalbumin, which is often used as an antigen model substance, on the surface of the polymer fine particles, ovalbumin, a condensation dehydrating agent, and gold plain sugar type polymer fine particles having a carboxylic acid on the surface are mixed in a HEPES buffer. When the reaction was carried out at 4 ° C. for 25 hours, the amount of ovalbumin immobilized per mol of carboxylic acid was several times to several tens of times higher than that of spherical polymer particles under any concentration condition. It was. This indicates that the shape of the confetti type has a remarkably high ability to immobilize the substance on the surface.

水体積組成60−100%の場合には、直径が200nm未満の金平糖型高分子微粒子が合成できることが分かった。この微粒子は形状サイズともにコロナウイルスなどの突起を有するウイルスと同等であり、最も高性能な薬物輸送徐放担体、病態捕捉担体、遺伝子導入用担体、診断薬用担体として使用可能となる。  In the case of a water volume composition of 60-100%, it has been found that confetti type polymer fine particles having a diameter of less than 200 nm can be synthesized. These microparticles are equivalent in shape and size to viruses having protrusions such as coronavirus, and can be used as the highest performance drug transport sustained release carrier, pathological condition capture carrier, gene introduction carrier, and diagnostic agent carrier.

表面官能性金平糖型高分子微粒子の一段階製造方法の一例について説明する。スチレンとアクリロニトリルとマクロモノマーである末端重合性ポリエチレングリコールと官能性マクロモノマーとラジカル開始剤であるアゾビス(イソブチロニトリル)を水・エタノール混合溶液に溶かし込み、混合液が透明になるまで撹拌し、真空脱気後、加熱することによりフリーラジカル重合を行った。時間経過とともに、反応溶液の濁度が上昇することが目視により確認できた。反応液の白濁化は分散重合がスムーズに起こったことを示している。反応後に透析を行うことで未反応モノマーを取り除いた。このようにして得られた生成物の高分子微粒子は水に分散後一週間以上沈降せずにコロイド状態を保つ高い水分散安定性を示した。ここで、官能性マクロモノマーとは、化学反応性官能基であり負荷電性官能基でもあるカルボン酸を持つマクロモノマーである片末端スチリル化ポリメタクリル酸、化学反応性官能基であり正荷電性官能基でもあるアミノ基を持つマクロモノマーである片末端スチリル化ポリビニルアミンまたは片末端スチリル化ポリアリルアミン、負荷電性官能基であるスルホン酸を持つマクロモノマーである片末端スチリル化ポリ(スチレンー4−スルホン酸ナトリウム)またはポリビニルスルホン酸ナトリウム、化学反応性官能基であり負荷電性官能基である3級アミン基を持つ片末端スチリル化ポリ(ジメチルアミノプロピルアクリルアミド)、負荷電性官能基である4級アミン基を持つ片末端スチリル化ポリ(スチレンー4−トリエチルアンモニウムブロミド)、水素結合性官能基であるアミド基を持つマクロモノマーである片末端スチリル化ポリアクリルアミド、アミド基を持ち感熱応答性を持つ片末端スチリル化ポリ(N−イソプロピルアクリルアミド)のことを指す。  An example of a one-step production method for surface-functional confetti type polymer fine particles will be described. Dissolve styrene, acrylonitrile, macropolymer end-polymerizable polyethylene glycol, functional macromonomer and radical initiator azobis (isobutyronitrile) in water / ethanol mixed solution, and stir until the mixture becomes transparent Then, free radical polymerization was performed by heating after vacuum degassing. It was confirmed visually that the turbidity of the reaction solution increased with time. The white turbidity of the reaction solution indicates that the dispersion polymerization occurred smoothly. Unreacted monomer was removed by dialysis after the reaction. The polymer fine particles of the product thus obtained showed high water dispersion stability that kept the colloidal state without settling for more than one week after dispersion in water. Here, the functional macromonomer is a chemically reactive functional group and a negatively charged functional group, a macromonomer having a carboxylic acid that is also a negatively charged functional group, one-end styrylated polymethacrylic acid, a chemically reactive functional group that is positively charged One-end styrylated polyvinylamine or one-end styrylated polyallylamine which is a macromonomer having an amino group which is also a functional group, and one-end styrylated poly (styrene-4-yl) which is a macromonomer having a sulfonic acid which is a negatively charged functional group. Sodium sulfonate) or sodium polyvinyl sulfonate, a chemically reactive functional group and a negatively charged functional group, one-end styrylated poly (dimethylaminopropylacrylamide) having a tertiary amine group, and a negatively charged functional group 4 One-end styrylated poly (styrene-4-triethylammonium) with secondary amine groups Bromide), refers to a hydrogen-bonding functional group in which one terminal styryl polyacrylamide which is a macromonomer having an amide group, one terminal styryl poly having a thermal response has an amide group (N- isopropylacrylamide).

ここで、全モノマーに対するアクリロニトリルの仕込み組成は0.66mol%である。全モノマーに対するマクロモノマーの仕込み組成は0.7mol%で重合を行ったが、2mol%以下であれば構わない。また、全マクロモノマーに対する官能性マクロモノマーの組成は30mol%で重合を行ったが、30mol%以下であれば構わない。水エタノール混合溶媒中の水の組成は20体積%であった。重合時間は6時間であった  Here, the charged composition of acrylonitrile with respect to all monomers is 0.66 mol%. Polymerization was carried out with a macromonomer charge composition of 0.7 mol% with respect to all monomers, but it may be 2 mol% or less. Moreover, although the composition of the functional macromonomer with respect to all the macromonomers was polymerized at 30 mol%, it may be 30 mol% or less. The composition of water in the water ethanol mixed solvent was 20% by volume. The polymerization time was 6 hours

これらの生成物の水分散液およびこれを凍結乾燥することにより得られた粉末を試料とし、プロトン核磁気共鳴法、赤外分光法、ゲル透過クロマトグラフィー法で一次構造を解析した結果、4元共重合体が得られていることが分かった。  As a result of analyzing the primary structure by proton nuclear magnetic resonance, infrared spectroscopy, and gel permeation chromatography methods using aqueous dispersions of these products and powders obtained by freeze-drying them as samples, quaternary It was found that a copolymer was obtained.

4元共重合体を水分散状態でベックマンコールター社製のレーザー回折散乱法粒度分布測定装置により測定された結果、単峰性のピークが得られ、微粒子が形成されていることが分かった。その粒径は280±38nmであり粒径分布はほぼ単分散であると言うことが出来た。  As a result of measuring the quaternary copolymer in a water-dispersed state with a laser diffraction scattering particle size distribution measuring apparatus manufactured by Beckman Coulter, it was found that a unimodal peak was obtained and fine particles were formed. The particle size was 280 ± 38 nm, and the particle size distribution was almost monodispersed.

微粒子をTEMとSEMにより観察した結果、金平糖型の高分子微粒子が得られていることが判明した。その粒径は、水分散状態と同じであったので、水分散状態においても同様の形状の高分子微粒子が分散しているものと考えられる。  As a result of observing the fine particles with a TEM and SEM, it was found that the polymer particles of the confetti type were obtained. Since the particle size was the same as in the water dispersion state, it is considered that polymer fine particles having the same shape are dispersed in the water dispersion state.

RASとXPSにより、表面にそれぞれの官能基が集積されていることが判明した。  RAS and XPS revealed that each functional group was accumulated on the surface.

表面官能性金平糖型高分子微粒子の突起サイズの制御方法の一例について説明する。スチレンとアクリロニトリルとマクロモノマーである末端重合性ポリエチレングリコールモノメタクリレートと官能性マクロモノマーであるカルボン酸を持つ片末端スチリル化ポリメタクリル酸とラジカル開始剤であるアゾビス(イソブチロニトリル)を水・エタノール混合溶液に溶かし込み、混合液が透明になるまで撹拌し、真空脱気後、加熱することによりフリーラジカル重合を行った。時間経過とともに、反応溶液の濁度が上昇することが目視により確認できた。反応液の白濁化は分散重合がスムーズに起こったことを示している。反応後に透析を行うことで未反応モノマーを取り除いた。このようにして得られた生成物の高分子微粒子は水に分散後一週間以上沈降せずにコロイド状態を保つ高い水分散安定性を示した。  An example of a method for controlling the protrusion size of the surface-functional confetti type polymer fine particles will be described. Styrene, acrylonitrile, end-polymerizable polyethylene glycol monomethacrylate, which is a macromonomer, one-end styrylated polymethacrylic acid having a carboxylic acid, which is a functional macromonomer, and azobis (isobutyronitrile), which is a radical initiator, in water / ethanol It dissolved in the mixed solution, stirred until the mixed solution became transparent, vacuum degassed, and then heated to carry out free radical polymerization. It was confirmed visually that the turbidity of the reaction solution increased with time. The white turbidity of the reaction solution indicates that the dispersion polymerization occurred smoothly. Unreacted monomer was removed by dialysis after the reaction. The polymer fine particles of the product thus obtained showed high water dispersion stability that kept the colloidal state without settling for more than one week after dispersion in water.

ここで、モノマー仕込み組成と溶媒組成は実施例1に示したものと同じである。重合時間は1時間から24時間まで変化させた  Here, the monomer charge composition and the solvent composition are the same as those shown in Example 1. The polymerization time was varied from 1 hour to 24 hours.

これらの生成物の水分散液およびこれを凍結乾燥することにより得られた粉末を試料とし、実施例1に示した方法で4元共重合体の構造確認と微粒子形成確認を行った。また、表面にカルボン酸が集積されていることを確認した。  The aqueous dispersion of these products and the powder obtained by freeze-drying this were used as samples, and the structure of the quaternary copolymer and the formation of fine particles were confirmed by the method shown in Example 1. It was also confirmed that carboxylic acid was accumulated on the surface.

微粒子をTEMとSEMにより観察した結果、重合時間2時間以降で金平糖型の高分子微粒子が得られていることが判明した。その突起サイズは、反応時間と伴に大きくなり、鋭さも制御できることが分かった。  As a result of observing the fine particles with TEM and SEM, it was found that polymerized fine particles of confetti type were obtained after a polymerization time of 2 hours. It was found that the protrusion size increased with the reaction time, and the sharpness could be controlled.

重合時間が3時間の時、突起配列がヘキサゴナルとなっている微粒子が多数存在した。  When the polymerization time was 3 hours, a large number of fine particles having hexagonal protrusions were present.

表面官能性金平糖型高分子微粒子の突起数の制御方法の一例について説明する。スチレンとアクリロニトリルとマクロモノマーである末端重合性ポリエチレングリコールモノメタクリレートと官能性マクロモノマーであるカルボン酸を持つ片末端スチリル化ポリメタクリル酸とラジカル開始剤であるアゾビス(イソブチロニトリル)を水・エタノール混合溶液に溶かし込み、混合液が透明になるまで撹拌し、真空脱気後、加熱することによりフリーラジカル重合を行った。時間経過とともに、反応溶液の濁度が上昇することが目視により確認できた。反応液の白濁化は分散重合がスムーズに起こったことを示している。反応後に透析を行うことで未反応モノマーを取り除いた。このようにして得られた生成物の高分子微粒子は水に分散後一週間以上沈降せずにコロイド状態を保つ高い水分散安定性を示した。  An example of a method for controlling the number of protrusions of the surface-functional confetti type polymer fine particles will be described. Styrene, acrylonitrile, end-polymerizable polyethylene glycol monomethacrylate, which is a macromonomer, one-end styrylated polymethacrylic acid having a carboxylic acid, which is a functional macromonomer, and azobis (isobutyronitrile), which is a radical initiator, in water / ethanol It dissolved in the mixed solution, stirred until the mixed solution became transparent, vacuum degassed, and then heated to carry out free radical polymerization. It was confirmed visually that the turbidity of the reaction solution increased with time. The white turbidity of the reaction solution indicates that the dispersion polymerization occurred smoothly. Unreacted monomer was removed by dialysis after the reaction. The polymer fine particles of the product thus obtained showed high water dispersion stability that kept the colloidal state without settling for more than one week after dispersion in water.

ここで、モノマー仕込み組成と重合時間は実施例1に示したものと同じである。水エタノール混合溶媒中における水の組成は0から100体積%まで変化させた。  Here, the monomer charge composition and the polymerization time are the same as those shown in Example 1. The composition of water in the water ethanol mixed solvent was changed from 0 to 100% by volume.

これらの生成物の水分散液およびこれを凍結乾燥することにより得られた粉末を試料とし、実施例1に示した方法で4元共重合体の構造確認を行い微粒子形成確認を行った。また、表面にカルボン酸が集積されていることを確認した。  Using the aqueous dispersion of these products and the powder obtained by freeze-drying this as a sample, the structure of the quaternary copolymer was confirmed by the method shown in Example 1 to confirm the formation of fine particles. It was also confirmed that carboxylic acid was accumulated on the surface.

微粒子のTEM写真を図14に示す。溶媒の水組成が20mol%以上60mol%未満で金平糖型の高分子微粒子が得られていることが判明した。その突起数は溶媒の水組成と伴に増え、突起サイズは溶媒の水組成と伴に小さくなり、突起間距離も溶媒の水組成と伴に小さくなった。その結果、比表面積は同サイズの突起のない球状微粒子の2倍以上に達した。  A TEM photograph of the fine particles is shown in FIG. It has been found that gold-peeled polymer fine particles are obtained when the water composition of the solvent is 20 mol% or more and less than 60 mol%. The number of protrusions increased with the water composition of the solvent, the protrusion size decreased with the water composition of the solvent, and the distance between protrusions also decreased with the water composition of the solvent. As a result, the specific surface area reached more than twice that of spherical fine particles having no projection of the same size.

各微粒子の水分散液を5000rpmで10分間遠心分離を行うことにより、沈降性を調べた結果、突起サイズの増加に伴い沈降しやすくなることが分かった。このことは、微粒子のサイズに違いが無くても、形状を制御すればコロイド分散性を制御できることを示している。  As a result of investigating the sedimentation property by centrifuging the aqueous dispersion of each fine particle at 5000 rpm for 10 minutes, it was found that sedimentation tends to occur as the protrusion size increases. This indicates that the colloidal dispersibility can be controlled by controlling the shape even if there is no difference in the size of the fine particles.

溶媒の水組成が60mol%以上の時にも、金平糖型の高分子微粒子が得られたが、突起サイズは著しく小さく、粒子サイズが300nmよりも小さくなった。  Even when the water composition of the solvent was 60 mol% or more, gold-peeled polymer fine particles were obtained, but the protrusion size was extremely small, and the particle size was smaller than 300 nm.

表面に官能基と多数の突起を持つ金平糖様形状の高分子微粒子は、比表面積が大きいので、物質収着能力が著しく高く、しかも遠心分離により容易に沈降する。しかも、表面の官能基を利用して、薬物、抗体、抗原、DNAなどの医療に有効な分子を固定化できるので、ドラックデリバリー用担体、ドラッグコントロールドリリース用担体、ウイルス捕捉用担体、遺伝子導入用担体、診断薬用担体の広範囲の分野に使用できる、従来物よりも高性能な、自己組織性高分子微粒子担体として利用可能である。しかも、当該高分子微粒子は、フリーラジカル分散共重合法を用いて、一段階で容易に製造することができる、その上、サイズと形状を簡単に制御できるので、省エネルギー性に優れ工業的製造に有利である。  Since the specific surface area of the polymer fine particles having the shape of a gold-peeled sugar having a functional group and a large number of protrusions on the surface is large, the substance sorption ability is remarkably high, and it is easily settled by centrifugation. In addition, molecules effective for medical treatment such as drugs, antibodies, antigens, and DNA can be immobilized using functional groups on the surface, so that drug delivery carriers, drug controlled release carriers, virus capture carriers, gene transfer It can be used as a self-organizing polymer fine particle carrier that can be used in a wide range of fields such as carriers for carriers and diagnostic agents, and has higher performance than conventional products. Moreover, the polymer fine particles can be easily manufactured in one step using a free radical dispersion copolymerization method, and furthermore, the size and shape can be easily controlled, so that the energy saving property is excellent and the industrial production is possible. It is advantageous.

金平糖型高分子微粒子の乾燥粉末の全反射式(ATR)フーリエ変換赤外分光スペクトル  Total reflection (ATR) Fourier transform infrared spectroscopic spectrum of dried powder of gold-peeled sugar type polymer fine particles 金平糖型高分子微粒子のプロトン核磁気共鳴スペクトル(H NMR)Proton nuclear magnetic resonance spectrum ( 1 H NMR) 金平糖型高分子微粒子の透過型電子顕微鏡写真(TEM)  Transmission electron micrograph of TEM 金平糖型高分子微粒子の表面の低角度反射式(RAS)赤外分光スペクトル  Low angle reflection (RAS) infrared spectroscopic spectrum of the surface of gold flat sugar type polymer fine particles 金平糖型高分子微粒子の粒子全体と表面の広角X線回折パターン(WAXD)  Wide-angle X-ray diffraction pattern (WAXD) of the whole and surface of confetti type polymer fine particles 金平糖型高分子微粒子のX線光電子分光スペクトル(XPS)  X-ray photoelectron spectroscopy (XPS) of gold-peeled polymer fine particles 金平糖型高分子微粒子の透過型電子顕微鏡写真のモノマー組成依存性  Dependence of monomer composition on transmission electron micrographs of gold-peeled sugar polymer particles 金平糖型高分子微粒子の表面元素組成の反応時間依存性  Reaction time dependence of surface elemental composition of confetti type polymer fine particles 金平糖型高分子微粒子の透過型電子顕微鏡写真の重合時間依存性  Polymerization time dependence of transmission electron micrographs of confetti type polymer fine particles. 金平糖型高分子微粒子の突起体積の重合時間依存性  Polymerization time dependence of protrusion volume of gold-peeled sugar polymer particles 金平糖型高分子微粒子の突起の鋭さの重合時間依存性  Polymerization time dependence of the sharpness of protrusions of konpei sugar-type polymer particles 金平糖型高分子微粒子の走査型電子顕微鏡写真(SEM)  Scanning electron micrograph (SEM) of gold-peeled polymer particles 金平糖型高分子微粒子の突起の形成メカニズム  Formation mechanism of protrusions of confetti type polymer fine particles 金平糖型高分子微粒子の透過型電子顕微鏡写真の重合溶媒組成依存性  Polymerization solvent composition dependence of transmission electron micrographs of konpei sugar-type polymer particles.

Claims (11)

表面に化学反応性官能基または荷電性官能基または水素結合などの物理的相互作用性を有する官能基の少なくとも一種を持ち、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子およびその組成物It has at least one kind of a chemically reactive functional group, a charged functional group, or a functional group having a physical interaction property such as a hydrogen bond on the surface, and is characterized by a shape like a confetti having a large number of protrusions on the surface. Polymer fine particles and composition thereof 請求項1の高分子微粒子で、その突起が規則正しく配列していることを特徴とする高分子微粒子The fine polymer particle according to claim 1, wherein the protrusions are regularly arranged. 突起を除いた球体部の直径が200ナノメートル以下であり、多数の突起物を表面に有する金平糖様の形状であることを特徴とする高分子微粒子Polymer fine particles characterized in that the diameter of the sphere part excluding the protrusions is 200 nanometers or less, and has a shape of a confetti-like shape having a large number of protrusions on the surface. それらの重合体の重合溶媒への溶解度と重合速度が大きく異なる複数のモノマーを出発物質として一段階で製造することを特徴とする、請求項1に示す高分子微粒子およびその組成物の製造方法2. A method for producing polymer fine particles and a composition thereof according to claim 1, characterized in that a plurality of monomers having greatly different solubility and polymerization rate in the polymerization solvent of these polymers are produced in one step as starting materials. それらの重合体の重合溶媒への溶解度と重合速度が大きく異なる複数のモノマーを出発物質として一段階で製造することを特徴とする、請求項1に示す高分子微粒子の多数を、均等な形状で製造する方法A large number of polymer fine particles shown in claim 1 are produced in a uniform shape by using, as a starting material, a plurality of monomers having greatly different solubility and polymerization rate of the polymer in a polymerization solvent. How to make それらの重合体の重合溶媒への溶解度と重合速度が大きく異なる複数のモノマーを出発物質として一段階で製造することを特徴とする、請求項2の高分子微粒子の製造方法3. The method for producing polymer fine particles according to claim 2, wherein a plurality of monomers having greatly different solubility and polymerization rate in the polymerization solvent of the polymer are produced in a single step as a starting material. それらの重合体の重合溶媒への溶解度と重合速度が大きく異なる複数のモノマーを出発物質として一段階で製造することを特徴とする、請求項3の高分子微粒子の製造方法4. The method for producing polymer fine particles according to claim 3, wherein a plurality of monomers having greatly different solubility and polymerization rate in the polymerization solvent of the polymer are produced as a starting material in one step. 請求項4の方法において、重合条件を種々に変化させることを特徴とする、高分子微粒子のサイズおよび形状を制御する方法5. A method for controlling the size and shape of polymer fine particles according to claim 4, wherein the polymerization conditions are variously changed. スチレンとアクリロニトリルと末端重合性ポリエチレングリコールと他の官能性マクロモノマー一つ以上を出発物質として得られた多数の突起を有する金平糖様の形状の高分子微粒子およびその組成物Polymeric fine particles of confetti-like shape having a large number of protrusions obtained from styrene, acrylonitrile, terminally polymerizable polyethylene glycol and one or more other functional macromonomers as starting materials, and compositions thereof スチレンとアクリロニトリルと末端重合性ポリエチレングリコールと他の官能性マクロモノマー一つ以上を出発物質として一段階で製造することを特徴とする、請求項9の高分子微粒子およびその組成物の製造方法10. The method for producing polymer fine particles and a composition thereof according to claim 9, wherein the polymer fine particles and the composition thereof are produced in one step using styrene, acrylonitrile, terminal polymerizable polyethylene glycol and one or more other functional macromonomers as starting materials. 請求項10の方法において、重合条件を種々に変化させることを特徴とする、高分子微粒子のサイズおよび形状を制御する方法The method of controlling the size and shape of the polymer fine particles according to claim 10, wherein the polymerization conditions are variously changed.
JP2004111596A 2004-03-09 2004-03-09 Surface-reactive crenellated macromolecular microparticle and method for producing the same Pending JP2005255967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111596A JP2005255967A (en) 2004-03-09 2004-03-09 Surface-reactive crenellated macromolecular microparticle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111596A JP2005255967A (en) 2004-03-09 2004-03-09 Surface-reactive crenellated macromolecular microparticle and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005255967A true JP2005255967A (en) 2005-09-22

Family

ID=35082012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111596A Pending JP2005255967A (en) 2004-03-09 2004-03-09 Surface-reactive crenellated macromolecular microparticle and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005255967A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241188A (en) * 2011-05-24 2012-12-10 Senka Kk Temperature responsive polymer fine particle and method of producing dispersion of the same
JP2012241189A (en) * 2011-05-24 2012-12-10 Senka Kk pH RESPONSIVE POLYMER FINE PARTICLE AND METHOD OF PRODUCING DISPERSION OF THE SAME
CN106046224A (en) * 2011-08-03 2016-10-26 住友精化株式会社 Water absorbing resin particles
JPWO2019182124A1 (en) * 2018-03-23 2021-04-08 株式会社 資生堂 Cosmetic raw materials using core-corona type polymer particles and oil-in-water emulsified cosmetics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241188A (en) * 2011-05-24 2012-12-10 Senka Kk Temperature responsive polymer fine particle and method of producing dispersion of the same
JP2012241189A (en) * 2011-05-24 2012-12-10 Senka Kk pH RESPONSIVE POLYMER FINE PARTICLE AND METHOD OF PRODUCING DISPERSION OF THE SAME
CN106046224A (en) * 2011-08-03 2016-10-26 住友精化株式会社 Water absorbing resin particles
CN106046224B (en) * 2011-08-03 2021-08-24 住友精化株式会社 Water-absorbent resin particles
JPWO2019182124A1 (en) * 2018-03-23 2021-04-08 株式会社 資生堂 Cosmetic raw materials using core-corona type polymer particles and oil-in-water emulsified cosmetics
JP7258850B2 (en) 2018-03-23 2023-04-17 株式会社 資生堂 Cosmetic raw materials and oil-in-water emulsified cosmetics using core-corona type polymer particles

Similar Documents

Publication Publication Date Title
Haqani et al. Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition-fragmentation chain transfer polymerization
Mori et al. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces
KR100861452B1 (en) Method for preparing surface-imprinted polyacrylate microsphere in the form of core-shell for the selective separation of heavy metal ion
Guan et al. Influence of spacer lengths on the morphology of biphenyl-containing liquid crystalline block copolymer nanoparticles via polymerization-induced self-assembly
Macková et al. Effects of the reaction parameters on the properties of thermosensitive poly (N‐isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization
Sun et al. Glucose-and temperature-responsive core–shell microgels for controlled insulin release
Fallahi-Samberan et al. Investigating Janus morphology development of poly (acrylic acid)/poly (2‑(dimethylamino) ethyl methacrylate) composite particles: An experimental study and mathematical modeling of DOX release
Dao et al. Self-Assembling Peptide—Polymer Nano-Objects via Polymerization-Induced Self-Assembly
Tan et al. Photosynthesis of poly (glycidyl methacrylate) microspheres: a component for making covalently cross-linked colloidosomes and organic/inorganic nanocomposites
Sana et al. Development of poly (acrylamide-co-diallyldimethylammoniumchloride) nanogels and study of their ability as drug delivery devices
Russo et al. Synthesis of non-spherical polymer particles using the activated swelling method
Shah et al. A novel approach to prepare etoposide‐loaded poly (N‐vinyl caprolactam‐co‐methylmethacrylate) copolymeric nanoparticles and their controlled release studies
Musiał et al. Thermosensitive microgels of poly-N-isopropylacrylamide for drug carriers—Practical approach to synthesis
Guimarães et al. Synthesis of double-responsive magnetic latex particles via seeded emulsion polymerization using macroRAFT block copolymers as stabilizers
Liu et al. Preparation of monodisperse hydrophilic polymer microspheres with N, N′‐methylenediacrylamide as crosslinker by distillation precipitation polymerization
Du et al. Synthesis of pH-responsive cellulose-g-P4VP by atom transfer radical polymerization in ionic liquid, loading, and controlled release of aspirin
JP2005255967A (en) Surface-reactive crenellated macromolecular microparticle and method for producing the same
Ji et al. Synthesis of hollow polymer microspheres with movable polyelectrolyte core and functional groups on the shell-layer
Mudassir et al. Synthesis, characterization and toxicological evaluation of pH-sensitive polyelectrolyte Nanogels
Le et al. Halogen-bond-driven supramolecular assemblies of quaternary-ammonium-iodide-containing polymers in three phases
Min et al. Spiropyran-based polymeric micelles in aqueous solution: light-regulated reversible size alterations and catalytic characteristics
Arunbabu et al. Charged polystyrene nanoparticles: Role of ionic comonomers structures
Bousquet et al. Single‐step process to produce functionalized multiresponsive polymeric particles
Koubková et al. RAFT of sulfobetaine for modifying poly (glycidyl methacrylate) microspheres to reduce nonspecific protein adsorption
TW201206969A (en) Cross linking polymer particle and fabricating method thereof, and conductive particle