JP2005255701A - Electric rheology gel and its sheet - Google Patents

Electric rheology gel and its sheet Download PDF

Info

Publication number
JP2005255701A
JP2005255701A JP2004065019A JP2004065019A JP2005255701A JP 2005255701 A JP2005255701 A JP 2005255701A JP 2004065019 A JP2004065019 A JP 2004065019A JP 2004065019 A JP2004065019 A JP 2004065019A JP 2005255701 A JP2005255701 A JP 2005255701A
Authority
JP
Japan
Prior art keywords
gel
group
particles
insulating medium
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004065019A
Other languages
Japanese (ja)
Other versions
JP4504048B2 (en
Inventor
Hidenobu Anzai
秀伸 安齊
Koji Sakurai
宏治 櫻井
Kenichi Hino
賢一 日野
Tatsuhisa Hayata
達央 早田
Kazuyuki Isobe
和之 磯部
Katsutoshi Tanaka
克敏 田中
Toshiro Aoyama
藤詞郎 青山
Yasuhiro Kakinuma
康弘 柿沼
Ryutaro Tsuruizumi
隆太郎 鶴泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
DuPont Toray Specialty Materials KK
Original Assignee
Fujikura Kasei Co Ltd
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd, Dow Corning Toray Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2004065019A priority Critical patent/JP4504048B2/en
Publication of JP2005255701A publication Critical patent/JP2005255701A/en
Application granted granted Critical
Publication of JP4504048B2 publication Critical patent/JP4504048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ER gel, in which electric rheology particles (ER particles) are not precipitated/flocculated even when allowed to stand for a long period and stable ER effect is exhibited, returning to original state when application of voltage is stopped, having good controlling property of shear stress by electric field, free from leaching of a liquid electric insulation medium and keeping good storage stability. <P>SOLUTION: Precipitation/aggregation of ER particles are prevented and leaching of the liquid electric insulation medium is prevented and the controlling property of shear stress by electric field is improved by keeping the content of electric rheology particles (ER particles) in the electric rheology gel to 5-90 wt.%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、クラッチ、ダンパー、ショックアブソーバー等の動力伝達装置や制動装置等に使用できる電気レオロジー流体に関し、特に電気レオロジー粒子及び液状電気絶縁性媒体をゲル骨格中に分散させることにより電気レオロジー粒子の沈降を防止した、電気レオロジーゲルに関するものである。   The present invention relates to an electrorheological fluid that can be used in power transmission devices such as clutches, dampers, shock absorbers, braking devices, and the like. The present invention relates to an electrorheological gel that prevents sedimentation.

電気レオロジー流体(ER流体)とは、電気絶縁性媒体中に特殊粒子を分散させた流体であって、電界を印加すると流体の粘度が著しく増大する流体のことである。このような性質は、電気レオロジー効果(ER効果)またはウィンズロー効果と呼ばれ、電極間に印加された電界により分散粒子に分極が生じ、さらにこの分極に基づく粒子間力によって、電極間で粒子が電荷方向に結合してクラスタと呼ばれる鎖状構造を形成し、これが流動抵抗となり粘性が変化すると考えられている。このような性質を持つER流体は、電界に対する応答性が良好であり、粘度変化の幅が広く、電界強度によって見かけの粘度が制御できることから、動力伝達素子や制動素子への応用が期待されている。   An electrorheological fluid (ER fluid) is a fluid in which special particles are dispersed in an electrically insulating medium, and the viscosity of the fluid increases significantly when an electric field is applied. Such a property is called an electrorheological effect (ER effect) or a Winslow effect. Polarization occurs in the dispersed particles due to an electric field applied between the electrodes, and the interparticle force based on the polarization causes the particles between the electrodes. Are combined in the direction of charge to form a chain structure called a cluster, which is considered to flow resistance and change viscosity. ER fluids with such properties have good response to electric fields, a wide range of viscosity changes, and apparent viscosity can be controlled by the electric field strength, so application to power transmission elements and braking elements is expected. Yes.

上述したように、代表的なER流体は、シリコーンオイル等の電気絶縁性媒体中に、粒子径が十数ミクロンの特殊粒子を分散させたものであるため、長期間静置しておくと粒子が沈降・凝集してしまい、ER効果の再現性が低下するという問題がある。また、流体であるため、使用の際にはシール構造が必要となることなどが、実用化への障害となっていた。   As described above, a typical ER fluid is obtained by dispersing special particles having a particle size of several tens of microns in an electrically insulating medium such as silicone oil. Has settled and aggregated, and the reproducibility of the ER effect is reduced. In addition, since it is a fluid, a seal structure is required for use, which has been an obstacle to practical use.

このような問題を解決するため、本発明者らは特開2002−80881に記載したように、ゲル中に液状電気絶縁性媒体と分散相粒子を分散させることによって、分散相粒子の沈降・凝集を防止した電気レオロジーゲル(ERゲル)を提案した。しかしながら、このERゲルは、電圧を印加し、その後電圧印加を止めても電圧印加前の状態に戻るまでの時間が長い(剪断応力コントロール性が悪い)、ゲル表面に液状電気絶縁性媒体が滲出し取扱い性に欠け、また、電極面にERゲルを均一に形成することが難しいという問題を抱えていた。
特開2002−80881号公報
In order to solve such a problem, as described in JP-A No. 2002-80881, the present inventors dispersed and dispersed the liquid electrical insulating medium and the dispersed phase particles in the gel, thereby causing the sedimentation / aggregation of the dispersed phase particles. An electrorheological gel (ER gel) was proposed. However, in this ER gel, it takes a long time to return to the state before the voltage application even after the voltage application is stopped (the shear stress controllability is poor), and the liquid electrically insulating medium oozes on the gel surface. However, it has a problem that it is difficult to handle and it is difficult to uniformly form an ER gel on the electrode surface.
JP 2002-80881 A

本発明は、長期間静置しても電気レオロジー粒子(ER粒子)が沈降・凝集せず、安定したER効果を示し、電圧印加を止めると短い時間で元の状態に戻り、液状電気絶縁性媒体の滲出がなく良好な保存安定性が維持されるERゲルを提供することである。   In the present invention, electrorheological particles (ER particles) do not settle and agglomerate even after standing for a long period of time, exhibit a stable ER effect, return to the original state in a short time when voltage application is stopped, and liquid electrical insulating properties An object of the present invention is to provide an ER gel that is free from leaching of the medium and maintains good storage stability.

本発明者らは、上述した問題を解決するため鋭意検討を行ったところ、電気レオロジーゲル中の電気レオロジー粒子(ER粒子)の含有量を35〜90wt%とすることにより、ER粒子の沈降・凝集を防止するとともに、液状電気絶縁性媒体の滲出を防止し、電界による剪断応力のコントロール性を向上させることができることを見出し、本発明を完成するに至った。更にシート状とすることで取扱い性を向上させることができ、電極面にERゲルを均一に形成することが可能となった。   The inventors of the present invention have made extensive studies to solve the above-described problems. As a result, the content of the electrorheological particles (ER particles) in the electrorheological gel is set to 35 to 90 wt%. The inventors have found that it is possible to prevent agglomeration and to prevent the liquid electrically insulating medium from exuding and to improve the controllability of the shear stress due to the electric field, thereby completing the present invention. Furthermore, the handleability can be improved by using a sheet shape, and the ER gel can be uniformly formed on the electrode surface.

本発明におけるERゲルは、長期間静置してもER粒子の沈降・凝集が生じないため安定したER効果が得られ、液状電気絶縁性媒体の滲出がないため良好な保存安定性を示す。また、本発明におけるERゲルは液状電気絶縁性媒体の滲出がないため取り扱い性に優れ、デバイスへの応用が容易であり、例えば、可変ダンパシステム等を構成することが可能である。さらに、本発明のERゲルは、特に電界除去時の応答性が良好であることから、電界による剪断応力のコントロール性に優れている。また、消費電流も非常に少なく、かつ大きな剪断応力を発生することができる。   The ER gel in the present invention exhibits stable ER effect because no sedimentation or aggregation of ER particles occurs even after standing for a long period of time, and exhibits good storage stability because there is no leaching of the liquid electrically insulating medium. In addition, the ER gel in the present invention is excellent in handleability because there is no exudation of the liquid electrically insulating medium, and can be easily applied to devices. For example, a variable damper system can be configured. Furthermore, the ER gel of the present invention is excellent in controllability of the shear stress due to the electric field because the responsiveness at the time of removing the electric field is particularly good. In addition, current consumption is very small and a large shear stress can be generated.

以下、本発明について詳細に述べる。   The present invention will be described in detail below.

本発明におけるERゲルは、ゲル骨格中にER粒子が分散された液状電気絶縁性媒体が封じ込まれた構造をしている。   The ER gel in the present invention has a structure in which a liquid electrical insulating medium in which ER particles are dispersed in a gel skeleton is enclosed.

本発明におけるER粒子は、液状電気絶縁性媒体中に分散してER効果を示すものであり、例えば、シリカゲル、セルロース、でんぷん、大豆カゼイン、ポリスチレン系イオン交換樹脂等のように、粒子の表面に水を吸着保存する固体粒子やカーボン粒子などが挙げられる。また、有機高分子化合物の芯材と電気半導体性無機物粒子の表層とからなる複合型粒子も用いることができる。このような複合型粒子は、所望により、表層をさらに表面処理し、液状電気絶縁性媒体との親和性を調節することが可能である。本発明におけるER粒子としては、安定したER効果、および良好な保存安定性が得られることから複合型粒子を用いることが好ましい。これら、複合型粒子については、例えば、特開2001−026793号公報、特開平10−121084号公報、特開平09−079404号公報等に記載されている。   The ER particles in the present invention are dispersed in a liquid electrically insulating medium and exhibit an ER effect. For example, silica gel, cellulose, starch, soybean casein, polystyrene ion exchange resin, etc. Examples include solid particles and carbon particles that absorb and store water. Also, composite-type particles comprising a core material of an organic polymer compound and a surface layer of electrosemiconductor inorganic particles can be used. If desired, such a composite-type particle can further surface-treat the surface layer and adjust the affinity with the liquid electrically insulating medium. As the ER particles in the present invention, it is preferable to use composite particles because a stable ER effect and good storage stability can be obtained. These composite particles are described in, for example, JP-A No. 2001-026793, JP-A No. 10-121084, JP-A No. 09-079404 and the like.

本発明のERゲル中におけるER粒子の含有量は35〜90wt%が必須であり、さらに、電界による剪断応力のコントロール性の点から、ERゲル中におけるER粒子の含有量は50〜90wt%が好ましく、より好ましくは60〜90wt%であり、さらに好ましくは45〜65wt%である。ER粒子の含有量が35wt%未満の場合、相対的にゲル骨格または液状電気絶縁性媒体の含有量が多くなるため、十分なER効果が得られなかったり、保存安定性が低下する場合があり好ましくない。また、ER粒子の含有量が90wt%を超えると、ERゲルシートが硬くなりすぎて好ましくない。   The content of ER particles in the ER gel of the present invention is essential to be 35 to 90 wt%, and from the viewpoint of controllability of shear stress due to an electric field, the content of ER particles in the ER gel is 50 to 90 wt%. More preferably, it is 60-90 wt%, More preferably, it is 45-65 wt%. When the content of ER particles is less than 35 wt%, the content of the gel skeleton or the liquid electrically insulating medium is relatively increased, so that a sufficient ER effect may not be obtained or storage stability may be deteriorated. It is not preferable. Moreover, when content of ER particle | grains exceeds 90 wt%, an ER gel sheet will become hard too much and it is unpreferable.

本発明における液状電気絶縁性媒体としては、シリコーンオイル、塩化ジフェニル、トランスオイルなどが挙げられる。このうち、シリコーンオイルは電気絶縁性に優れ、物理的、化学的にも安定であり、さらに難燃性も高いため好ましく用いることができる。本発明における液状電気絶縁性媒体の粘度は限定されないが、好ましくは25℃において1〜10万mm/sであり、特に5〜1000mm/sが好ましい。液状電気絶縁性媒体の粘度が1mm/s未満の場合、ERゲルの保存安定性が低下するため好ましくない。一方、液状電気絶縁性媒体の粘度が10万mm/sを超えると、ERゲル作製時に巻き込んだ気泡が抜け難く好ましくない。 Examples of the liquid electrically insulating medium in the present invention include silicone oil, diphenyl chloride, and trans oil. Of these, silicone oil is preferably used because it has excellent electrical insulation, is physically and chemically stable, and has high flame retardancy. The viscosity of the liquid electrically insulating medium is not limited in the present invention, preferably from 1 to 100,000 mm 2 / s at 25 ° C., in particular 5~1000mm 2 / s are preferred. When the viscosity of the liquid electrically insulating medium is less than 1 mm 2 / s, the storage stability of the ER gel is lowered, which is not preferable. On the other hand, when the viscosity of the liquid electrically insulating medium exceeds 100,000 mm 2 / s, it is not preferable because bubbles entrained during the preparation of the ER gel are difficult to escape.

本発明で用いられるシリコーンオイルとしては、例えば、ジメチルシリコーンオイル、フッ素変性シリコーンオイル、フェニル変性シリコーンオイルのいずれか1種または2種以上である。フッ素変性シリコーンオイルとしては、例えば、トリフルオロプロピル基(CF−)を有するポリシロキサン、ノナフルオロヘキシル基(C−)を有するポリシロキサン、環状型ポリシロキサン化合物などがある。 Examples of the silicone oil used in the present invention include one or more of dimethyl silicone oil, fluorine-modified silicone oil, and phenyl-modified silicone oil. Examples of the fluorine-modified silicone oil include polysiloxane having a trifluoropropyl group (CF 3 C 2 H 4 —), polysiloxane having a nonafluorohexyl group (C 4 F 9 C 2 H 4 —), and cyclic poly Examples include siloxane compounds.

本発明のERゲル中における液状電気絶縁性媒体の含有量は1〜55wt%が好ましい。液状電気絶縁性媒体の含有量が1wt%未満であると、ERゲルが硬くなりすぎて好ましくない場合がある。電気絶縁性媒体の含有量が55wt%を超えると、液状電気絶縁性媒体が滲出する場合があり好ましくない。   The content of the liquid electrically insulating medium in the ER gel of the present invention is preferably 1 to 55 wt%. If the content of the liquid electrically insulating medium is less than 1 wt%, the ER gel may become too hard, which is not preferable. If the content of the electrically insulating medium exceeds 55 wt%, the liquid electrically insulating medium may ooze out, which is not preferable.

本発明におけるゲル骨格は限定されないが電気絶縁性のものが好ましい。特に、ハイドロジェンシリコーンおよび不飽和基含有化合物のヒドロシリル化反応によって得られるポリシロキサン架橋体が好ましい。このポリシロキサン架橋体は、製造が容易であり、その骨格中にER粒子が分散された液状電気絶縁媒体を多量に保持することが可能である。   The gel skeleton in the present invention is not limited, but an electrically insulating one is preferable. In particular, a crosslinked polysiloxane obtained by a hydrosilylation reaction of hydrogen silicone and an unsaturated group-containing compound is preferred. This polysiloxane crosslinked body is easy to manufacture and can hold a large amount of a liquid electrical insulating medium in which ER particles are dispersed in the skeleton.

本発明で用いられるハイドロジェンシリコーンとしては、例えば下記式(A)で示されるようにシロキサン鎖のケイ素原子に結合した水素原子を持つ時アルキルシロキサンが挙げられる。

Figure 2005255701
Examples of the hydrogen silicone used in the present invention include an alkylsiloxane when it has a hydrogen atom bonded to a silicon atom of a siloxane chain as shown in the following formula (A).
Figure 2005255701

(式中Rは互いに独立して置換もしくは無置換の炭素数1〜18のアルキル基、炭素数7〜21のアラルキル基、または置換もしくは無置換の炭素数6〜20のアリール基を示し、nは0〜500の整数を示す。)Rで示されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、オクチル基、ドデシル基等が挙げられ、アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられ、アリール基としては、例えば、フェニル基、トルイル基、ナフチル基等が挙げられる。また、Rで示される置換アルキル基としては、例えば、トリフルオロプロピル基、クロロプロピル基等のハロゲン化アルキル基、あるいは2−シアノエチル基等のようなシアノアルキル基等が挙げられる。これらの中で好ましくは、Rはメチル基であり、nは10〜200の整数であり、具体例としては、下記式(A−1)〜(A−3)で示されるものが挙げられる。

Figure 2005255701
(Wherein R 1 independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, an aralkyl group having 7 to 21 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; n represents an integer of 0 to 500.) Examples of the alkyl group represented by R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, a dodecyl group, and the like. Examples include a benzyl group and a phenethyl group. Examples of the aryl group include a phenyl group, a toluyl group, and a naphthyl group. Examples of the substituted alkyl group represented by R 1 include halogenated alkyl groups such as trifluoropropyl group and chloropropyl group, and cyanoalkyl groups such as 2-cyanoethyl group. Among these, R 1 is preferably a methyl group, n is an integer of 10 to 200, and specific examples include those represented by the following formulas (A-1) to (A-3). .
Figure 2005255701

また、本発明で用いられる不飽和基含有化合物としては、例えば下記式(B)で示されるものが挙げられる。

Figure 2005255701
Moreover, as an unsaturated group containing compound used by this invention, what is shown by a following formula (B) is mentioned, for example.
Figure 2005255701

(式中、Rは独立して水素原子、置換もしくは無置換の炭素数1〜18のアルキル基、または置換もしくは無置換の炭素数6〜20のアリール基を示し、Rは炭素数1〜18のアルキレン基、炭素数7〜21のアリールアルキレン基、ヘテロ原子数が1〜6で炭素数1〜12のヘテロ原子含有アルキレン基、または直接結合を示し、mは3以上の整数であり、Zはmと同じ価数を持つ連結基であって、炭素原子、ケイ素原子、一置換3価ケイ素原子、炭素数1〜30の脂肪族基、ヘテロ原子数が1〜6で炭素数1〜30のヘテロ原子含有有機基、またはケイ素原子数2〜50の直鎖状、分枝状または環状のアルキルシロキサン基のいずれかを示す。)
により示されるアルキル基には、例えば、メチル基、エチル基、プロピル基、ブチル基、オクチル基、ドデシル基等が挙げられ、アリール基には、例えば、フェニル基、トルイル基、ナフチル基等が挙げられる。Rにより示されるアルキレン基には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、オクチレン基、ドデシレン基等が挙げられ、アリールアルキレン基としては、例えば、フェニルメチレン基、フェニルエチレン基、フェニルエチリデン基等が挙げられる。ここで、Rについて使用される「ヘテロ原子含有アルキレン基」とは、ヘテロ原子として、酸素、硫黄または窒素原子を含有する基であって、それらヘテロ原子を炭素原子と見なすことにより、全体をアルキレン基とすることができる基を意味する。そのようなヘテロ原子含有アルキレン基には、メチレンオキシメチレン基、メチレンオキシエチレン基、メチレンオキシプロピレン基、エチレンオキシプロピレン基、メチレンオキシエチレンオキシメチレン基、エチレンオキシエチレンオキシエチレン基、プロピレンオキシエチレンオキシプロピレン基、または、これらの酸素原子が硫黄または窒素原子で置き換えられたもの、およびこれらの酸素原子の一部が硫黄および/または窒素原子で置き換えられたものが挙げられる。Zにより示される脂肪族基としては、3価以上の直鎖状または分枝状のアルキル基が挙げられ、例えば、メチニル基、エチニル基、プロピニル基、ブチニル基、オクチニル基、ドデシニル基などが挙げられる。ここで、Zについて使用される「ヘテロ原子含有有機基」とは、ヘテロ原子として、酸素、硫黄、または窒素原子を含有する脂肪族または芳香族の官能基を意味する。そのようなヘテロ原子含有有機基としては、メチレンオキシメチニル基、メチレンオキシエチニル基、メチレンオキシプロピニル基、エチレンオキシプロピニル基、メチレンオキシエチレンオキシメチニル基、エチレンオキシエチレンオキシエチニル基、プロピレンオキシエチレンオキシプロピニル基、フェニレンビス(メチルオキシエチニル)基、またはこれらの酸素原子が硫黄または窒素原子で置き換えられたもの、およびこれらの酸素原子の一部が硫黄および/または窒素原子で置き換えられたものが挙げられる。Zの一置換3価ケイ素原子には、例えば、アルキル基−Si≡が挙げられ、具体例としてCH−Si≡を挙げることができる。
(In the formula, R 2 independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and R 3 represents 1 carbon atom. Represents an alkylene group having ˜18, an arylalkylene group having 7 to 21 carbon atoms, a hetero atom-containing alkylene group having 1 to 6 heteroatoms and 1 to 12 carbon atoms, or a direct bond, m is an integer of 3 or more Z is a linking group having the same valence as m, and is a carbon atom, silicon atom, monosubstituted trivalent silicon atom, aliphatic group having 1 to 30 carbon atoms, 1 to 6 heteroatoms and 1 carbon atom. Any one of ˜30 heteroatom-containing organic groups or linear, branched or cyclic alkylsiloxane groups having 2 to 50 silicon atoms.)
Examples of the alkyl group represented by R 2 include a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, and a dodecyl group. Examples of the aryl group include a phenyl group, a toluyl group, and a naphthyl group. Is mentioned. Examples of the alkylene group represented by R 3 include a methylene group, an ethylene group, a propylene group, a butylene group, an octylene group, a dodecylene group, and the like, and examples of the arylalkylene group include a phenylmethylene group, a phenylethylene group, And phenylethylidene group. Here, the “hetero atom-containing alkylene group” used for R 3 is a group containing an oxygen, sulfur or nitrogen atom as a hetero atom, and the hetero atom is regarded as a carbon atom. It means a group that can be an alkylene group. Such heteroatom-containing alkylene groups include methyleneoxymethylene, methyleneoxyethylene, methyleneoxypropylene, ethyleneoxypropylene, methyleneoxyethyleneoxymethylene, ethyleneoxyethyleneoxyethylene, propyleneoxyethyleneoxypropylene Groups, or those in which these oxygen atoms are replaced with sulfur or nitrogen atoms, and those in which some of these oxygen atoms are replaced with sulfur and / or nitrogen atoms. Examples of the aliphatic group represented by Z include a trivalent or higher linear or branched alkyl group, and examples thereof include a methynyl group, an ethynyl group, a propynyl group, a butynyl group, an octynyl group, and a dodecynyl group. It is done. Here, the “hetero atom-containing organic group” used for Z means an aliphatic or aromatic functional group containing an oxygen, sulfur, or nitrogen atom as a hetero atom. Such heteroatom-containing organic groups include methyleneoxymethynyl, methyleneoxyethynyl, methyleneoxypropynyl, ethyleneoxypropynyl, methyleneoxyethyleneoxymethynyl, ethyleneoxyethyleneoxyethynyl, propyleneoxyethylene An oxypropynyl group, a phenylenebis (methyloxyethynyl) group, or a group in which these oxygen atoms are replaced with sulfur or nitrogen atoms, or a group in which some of these oxygen atoms are replaced with sulfur and / or nitrogen atoms Can be mentioned. Examples of the monosubstituted trivalent silicon atom of Z include an alkyl group —Si≡, and specific examples include CH 3 —Si≡.

これらのうち、好ましくはRは水素原子またはメチル基であり、Rは−CHOCH−、−CHOCHCH−、または−CHOCHCHOCH−である。これら不飽和基含有化合物の具体例としては、下記式(B−1)〜(B−7)で示されるものが挙げられる。

Figure 2005255701
Figure 2005255701
Among these, R 2 is preferably a hydrogen atom or a methyl group, and R 3 is —CH 2 OCH 2 —, —CH 2 OCH 2 CH 2 —, or —CH 2 OCH 2 CH 2 OCH 2 —. Specific examples of these unsaturated group-containing compounds include those represented by the following formulas (B-1) to (B-7).
Figure 2005255701
Figure 2005255701

上述した、ハイドロジェンシリコーンと不飽和基含有化合物のヒドロシリル化反応は、温度依存性の高い反応であり、加熱により反応を促進させることができる。これはヒドロシリル化反応の大きな利点であって、原料を適度な粘度をもたせた状態で混合でき、成形した後、加熱すれば一挙に所望の形状の重合物が得られる。この場合、加熱温度としては50〜150℃が好ましく、より好ましくは60〜120℃である。   The hydrosilylation reaction between the hydrogen silicone and the unsaturated group-containing compound described above is a highly temperature-dependent reaction and can be accelerated by heating. This is a great advantage of the hydrosilylation reaction. The raw materials can be mixed in a state having an appropriate viscosity, and after forming and then heated, a polymer having a desired shape can be obtained at once. In this case, the heating temperature is preferably 50 to 150 ° C, more preferably 60 to 120 ° C.

このヒドロシリル化反応には触媒を使用することが好ましい。ヒドロシリル化反応に使用可能な触媒としては、白金、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム等の化合物が知られているが、特に白金化合物が有用である。白金化合物の例としては、塩化白金酸、白金の単体、アルミナ、シリカ、カーボンブラックなどの担体に固体白金を担持させたもの、白金−ビニルシロキサン錯体、白金−ホスフィン錯体、白金−ホスファイト錯体、白金−アルコラート触媒などが使用できる。白金触媒の場合、ERゲルに対し0.0001wt%程度添加することができる。   A catalyst is preferably used for the hydrosilylation reaction. As catalysts usable for the hydrosilylation reaction, compounds such as platinum, ruthenium, rhodium, palladium, osmium, iridium and the like are known, and platinum compounds are particularly useful. Examples of the platinum compound include chloroplatinic acid, platinum alone, alumina, silica, carbon black and the like supported on solid platinum, platinum-vinylsiloxane complex, platinum-phosphine complex, platinum-phosphite complex, A platinum-alcolate catalyst or the like can be used. In the case of a platinum catalyst, about 0.0001 wt% can be added to the ER gel.

本発明におけるERゲルは、ゲル骨格の架橋密度が下記式を満足する場合が好ましく、特に式1の下限が0.8で上限が1.2である場合が好ましい。

Figure 2005255701
The ER gel in the present invention preferably has a gel skeleton crosslinking density satisfying the following formula, and particularly preferably has a lower limit of 0.8 and an upper limit of 1.2.
Figure 2005255701

本発明のERゲル中におけるゲル骨格の含有量は3〜64wt%が好ましい。ゲル骨格の含有量が3wt%未満の場合、ERゲルの流動性が高く、制動素子等に使用する際にシール構造が必要となる。一方、ゲル骨格の含有量が64wt%を超えると、相対的にER粒子の含有量が減少し、十分なER効果を得ることができない。   The content of the gel skeleton in the ER gel of the present invention is preferably 3 to 64 wt%. When the content of the gel skeleton is less than 3 wt%, the fluidity of the ER gel is high, and a seal structure is required when used for a braking element or the like. On the other hand, when the content of the gel skeleton exceeds 64 wt%, the content of the ER particles relatively decreases, and a sufficient ER effect cannot be obtained.

ゲル骨格中に、ER粒子が分散された液状電気絶縁媒体を保持させるには、上記ヒドロシリル化後に含浸させても良いが、ヒドロシリル化前に、ER粒子を分散させた液状電気絶縁性媒体を、ハイドロジェンシリコーンおよび不飽和基含有化合物とに混合しておき、その後加熱によって反応させた方が好ましい。   In order to retain the liquid electrical insulating medium in which the ER particles are dispersed in the gel skeleton, the liquid electrical insulating medium in which the ER particles are dispersed before the hydrosilylation may be impregnated. It is preferable to mix with hydrogen silicone and an unsaturated group-containing compound and then react by heating.

また、ERゲルシート中の液状電気絶縁性媒体は、上述した方法によりER粒子が分散された液状電気絶縁媒体をゲル骨格中に保持させた後、減圧下あるいは加圧下に圧搾あるいは吸引により抜き取って所望の量に調整してもよい。この方法は、特にERゲルシート中の液状電気絶縁性媒体の含有量を少なくしたい場合に有効である。ER粒子分散時には、分散に十分な量の液状電気絶縁性媒体を使用し、ゲル骨格中に保持させた後に液状電気絶縁性媒体を抜き取ることで、均一にER粒子を配置させることができる。   Further, the liquid electrical insulating medium in the ER gel sheet is preferably obtained by holding the liquid electrical insulating medium in which ER particles are dispersed in the gel skeleton by the above-described method, and then extracting the liquid electrical insulating medium by squeezing or suctioning under reduced pressure or pressure. The amount may be adjusted. This method is particularly effective when it is desired to reduce the content of the liquid electrically insulating medium in the ER gel sheet. At the time of ER particle dispersion, a sufficient amount of the liquid electric insulating medium for dispersion is used, and the ER particles can be uniformly arranged by extracting the liquid electric insulating medium after being held in the gel skeleton.

本発明おけるERゲルシートが十分なER効果を発生させるためには、250V/mm以上の電界強度を印可する必要がある。従って、250V/mm以上の電界強度を発生させることのできる電源を用いる限り、本発明におけるERゲルシートの厚さは限定されない。実用レベルから判断すると、ERゲルシートの厚さは0.05〜10mm程度が好ましい。   In order for the ER gel sheet of the present invention to generate a sufficient ER effect, it is necessary to apply an electric field strength of 250 V / mm or more. Therefore, the thickness of the ER gel sheet in the present invention is not limited as long as a power source capable of generating an electric field strength of 250 V / mm or more is used. Judging from the practical level, the thickness of the ER gel sheet is preferably about 0.05 to 10 mm.

上述したように、本発明のERゲルは、ER粒子が分散された液状絶縁性媒体がゲル骨格中に保持されているため、長時間静置してもER粒子が沈降・凝集することがない。また、電界印加時にはER粒子がゲル骨格内部で配列してER効果が得られると考えられる。さらに、本発明のERゲルは、制動素子等のデバイスに組み込む場合にもシール機構が不要である。   As described above, in the ER gel of the present invention, since the liquid insulating medium in which ER particles are dispersed is held in the gel skeleton, the ER particles do not settle and aggregate even if left for a long time. . Further, it is considered that the ER effect is obtained by arranging the ER particles in the gel skeleton when an electric field is applied. Furthermore, the ER gel of the present invention does not require a sealing mechanism when incorporated in a device such as a braking element.

また、本発明のERゲルは、従来例に比べ電荷を運ぶ媒体である液状電気絶縁性媒体の含有量が少ないため、消費電力を少なくすることができる。   In addition, the ER gel of the present invention can reduce power consumption because the content of the liquid electrically insulating medium, which is a medium for carrying charges, is smaller than that of the conventional example.

以下、実施例に基づき本発明の具体例を示すが、本発明はこれらになんら限定されるものではない。   Hereinafter, specific examples of the present invention will be shown based on examples, but the present invention is not limited thereto.

(ER粒子の作製)
アンチモンドーピング酸化スズ(石原産業株式会社製、SN−100P、電気伝導度:1.0×10Ω−1/cm)30g、水酸化チタン(石原産業株式会社製、C−11、電気伝導度:9.1×10−6Ω−1/cm)10g、アクリル酸ブチル300g、1,3−ブチレングリコールジメタクリレート100g、およびアゾビスイソバレロニトリル(重合開始剤)2gとからなる混合物を、分散安定剤として第三リン酸カルシウム25gを含有する蒸留水1800ml中に分散し、撹拌しながら60℃にて1時間懸濁重合を行った。得られた生成物を濾過し、酸処理後、水洗、脱水乾燥することによって、無機・有機複合粒子を得た。この粒子200gに、鉄フタロシアニン(山陽色素株式会社製、P−26)2gを加え、ボールミルにて75時間複合化処理を行った後、さらにジェット気流攪拌機(株式会社奈良機械製作所製、ハイブリダイザー)を用いて風速75m/秒で210秒間ジェット気流処理を行い、ER粒子を得た。
(Production of ER particles)
Antimony-doped tin oxide (Ishihara Sangyo Co., Ltd., SN-100P, electrical conductivity: 1.0 × 10 0 Ω -1 / cm) 30 g, Titanium hydroxide (Ishihara Sangyo Co., Ltd., C-11, electrical conductivity) : 9.1 × 10 −6 Ω −1 / cm) 10 g, butyl acrylate 300 g, 1,3-butylene glycol dimethacrylate 100 g, and azobisisovaleronitrile (polymerization initiator) 2 g are dispersed. The dispersion was dispersed in 1800 ml of distilled water containing 25 g of tricalcium phosphate as a stabilizer, and suspension polymerization was performed at 60 ° C. for 1 hour with stirring. The obtained product was filtered, and after acid treatment, washed with water and dehydrated and dried to obtain inorganic / organic composite particles. 2 g of iron phthalocyanine (P-26, manufactured by Sanyo Dyeing Co., Ltd.) was added to 200 g of the particles, and the composite treatment was performed with a ball mill for 75 hours, and then a jet air flow stirrer (produced by Nara Machinery Co., Ltd., Hybridizer) Was used for 210 seconds at a wind speed of 75 m / sec to obtain ER particles.

(実施例1)
上記ER粒子50.0重量部、ジメチルシリコーンオイル(日本ユニカー株式会社製、L−45(100))36.0重量部、前記式(A−1)で示されるハイドロジェンシリコーン13.15重量部、前記式(B−1)で示される不飽和基含有化合物0.85重量部、および0価の白金触媒0.0001重量部を、室温下で均一に混合した。間隔が1mmに保たれた2枚のアルミ板の間にこの混合物を流し込み、100℃で1時間加熱処理した後、室温下で1日間放置して、ERゲルシートを作製した。得られたERゲルシートは縦75mm、横50mm、厚さ1mmであった。
(Example 1)
50.0 parts by weight of the ER particles, 36.0 parts by weight of dimethyl silicone oil (manufactured by Nippon Unicar Co., Ltd., L-45 (100)), 13.15 parts by weight of hydrogen silicone represented by the formula (A-1) Then, 0.85 part by weight of the unsaturated group-containing compound represented by the formula (B-1) and 0.0001 part by weight of a zero-valent platinum catalyst were uniformly mixed at room temperature. This mixture was poured between two aluminum plates maintained at a distance of 1 mm, heat-treated at 100 ° C. for 1 hour, and then allowed to stand at room temperature for 1 day to prepare an ER gel sheet. The obtained ER gel sheet was 75 mm long, 50 mm wide, and 1 mm thick.

(実施例2)
シートサイズを縦75mm、横50mm、厚さ0.5mmとした他は、実施例1と同様にしてERゲルシートを作製した。
(Example 2)
An ER gel sheet was prepared in the same manner as in Example 1 except that the sheet size was 75 mm in length, 50 mm in width, and 0.5 mm in thickness.

(実施例3)
上記ER粒子50.4重量部、ジメチルシリコーンオイル(日本ユニカー株式会社製、L−45(100))33.6重量部、前記式(A−1)で示されるハイドロジェンシリコーン15.03重量部、前記式(B−1)で示される不飽和基含有化合物0.97重量部、および0価の白金触媒0.0001重量部を、室温下で均一に混合した。間隔が0.5mmに保たれた2枚のアルミ板の間にこの混合物を流し込み、100℃で1時間加熱処理した後、室温下で1日間放置して、ERゲルシートを作製した。得られたERゲルシートは縦75mm、横50mm、厚さ0.5mmであった。
(Example 3)
50.4 parts by weight of the ER particles, 33.6 parts by weight of dimethyl silicone oil (Nihon Unicar Co., Ltd., L-45 (100)), 15.03 parts by weight of hydrogen silicone represented by the formula (A-1) Then, 0.97 part by weight of the unsaturated group-containing compound represented by the formula (B-1) and 0.0001 part by weight of a zero-valent platinum catalyst were uniformly mixed at room temperature. The mixture was poured between two aluminum plates maintained at a distance of 0.5 mm, heat-treated at 100 ° C. for 1 hour, and then allowed to stand at room temperature for 1 day to prepare an ER gel sheet. The obtained ER gel sheet was 75 mm long, 50 mm wide, and 0.5 mm thick.

(実施例4)
上記実施例3で得られた混合物を、2枚のアルミ板の間に流し込み100℃で1時間加熱した。その後、室温下で、2枚のアルミ板を間隔が0.5mmになるまでゆっくりと両側から加圧して、そのまま1日間放置してERゲルシート中のジメチルシリコーンオイルを搾取した。得られたジメチルシリコーンオイルの重量から、このERゲルシートの組成は、ER粒子含有量60.58wt%、ゲル骨格含有量19.23wt%、ジメチルシリコーンオイル含有量20.19wt%であると算出された。ERゲルシートを縦75mm、横50mmに裁断した。
Example 4
The mixture obtained in Example 3 was poured between two aluminum plates and heated at 100 ° C. for 1 hour. Thereafter, at room temperature, the two aluminum plates were slowly pressurized from both sides until the distance became 0.5 mm, and left as it was for 1 day to extract the dimethyl silicone oil in the ER gel sheet. From the weight of the obtained dimethyl silicone oil, the composition of this ER gel sheet was calculated to have an ER particle content of 60.58 wt%, a gel skeleton content of 19.23 wt%, and a dimethyl silicone oil content of 20.19 wt%. . The ER gel sheet was cut into a length of 75 mm and a width of 50 mm.

(比較例1)
上記ER粒子を26.8重量部、ジメチルシリコーンオイル(日本ユニカー株式会社製、L−45(100))を59.2重量部、前記式(A−1)で示されるハイドロジェンシリコーンを13.15重量部、および前記式(B−1)で示される不飽和基含有化合物を0.85重量部とした他は実施例1と同様にして、縦75mm、横50mm、厚さ1mmのERゲルシートを作製した。
(Comparative Example 1)
26.8 parts by weight of the ER particles, 59.2 parts by weight of dimethyl silicone oil (manufactured by Nippon Unicar Co., Ltd., L-45 (100)), and 13.2 of hydrogen silicone represented by the formula (A-1). ER gel sheet having a length of 75 mm, a width of 50 mm, and a thickness of 1 mm in the same manner as in Example 1 except that 15 parts by weight and the unsaturated group-containing compound represented by the formula (B-1) were changed to 0.85 parts by weight. Was made.

オイルの滲み
作製したERゲルシートの表面を観察したところ、実施例1〜3で作製したERゲルシートの表面は乾いており、オイルの滲みは認められなかった。一方、比較例1のERゲルシートは、表面に薄くオイルが滲んでいた。
Oil Bleeding When the surface of the produced ER gel sheet was observed, the surface of the ER gel sheet produced in Examples 1 to 3 was dry and no oil bleeding was observed. On the other hand, the ER gel sheet of Comparative Example 1 was thinly oily on the surface.

ER特性評価1
ER特性評価には図1に示す装置を用いた。実施例1または比較例1で作製したERゲルシートを、2枚の平行平板電極で挟み、下部電極を固定し上部電極をスライドできるようにした。ERゲルシートに1kV/mmの電界を印加した状態で上部電極を20μmスライドさせ、この時の上部電極の変位量を渦電流式変位計により、剪断応力をロードセルにより測定した。(図2)その結果、実施例、比較例ともに、上部電極の変位量が大きくなるにつれて剪断応力の発生が認められたが、実施例の場合、比較例に比べ著しく大きな剪断応力が発生した。
ER characteristic evaluation 1
The apparatus shown in FIG. 1 was used for ER characteristic evaluation. The ER gel sheet produced in Example 1 or Comparative Example 1 was sandwiched between two parallel plate electrodes so that the lower electrode was fixed and the upper electrode could be slid. The upper electrode was slid by 20 μm while an electric field of 1 kV / mm was applied to the ER gel sheet, and the amount of displacement of the upper electrode at this time was measured by an eddy current displacement meter and the shear stress was measured by a load cell. (FIG. 2) As a result, in both the example and the comparative example, the generation of shear stress was recognized as the displacement amount of the upper electrode increased. In the case of the example, however, a significantly greater shear stress was generated than in the comparative example.

ER特性評価2
上述した装置を用い、実施例1〜2のERゲルシートについて、電界強度が0〜1500V/mmで上部電極を600μmまで変位させたときの剪断応力を測定した。(図3)その結果、実施例1に比べ、厚みが0.5mmと薄い実施例2のERゲルシートの方が、電界強度に応じて幅広い剪断応力を発生させることができた。
ER characteristic evaluation 2
Using the apparatus described above, the shear stress when the upper electrode was displaced to 600 μm with the electric field strength of 0 to 1500 V / mm was measured for the ER gel sheets of Examples 1 and 2. (FIG. 3) As a result, compared with Example 1, the ER gel sheet of Example 2 having a thickness as thin as 0.5 mm was able to generate a wide range of shear stress depending on the electric field strength.

ER特性評価3
上述した装置に実施例2のERゲルシートをセットし、上部電極を振り幅100μm、振動数10Hzで振動させた。電極間に電界強度1500V/mmを印加したところ、約10〜30ms後に振動が止まった。また電界を除去したところ、約100〜300ms後に再び振動を始めた(図4)。
ER characteristic evaluation 3
The ER gel sheet of Example 2 was set in the apparatus described above, and the upper electrode was vibrated at a swing width of 100 μm and a vibration frequency of 10 Hz. When an electric field strength of 1500 V / mm was applied between the electrodes, the vibration stopped after about 10 to 30 ms. Further, when the electric field was removed, vibration started again after about 100 to 300 ms (FIG. 4).

ER特性評価4
上述した装置を用い、実施例2のERゲルシートについて、電界強度1500V/mmで、上部電極を600μmまで変位させたときの剪断応力を1日1回、7日間測定した。その結果、毎回ほぼ同様な剪断応力の発生が認められ、保存安定性、再現性が高いことが確認された(図5)。
ER characteristic evaluation 4
Using the apparatus described above, the shear stress when the upper electrode was displaced to 600 μm was measured once a day for 7 days for the ER gel sheet of Example 2 at an electric field strength of 1500 V / mm. As a result, almost the same shear stress was observed each time, and it was confirmed that the storage stability and reproducibility were high (FIG. 5).

ER特性評価5
上述した装置に実施例3のERゲルシートをセットし、上部電極を振り幅300μm、振動数10Hzで振動させた。電極間に電界強度1500V/mmを印加したところ、約10〜30ms後に振動が止まった。また電界を除去したところ、約700〜900ms後に再び振動を始めた(図6)。また、上述した装置に実施例4のERゲルシートをセットし、上部電極を振り幅100μm、振動数10Hzで振動させた。電極間に電界強度1500V/mmを印加したところ、約10〜30ms後に振動が止まった。次に、電界を除去したところ、約200〜300ms後に再び振動を始めた(図6)。実施例3と実施例4を比較すると、実施例4は振り幅を100μmと小さくしたにもかかわらず、電界除去後、短期間で振動を再開した。
ER characteristic evaluation 5
The ER gel sheet of Example 3 was set in the apparatus described above, and the upper electrode was vibrated at a vibration width of 300 μm and a vibration frequency of 10 Hz. When an electric field strength of 1500 V / mm was applied between the electrodes, the vibration stopped after about 10 to 30 ms. When the electric field was removed, vibration started again after about 700 to 900 ms (FIG. 6). Moreover, the ER gel sheet of Example 4 was set in the apparatus mentioned above, and the upper electrode was vibrated with a swinging width of 100 μm and a vibration frequency of 10 Hz. When an electric field strength of 1500 V / mm was applied between the electrodes, the vibration stopped after about 10 to 30 ms. Next, when the electric field was removed, vibration started again after about 200 to 300 ms (FIG. 6). When Example 3 and Example 4 were compared, Example 4 resumed vibration in a short period of time after removing the electric field, even though the swing width was reduced to 100 μm.

ER効果特性評価装置の概略図である。It is the schematic of an ER effect characteristic evaluation apparatus. 実施例1および比較例2におけるER効果の評価結果を示すグラフである。It is a graph which shows the evaluation result of the ER effect in Example 1 and Comparative Example 2. ERゲルシートの厚さと発生する剪断応力の関係を示すグラフである。It is a graph which shows the relationship between the thickness of ER gel sheet, and the generated shear stress. 振動実験の結果を示すグラフである。It is a graph which shows the result of a vibration experiment. 保存安定性確認実験の結果を示すグラフである。It is a graph which shows the result of a storage stability confirmation experiment. 電界除去時の応答性実験結果を示すグラフである。It is a graph which shows the response experiment result at the time of electric field removal.

Claims (4)

少なくとも電気レオロジー粒子、液状電気絶縁性媒体、及びゲル骨格を含む電気レオロジーゲルにおいて、電気レオロジー粒子の含有量が35〜90wt%である電気レオロジーゲル。   An electrorheological gel containing at least 35 to 90 wt% of an electrorheological particle in an electrorheological gel including at least an electrorheological particle, a liquid electric insulating medium, and a gel skeleton. 前記液状電気絶縁性媒体の含有量が1〜55wt%である請求項1に記載の電気レオロジーゲル。   The electrorheological gel according to claim 1, wherein the content of the liquid electrically insulating medium is 1 to 55 wt%. 前記ゲル骨格の含有量が3〜64wt%である請求項2に記載の電気レオロジーゲル。   The electrorheological gel according to claim 2, wherein the content of the gel skeleton is 3 to 64 wt%. 請求項1〜3のいずれか1項に記載の電気レオロジーゲルからなる電気レオロジーゲルシート。   An electrorheological gel sheet comprising the electrorheological gel according to any one of claims 1 to 3.
JP2004065019A 2004-03-09 2004-03-09 Method for producing electrorheological gel Expired - Lifetime JP4504048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065019A JP4504048B2 (en) 2004-03-09 2004-03-09 Method for producing electrorheological gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065019A JP4504048B2 (en) 2004-03-09 2004-03-09 Method for producing electrorheological gel

Publications (2)

Publication Number Publication Date
JP2005255701A true JP2005255701A (en) 2005-09-22
JP4504048B2 JP4504048B2 (en) 2010-07-14

Family

ID=35081768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065019A Expired - Lifetime JP4504048B2 (en) 2004-03-09 2004-03-09 Method for producing electrorheological gel

Country Status (1)

Country Link
JP (1) JP4504048B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281424A (en) * 2005-04-05 2006-10-19 Toshiba Mach Co Ltd Abrasive, polishing tool, polishing device, manufacturing method for abrasive, manufacturing method for polishing tool, and polishing method
WO2008129989A1 (en) * 2007-04-19 2008-10-30 Ulvac, Inc. Substrate holding mechanism and substrate assembling apparatus provided with the same
JP2008266407A (en) * 2007-04-18 2008-11-06 Fujikura Kasei Co Ltd Electric rheology gel and method for preparing the same
JP2009203367A (en) * 2008-02-28 2009-09-10 Fujikura Kasei Co Ltd Attracting force-adjustable material, method for producing the same, and electro-rheological element
JP2012042907A (en) * 2010-07-22 2012-03-01 Ricoh Co Ltd Powder moving device, process cartridge, and image forming apparatus
JP2014133852A (en) * 2013-01-11 2014-07-24 Fujikura Kasei Co Ltd Electric rheology gel and variable thermal conductivity molding
US8840116B2 (en) 2008-12-10 2014-09-23 Ulvac, Inc. Seal mechanism and treatment apparatus
US9017493B2 (en) 2009-08-12 2015-04-28 Ulvac, Inc. Method of manufacturing a sputtering target and sputtering target
US9665046B2 (en) 2014-08-27 2017-05-30 Ricoh Company, Ltd. Belt driving roller including electroviscous force developing member, and belt driving device using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11207712B2 (en) 2018-09-19 2021-12-28 Kabushiki Kaisha Toshiba Sonic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238292A (en) * 1994-02-28 1995-09-12 Kinugawa Rubber Ind Co Ltd Electroviscous fluid
JP2002080881A (en) * 2000-09-07 2002-03-22 Fujikura Kasei Co Ltd Electric rheology gel
JP2003322196A (en) * 2002-04-26 2003-11-14 Fujikura Kasei Co Ltd Electric rheology element and electric rheology device comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238292A (en) * 1994-02-28 1995-09-12 Kinugawa Rubber Ind Co Ltd Electroviscous fluid
JP2002080881A (en) * 2000-09-07 2002-03-22 Fujikura Kasei Co Ltd Electric rheology gel
JP2003322196A (en) * 2002-04-26 2003-11-14 Fujikura Kasei Co Ltd Electric rheology element and electric rheology device comprising the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281424A (en) * 2005-04-05 2006-10-19 Toshiba Mach Co Ltd Abrasive, polishing tool, polishing device, manufacturing method for abrasive, manufacturing method for polishing tool, and polishing method
JP2008266407A (en) * 2007-04-18 2008-11-06 Fujikura Kasei Co Ltd Electric rheology gel and method for preparing the same
WO2008129989A1 (en) * 2007-04-19 2008-10-30 Ulvac, Inc. Substrate holding mechanism and substrate assembling apparatus provided with the same
JPWO2008129989A1 (en) * 2007-04-19 2010-07-22 株式会社アルバック Substrate holding mechanism and substrate assembling apparatus having the same
JP5024971B2 (en) * 2007-04-19 2012-09-12 株式会社アルバック Substrate holding mechanism and substrate assembling apparatus having the same
JP2009203367A (en) * 2008-02-28 2009-09-10 Fujikura Kasei Co Ltd Attracting force-adjustable material, method for producing the same, and electro-rheological element
US8840116B2 (en) 2008-12-10 2014-09-23 Ulvac, Inc. Seal mechanism and treatment apparatus
US9017493B2 (en) 2009-08-12 2015-04-28 Ulvac, Inc. Method of manufacturing a sputtering target and sputtering target
JP2012042907A (en) * 2010-07-22 2012-03-01 Ricoh Co Ltd Powder moving device, process cartridge, and image forming apparatus
JP2014133852A (en) * 2013-01-11 2014-07-24 Fujikura Kasei Co Ltd Electric rheology gel and variable thermal conductivity molding
US9665046B2 (en) 2014-08-27 2017-05-30 Ricoh Company, Ltd. Belt driving roller including electroviscous force developing member, and belt driving device using same

Also Published As

Publication number Publication date
JP4504048B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
Chen et al. Synthesis and characterization of polyimide/silica hybrid composites
US9745498B2 (en) Heat-storage composition
JP4504048B2 (en) Method for producing electrorheological gel
JP3183111B2 (en) Semiconductive silicone rubber composition for semiconductive silicone rubber roll
WO2013146357A1 (en) Reactive ionic liquid, ion-fixing metal oxide particles using same, ion-fixing elastomer, and transducer
EP2860183B1 (en) Reactive ionic liquid and ion-immobilized metal oxide particles produced using same, ion-immobilized elastomer, and transducer
Ştiubianu et al. Dielectric elastomers based on silicones filled with transitional metal complexes
Gu et al. Glass-fiber networks as an orbit for ions: fabrication of excellent antistatic PP/GF composites with extremely low organic salt loadings
TWI732896B (en) Thermally conductive sheet
JP4867202B2 (en) Electrorheological sheet
Lim et al. Rheological properties of a new rubbery nanocomposite: Polyepichlorohydrin/organoclay nanocomposites
Chen et al. Interfacial engineering of polydimethylsiloxane based dielectric elastomers with excellent electromechanical properties via incorporating polyphenol encapsulated multiwalled carbon nanotube
JP5338036B2 (en) Electrorheological gel element and method for producing electrorheological gel
Zhao et al. A Stiffness Tunable Self-Healing Composite Comprising PDMS and Titanium Dioxide
JP5487806B2 (en) Electrorheological particles and electrorheological gels
JP4717989B2 (en) Electrorheological gel
Zhang et al. Synthesize procedures, mechanical and electrical properties of poly (vinylidene fluoride) nanocomposite thin films containing multiwalled carbon nanotubes
Yavuz et al. Synthesis, characterization, and partial hydrolysis of polyisoprene‐co‐poly (tert‐butyl methacrylate) and electrorheological properties of its suspensions
JP6293896B2 (en) Ion transfer material, electrolyte membrane including the same, and method for producing the same
CN110226225A (en) Heat conductive sheet
JP2008156579A (en) Electroconductive silicone rubber composition
Lu et al. The surface modification by carboxyl ionic liquid for mesoporous silica and the preparation of composite polymer electrolyte with the modified mesoporous silica
Zhan et al. Effect of interfacial chemistry on the linear rheology and thermal stability of poly (arylene ether nitrile) nanocomposite films filled with various functionalized graphite nanoplates
JPH0391541A (en) Variable modulus material
TWI464255B (en) Friction variable molded body and friction variable structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4504048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250