JP2005254127A - Method of treating soil complexedly polluted with heavy metals - Google Patents

Method of treating soil complexedly polluted with heavy metals Download PDF

Info

Publication number
JP2005254127A
JP2005254127A JP2004068670A JP2004068670A JP2005254127A JP 2005254127 A JP2005254127 A JP 2005254127A JP 2004068670 A JP2004068670 A JP 2004068670A JP 2004068670 A JP2004068670 A JP 2004068670A JP 2005254127 A JP2005254127 A JP 2005254127A
Authority
JP
Japan
Prior art keywords
soil
treatment
polluted
complexedly
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004068670A
Other languages
Japanese (ja)
Other versions
JP3777380B2 (en
Inventor
Iwao Kato
岩男 加藤
Hiroaki Shiino
宏明 椎野
Mitsumasa Furuya
光正 古矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KABUKI KENSETSU KK
NIPPON EIKAN SHIDO CENTER KK
NIPPON EIKAN SHIDO CT KK
Hitachi Cement Co Ltd
Original Assignee
KABUKI KENSETSU KK
NIPPON EIKAN SHIDO CENTER KK
NIPPON EIKAN SHIDO CT KK
Hitachi Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KABUKI KENSETSU KK, NIPPON EIKAN SHIDO CENTER KK, NIPPON EIKAN SHIDO CT KK, Hitachi Cement Co Ltd filed Critical KABUKI KENSETSU KK
Priority to JP2004068670A priority Critical patent/JP3777380B2/en
Publication of JP2005254127A publication Critical patent/JP2005254127A/en
Application granted granted Critical
Publication of JP3777380B2 publication Critical patent/JP3777380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of chemically treating a polluted soil which enables a partial curtailment of stepwise treating process of the reduction treatment of a complexedly polluted soil. <P>SOLUTION: In the case of chemically treating a soil complexedly polluted with arsenic, lead, cadmium, and the like, a reducing agent formed by blending sodium thiosulfate, sodium carbonate and thiourea, and a carbonated compound and a solidifying material are added to the soil at the same time and mixed, to make each of the agents preferentially react with a substance having affinity with it to insolubilize it at once, the re-elution of insolubilized materials in the soil is prevented or suppressed even if the soil becomes alkaline by the solidifying treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、汚染土壌の不溶化処理、特に重金属による複合汚染土壌の場内(現地)処理に当たり、汚染土壌に添加して撹拌・混合等の処理を行うことにより汚染源物質の不溶性塩を生成して、無害化を図る重金属汚染土壌の処理方法に関する。   In the present invention, insolubilization treatment of contaminated soil, especially in-situ (local) treatment of complex contaminated soil with heavy metals, by adding to the contaminated soil and performing agitation and mixing treatment to produce insoluble salt of the pollutant source material, The present invention relates to a method for treating heavy metal contaminated soil for detoxification.

汚染土壌の化学的処理方法としては、従来、場内(現地)処理を行う場合と場外(搬出)処理を行う場合とが知られている。
例えば、汚染部位が地下2.0〜5.0メートルの間に層状に位置し、浅層撹拌方式を採用して処理剤と水分調整固化材を用いることが、汚染源物質の混乱、拡散を抑制できると思われる場合は、場内処理が優位に行なわれる。
As chemical treatment methods for contaminated soil, conventionally, there are known cases of performing on-site (local) treatment and off-site (unloading) treatment.
For example, the contamination site is located in a layer between 2.0 and 5.0 meters underground, and adopting a shallow agitation method and using a treatment agent and moisture-adjusting solidifying material suppresses the confusion and diffusion of the contamination source material. If you think you can do it, the on-site processing will be dominant.

場外処理の場合は、被処理土壌の搬出先を特定し、その受入れ基準を満たしているものについては掘削後、被処理土壌を搬出することになるが、受入れ基準を超えている汚染物質については、場内で一旦処理した後に搬出しなければならない。
現状では、作業手続の複雑性を避けるとか経済的観点などから、場内処理を行う場合が少なくない。
In the case of off-site treatment, the destination of the treated soil is specified, and those that meet the acceptance criteria will be removed after excavation, and the treated soil will be delivered, but for contaminants that exceed the acceptance criteria It must be taken out after processing in the hall.
At present, there are many cases where on-site processing is performed from the viewpoint of avoiding the complexity of work procedures or from an economic point of view.

汚染の化学的処理方法としては、通常、硫酸第一鉄などの還元剤を用いて水分に溶け出した溶解性重金属類を還元し、それらを硫化物若しくは水酸化物に変えて不溶化・沈殿させるものが知られている(その反応機構の説明は、図2を参照されたい)が、この方法は酸性条件でのみ存在する反応であるので、その後、土壌が酸性になり、そのまま放置すれば、やがて解離して再び、酸化型に戻ってしまう。   As a chemical treatment method for contamination, usually, a reducing agent such as ferrous sulfate is used to reduce soluble heavy metals dissolved in moisture, and these are converted into sulfides or hydroxides to be insolubilized and precipitated. Is known (see Figure 2 for an explanation of the reaction mechanism), but since this method is a reaction that exists only under acidic conditions, then the soil becomes acidic and if left as it is, It will eventually dissociate and return to the oxidized form again.

そこで、不溶化後の処理の安定化を図るため石灰水などで中和し、水酸化物として解離を抑制する必要がある。しかし、液体による酸性土壌の中和では均一性を得ることが、かなり難しい事で、実際には不可能に近い。
上記の中和処理を怠ったり不完全な状態が続くと、酸性雨や空気酸化により再解離が起こって、再処理が必要になる。
Therefore, in order to stabilize the treatment after insolubilization, it is necessary to neutralize with lime water or the like to suppress dissociation as a hydroxide. However, neutralization of acidic soil with liquid is quite difficult to achieve uniformity, and is practically impossible.
If the above neutralization treatment is neglected or an incomplete state continues, re-dissociation occurs due to acid rain or air oxidation, and re-treatment is required.

また、不溶化処理後の地盤に所定の力学的強度を与えるため、必要な量の固化材(一般的には、セメント系、カルシウム系)を添加すると、アルカリ条件が過度になって了う。
例えば、一軸圧縮強度を2Kg/cm以上を得ようとするならば、土壌の量に対して5%以上の固化材が必要となるが、セメントの組成から言っても石灰が40%程度は含まれているので、当然の事ながら、混ぜた時点でpH値は、強アルカリ性(pH13以上)を呈する。
Moreover, in order to give predetermined | prescribed mechanical strength to the ground after insolubilization processing, if a required quantity of solidification material (generally cement type, calcium type) is added, alkaline conditions will end too much.
For example, if it is desired to obtain a uniaxial compressive strength of 2 kg / cm 2 or more, a solidifying material of 5% or more with respect to the amount of soil is required. As a matter of course, the pH value is strongly alkaline (pH 13 or more) when mixed.

土壌汚染の状況は一般に、単一物質による汚染は稀であって、複数の汚染物質が関係する場合が多く見られる。
汚染土壌で、鉛、砒素のように、両性化合物が共存している場合、土壌が過度にアルカリ性(一般的にはpH10以上)になったときには、再び溶け出しまうことになるので、適度の調整は極めて煩雑、かつ、精密なコントロールが要求される。
還元などの不溶化処理を施してあっても、上記のように、次の固化工程で再溶出(金属類の遊離)の可能性がある。
つまり、還元処理のみでは、何れの方法によっても再解離の可能性を否定することができない。
In general, soil contamination is rarely caused by a single substance and often involves multiple contaminants.
In the contaminated soil, when amphoteric compounds such as lead and arsenic coexist, when the soil becomes excessively alkaline (generally pH 10 or more), it will be dissolved again. Requires extremely complicated and precise control.
Even if an insolubilization treatment such as reduction is performed, there is a possibility of re-elution (release of metals) in the next solidification step as described above.
That is, the possibility of re-dissociation cannot be denied by any method only by reduction treatment.

また、これまでの処理は、各薬剤を対象物質ごと、それぞれの反応プロセス毎に段階的に反応させて処理を行わねばならなかった。
特開2003−290759号公報
In addition, the conventional treatment has to be performed by reacting each drug stepwise for each target substance and each reaction process.
JP 2003-290759 A

そこで本発明は、複合重金属汚染土壌の処理工程で発生する上述の問題点(不都合/弊害)を全て解決する化学的不溶化処理方法を提供する事を目的とする。   Therefore, an object of the present invention is to provide a chemical insolubilization treatment method that solves all of the above-mentioned problems (inconveniences / detriments) that occur in the treatment process of complex heavy metal contaminated soil.

本発明方法は、汚染源中に、硫化物となし得るものと成し得ない重金属類とが共存する場合であっても、複数の薬剤中の何れかを親和性の強い物質と優先的に反応させて炭酸化合物を同時に形成させて不溶化を達成し、処理後に土壌がアルカリ条件になっても不溶化物の再溶出を防止または抑制する事ができる特徴を備え、その構成は、次ぎに述べる通りである。   The method of the present invention preferentially reacts any of a plurality of drugs with a substance having a strong affinity even in the case where a sulfide and a heavy metal that cannot be formed coexist in a pollution source. The carbonic acid compound is formed at the same time to achieve insolubilization, and it is possible to prevent or suppress the resolubilization of the insolubilized material even if the soil becomes alkaline after the treatment. The structure is as described below. is there.

(1)チオ硫酸ナトリウム、炭酸ナトリウム及びチオ尿素を配合した水溶液よりなる不溶化処理液と、セメント系固化材にチオ尿素などのキレート作用を持つ剤を配合した処理剤とを、一挙に汚染土壌に添加、混合して不溶化処理を施し、処理土壌の固化熟成過程でのアルカリ条件においても処理の安定化を維持する事を可能とした複合重金属汚染土壌の処理方法。 (1) An insolubilizing treatment solution composed of an aqueous solution containing sodium thiosulfate, sodium carbonate and thiourea, and a treatment agent containing a cement-based solidifying material and a chelating agent such as thiourea, are applied to contaminated soil at once. A method for treating complex heavy metal-contaminated soil that can be added, mixed and insolubilized to maintain stabilization even under alkaline conditions during the solidification and aging process of the treated soil.

(a)処理土壌が、複合汚染の状況にあるとき、何れかの処理剤が適所で働くので有効である。
還元処理後、セメント固化処理により土壌がアルカリ性に傾いた場合、不溶化物が解離する可能性があるが、炭酸ナトリウムを添加しておけば、アルカリにより再解離した酸化型クロムを溶解度の低い炭酸クロムとして不溶化・沈殿させることができるので、再溶出(遊離)を防止または抑制する事ができる。
(A) When the treated soil is in the state of complex contamination, any treatment agent works in place, which is effective.
After the reduction treatment, insolubilized materials may be dissociated when the soil becomes alkaline due to cement solidification treatment, but if sodium carbonate is added, the oxidized chromium that has been re-dissociated by alkali is reduced in chromium carbonate. Can be insolubilized and precipitated, so that re-elution (release) can be prevented or suppressed.

(b)還元剤による無害化処理によって生成した不溶性の塩を再溶出することがないように安定させる。
還元処理に中性域で反応をするチオ硫酸ナトリウムを採用し、水酸化クロムなどを生成する。還元後の中和処理を必要としないので、工程の煩雑を解消する事ができる。
硫酸第一鉄などを不溶化処理剤として用いた従来法と比較して、処理後の中和処理を必要としない。
要するに、従来法に較べ、段階的処理工程を少なくして処理を達成する事ができる。
(B) Stabilize so that the insoluble salt produced by the detoxification treatment with the reducing agent is not re-eluted.
Sodium thiosulfate, which reacts in the neutral range for the reduction treatment, is used to produce chromium hydroxide and the like. Since neutralization after reduction is not required, the complexity of the process can be eliminated.
Compared with the conventional method using ferrous sulfate or the like as an insolubilizing agent, neutralization after treatment is not required.
In short, the processing can be achieved with fewer stepped processing steps as compared with the conventional method.

(c)還元剤、不溶化物安定剤とも中性塩であるため、両者を配合しても相互の反応がなく障害が起こらない。
(d)薬剤の配合率は、土壌の汚染状況により当量配合できる。
配合は、理論的添加量の100倍程度の範囲で調整する。
(C) Since both the reducing agent and the insolubilized material stabilizer are neutral salts, there is no mutual reaction and no trouble occurs even if both are blended.
(D) The compounding ratio of the drug can be compounded in an equivalent amount depending on the soil contamination status.
The blending is adjusted in the range of about 100 times the theoretical addition amount.

還元剤と不溶化物安定剤とを同時に土壌に加えて混合し、重金属類汚染源を一挙に不溶化して、処理工程の短縮を図る。   A reducing agent and an insolubilized material stabilizer are simultaneously added to the soil and mixed to insolubilize the source of heavy metals at once, thereby shortening the treatment process.

図1は、本発明重金属複合汚染の中性域での不溶化処理方法の説明図を示す。
複合重金属汚染土壌の処理方法に使用する処理剤の成分は、具体的には次に述べる通り
である。
(1)処方
(a)不溶化処理剤
還元剤 (チオ硫酸ナトリウム)
[効果] 鉛 硫化塩として沈殿
水銀 硫化水銀として沈殿
砒素 硫化砒素として沈殿
六価クロム 水酸化クロムとして沈殿
FIG. 1 shows an explanatory view of an insolubilization treatment method in a neutral region of the present invention heavy metal composite contamination.
The components of the treating agent used in the method for treating complex heavy metal contaminated soil are specifically as follows.
(1) Formula (a) Insolubilizing agent Reducing agent (Sodium thiosulfate)
[Effect] Lead Precipitated as sulfide
Mercury Precipitated as mercury sulfide
Arsenic Precipitated as arsenic sulfide
Hexavalent chromium Precipitated as chromium hydroxide

炭酸ナトリウムと反応しない砒素については、チオ硫酸ナトリウムにより還元処理することができる。
チオ硫酸ナトリウムは適量配合することで、水銀、鉛、カドミウム等にも反応し不溶性物質を生成するので、より安定化を図ることができる。
Arsenic that does not react with sodium carbonate can be reduced with sodium thiosulfate.
When an appropriate amount of sodium thiosulfate is blended, it reacts with mercury, lead, cadmium and the like to produce an insoluble substance, so that it can be further stabilized.

炭酸塩 (炭酸ナトリウム、重炭酸塩)
[効果] カドミウム 炭酸カドミウムとして沈殿
鉛 炭酸塩として沈殿
水銀 炭酸水銀として沈殿
六価クロム 炭酸クロムとして沈殿
Carbonate (sodium carbonate, bicarbonate)
[Effect] Cadmium Precipitated as cadmium carbonate
Precipitate as lead carbonate
Mercury Precipitated as mercury carbonate
Hexavalent chromium Precipitated as chromium carbonate

(b)不溶化物安定剤
マスキング剤 (EDTA、チオ尿素など)
[効果] 処理中に薬剤の過量条件で発生する錯塩などの解離したイオンをキレート化合物としてマスキングする事により、不溶化の状況を作る(沈殿物として除去できる)。
(B) Insolubilized stabilizer Masking agent (EDTA, thiourea, etc.)
[Effects] By masking dissociated ions such as complex salts generated under excessive drug conditions during treatment as a chelate compound, an insolubilized state is created (can be removed as a precipitate).

固化剤 (石灰、石膏、還元性スラグ、重炭酸塩) 特に、石膏を配合したところに特徴がある。
[効果] これは、固化剤の主成分である石灰によるアルカリ性条件で起る水酸化物の加水分解を抑制する。また、石膏(硫酸カルシウム)は、中性の不溶性の物質であり、固化剤に配合すると結晶水として水分を吸収し固化性能を向上させる。
炭酸塩を配合することで、固化強度が向上することが知られているが、ここでは、重炭酸塩を採用した。
Solidifying agent (lime, gypsum, reducing slag, bicarbonate) Especially, it is characterized by blending gypsum.
[Effect] This suppresses hydrolysis of hydroxide that occurs under alkaline conditions due to lime which is the main component of the solidifying agent. Moreover, gypsum (calcium sulfate) is a neutral insoluble substance, and when mixed with a solidifying agent, it absorbs moisture as crystal water and improves the solidification performance.
It is known that the solidification strength is improved by blending carbonate, but here, bicarbonate was employed.

これは、鉛などは、炭酸塩であれば一部水酸化鉛を製することになるが、重炭酸塩であれば直接炭酸塩を生じるので、より確実な不溶化処理が実現する。
また、重金属炭酸塩が水中においてpHなどの影響を受ける際、緩衝性を促進するのでアルカリ性の影響を抑制する効果がある。
This is because lead, such as lead, produces part of lead hydroxide if it is a carbonate, but if it is bicarbonate, a carbonate is directly produced, so a more reliable insolubilization process is realized.
In addition, when heavy metal carbonate is affected by pH or the like in water, it has an effect of suppressing the influence of alkalinity because it promotes buffering properties.

(2)処理対象物質に対する薬剤の添加量
(a)不溶化に供する薬剤の理論的添加量
〔処理対象物質〕+〔処理〕→〔不溶性物質〕
鉛1g/mの場合、炭酸ナトリウム0.52gが対応する。
同様に共存物質について計算すると、下表の通りである。







┌────────┬──────────┬────────────┐
│ 処理対象物質 │炭酸ナトリウム(g)│チオ硫酸ナトリウム(g)│
├────────┼──────────┼────────────┤
│ 鉛 │ 0.52 │ 3.62 │
│ 亜 鉛 │ 1.65 │ − │
│ 水 銀 │ 0.54 │ 5.00 │
│ 砒 素 │ − │ 5.00 │
│ カドミウム │ 0.96 │ − │
│ 六価クロム │ 9.10 │ 7.21 │
└────────┴──────────┴────────────┘
汚染物質の計測値に基づき、処理剤の理論対応量を計算したが、実操作においては、種々の要因で増量し、推定添加量を算出する。
(2) Amount of drug added to the substance to be treated (a) Theoretical amount of drug to be insolubilized [Substance to be treated] + [Treatment] → [Insoluble substance]
In the case of 1 g / m 3 of lead, 0.52 g of sodium carbonate corresponds.
Similarly, the coexisting substances are calculated as shown in the table below.







┌────────┬──────────┬────────────┐
│ Substances to be treated │ Sodium carbonate (g) │ Sodium thiosulfate (g) │
├────────┼──────────┼────────────┤
│ Lead │ 0.52 │ 3.62 │
│ Lead │ 1.65 │ − │
│ Water Silver │ 0.54 │ 5.00 │
│ Arsenic │-│ 5.00 │
│ Cadmium │ 0.96 │ − │
│ Hexavalent chromium │ 9.10 │ 7.21 │
└────────┴──────────┴────────────┘
Based on the measured value of the pollutant, the theoretically corresponding amount of the treatment agent was calculated. In actual operation, the amount was increased due to various factors, and the estimated addition amount was calculated.

(b)還元剤の実工程における添加量
(α)炭酸ナトリウムは、理論計算値の100倍を推定値とする。
即ち、理論量が微小で均一に混合する事が困難と考えられるので、割合を上げる。
炭酸ナトリウムは、水に溶けて炭酸イオンを発生し、これが鉛と反応するが、水温の上昇によ
り飽和溶解度が低下し、有効性が損なわれることが予想されるので、概ね、100倍とする。
(B) Amount of addition of reducing agent in actual process (α) Sodium carbonate has an estimated value 100 times the theoretical calculation value.
That is, since the theoretical amount is very small and it is considered difficult to mix uniformly, the ratio is increased.
Sodium carbonate dissolves in water and generates carbonate ions, which react with lead. However, the increase in water temperature is expected to reduce the saturation solubility and impair the effectiveness. To do.

(β)チオ硫酸ナトリウムの推定値は、12倍とする。
経験的に、1.2倍量で良いと思われるが、理論量が微小であり、均一に混合することが難し
いと思われるので、割合を上げる。
上記剤の過投入に際し、影響を受ける物質が含まれていないこと。
ただし、鉛については極端にpH値が変動する位に入れた場合(過量添加)、再溶出すること
も考えられるが、炭酸ナトリウムを併用することで、ナトリウムにより発生する水酸基が水酸物
を生成することにより抑制できると考えられる。
(Β) The estimated value of sodium thiosulfate is 12 times.
Empirically, 1.2 times the amount seems to be good, but the theoretical amount is very small and it seems difficult to mix uniformly.
There should be no substances that are affected when the above agent is overloaded.
However, when lead is placed in a position where the pH value fluctuates extremely (overdose addition), it may be re-eluted, but when sodium carbonate is used in combination, the hydroxyl group generated by sodium produces hydroxide. It is thought that it can be suppressed by doing.

(γ)なお、炭酸ナトリウムによる不溶化処理の結果、発生する炭酸ガス量については、炭酸ナ
トリウム1gにつき、0.51リットルとなります。
処理中に発生する炭酸ガスは、セメント中のカルシウムで中和されると同時に、場内から除去
されるので、全量残るとは考えられない。
(Γ) As a result of insolubilization with sodium carbonate, the amount of carbon dioxide generated is 0.51 liters per gram of sodium carbonate.
Carbon dioxide generated during the treatment is neutralized with calcium in the cement and at the same time is removed from the site, so it is unlikely that all of it will remain.

(3)汚染処理対処物の処理効果
(a)泥水分離後の上澄水は、全て公共下水道放流基準値を満足した。
測定方法:公定法
泥水分離の際に若干のアルカリ(固化剤など)を添加し、アルカリ性にすると、沈降性が向
上する(約30〜60分で完了する)。
硫化物の沈殿は、非常に細かいため上澄水は放流前に、高分子凝集剤などにより、凝集沈殿処
理を行うことが有利である。
(3) Treatment effect of the pollution treatment countermeasures (a) All the supernatant waters after the muddy water separation satisfied the public sewer discharge standard value.
Method of measurement: Official method Addition of some alkali (solidifying agent, etc.) during muddy water separation to make it alkaline improves sedimentation (complete in about 30-60 minutes).
Since the precipitation of sulfides is very fine, it is advantageous to perform a coagulation sedimentation treatment with a polymer coagulant before discharging the supernatant water.

(b)固化処理土壌(改良土)の7日間養生後の溶出試験については、砒素、鉛、カドミウムにつ
いて、全て溶出試験による環境基準を満足した。
(B) Regarding the dissolution test after curing for 7 days on solidified soil (improved soil), the environmental standards for arsenic, lead and cadmium were all satisfied.

(4)結果
汚染土壌に含まれる砒素、鉛、カドミウム等の汚染物質の還元剤による不溶化処理に当たり、マスキング剤の適量を添加しておくことにより、過量の還元剤を添加しても溶出抑制効果を奏し、再溶出等のトラブルを防止することができた。
砒素、鉛の再溶出の要因となるアルカリ性条件において、砒素、鉛等の硫化物の再溶出
を抑制することができた。
(4) Results In the insolubilization treatment of contaminants such as arsenic, lead, cadmium, etc. contained in contaminated soil with a reducing agent, an appropriate amount of masking agent is added so that even if an excessive amount of reducing agent is added, the elution suppression effect It was possible to prevent problems such as re-elution.
In alkaline conditions that cause re-elution of arsenic and lead, re-elution of sulfides such as arsenic and lead could be suppressed.

実操作では、還元剤は10倍程度、凝集助剤は20倍前後の投与を計画すべきで、還元剤等の不溶化剤の添加量の適応範囲の上限は、約100倍量までであることを一応確認した。   In actual operation, it should be planned to administer about 10 times the reducing agent and about 20 times the coagulant aid, and the upper limit of the range of addition of insoluble agents such as reducing agents should be about 100 times the amount. Was confirmed.

上記事例は専ら、場内処理を前提にして説明をしてきたが、この実施例処理剤は、場外処理の場合に施しても同様な効果を奏することは明らかである。
近来、都市又はその周辺に立地する工場跡地の再利用が盛んに行われているが、それらを宅地、公共用地などに転用するには、汚染された跡地土壌の無害化が必須条件となる。
本発明方法によれば、無害化に階段的処理工程の必要が無く、経済的な複合的汚染土壌の不溶化処理方法の普及が望まれる。
Although the above examples have been described on the premise of in-situ treatment, it is clear that the treatment agent of this example has the same effect even when applied in the case of off-site treatment.
Recently, factory sites located in or around cities have been extensively reused, but in order to divert them to residential land, public land, etc., detoxification of contaminated site soil is an essential condition.
According to the method of the present invention, there is no need for a stepwise treatment step for detoxification, and the spread of an economical method for insolubilizing complex contaminated soil is desired.

複合重金属汚染土壌処理における中性域での本発明不溶化処理法の反応機構説明図である。(実施例)It is reaction mechanism explanatory drawing of this invention insolubilization processing method in the neutral region in complex heavy metal contaminated soil processing. (Example) 従来法の複合重金属汚染土壌処理に硫酸第一鉄を用いた場合の反応機構図を示す。The reaction mechanism figure at the time of using ferrous sulfate for the composite heavy metal contamination soil processing of the conventional method is shown.

符号の説明Explanation of symbols

Pb 鉛
As 砒素
Hg 水銀
Cr クロム

























Pb Lead As Arsenic Hg Mercury Cr Chromium

























Claims (1)

チオ硫酸ナトリウム、炭酸ナトリウム及びチオ尿素を配合した水溶液よりなる不溶化処理調整液と、セメント系固化材にチオ尿素などのキレート作用を顕す薬剤を配合した処理剤とを、一挙に汚染土壌に添加、混合して、金属イオンの不溶化処理を行い、処理土壌の固化熟成過程でのアルカリ条件においても処理の安定化を維持する事を可能とした複合重金属汚染土壌の処理方法。
An insolubilization treatment adjustment solution consisting of an aqueous solution containing sodium thiosulfate, sodium carbonate and thiourea, and a treatment agent containing a cement-based solidifying material containing a chelating agent such as thiourea are added to the contaminated soil at once. A method of treating complex heavy metal-contaminated soil that can be mixed and insolubilized with metal ions to maintain the treatment stability even under alkaline conditions during the solidification and aging of the treated soil.
JP2004068670A 2004-03-11 2004-03-11 Treatment method for complex heavy metal contaminated soil Expired - Fee Related JP3777380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068670A JP3777380B2 (en) 2004-03-11 2004-03-11 Treatment method for complex heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068670A JP3777380B2 (en) 2004-03-11 2004-03-11 Treatment method for complex heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2005254127A true JP2005254127A (en) 2005-09-22
JP3777380B2 JP3777380B2 (en) 2006-05-24

Family

ID=35080387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068670A Expired - Fee Related JP3777380B2 (en) 2004-03-11 2004-03-11 Treatment method for complex heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP3777380B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135754A1 (en) 2006-05-18 2007-11-29 Asahi Glass Company, Limited Process for manufacturing light emitting device and light emitting device
JP2008238150A (en) * 2007-03-27 2008-10-09 Chemical Yamamoto:Kk Detoxification agent for contaminated soil and industrial waste containing hexavalent chromium
JP2011235213A (en) * 2010-05-07 2011-11-24 Panasonic Corp Pretreatment method for soil polluted by pcb
JP2013081940A (en) * 2011-09-28 2013-05-09 Ohbayashi Corp Solidified body, secondary product, block for pedestrian deck, and manufacturing method of solidified body
JP2017159237A (en) * 2016-03-09 2017-09-14 株式会社神戸製鋼所 Purification treatment agent and purification treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135754A1 (en) 2006-05-18 2007-11-29 Asahi Glass Company, Limited Process for manufacturing light emitting device and light emitting device
JP2008238150A (en) * 2007-03-27 2008-10-09 Chemical Yamamoto:Kk Detoxification agent for contaminated soil and industrial waste containing hexavalent chromium
JP2011235213A (en) * 2010-05-07 2011-11-24 Panasonic Corp Pretreatment method for soil polluted by pcb
JP2013081940A (en) * 2011-09-28 2013-05-09 Ohbayashi Corp Solidified body, secondary product, block for pedestrian deck, and manufacturing method of solidified body
JP2017159237A (en) * 2016-03-09 2017-09-14 株式会社神戸製鋼所 Purification treatment agent and purification treatment method

Also Published As

Publication number Publication date
JP3777380B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
WO2014166400A1 (en) Sludge or soil treatment method and heavy metal content stabilization agent
JPH0529516B2 (en)
KR20160048954A (en) Insolubilizing material for specific hazardous substance and method for insolubilizing specific hazardous substance with same
JP3777380B2 (en) Treatment method for complex heavy metal contaminated soil
US20060094921A1 (en) Method for chemically stabilizing waste materials containing multivalent oxyanions
JP3891044B2 (en) Methods for insolubilizing heavy metals in contaminated soil
JP3965542B2 (en) Method for treating chromium oxide-containing soil
JP4663905B2 (en) Heavy metal elution inhibitor and heavy metal elution control method for heavy metal contaminated soil
JP2000301101A (en) Treatment method of refuse incineration fly ash and acidic gas removing agent for refuse incineration exhaust gas
JP2007216077A (en) Insolubilization treatment method of fluorine contaminated soil
JPH11244815A (en) Contaminated metal fixing and stabilizing agent and its treatment
JP3867002B2 (en) Detoxification method for contaminated soil
JP2007216069A (en) Treating method of contaminated soil
JP3213054B2 (en) Treatment method for incinerated ash containing heavy metals
JP2004209372A (en) Heavy metal elution inhibitor and heavy metal elution inhibiting method
JP2006205169A (en) Method for insolubilizing heavy metal and the like contained in contaminated soil
JP2001121132A (en) Insolubilizing method of soil and industrial waste containing cyan compound and soluble heavy metals
JP3818446B2 (en) Heavy metal fixing agent
JP2003334568A (en) Method for treating drain containing heavy metal
JPH08192128A (en) Chemical agent for treating harmful waste and treatment method using the same
JP2003305497A (en) Alkaline muddy soil treating method and alkaline muddy soil modifying agent
KR20030045300A (en) A heavy metal stabilizing agent and a method to stabilize wastes containing heavy metals to use one
JP2004313817A (en) Soil treating method
JP3005617B2 (en) Method for stable solidification of incinerated ash and solidified products
JP2005162862A (en) Heavy metal elution controller and method for controlling heavy metal elution

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees