JP2005252771A - Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the ultrasonic sensor - Google Patents

Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the ultrasonic sensor Download PDF

Info

Publication number
JP2005252771A
JP2005252771A JP2004061947A JP2004061947A JP2005252771A JP 2005252771 A JP2005252771 A JP 2005252771A JP 2004061947 A JP2004061947 A JP 2004061947A JP 2004061947 A JP2004061947 A JP 2004061947A JP 2005252771 A JP2005252771 A JP 2005252771A
Authority
JP
Japan
Prior art keywords
alignment member
hollow sphere
manufacturing
filled
ultrasonic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061947A
Other languages
Japanese (ja)
Inventor
Masahiko Ito
雅彦 伊藤
Akihisa Adachi
明久 足立
Yukinori Ozaki
行則 尾崎
Masato Sato
真人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004061947A priority Critical patent/JP2005252771A/en
Publication of JP2005252771A publication Critical patent/JP2005252771A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve uniformity of density distribution in a matching member by filling hollow spheres having reduced electrostatic properties, without maldistribution in the matching member, consisting of a mixture of the hollow spheres and a binding material. <P>SOLUTION: A matching member forming tool 5 is provided on a pedestal 3, an accommodating body 4 accommodating the hollow spheres 11, having reduced electrostatic charge performance, is mounted on this tool 5, the pedestal 3 is dropped to a receiving base 10 in this state to collide with the pedestal 3, and the filling rate of the hollow spheres 11 is improved by vibration generated this time. After that, the binding material 13 is mixed and hardened. In this way, since the hollow spheres 11 in the accommodating body 4 are filled without unevenness, the density of the matching member 18 becomes uniform, and using this as an acoustic matching layer 19 for an ultrasonic sensor improves the performance thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、整合部材の製造方法およびそれを音響整合層に用いた超音波センサ、並びに、この超音波センサを利用した気体や液体の流体の流れ測定装置に関するものである。   The present invention relates to a method for manufacturing a matching member, an ultrasonic sensor using the same for an acoustic matching layer, and a gas or liquid fluid flow measurement device using the ultrasonic sensor.

従来、超音波センサの音響整合層などに用いられる整合部材の製造方法は、例えば、図7(a)に示すように中空球体29と樹脂30の混合物からなる整合部材31と筒状部材からなる負荷ケース32とを一対成型し、次いで、図7(b)のように圧電体の共振周波数の1/4波長に相当する厚みにカットして音響整合層33としていた。   Conventionally, a method of manufacturing an alignment member used for an acoustic matching layer of an ultrasonic sensor includes, for example, an alignment member 31 made of a mixture of a hollow sphere 29 and a resin 30 and a cylindrical member as shown in FIG. A pair of load cases 32 was molded, and then cut into a thickness corresponding to a quarter wavelength of the resonance frequency of the piezoelectric body as shown in FIG.

音響整合層33は、図7(c)に示すように、圧電振動子34に載置して超音波振動子としていた(特許文献1参照)。   As shown in FIG. 7C, the acoustic matching layer 33 is placed on a piezoelectric vibrator 34 to form an ultrasonic vibrator (see Patent Document 1).

また、ガラスバルーンと樹脂の混合体による整合部材については、圧電体からの発生する超音波の波長よりも小さい粒径の気泡を樹脂に形成するものが開示されていた(特許文献2参照)。
特公平6−101880号公報 特開平11−215594号公報
In addition, as for an alignment member made of a mixture of a glass balloon and a resin, there has been disclosed one in which bubbles having a particle diameter smaller than the wavelength of ultrasonic waves generated from a piezoelectric body are formed in a resin (see Patent Document 2).
Japanese Examined Patent Publication No. 6-101880 JP 11-215594 A

しかし、この従来の製造方法では、中空球体の投入時にこれら中空球体同士が凝集してしまい、整合部材内での分散が不均一になる課題があった。これは、中空球体を所定期間保存していると中空球体同士間の摩擦や、静電気を帯びやすい容器からの影響により中空球体が帯電状態になるためで、中空球体を投入したときに均一に分散されなくなる。   However, this conventional manufacturing method has a problem that the hollow spheres are aggregated when the hollow spheres are charged, and the dispersion in the alignment member is not uniform. This is because when the hollow spheres are stored for a predetermined period, the hollow spheres become charged due to friction between the hollow spheres and the influence of the container that is easily charged with static electricity. It will not be done.

そのため、図7(b)のように筒状部材を所定の厚みにカットした音響整合層群はそれぞれ1枚ごと中空球体と樹脂の比率が異なるために密度が不均一な音響整合層が作成されてしまう課題があった。   Therefore, as shown in FIG. 7B, each of the acoustic matching layer groups in which the cylindrical members are cut to a predetermined thickness has different ratios between the hollow spheres and the resin, so that an acoustic matching layer having a non-uniform density is created. There was a problem.

また、超音波の波長よりも小さい粒径の気泡を樹脂に混入することは、非常に困難であり、混入する気泡の大きさを制御することができない。   Moreover, it is very difficult to mix bubbles having a particle diameter smaller than the wavelength of the ultrasonic wave into the resin, and the size of the bubbles to be mixed cannot be controlled.

さらに、樹脂中に気泡を混入することで作成された音響整合層の密度は作成数ごとに異なり、一定の音響インピーダンスを得ることができない。   Furthermore, the density of the acoustic matching layer created by mixing bubbles in the resin differs depending on the number of creation, and a constant acoustic impedance cannot be obtained.

本発明は、前記従来の課題を解決するもので、密度のばらつきを低減した整合部材の製造が可能であり、またこの整合部材を音響整合層に用いた超音波センサ並びに同超音波センサを搭載した流れ測定装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and can produce a matching member with reduced density variation, and also includes an ultrasonic sensor using the matching member as an acoustic matching layer and the ultrasonic sensor. An object of the present invention is to provide a flow measuring apparatus.

前記目的を達成するために本発明は、加振することにより収納体内部に帯電性を低減させた中空球体を充填し、次いで結合材料を混合させることで、前記中空球体を結合材料で包囲するようにしたもので、収納体に中空球体が均等に充填されることとなり、密度を均一とすることができる。   In order to achieve the above object, the present invention fills a hollow sphere whose chargeability is reduced by applying vibration to the inside of the storage body, and then mixes the binding material to surround the hollow sphere with the binding material. By doing so, the hollow spheres are uniformly filled in the storage body, and the density can be made uniform.

本発明の整合部材の製造方法によれば、中空球体の充填が確実、且つ均一になされ、安定した密度とすることができるものであり、この整合部材を音響整合層として用いた超音波センサの性能、ひいては、この超音波センサを搭載した流体の流れ測定装置としても著しくその精度を高めることができるものである。   According to the method for manufacturing an alignment member of the present invention, the hollow spheres are reliably and uniformly filled, and can have a stable density. An ultrasonic sensor using the alignment member as an acoustic matching layer is provided. The performance and, as a result, a fluid flow measuring device equipped with this ultrasonic sensor can remarkably improve its accuracy.

第1の発明は、帯電性を低減させた中空球体を収納体に収納するとともに、加振して充填し、次いで、結合材料を混合させることで前記中空球体を結合材料で包囲するようにしたものである。   In the first invention, the hollow spheres with reduced chargeability are housed in the housing body, and are filled by vibration, and then the binding material is mixed to surround the hollow spheres with the binding material. Is.

中空球体の帯電性が低減されているために、中空球体同士が凝集や反発しながら収納体に充填されないので収納体に中空球体が偏在することがなく、整合部材の密度をどの部分でも均一にできる。   Since the chargeability of the hollow spheres is reduced, the hollow spheres are not filled into the storage body while agglomerating or repelling each other, so that the hollow spheres are not unevenly distributed in the storage body, and the density of the alignment member is uniform in any part it can.

第2の発明は、導電性を有する容器内に中空球体を所定時間放置した後に収納体内部に充填するようにしたものである。   According to the second aspect of the invention, the hollow sphere is left in a conductive container for a predetermined time and then filled into the storage body.

放置中に中空球体が導電性容器に接触して除電されるために帯電性が低減し、中空球体同士の凝集が発生しない本来の高い流動性に戻すことができ、これにより、収納体に均等に分散させながら充填することができる。   Since the hollow sphere contacts with the conductive container and is neutralized during standing, the chargeability is reduced, and the original high fluidity can be restored without aggregation of the hollow spheres. It can be filled while being dispersed.

第3の発明は、中空球体に帯電防止剤を塗布した後に収納体内部に充填するようにしたものである。   In the third aspect of the invention, the inside of the storage body is filled after the antistatic agent is applied to the hollow sphere.

このように、中空球体表面に帯電防止剤を塗布しているので、中空球体同士の摩擦による表面帯電性を低減させることができ、中空球体同士の凝集が発生しない。そのため、収納体に均等に分散させながら充填することができる。   As described above, since the antistatic agent is applied to the surface of the hollow sphere, the surface chargeability due to the friction between the hollow spheres can be reduced, and aggregation of the hollow spheres does not occur. Therefore, it can be filled while being evenly dispersed in the storage body.

第4の発明は、台座で支持された整合部材作成治具に収納体を設け、加振装置を介して前記整合部材作成治具に振動を付与することで中空球体を収納体に充填するようにし、かつ前記台座と整合部材作成治具および前記収納体は電気的に接続するとともに、前記加振装置は接地したものである。   According to a fourth aspect of the present invention, a housing body is provided in an alignment member creation jig supported by a pedestal, and the housing body is filled with hollow spheres by applying vibration to the alignment member creation jig via a vibration device. In addition, the pedestal, the alignment member creation jig, and the storage body are electrically connected, and the vibration exciter is grounded.

このように、収納体に振動を付与することで同収納体に充填される中空球体は隙間なく積み上げられ、さらに中空球体が充填される収納体は電気的に接地されているので、収納体中の中空球体も凝集することがない。そのために収納体中に中空球体が偏在することなく均一に分散させることができる。   Thus, by applying vibration to the storage body, the hollow spheres filled in the storage body are stacked without gaps, and the storage body filled with the hollow spheres is electrically grounded. These hollow spheres also do not aggregate. Therefore, the hollow spheres can be uniformly dispersed in the storage body without being unevenly distributed.

第5の発明は、整合部材作成治具に複数の収納体を配置したもので、一度に多くの整合部材を作成でき、合理的である。   According to the fifth aspect of the present invention, a plurality of storage bodies are arranged on an alignment member creation jig, and a large number of alignment members can be created at a time, which is rational.

第6の発明は、結合材料を熱硬化性樹脂化合物としたもので、中空球体と混合しやすく且つ、混合後の加熱により硬化するので、中空球体表面に密着して硬化されて整合部材を作成することができる。   In the sixth invention, the bonding material is a thermosetting resin compound, which is easy to mix with the hollow sphere and hardens by heating after mixing. can do.

第7の発明は、中空球体に結合材料を混合させた後、この混合物を硬化させるようにしたもので、混合物を取り出さずに混合物を内包した収納体ごと加熱できるので、所定容積の整合部材を作成でき、また、加熱硬化後であるので、収納体から容易に整合部材を取り出すことができる。   In the seventh aspect of the invention, the mixture is hardened after mixing the binding material into the hollow sphere, and the entire containing body containing the mixture can be heated without taking out the mixture. Since it can be prepared and after heat curing, the alignment member can be easily taken out from the storage body.

第8の発明は、中空球体はガラス組成を含むもので、中空状態を保持したまま結合材料との混合による整合部材を作成することができるので、整合層周囲温度が変化しても整合層内の中空球体の中空状態は保持され、整合層密度の安定化に寄与することができる。   In the eighth invention, the hollow sphere contains a glass composition, and an alignment member can be prepared by mixing with a binding material while maintaining a hollow state. The hollow state of the hollow sphere is maintained and can contribute to stabilization of the matching layer density.

第9の発明は、前記方法で作成した整合部材を超音波センサの音響整合層として用いたもので、個々の超音波センサ間の特性ばらつきを抑えることができる。   In the ninth aspect of the invention, the matching member created by the above method is used as an acoustic matching layer of the ultrasonic sensor, and variations in characteristics among the individual ultrasonic sensors can be suppressed.

第10の発明は、天部と側壁部を有する筒状ケースと、前記天部の内壁面に固定された圧電体と、前記天部外壁面に接着層を介して設置された整合層から超音波センサを構成した。   A tenth aspect of the invention includes a cylindrical case having a top portion and a side wall portion, a piezoelectric body fixed to the inner wall surface of the top portion, and a matching layer disposed on the outer wall surface of the top portion via an adhesive layer. A sonic sensor was constructed.

こうすることにより、圧電体からの振動を整合層が効率よく気体中に音波として伝搬させることができる。   By doing so, the matching layer can efficiently propagate the vibration from the piezoelectric body into the gas as a sound wave.

第11の発明は、前記の超音波センサを流体の流れ方向に少なくとも一対配置し、前記超音波センサ間の超音波伝搬時間にもとづき流体の速度を検知するようにした。   In an eleventh aspect, at least a pair of the ultrasonic sensors are arranged in the fluid flow direction, and the velocity of the fluid is detected based on the ultrasonic propagation time between the ultrasonic sensors.

また、第12の発明は、前記求めた流体の速度を基に流量を演算するようにしたものである。   In a twelfth aspect of the invention, the flow rate is calculated based on the obtained fluid velocity.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1において、矩形の基盤1の四隅より立設した4本のガイド柱2は台座3を上下動自在に支持している。
(Embodiment 1)
In FIG. 1, four guide pillars 2 erected from four corners of a rectangular base 1 support a pedestal 3 so as to be movable up and down.

前記台座3には収納体4をもつ整合部材作成治具5が取着されており、さらにこの収納体4には円形の収納室6が形成されている。   An alignment member creation jig 5 having a storage body 4 is attached to the pedestal 3, and a circular storage chamber 6 is formed in the storage body 4.

前記台座3はロック装置7を介してガイド柱2の所定高さ位置にロックされている。可撓性チューブ8を経由して圧縮空気を送ると前記ロック装置7が解除され、自重などで落下するようにしてある。圧縮空気の流動を制御し、ロック装置7を操作するのがスイッチ9である。台座3の落下位置には基盤1に固定された受台10がある。   The pedestal 3 is locked at a predetermined height position of the guide column 2 via a lock device 7. When compressed air is sent through the flexible tube 8, the lock device 7 is released and falls due to its own weight. A switch 9 controls the flow of compressed air and operates the lock device 7. There is a cradle 10 fixed to the base 1 at the drop position of the pedestal 3.

図2も参照して整合部材の製造工程を説明する。   The manufacturing process of the alignment member will be described with reference to FIG.

収納体4の収納室6にはガラスの中空球体11が収納してある。中空球体11はそれぞれ10〜100umの粒径を有し、平均粒径は約60umである。真密度は約0.14から0.18g/cm3である。   A glass hollow sphere 11 is accommodated in the storage chamber 6 of the storage body 4. The hollow spheres 11 each have a particle size of 10 to 100 um, and the average particle size is about 60 um. The true density is about 0.14 to 0.18 g / cm3.

ガラスからなる中空球体11は、他の充填剤と比較して比重が軽く、耐熱性、耐衝撃性を有し、充填材として使用したときの寸法安定性、成型性などの物性を改良できる。   The hollow sphere 11 made of glass has a lighter specific gravity than other fillers, has heat resistance and impact resistance, and can improve physical properties such as dimensional stability and moldability when used as a filler.

使用したガラスの組成はホウケイ酸系ガラスである。このガラスよりなる中空球体11は、酸化珪素、硼酸、炭酸カルシウム、炭酸ナトリウム、硫酸ナトリウム等の原料を1000℃以上の高温で溶融して硫黄分を多含するガラスを形成させた後、ガラスを粉砕後、このガラス微粉末を火炎中に分散、滞留させることにより、硫黄分を発泡剤成分として発泡させて作成している。   The composition of the glass used is borosilicate glass. The hollow sphere 11 made of glass is formed by melting a raw material such as silicon oxide, boric acid, calcium carbonate, sodium carbonate, sodium sulfate, etc. at a high temperature of 1000 ° C. or more to form a glass containing a large amount of sulfur, After the pulverization, the glass fine powder is dispersed and retained in the flame, so that the sulfur component is foamed as a foaming agent component.

前記中空球体11を収納体4の収納室6に少量づつ投入し、その都度、収納体4を取着した整合部材作成治具5の台座3を受け台10に落下させる。その結果、落下衝撃振動により中空球体11が収納室6に充填される仕組みである。この工程を数回〜数十回繰り返しながら、収納室6に中空球体11を満たしていく。   The hollow sphere 11 is put into the storage chamber 6 of the storage body 4 little by little, and each time the base 3 of the alignment member creating jig 5 to which the storage body 4 is attached is dropped onto the receiving base 10. As a result, the hollow sphere 11 is filled into the storage chamber 6 by drop impact vibration. The storage chamber 6 is filled with the hollow sphere 11 while repeating this process several times to several tens of times.

ここで、ガラスからなる中空球体11はその外部壁面が表面改質材の被覆層を形成しているので、その流動性は高い。   Here, the hollow sphere 11 made of glass has a high fluidity because its outer wall surface forms a coating layer of a surface modifying material.

このように中空球体11を充填した収納体4の収納室6には図2(a)に示すように上下フィルター12を設置した後、図2(b)で示すように結合材料13を供給して含浸させる。   After the upper and lower filters 12 are installed in the storage chamber 6 of the storage body 4 filled with the hollow spheres 11 as shown in FIG. 2 (a), the binding material 13 is supplied as shown in FIG. 2 (b). Impregnate.

ここで、結合材料13としては熱硬化性樹脂化合物であるエポキシ樹脂を用いた。   Here, an epoxy resin which is a thermosetting resin compound was used as the bonding material 13.

エポキシ樹脂は硬化後の樹脂の形状変化が小さく、長期安定性に優れているためであり、何より、中空球体11表面との親和性が高いので、同中空球体11と結合力が安定的に向上する。   This is because the epoxy resin has a small change in the shape of the resin after curing and is excellent in long-term stability. Above all, since the affinity with the surface of the hollow sphere 11 is high, the binding force with the hollow sphere 11 is stably improved. To do.

使用したエポキシ樹脂は、2液硬化型のエポキシ樹脂である。主剤はビスフェノールA型液状エポキシ樹脂であり、硬化剤は、テトラヒドロメチル無水フタル酸である。主剤と硬化剤を最適混合比率で混合してエポキシ樹脂として用いた。比重は約1.0〜1.2g/cmである。しかし、ここでは特に2液硬化型のエポキシ樹脂にこだわるものではなく、目的が達せられれば1液硬化型のエポキシ樹脂を用いても差し支えない。 The epoxy resin used is a two-component curable epoxy resin. The main agent is a bisphenol A type liquid epoxy resin, and the curing agent is tetrahydromethylphthalic anhydride. The main agent and the curing agent were mixed at an optimum mixing ratio and used as an epoxy resin. The specific gravity is about 1.0 to 1.2 g / cm 3 . However, the two-part curable epoxy resin is not particularly limited here, and one-part curable epoxy resin may be used if the purpose is achieved.

結合材料13を含浸させるために、吸引口14を設けた吸引用治具15を設置する。図2(b)では吸引用治具15の吸引口14は1つしか設けられていないが、吸引口14は1つに限らず複数口を設けても差し支えない。   In order to impregnate the binding material 13, a suction jig 15 provided with a suction port 14 is installed. In FIG. 2B, only one suction port 14 of the suction jig 15 is provided, but the number of suction ports 14 is not limited to one, and a plurality of suction ports may be provided.

収納体4の収納室6に中空球体11を充填した整合部材作成治具5をエポキシ樹脂からなる結合材料13でみたした容器16内に設置する。収納室6の下側に設置するフィルター12はその中の中空球体11が漏れないようにするためであり、上側に設けるフィルター12は結合材料13を吸引したとき、中空球体11を一緒に吸引しないためである。ここではフィルター12にろ紙を用いた。なお、先に述べたフィルター12の目的を達成していれば材質にはこだわらない。   The aligning member creation jig 5 in which the storage chamber 6 of the storage body 4 is filled with the hollow sphere 11 is placed in a container 16 viewed with a bonding material 13 made of epoxy resin. The filter 12 installed on the lower side of the storage chamber 6 is for preventing the hollow sphere 11 therein from leaking, and the filter 12 provided on the upper side does not suck the hollow sphere 11 together when the binding material 13 is sucked. Because. Here, filter paper was used for the filter 12. Note that the material is not particular as long as the purpose of the filter 12 described above is achieved.

そして、図2(b)に示すように吸引用治具15の吸引口14から容器16内の結合材料13を真空ポンプ17により吸引する。このように、低圧雰囲気下にすることにより、中空球体11間に存在した空隙の気泡が抜け去り、変わって結合材料13がその間を埋めていく。これにより、収納室6内の中空球体11周囲に結合材料13が塗布される状態になる。   Then, as shown in FIG. 2B, the bonding material 13 in the container 16 is sucked by the vacuum pump 17 from the suction port 14 of the suction jig 15. In this way, under the low-pressure atmosphere, voids existing between the hollow spheres 11 are removed, and the bonding material 13 is filled in between them. As a result, the binding material 13 is applied around the hollow sphere 11 in the storage chamber 6.

なお、結合材料13を吸引するときには、雰囲気や整合層作成治具治具5を結合材料13が硬化しない温度、且つ結合材料13の粘度が低くなる温度にしておくことが望ましく結合材料13の吸引を効率よく実施することができる。   When the bonding material 13 is sucked, it is desirable that the atmosphere and the matching layer forming jig 5 are set to a temperature at which the bonding material 13 is not cured and a temperature at which the viscosity of the bonding material 13 is lowered. Can be implemented efficiently.

結合材料13としてエポキシ樹脂を使用した場合、その硬化条件は、室温から昇温させて80℃×2h後、120℃×2hを経て150℃×1hの硬化プロファイルを実施するので、エポキシ樹脂のゲル化温度より低い温度の60℃中で吸引した。   When an epoxy resin is used as the bonding material 13, the curing condition is that the temperature is raised from room temperature, 80 ° C. × 2 h, 120 ° C. × 2 h, and then a 150 ° C. × 1 h curing profile. Suction was performed at 60 ° C., which is lower than the crystallization temperature.

このように中空球体11が充填された収納室6内に結合材料13を含浸させた後、図2(c)のごとく中空球体11と結合材料13の混合物を含む収納体4を取り出したあと、この収納体4ごと加熱して、結合材料13を加熱硬化させる。   After impregnating the binding material 13 in the storage chamber 6 filled with the hollow spheres 11 in this way, after taking out the storage body 4 containing the mixture of the hollow spheres 11 and the binding material 13 as shown in FIG. The entire housing 4 is heated to heat and cure the bonding material 13.

この硬化した混合物を室温まで冷却し、図2(d)のごとく棒状治具等を用いて収納体4より取り出して、整合部材18を得る。   The cured mixture is cooled to room temperature and taken out of the storage body 4 using a bar-shaped jig or the like as shown in FIG.

図2に示す収納体4の収納室6は1個しか存在しないが、図3に示すように多数個の収納室6を設ければ、一度に多数個の整合部材17をとりだすことができる。   Although there is only one storage chamber 6 of the storage body 4 shown in FIG. 2, if a large number of storage chambers 6 are provided as shown in FIG. 3, a large number of alignment members 17 can be taken out at a time.

次に、図2(e)に示すように、この整合部材18をダイシング装置などにより所定厚みに切断して目的の音響整合層19を得る。   Next, as shown in FIG. 2 (e), the matching member 18 is cut into a predetermined thickness by a dicing apparatus or the like to obtain a target acoustic matching layer 19.

本実施の形態において、収納体4の収納室6に充填する中空球体11は、充填工程前までに金属容器内に放置して、その中から充填する分量を金属容器から取り出した。   In the present embodiment, the hollow sphere 11 filled in the storage chamber 6 of the storage body 4 is left in the metal container before the filling step, and the amount to be filled is taken out from the metal container.

通常、中空球体11は段ボール内のビニール袋または、所定容器内に入れられて大量
(最低約1kg以上)で製造メーカーから送付されてくる。その中から所定期間中に整合部材を製造する分量をあらかじめ小分けして容器内に保存しておく。
Usually, the hollow sphere 11 is put in a plastic bag in a corrugated cardboard or a predetermined container and is sent in large quantities (at least about 1 kg or more) from the manufacturer. From there, the amount of the alignment member to be manufactured during a predetermined period is divided in advance and stored in the container.

本実施形態の場合、中空球体11は、メーカ−から送付されてきた分量から約100gを所定容器内に取り分け、それを恒温層にて約100℃で1時間乾燥した後、金属容器内に入れた。金属容器材質は、SUS316である。   In the case of this embodiment, about 100 g of the hollow sphere 11 is divided into a predetermined container from the amount sent from the manufacturer, dried in a constant temperature layer at about 100 ° C. for 1 hour, and then placed in a metal container. It was. The metal container material is SUS316.

本実施形態の方法で製造した日毎の音響整合層19の平均密度変化と、取り分けた中空球体11を樹脂容器に保存した場合の日毎の音響整合層19の平均密度変化を比較した。樹脂容器材質は、ポリプロピレンである。   The daily average density change of the acoustic matching layer 19 manufactured by the method of the present embodiment was compared with the daily average density change of the acoustic matching layer 19 when the separated hollow sphere 11 was stored in a resin container. The material of the resin container is polypropylene.

なお、製造方法は図1(a)に示す治具を用い、台座3を高さ70mmから落下させて、中空球体11を収納体4の収納室6に充填した。収納室6の数は17個で、各収納室6の内径は約10mm、長さは約50mmであった。この治具で一回に使用する中空球体11は、約9.5gである。一回の小分けする量は約100gであるので、この小分け量を使い切るのに、約10ロット製造することになる。今回は1日に1ロットの割合で整合部材を製造した。使用した中空球体11は、ガラス中空球体である。   In addition, the manufacturing method used the jig | tool shown to Fig.1 (a), dropped the base 3 from 70 mm in height, and filled the storage chamber 6 of the storage body 4 with the hollow sphere 11. FIG. The number of storage chambers 6 was 17, and the inner diameter of each storage chamber 6 was about 10 mm and the length was about 50 mm. The hollow sphere 11 used at one time with this jig is about 9.5 g. Since the amount to be subdivided at one time is about 100 g, about 10 lots are manufactured to use up this subdivided amount. This time, the alignment member was manufactured at a rate of one lot per day. The used hollow sphere 11 is a glass hollow sphere.

平均密度変化の測定結果を図4に示す。図4に示すように、保管容器の材質により、日毎に製造する整合部材の平均密度が大きく異なる。小分けして樹脂容器に保管した中空球体11を使用した整合部材の平均密度は、日毎に製造する密度が増加するのに対して、SUS容器に保管した中空球体11で製造した整合部材の平均密度は安定する。   The measurement result of the average density change is shown in FIG. As shown in FIG. 4, the average density of the alignment members manufactured every day varies greatly depending on the material of the storage container. The average density of the alignment members using the hollow spheres 11 that are subdivided and stored in the resin container increases the density manufactured every day, whereas the average density of the alignment members manufactured in the hollow spheres 11 stored in the SUS container Is stable.

もちろん、整合部材から切断されて抽出される整合層の平均密度についても図4と同じ結果になった。   Of course, the same result as FIG. 4 was obtained for the average density of the matching layer cut and extracted from the matching member.

さらに、保管容器内にある中空球体11を静電気テスターにてその静電気量を測定した。製造ロットごとに使用するごとに保管容器内に中空球体11の静電気量を測定比較した。   Further, the amount of static electricity of the hollow sphere 11 in the storage container was measured with an electrostatic tester. The static electricity amount of the hollow sphere 11 was measured and compared in the storage container every time it was used for each production lot.

静電気量の測定には、3M製のStatic Sencor(品番709)を用いた。
その結果を図5に示す。
For the measurement of the amount of static electricity, 3M Static Sencor (product number 709) was used.
The result is shown in FIG.

図5に示すように、ポリプロピレン容器に保管した中空球体11の静電気量は、SUS容器に保管した静電気量と比較して約10倍から約100倍近くまで大きいことが判明した。   As shown in FIG. 5, it was found that the static electricity amount of the hollow sphere 11 stored in the polypropylene container was large from about 10 times to about 100 times compared with the static electricity amount stored in the SUS container.

以上の結果から、樹脂容器に保管した中空球体は帯電性が大きくなる。これは、樹脂容器の表面固有抵抗が著しく高い(約1016Ω以上)ために、樹脂容器内に保管した中空球体に影響を与えて中空球体同士が凝集或いは反発しあった状態(極微小隙間が生じた状態)にあると考えられる。この状態の中空球体を収納室6に充填すると、収納室6内を微視的に捉えると、中空球体11が凝集した部分と反対に中空球体11の存在が粗な箇所が出来てしまう。そのため、中空球体11が粗の部分は結合材料13が占める割合が大きくなる。 From the above results, the hollow spheres stored in the resin container have a high chargeability. This is because the surface resistivity of the resin container is extremely high (about 10 16 Ω or more), and the hollow spheres stored in the resin container are affected and the hollow spheres are aggregated or repelled (very small gaps). Is considered to have occurred). When the storage chamber 6 is filled with the hollow spheres in this state, when the inside of the storage chamber 6 is microscopically captured, a portion where the presence of the hollow spheres 11 is rough is formed opposite to the portion where the hollow spheres 11 are aggregated. Therefore, the proportion of the bonding material 13 in the portion where the hollow sphere 11 is rough increases.

中空球体11と比較して結合材料13の比重は約10倍程度大きい。このため、収納室6内に中空球体11が均等に充填される場合と比較して、収納室6内に結合材料13が占める割合が大きくなるために、中空球体11と結合材料13の混合物である整合部材18の密度は大きくなってしまう。   Compared with the hollow sphere 11, the specific gravity of the bonding material 13 is about 10 times larger. For this reason, compared to the case where the hollow spheres 11 are evenly filled in the storage chamber 6, the proportion of the binding material 13 in the storage chamber 6 is increased, so that the mixture of the hollow sphere 11 and the binding material 13 is used. The density of a certain alignment member 18 is increased.

さらに、この整合部材18から所定の厚みでもって得られる各々の音響整合層19は、結合材料13の占める割合が多い場合や、少ない場合など、それぞれで整合層の組成成分割合が異なる場合が考えられる。このため、各音響整合層19の密度のばらつきが大きくなったり、しいては、超音波センサとして組み込んだときの特性ばらつきに影響を与えてしまう。   Further, each acoustic matching layer 19 obtained with a predetermined thickness from the matching member 18 may have different proportions of the composition component of the matching layer, such as when the proportion of the coupling material 13 is large or small. It is done. For this reason, the variation in the density of each acoustic matching layer 19 becomes large, or the characteristic variation when incorporated as an ultrasonic sensor is affected.

本実施の形態の音響整合層は、中空球体11と結合材料13の配合割合が一定なために、密度が安定する。しかも、製造ロットごとの整合層密度も安定する。   The acoustic matching layer of the present embodiment has a stable density because the mixing ratio of the hollow sphere 11 and the binding material 13 is constant. In addition, the matching layer density for each production lot is also stabilized.

これは、中空球体11が除電されているために、帯電性の影響が低減されているので、充填時に中空球体11の本来保持している高い流動性を損なわないために、収納室6に均等に積み上げられて充填される。このように、本製造方法により密度の安定した音響整合層を製造することができる。   This is because the influence of the chargeability is reduced because the hollow sphere 11 is neutralized, so that the high fluidity inherently retained by the hollow sphere 11 during filling is not impaired. Are stacked and filled. Thus, an acoustic matching layer having a stable density can be manufactured by this manufacturing method.

なお、今回小分けして保存した金属容器としてSUS容器を用いたが、中空球体11を除電する効果がある導電性を有する容器であれば、材質にはこだわらない。例えば、カーボン繊維等を配合して静電気防止加工を施した樹脂製容器や樹脂製袋、また、帯電防止加工を施して表面固有抵抗値を低減させた樹脂製容器や樹脂製袋でもかまわない。さらに、容器の下に静電マットを敷いて除電効果を得ることも本発明の目的達成の妨げにはならない。   In addition, although the SUS container was used as the metal container that was subdivided and stored this time, the material is not particularly limited as long as it is a conductive container having an effect of removing the charge from the hollow sphere 11. For example, a resin container or a resin bag subjected to antistatic processing by blending carbon fiber or the like, or a resin container or resin bag subjected to antistatic processing to reduce the surface specific resistance value may be used. Furthermore, it is not a hindrance to achieve the object of the present invention to obtain a static elimination effect by placing an electrostatic mat under the container.

また、中空球体11を収納体4の収納室6に充填する前に、帯電防止剤を塗布して中空球体間の摩擦により発生する静電気により、中空球体11の凝集や反発を防止することも可能である。   Moreover, before filling the hollow sphere 11 into the storage chamber 6 of the storage body 4, it is possible to prevent aggregation and repulsion of the hollow sphere 11 due to static electricity generated by applying an antistatic agent and friction between the hollow spheres. It is.

収納体4に充填する前に、エチルアルコールとカチオン界面活性剤の混合物をスプレーにて中空球体11に塗布した場合でも、中空球体11の凝集が低減され中空球体11の流動性が向上し、この中空球体11で製造した整合部材18から取り出した音響整合層19の密度は製造ロットが異なっても、製造ロットが異なる整合部材18のどこから採取しても密度範囲は0.50から0.53を示し、密度範囲が安定な音響整合層19を得ることが出来る。   Even when a mixture of ethyl alcohol and a cationic surfactant is applied to the hollow sphere 11 by spraying before filling the container 4, the aggregation of the hollow sphere 11 is reduced and the fluidity of the hollow sphere 11 is improved. The density of the acoustic matching layer 19 taken out from the matching member 18 manufactured by the hollow sphere 11 may vary from 0.50 to 0.53 regardless of where the manufacturing lots are collected or from any of the matching members 18 having different manufacturing lots. As shown, an acoustic matching layer 19 having a stable density range can be obtained.

また、収納体4を含む整合部材作成治具5を振動させる加振装置は、接地することにより収納室6に充填する中空球体11も除電することができ、加振充填工程中でも中空球体11間の凝集や反発を防止することができ、収納室6に均等に隙間なく充填することに大きく寄与する。このことから、加振装置は電気的導電体で作成されていることが望ましい。   Further, the vibration exciter that vibrates the alignment member creation jig 5 including the storage body 4 can also neutralize the hollow spheres 11 filled in the storage chamber 6 by grounding, and even between the hollow spheres 11 during the vibration filling process. Aggregation and repulsion can be prevented, and it contributes greatly to filling the storage chamber 6 evenly without gaps. For this reason, it is desirable that the vibration exciter is made of an electrical conductor.

接地する箇所は、収納体4と整合部材作成治具が電気的導電体であれば、加振装置の基盤1や台座3からリード線を取り出して接地することによりアース電位にすることができる。このことにより、加振装置自体も帯電性を低減できるので収納体4に中空球体11が均等に分散充填され、密度安定な音響整合層19を得る事ができる。   If the container 4 and the alignment member creation jig are electrical conductors, the grounding portion can be grounded by taking out the lead wire from the base 1 or the pedestal 3 of the vibration device and grounding it. As a result, the vibrating device itself can also be reduced in chargeability, so that the hollow spheres 11 are evenly distributed and filled in the housing 4, and the density-stable acoustic matching layer 19 can be obtained.

なお、本実施の形態1の加振装置は図1に示すような中空球体11を充填する収納体4を含む整合部材作成治具5を台座3に積載して台座3ごと所定高さから落下させ、受台10に当ててその衝撃加速度により中空球体11を充填する方法であったが、中空球体11を充填する方法はこの方法に固執するものではない。   In addition, the vibration exciter of this Embodiment 1 loads the alignment member preparation jig | tool 5 containing the storage body 4 filled with the hollow sphere 11 as shown in FIG. 1 on the base 3, and falls from the predetermined height with the base 3 together. The method of filling the hollow sphere 11 with the impact acceleration applied to the cradle 10 is not a method for filling the hollow sphere 11 with this method.

例えば、収納体4を所定周波数と所定振幅により縦振動やまた横振動を付与する振動装置より充填する方法でも帯電性が低減された中空球体11は均等に充填される。   For example, the hollow sphere 11 with reduced chargeability is evenly filled by a method of filling the storage body 4 with a vibration device that applies longitudinal vibration or lateral vibration with a predetermined frequency and a predetermined amplitude.

(実施の形態2)
図6は、上記実施の形態1により得た音響整合層19を使用した超音波センサを示す。
(Embodiment 2)
FIG. 6 shows an ultrasonic sensor using the acoustic matching layer 19 obtained by the first embodiment.

導電性材料製の筒状のケース20には天部21があり、その天部21の内壁面に圧電体22が、外壁面に音響整合層19がそれぞれ接着されている。筒状ケース20の下方開放部は一方の端子23を接続した端子板24で閉塞されている。   The cylindrical case 20 made of a conductive material has a top portion 21, and the piezoelectric body 22 is bonded to the inner wall surface of the top portion 21 and the acoustic matching layer 19 is bonded to the outer wall surface. The lower open portion of the cylindrical case 20 is closed by a terminal plate 24 connected to one terminal 23.

他方の端子25は電気絶縁材料26を介して端子板24を貫通し、圧電体22の下面に接触する導電体27に接続されている。圧電体22には複数の縦溝28が形成してある。   The other terminal 25 passes through the terminal plate 24 via an electrical insulating material 26 and is connected to a conductor 27 that contacts the lower surface of the piezoelectric body 22. A plurality of vertical grooves 28 are formed in the piezoelectric body 22.

端子23、25から導電体27を介して圧電体22に電圧が加わると、この圧電体22は圧電現象により振動する。   When a voltage is applied to the piezoelectric body 22 from the terminals 23 and 25 via the conductor 27, the piezoelectric body 22 vibrates due to a piezoelectric phenomenon.

図6の圧電体22は約500KHzで振動し、その振動はケース20から音響整合層19に伝わり、この音響整合層19の振動が気体に音波として伝搬する。   6 vibrates at about 500 KHz, and the vibration is transmitted from the case 20 to the acoustic matching layer 19, and the vibration of the acoustic matching layer 19 propagates to the gas as a sound wave.

従来による製造方法で作成した音響整合層は、その中の中空球体の分散が一定でないので、圧電体からケースを介して伝搬される振動の波長が音響整合層内部でずれるので、測定流体中での振動波の強め合いが弱まり、超音波センサとしての送受信感度が低下してしまう。   In the acoustic matching layer created by the conventional manufacturing method, since the dispersion of the hollow spheres therein is not constant, the wavelength of vibration propagating from the piezoelectric body through the case shifts inside the acoustic matching layer. As a result, the transmission / reception sensitivity of the ultrasonic sensor decreases.

これに対して、本実施形態の音響整合層19は、その内部の中空球体が均一に分散されて密度が安定なため、振動の波長が同音響整合層内部で位相をずらせることがないので、測定流体中に振動波を安定的に発振させることができ、超音波センサの送受信感度特性を低下させることなく維持することができる。   On the other hand, the acoustic matching layer 19 of the present embodiment has a uniform density because the hollow spheres therein are uniformly dispersed, so the wavelength of vibration does not shift the phase inside the acoustic matching layer. The oscillation wave can be stably oscillated in the measurement fluid, and the transmission / reception sensitivity characteristic of the ultrasonic sensor can be maintained without deteriorating.

さらに前記超音波センサは、流体の流れ測定装置に用いられる。すなわち、流路の流体流れ方向上流側と下流側に少なくとも一対の超音波センサを配置し、一方の超音波センサから送信された超音波が他方の超音波センサに受信されるまでの時間、すなわち超音波伝搬時間を検知して、それから流体の流速を測定できるようにすることができる。   Furthermore, the ultrasonic sensor is used in a fluid flow measuring device. That is, at least a pair of ultrasonic sensors are arranged on the upstream side and the downstream side in the fluid flow direction of the flow path, and the time until the ultrasonic wave transmitted from one ultrasonic sensor is received by the other ultrasonic sensor, The ultrasonic propagation time can be detected and the fluid flow rate can then be measured.

また、前記流速に基づき流路の断面積などの要素を絡めて演算することで流量の測定も可能である。そして、先述したように、超音波センサが高性能であるために、流速およびまたは流量の計測が高精度に行えるものである。   In addition, the flow rate can be measured by calculating by involving elements such as the cross-sectional area of the flow path based on the flow velocity. As described above, since the ultrasonic sensor has high performance, the flow velocity and / or flow rate can be measured with high accuracy.

以上のように、本発明にかかる整合部材の製造方法および同整合部材を音響整合層として用いた超音波センサ並びにこの超音波センサを用いた流体の流れ測定装置は、整合部材および音響整合層を均一密度で製造することができ、この音響整合層を用いた超音波センサの性能を向上し、さらには、この超音波センサを搭載した流体の流れ測定装置としても著しくその精度を高めることが可能となるので、気体や液体の流体流れ測定装置等の用途に適用できる。   As described above, the manufacturing method of the matching member according to the present invention, the ultrasonic sensor using the matching member as an acoustic matching layer, and the fluid flow measuring device using the ultrasonic sensor include the matching member and the acoustic matching layer. It can be manufactured at a uniform density, and the performance of the ultrasonic sensor using this acoustic matching layer can be improved. Furthermore, the accuracy of the fluid flow measurement device equipped with this ultrasonic sensor can be remarkably increased. Therefore, it can be applied to uses such as gas and liquid fluid flow measuring devices.

(a)本発明の実施の形態1におけ整合部材製造装置の非動作時の正面図、(b)中空球体を充填するための収納体の上面図、(c)本発明の実施の形態1における整合部材製造装置の動作時の正面図(A) Front view at the time of non-operation of the alignment member manufacturing apparatus in Embodiment 1 of the present invention, (b) Top view of a storage body for filling a hollow sphere, (c) Embodiment 1 of the present invention View of the alignment member manufacturing apparatus at the time of operation 製造工程図Manufacturing process diagram (a)本発明の他の実施の形態を示す整合部材作成治具の斜視図、(b)同収納体の斜視図(A) The perspective view of the alignment member preparation jig | tool which shows other embodiment of this invention, (b) The perspective view of the storage body 整合部材の密度変化を示すグラフGraph showing density change of alignment member 中空球体の静電気量比較を示すグラフGraph showing static electricity comparison of hollow spheres 本発明整合層を用いた超音波センサの断面図Cross-sectional view of an ultrasonic sensor using the matching layer of the present invention 従来の整合部材の製造工程図Manufacturing process diagram of conventional alignment members

符号の説明Explanation of symbols

3 台座
4 収納体
5 整合部材作成治具
6 収納室
10 受台
11 中空球体
13 結合材料
19 音響整合層
20 状ケース
21 天部
22 圧電体
DESCRIPTION OF SYMBOLS 3 Base 4 Storage body 5 Alignment member preparation jig 6 Storage chamber 10 Base 11 Hollow sphere 13 Binding material 19 Acoustic matching layer 20 Shaped case 21 Top part 22 Piezoelectric body

Claims (12)

帯電性を低減させた中空球体を収納体に収納するとともに、加振して充填し、次いで、結合材料を混合させることで前記中空球体を結合材料で包囲することを特徴とする整合部材の製造方法。 A hollow sphere having reduced chargeability is housed in a housing body, and is filled by vibration, and then the hollow sphere is surrounded by the binding material by mixing the binding material, thereby producing a matching member. Method. 導電性を有する容器内に中空球体を所定時間放置した後に収納体内部に充填するようにした請求項1記載の整合部材の製造方法。 2. The method for manufacturing an alignment member according to claim 1, wherein the hollow sphere is left in the conductive container for a predetermined time and then filled into the housing. 中空球体に帯電防止剤を塗布した後に収納体内部に充填するようにした請求項1記載の整合部材の製造方法。 The method for manufacturing an alignment member according to claim 1, wherein an antistatic agent is applied to the hollow sphere and then the inside of the container is filled. 台座で支持された整合部材作成治具に収納体を設け、加振装置を介して前記整合部材作成治具に振動を付与することで中空球体を収納体に充填するようにし、かつ前記台座と整合部材作成治具および前記収納体は電気的に接続するとともに、前記加振装置は接地した請求項1記載の整合部材の製造方法。 A container is provided in the alignment member creation jig supported by the pedestal, and the hollow body is filled in the storage body by applying vibration to the alignment member creation jig via a vibration device, and the pedestal and The method for manufacturing an alignment member according to claim 1, wherein the alignment member creation jig and the storage body are electrically connected, and the vibration exciter is grounded. 整合部材作成治具に複数の収納体を配置した請求項4記載の整合部材の製造方法。 The manufacturing method of the alignment member of Claim 4 which has arrange | positioned the several accommodating body to the alignment member preparation jig | tool. 結合材料は熱硬化性樹脂化合物である請求項1記載の整合部材の製造方法。 The method for manufacturing an alignment member according to claim 1, wherein the binding material is a thermosetting resin compound. 中空球体に結合材料を混合させた後、この混合物を硬化させるようにした請求項1または6記載の整合部材の製造方法。 The method for manufacturing an alignment member according to claim 1 or 6, wherein the mixture is cured after the bonding material is mixed into the hollow sphere. 中空球体はガラス組成を含むものである請求項1記載の整合部材の製造方法。 The method for manufacturing an alignment member according to claim 1, wherein the hollow sphere includes a glass composition. 請求項1〜8のいずれか1項記載の整合部材の製造方法で作成した整合部材を音響整合層として備えた超音波センサ。 The ultrasonic sensor provided with the matching member created with the manufacturing method of the matching member of any one of Claims 1-8 as an acoustic matching layer. 天部と側壁部を有する筒状ケースと、前記天部の内壁面に固定された圧電体と、前記天部外壁面に接着層を介して設置された音響整合層からなる請求項9記載の超音波センサ。 The cylindrical case having a top part and a side wall part, a piezoelectric body fixed to the inner wall surface of the top part, and an acoustic matching layer installed on the outer wall surface of the top part via an adhesive layer. Ultrasonic sensor. 請求項9または10記載の超音波センサを流体の流れ方向に少なくとも一対配置し、前記超音波センサ間の超音波伝搬時間にもとづき流体の速度を検知するようにした流体の流れ測定装置。 11. A fluid flow measuring device comprising: at least a pair of the ultrasonic sensors according to claim 9 or 10 arranged in a fluid flow direction, wherein the fluid velocity is detected based on an ultrasonic propagation time between the ultrasonic sensors. 請求項10または11記載の超音波センサを流体の流れ方向に少なくとも一対配置し、前記超音波センサ間の超音波伝搬時間により求めた流体の速度にもとづき流量を測定するようにした流体の流れ測定装置。 A flow measurement of a fluid in which at least a pair of the ultrasonic sensors according to claim 10 or 11 are arranged in a fluid flow direction, and a flow rate is measured based on a velocity of the fluid obtained by an ultrasonic propagation time between the ultrasonic sensors. apparatus.
JP2004061947A 2004-03-05 2004-03-05 Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the ultrasonic sensor Pending JP2005252771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061947A JP2005252771A (en) 2004-03-05 2004-03-05 Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061947A JP2005252771A (en) 2004-03-05 2004-03-05 Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the ultrasonic sensor

Publications (1)

Publication Number Publication Date
JP2005252771A true JP2005252771A (en) 2005-09-15

Family

ID=35032826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061947A Pending JP2005252771A (en) 2004-03-05 2004-03-05 Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP2005252771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047085A1 (en) * 2007-10-01 2009-04-16 Robert Bosch Gmbh Reaction resin and two-component system for producing the same
CN106814133A (en) * 2015-12-01 2017-06-09 中国科学院大连化学物理研究所 A kind of acoustic array method of embedded type chimneying homogeneity of fault plane detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047085A1 (en) * 2007-10-01 2009-04-16 Robert Bosch Gmbh Reaction resin and two-component system for producing the same
CN106814133A (en) * 2015-12-01 2017-06-09 中国科学院大连化学物理研究所 A kind of acoustic array method of embedded type chimneying homogeneity of fault plane detection
CN106814133B (en) * 2015-12-01 2020-01-03 中国科学院大连化学物理研究所 Audio array method for detecting uniformity of airflow section of embedded pipeline

Similar Documents

Publication Publication Date Title
CN108803096A (en) A kind of liquid crystal phase-shifting unit and preparation method thereof, liquid crystal phase shifter and antenna
US8405280B2 (en) Composite piezoelectric body including a piezoelectric ceramic and an organic polymer material containing air bubbles, method for producing said composite piezoelectric body, and composite piezoelectric element using said composite piezoelectric body
CN101605842A (en) Conductive polymer foams, its manufacture method and application
KR20120101047A (en) Piezoelecric polymer film element, in particular a polymer film, and method for the production thereof
CN101111933A (en) Flip chip mounting body and method for mounting such flip chip mounting body and bump forming method
KR20140120267A (en) Coating material for electrical equipment, method for producing the same, and sealed type isolator
JP2005252771A (en) Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the ultrasonic sensor
KR101507748B1 (en) Acoustic generator, acoustic generation device, and electronic device
JP4140359B2 (en) Alignment member for ultrasonic transducer and ultrasonic sensor using the same
JP2005252772A (en) Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the same
US9321245B2 (en) Injection of a filler material with homogeneous distribution of anisotropic filler particles through implosion
JP4269751B2 (en) Manufacturing method of matching layer, ultrasonic sensor using matching layer, and fluid flow measuring apparatus using ultrasonic sensor
KR20060125686A (en) Sound matching body, process for producing the same, ultrasonic sensor and ultrasonic wave transmitting/receiving system
US20140130607A1 (en) Manufacturing method of acoustic matching member, acoustic matching member, ultrasonic transmitter/ receiver unit incorporating acoustic matching member, and ultrasonic flow meter device
JP2002058099A (en) Method for producing acoustic matching layer, acoustic matching layer produced by the method, ultrasonic sensor comprising the layer, and electronic apparatus using the layer
CN113228709B (en) ultrasonic sensor
CN101196415B (en) Ultrasonic sensor
CN114773787A (en) Filling adhesive guiding agent and preparation method and using method thereof
EP2083471B1 (en) Temperature compensated coaxial cavity resonator using anisotropic material
JP4729848B2 (en) Manufacturing method of matching member, ultrasonic sensor using matching layer, and fluid flow measuring apparatus using ultrasonic sensor
KR20090115502A (en) All-in-one vibrators of high gravity polymer for vibration motor of mobile phone and method for manufacturing the same
CN104854879A (en) Sound generator, sound generating apparatus, and electronic apparatus
JP2005039326A (en) Manufacturing method and manufacturing apparatus for matching member and ultrasonic sensor employing the matching member
JP4341541B2 (en) Ultrasonic sensor and fluid flow measuring device using the same
JP2004144553A (en) Matching member and its manufacturing method, and ultrasonic sensor using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609