JP2005252113A - Voltage controlled transformer - Google Patents

Voltage controlled transformer Download PDF

Info

Publication number
JP2005252113A
JP2005252113A JP2004063219A JP2004063219A JP2005252113A JP 2005252113 A JP2005252113 A JP 2005252113A JP 2004063219 A JP2004063219 A JP 2004063219A JP 2004063219 A JP2004063219 A JP 2004063219A JP 2005252113 A JP2005252113 A JP 2005252113A
Authority
JP
Japan
Prior art keywords
iron core
bypass
cores
iron
iron cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004063219A
Other languages
Japanese (ja)
Other versions
JP4411460B2 (en
Inventor
Mitsuhiko Fujisaki
崎 満 彦 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitashiba Electric Co Ltd
Original Assignee
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitashiba Electric Co Ltd filed Critical Kitashiba Electric Co Ltd
Priority to JP2004063219A priority Critical patent/JP4411460B2/en
Publication of JP2005252113A publication Critical patent/JP2005252113A/en
Application granted granted Critical
Publication of JP4411460B2 publication Critical patent/JP4411460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage controlled transformer having simple iron core structure and capable of suppressing local overheat, extending a control range of an output voltage, reducing waveform distortion, and attaining a large capacity at low cost and high reliability. <P>SOLUTION: The voltage controlled transformer comprises 1st and 2nd iron cores forming a closed magnetic path; a bypass iron core; primary coils wound so as to surround the 1st and 2nd iron cores and the bypass iron core; secondary coils wound so as to surround the 1st and 2nd iron cores; control coils wound around the 1st and 2nd iron cores in series or in parallel in mutually reverse directions; and bypass iron core control coils wound around these iron cores in series or in parallel in the mutually reverse directions. Each the 1st and 2nd iron cores is composed of a common leg and upper and lower divided yokes, and control coils are wound around the yokes, and the bypass core is composed of two iron cores. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は安価で大容量に適した電圧調整変圧器に係り、より詳しくは、広い範囲の1次入力電力変動及び2次出力電力変動に対して安定な2次電圧(出力電圧)を提供できる磁束制御型電圧調整変圧器に関するものである。   The present invention relates to a voltage regulating transformer that is inexpensive and suitable for large capacity, and more specifically, can provide a secondary voltage (output voltage) that is stable against a wide range of primary input power fluctuation and secondary output power fluctuation. The present invention relates to a magnetic flux control type voltage regulating transformer.

近年、風力発電や太陽光発電などの分散性電源が、有害物を殆ど排出しない、環境にやさしい電源として賞用され増加している。しかし、これらの分散性電源は風力や太陽照度により発生する電力が時間的に大きく変動するので、そのまま電力系統の一部として用いた場合、系統への供給電力の変動がもたらす系統周波数、系統電圧波形などの系統電力品質の悪化が懸念される。そこで、このような分散性電源から供給される電力の安定化方策として様々な方式が使われている。   In recent years, dispersive power sources such as wind power generation and solar power generation have been increasingly used as environmentally friendly power sources that emit almost no harmful substances. However, the power generated by wind power and solar illuminance fluctuates over time in these dispersive power supplies, so when used as part of the power system, the system frequency and system voltage caused by fluctuations in the power supplied to the system There is concern about the deterioration of grid power quality such as waveforms. Therefore, various methods are used as a measure for stabilizing the power supplied from such a distributed power source.

第1に、機械式のタップ切替え型変圧器を利用する方式がある。通常1次巻線又は2次巻線に複数のタップを設け、1次側又は2次側の電圧が変動した場合は、例えば2次側の電圧が増大すると、これを検出して規定の値に戻すようタップを切替えて2次側の電圧を制御する。   First, there is a system that uses a mechanical tap switching transformer. Usually, when a plurality of taps are provided on the primary winding or the secondary winding, and the voltage on the primary side or the secondary side fluctuates, for example, when the voltage on the secondary side increases, this is detected and the specified value The secondary side voltage is controlled by switching the tap to return to.

しかしながら、この方式では切替えが段階的であり、連続的に行えない。さらに、電力の流れている2次側を活線のままスイッチしなければならない上に切替えに少なくとも5〜6秒の応答時間を要し、その応答時間が遅い分電圧変動が生じ易い、という問題点がある。   However, in this method, switching is gradual and cannot be performed continuously. Furthermore, the secondary side on which power is flowing must be switched while being live, and the switching requires a response time of at least 5 to 6 seconds, and the voltage fluctuation is likely to occur due to the slow response time. There is a point.

第2に、そこで連続的切替えが可能な方式として、変圧器の外部の1次側に可飽和リアクトルを直列に接続し、可飽和リアクトルの制御巻線に流す直流電流を増減して可飽和リアクトルの飽和度を加減し、これにより、変圧器の1次側に印加される電圧を制御することで、2次側の電圧が規定の値になるよう制御する方式もある。   Secondly, as a method capable of continuous switching, a saturable reactor is connected in series to the primary side outside the transformer, and the DC current flowing through the control winding of the saturable reactor is increased or decreased to increase or decrease the saturable reactor. There is also a method of controlling the voltage on the primary side of the transformer to control the voltage on the primary side of the transformer so that the voltage on the secondary side becomes a specified value.

しかしながら、この方式では連続的切替えが可能になるが、十分な可変範囲を確保するためには可飽和リアクトルの容量が大きくなる上に、損失の増大、波形歪率の悪化など電力系統としては望ましくないので一般的には使用できず、前記第1の機械式タップ切替え型などの使用を余儀なくされているという問題点がある。   However, with this method, continuous switching is possible. However, in order to ensure a sufficient variable range, the capacity of the saturable reactor is increased, and it is desirable as an electric power system such as an increase in loss and a deterioration in waveform distortion rate. In general, it cannot be used, and there is a problem that the first mechanical tap switching type or the like must be used.

第3に、連続的かつ高速の電圧制御が可能な方式としてサイリスタなどの半導体素子を使った、SVC、SVG等の静止型電圧調整器が導入されている。   Thirdly, static voltage regulators such as SVC and SVG using semiconductor elements such as thyristors have been introduced as systems capable of continuous and high-speed voltage control.

しかしながら、これらの静止型電圧調整器は、既存の電磁機器と比較した場合、特に制御系の構造が複雑で高価であり、加えて、系統のサージ、過電圧に係る信頼性に欠けるなどの問題点がある。   However, these static voltage regulators have a complicated and expensive control system structure compared to existing electromagnetic devices, and also have problems such as lack of reliability related to system surges and overvoltages. There is.

さらに、これらの静止型電圧調整器では、位相制御により電圧を変えている場合は、高調波が発生し波形歪率が悪化するので、電力系統に悪影響を与えないように、可変調整範囲を小さくしたりフィルターを併用する等の対策が必要とされた。これは、上記可飽和リアクトルを用いる方式にもある程度共通する問題である。   Furthermore, in these static voltage regulators, when the voltage is changed by phase control, harmonics are generated and the waveform distortion rate deteriorates, so the variable adjustment range is reduced so as not to adversely affect the power system. It was necessary to take measures such as using a filter and a filter. This is a problem that is common to some extent with the system using the saturable reactor.

そこで第4に、近年、サイリスタ等の半導体素子を使わず、既存の電磁機器の製作技術が適用できる比較的単純な構造でありながら、連続調整機能を有する、磁束制御型電圧調整器の研究発表が相次いでいる。
磁束制御型調整器の鉄心の形状としては、直交型、積層平行型、田型等、様々なものが提案されている。
Fourth, in recent years, a research presentation of a magnetic flux control type voltage regulator that has a relatively simple structure that does not use semiconductor elements such as thyristors and can be applied to existing electromagnetic device manufacturing technology, but has a continuous adjustment function. Are in succession.
As the shape of the iron core of the magnetic flux control type adjuster, various types such as an orthogonal type, a stacked parallel type, and a rice field type have been proposed.

しかし、これらの磁束制御型変圧器には、共通して、鉄心構造が複雑であり、かつ局部過熱を生じ易いという問題があり、そのため、100kVA前後の小容量の場合以外は実用化が難しかった。
この内、特に直交型は鉄心構造が複雑で、直交部で鋼板の積層面が交差するので短絡防止用絶縁フィルムを挿入する必要があるなど大型化に不向きで、かつ局部加熱を生じ易い、という問題点があった。
However, these magnetic flux control type transformers have a common problem that the iron core structure is complicated and local overheating is likely to occur, so that it is difficult to put it into practical use except for a small capacity of around 100 kVA. .
Among them, especially the orthogonal type has a complicated iron core structure, and the laminated surfaces of the steel plates intersect at the orthogonal part, so it is not suitable for enlargement such as the need to insert an insulation film for preventing short circuit, and local heating is likely to occur. There was a problem.

ここで第1図を参照して、従来の磁束制御型変圧器について、積層平行鉄心型の鉄心構造の場合を説明する。
第1図において、閉磁路をなす鉄心10には、各々巻数N1、N2の1次、2次コイルN1,N2が巻かれており、鉄心10は、同型の薄板部材を図面の奥行き方向に、又は上下方向に重ねて形成される。
With reference to FIG. 1, the case of a laminated parallel core type iron core structure will be described for a conventional magnetic flux control type transformer.
In FIG. 1, the iron core 10 forming a closed magnetic circuit is wound with primary and secondary coils N1, N2 each having a number of turns N1, N2. The iron core 10 has the same type of thin plate member in the depth direction of the drawing. Alternatively, they are formed so as to overlap in the vertical direction.

1次鉄心部11は、開口部11cと、開口部11cで隔てられた2脚の鉄心11a、11bを備える。
鉄心11a、11bには同一巻数の制御コイルNc1、Nc2が巻かれており、両制御コイルは直列に接続され、しかも直流電流Icを流した場合、鉄心11a、11bが逆方向に励磁され、環状の磁束φcが生成されるように接続される。
The primary core part 11 includes an opening part 11c and two legged iron cores 11a and 11b separated by the opening part 11c.
The control coils Nc1 and Nc2 having the same number of turns are wound around the iron cores 11a and 11b. When both the control coils are connected in series and a direct current Ic is passed, the iron cores 11a and 11b are excited in the opposite direction to form an annular shape. The magnetic flux φc is connected so as to be generated.

この磁束制御型変圧器の動作について考察すると、先ず、無負荷、制御コイル電流ゼロの状態で1次コイルに交流電圧v1を印加すると、交流電圧v1の積分値に比例した磁束φ1が誘起され、磁束φ1が2次コイルに、磁束φ1の微分値、即ち、1次コイルと2次コイルの巻数比に比例する2次電圧v2を誘起する。   Considering the operation of this magnetic flux control type transformer, first, when AC voltage v1 is applied to the primary coil with no load and zero control coil current, magnetic flux φ1 proportional to the integral value of AC voltage v1 is induced, The magnetic flux φ1 induces a secondary voltage v2 proportional to the differential value of the magnetic flux φ1, that is, the turn ratio of the primary coil and the secondary coil, in the secondary coil.

次に、2次側に負荷を接続すると、2次コイルに負荷電流i2が流れ、その起磁力により2次磁束を生じ、この2次磁束が1次コイルに鎖交すると電圧を誘起し印加電圧との均衡が破れ、1次コイルには、もとの磁束φ1に対する励磁電流に加えて、丁度2次磁束の鎖交分を打ち消す起磁力を有する電流が流れる。
こうして、1次コイルの鎖交磁束はもとの無負荷時の値φ1に戻って平衡する。
Next, when a load is connected to the secondary side, a load current i2 flows through the secondary coil, and a secondary magnetic flux is generated by the magnetomotive force. When this secondary magnetic flux is linked to the primary coil, a voltage is induced and applied voltage In addition to the excitation current for the original magnetic flux φ1, a current having a magnetomotive force that just cancels the linkage of the secondary magnetic flux flows through the primary coil.
Thus, the interlinkage magnetic flux of the primary coil returns to the original no-load value φ1 and is balanced.

無負荷時の磁束は全て鉄心を通ると見なして良いが、負荷時における磁束は、負荷電流の起磁力により、かなりの量の磁束がコイル間の空隙を通ることになる。この磁束を漏れ磁束といい、その位相は負荷電流と同相であり、2次電圧の変化分は、この漏れ磁束による誘起電圧に等しい。   Although it can be considered that all the magnetic fluxes under no load pass through the iron core, a considerable amount of magnetic flux passes through the gap between the coils due to the magnetomotive force of the load current. This magnetic flux is called leakage magnetic flux, and its phase is in phase with the load current, and the change in secondary voltage is equal to the induced voltage due to this leakage magnetic flux.

この漏れ磁束による誘起電圧を漏れリアクタンス電圧といい、負荷電流と位相が90°ずれる。   The induced voltage due to this leakage magnetic flux is called leakage reactance voltage, and the phase of the load current is shifted by 90 °.

また負荷電流と同位相の2次電圧成分を抵抗電圧、両者のベクトル和をインピーダンス電圧といい、漏れリアクタンス電圧のインピーダンス電圧に対する比率を%リアクタンス電圧といい、変圧器の構造が決まると一義的に決まり、例えば通常の同心配置型変圧器の場合、10%前後になるように設計される。   The secondary voltage component in phase with the load current is called the resistance voltage, the vector sum of both is called the impedance voltage, and the ratio of the leakage reactance voltage to the impedance voltage is called the% reactance voltage. For example, in the case of a normal concentric transformer, it is designed to be around 10%.

又、この構造の変圧器では、制御コイルによる直流磁界φcの存在により、制御コイルの巻かれた鉄心11a、11bの磁束が飽和する現象を利用するものであるが、局部的飽和のため鉄心11a、11bが局部発熱するが、制御コイルが巻かれているので放熱性が悪く、可変制御範囲の小さい、せいぜい100kVA以下の小電力用の場合しか実用化が困難であった。   Moreover, in the transformer of this structure, the phenomenon that the magnetic flux of the iron cores 11a and 11b wound with the control coil is saturated due to the presence of the DC magnetic field φc by the control coil is utilized. 11b generates heat locally, but since the control coil is wound, heat dissipation is poor, and it is difficult to put it into practical use only for a small electric power with a small variable control range and at most 100 kVA.

又、この構造の変圧器では、漏れリアクタンスにより、その分だけ(即ち、上述のように、同心配置型の場合、約10%程度)2次電圧を低下させる際に、漏れリアクタンスの制御範囲を広くとることが困難であった。   Moreover, in the transformer of this structure, when the secondary voltage is reduced by the amount corresponding to the leakage reactance (that is, about 10% in the case of the concentric arrangement type as described above), the control range of the leakage reactance is reduced. It was difficult to take widely.

電気学会マグネティックス研究会資料MAG−03−114MAG-03-114, IEEJ Magnetics Study Group 電気学会マグネティックス研究会資料MAG−03−115MAG-03-115, IEEJ Magnetics Study Group

本発明の目的は、上記の問題点を解消するために、高速で連続的制御が可能であり、しかも従来の電磁機器製作技術が適用できる磁束制御型電圧調整変圧器において、鉄心構造が簡明で、局部過熱がなく、出力電圧の制御範囲が広くとれて、波形歪みの小さい、安価、高信頼度で大容量化が可能な電圧調整変圧器を提供することにある。   An object of the present invention is to provide a magnetic flux control type voltage regulating transformer that can be continuously controlled at a high speed in order to solve the above-mentioned problems and that can be applied with conventional electromagnetic device manufacturing technology. An object of the present invention is to provide a voltage regulating transformer that is free from local overheating, has a wide output voltage control range, has low waveform distortion, is inexpensive, has high reliability, and can have a large capacity.

上記の目的を達成するためになされた本発明の請求項1に係る電圧調整変圧器は、閉磁路をなす第1、第2の鉄心と、前記第1、第2の鉄心を囲むように巻かれた1次コイルと、前記第1、第2の鉄心を囲むように巻かれた2次コイルと、前記第1、第2の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルと、を含むことを特徴とする。   In order to achieve the above object, a voltage regulating transformer according to claim 1 of the present invention is wound so as to surround first and second iron cores forming a closed magnetic circuit and the first and second iron cores. The primary coil, the secondary coil wound so as to surround the first and second iron cores, and the first and second iron cores are wound in series or in parallel and in opposite directions to each other. And a control coil.

好ましくは請求項2に係り、閉磁路をなす第1、第2の鉄心と、第3の鉄心(以下、バイパス鉄心という)と、前記第1、第2の鉄心とバイパス鉄心とを囲むように巻かれた1次コイルと、前記第1、第2の鉄心を囲むように巻かれた2次コイルと、前記第1、第2の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルと、を含むことを特徴とする。   Preferably, according to claim 2, the first and second iron cores, the third iron core (hereinafter referred to as a bypass iron core) forming a closed magnetic circuit, and the first and second iron cores and the bypass iron core are surrounded. The primary coil wound, the secondary coil wound so as to surround the first and second iron cores, and the first and second iron cores are wound in series or in parallel and in opposite directions to each other. And a control coil.

好ましくは請求項3に係り、前記バイパス鉄心が開磁路からなることを特徴とする。   Preferably, according to a third aspect of the present invention, the bypass iron core is formed of an open magnetic circuit.

好ましくは請求項4に係り、前記バイパス鉄心が、さらに2つの鉄心からなり、前記2つの鉄心に、直列又は並列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルを含むことを特徴とする。   Preferably, according to claim 4, the bypass iron core further includes two iron cores, and includes a bypass iron core control coil wound around the two iron cores in series or in parallel and in opposite directions to each other. .

好ましくは請求項5に係り、前記第1、第2の鉄心が、共通の脚部と、上下のヨーク部のうち一方又は双方が分割されたヨーク部とからなり、前記制御コイルが前記第1、第2の鉄心の前記分割されたヨーク部に巻かれていることを特徴とする。   Preferably, according to claim 5, the first and second iron cores include a common leg portion and a yoke portion in which one or both of the upper and lower yoke portions are divided, and the control coil is the first coil. It is wound around the divided yoke portion of the second iron core.

好ましくは請求項6に係り、前記第1、第2の鉄心が巻鉄心であることを特徴とする。   Preferably, according to a sixth aspect of the present invention, the first and second iron cores are wound iron cores.

好ましくは請求項7に係り、前記制御コイルが、前記1次、2次コイルから最も離隔した位置に巻かれていることを特徴とする。   Preferably, according to a seventh aspect of the present invention, the control coil is wound at a position farthest from the primary and secondary coils.

上記の目的を達成するためになされた本発明の請求項8に係る電圧調整変圧器は、3相交流電力の各相電圧に対応する3組の電圧調整変圧器からなり、各々の前記電圧調整変圧器は、閉磁路をなす第1、第2の鉄心と、第3の鉄心(以下、バイパス鉄心という)と、前記第1、第2の鉄心とバイパス鉄心とを囲むように巻かれた1次コイルと、前記第1、第2の鉄心を囲むように巻かれた2次コイルと、前記第1、第2の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルとを含み、前記バイパス鉄心が、3相の各相に対応する別々の脚部と、共通のヨーク部からなる帰路とを有することを特徴とする。   The voltage adjustment transformer according to claim 8 of the present invention made to achieve the above object comprises three sets of voltage adjustment transformers corresponding to the respective phase voltages of the three-phase AC power, and each of the voltage adjustment transformers. The transformer is wound so as to surround the first and second iron cores, the third iron core (hereinafter referred to as bypass iron core) forming the closed magnetic circuit, and the first and second iron cores and the bypass iron core. A secondary coil wound around the first and second iron cores, and a control coil wound around the first and second iron cores in series or in parallel and in opposite directions. The bypass iron core has a separate leg corresponding to each of the three phases and a return path composed of a common yoke portion.

好ましくは請求項9に係り、前記バイパス鉄心の、3相の各相に対応する別々の脚部又は共通ヨーク部の、一方もしくは双方が2つの鉄心からなり、前記2つの鉄心に、直列又は並列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルを含むことを特徴とする。   Preferably, according to claim 9, one or both of separate leg portions or common yoke portions corresponding to each of the three phases of the bypass iron core are composed of two iron cores, and the two iron cores are connected in series or in parallel. And a bypass iron core control coil wound in opposite directions.

上記の目的を達成するためになされた本発明の請求項10に係る電圧調整変圧器は、3相交流電力の各相電圧に対応して三角状に配置した3脚からなる主鉄心と、前記主鉄心を囲むように各々巻かれている1次コイル及び2次コイルと、前記主鉄心の上下の双方又は一方に設けられた、環状(以下、円形、又は「おむすび形」の場合を含む)の2つのヨーク部と、前記2つのヨーク部の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルとを含むことを特徴とする。   The voltage regulating transformer according to claim 10 of the present invention, which has been made to achieve the above object, comprises a main core composed of three legs arranged in a triangular shape corresponding to each phase voltage of three-phase AC power, A primary coil and a secondary coil wound so as to surround the main iron core, and an annular shape (hereinafter, including a case of a circular shape or a “muscle shape”) provided on both or one of the upper and lower sides of the main iron core. And two control coils wound in series or in parallel and in opposite directions on the iron cores of the two yoke portions.

好ましくは請求項11に係り、3相交流電力の各相電圧に対応して三角状に配置した3脚からなる主鉄心と、前記主鉄心の上下の双方又は一方に設けられた、環状の2つのヨーク部と、前記2つのヨーク部の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルと、前記3脚からなる主鉄心に各々並立する3脚からなるバイパス鉄心とを含み、前記主鉄心を囲むように2次コイルが、前記主鉄心と前記並立するバイパス鉄心とを囲むように1次コイルが、各々巻かれていることを特徴とする。   Preferably, according to claim 11, a main iron core composed of three legs arranged in a triangular shape corresponding to each phase voltage of the three-phase AC power and an annular 2 provided on both or one of the upper and lower sides of the main iron core. Two yoke parts, a control coil wound in series or in parallel on the iron cores of the two yoke parts, and a bypass iron core consisting of three legs juxtaposed on the main iron core consisting of the three legs. And the secondary coil is wound around the main iron core, and the primary coil is wound around the main iron core and the parallel bypass iron cores.

好ましくは請求項12に係り、前記3脚からなるバイパス鉄心が、さらにその上下の双方又は一方に設けられた、環状の共通のヨーク部を有することを特徴とする。   Preferably, according to a twelfth aspect of the present invention, the bypass iron core composed of the three legs further includes an annular common yoke portion provided on both or one of the upper and lower sides thereof.

好ましくは請求項13に係り、前記バイパス鉄心の環状の共通のヨーク部がさらに2つの鉄心からなり、前記2つの鉄心に、直列又は並列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルを含むことを特徴とする。   Preferably, the annular common yoke portion of the bypass iron core further comprises two iron cores, and a bypass iron core control coil wound around the two iron cores in series or in parallel and in opposite directions to each other. It is characterized by including.

上記の目的を達成するためになされた本発明の請求項14に係る電圧調整変圧器は、3相交流電力の各相電圧に対応する3組の電圧調整変圧器からなり、各々の前記電圧調整変圧器は、2つの巻鉄心からなる主鉄心と、前記主鉄心の縦辺の一方に並立するバイパス鉄心と、前記2つの巻鉄心と前記バイパス鉄心に巻かれた1次コイルと、前記2つの巻鉄心に巻かれた2次コイルと、前記2つの巻鉄心の、1次、2次コイルからもっとも離隔した位置に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルとを含み、前記バイパス鉄心には、その上下の双方又は一方に設けられた環状の共通のヨーク部が設けられていることを特徴とする。   In order to achieve the above object, a voltage regulation transformer according to claim 14 of the present invention comprises three sets of voltage regulation transformers corresponding to respective phase voltages of three-phase AC power, and each of said voltage regulation transformers. The transformer includes a main core composed of two wound cores, a bypass core juxtaposed on one of the longitudinal sides of the main core, the primary coils wound around the two wound cores and the bypass core, and the two A secondary coil wound around a wound core, and a control coil wound in series or in parallel and in opposite directions to each other at a position farthest from the primary and secondary coils of the two wound cores, The bypass iron core is provided with an annular common yoke portion provided on both or one of the upper and lower sides thereof.

好ましくは請求項15に係り、前記バイパス鉄心の共通のヨーク部がさらに2つの鉄心からなり、前記2つの鉄心に、直列又は並列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルを含むことを特徴とする。   Preferably, according to claim 15, the common yoke portion of the bypass iron core further includes two iron cores, and includes a bypass iron core control coil wound around the two iron cores in series or in parallel and in opposite directions to each other. It is characterized by.

又、本発明においても、制御コイルの巻かれた鉄心の磁束が飽和する現象を利用するものであるが、本発明によれば、鉄心の飽和が局部的ではなく全体的であるので、その放熱性が高い。さらに、調整範囲が大きくとれるので、飽和の深度をあまり大きくせずに要求される制御ができ、小電力用だけではなく大電力用まで実用化できるという効果がある。   In the present invention, the phenomenon that the magnetic flux of the iron core around which the control coil is wound is saturated is utilized. However, according to the present invention, the iron core is saturated locally rather than locally. High nature. Furthermore, since the adjustment range can be increased, the required control can be performed without increasing the depth of saturation so much that there is an effect that it can be put to practical use not only for low power but also for high power.

又、本発明においても、漏れリアクタンスにより、その分だけ2次電圧を低下させる際に、本発明によれば、漏れリアクタンスの制御範囲を広く取ることができるので、2次電圧の制御範囲を広く取ることができるという効果がある。   Also in the present invention, when the secondary voltage is lowered by the leakage reactance, according to the present invention, the control range of the leakage reactance can be widened, so the control range of the secondary voltage is widened. There is an effect that can be taken.

また、本発明によれば、主鉄心やバイパス鉄心のヨーク部の構造を活かすことにより、上記の効果を有し、しかもコンパクトで経済的な3相交流変圧器が得られるという効果がある。   Further, according to the present invention, by utilizing the structure of the yoke portion of the main iron core or the bypass iron core, there is an effect that a compact and economical three-phase AC transformer can be obtained.

以下、本発明による電圧調整変圧器の実施例を、添付図を参照して詳細に説明する。
同時に、従来と同一部分についての説明は省略する場合がある。
Hereinafter, embodiments of the voltage regulating transformer according to the present invention will be described in detail with reference to the accompanying drawings.
At the same time, the description of the same part as the conventional case may be omitted.

第1の実施例に係る電圧調整変圧器を、第2図を参照して説明する。
第2図(A)は等価回路図、(B)は上面図、(C)は立面図である。簡単のため、図(B)(C)において、コイルと鉄心以外の回路部分は省略してある。
A voltage regulating transformer according to the first embodiment will be described with reference to FIG.
2A is an equivalent circuit diagram, FIG. 2B is a top view, and FIG. 2C is an elevation view. For simplicity, the circuit portions other than the coil and the iron core are omitted in FIGS.

(構造)
本実施例では、積層された閉磁路をなす第1、第2の鉄心21、22からなる主鉄心と、これらを囲むように巻かれた、1次コイルN1、2次コイルN2と、第1、第2の鉄心21、22に直列に、且つ互いに逆方向に同一巻数に巻かれた制御コイルNc1、Nc2とを含む。
以下、この形状の鉄心21、22の組を、「積層2分割型鉄心」と称する。
(Construction)
In the present embodiment, the main iron core composed of the first and second iron cores 21 and 22 forming the laminated closed magnetic circuit, the primary coil N1, the secondary coil N2 wound so as to surround them, the first And control coils Nc1 and Nc2 wound in the same number of turns in series with the second iron cores 21 and 22 in opposite directions.
Hereinafter, a set of the iron cores 21 and 22 having this shape is referred to as a “stacked two-divided iron core”.

(作用効果)
従来の積層平行型鉄心の場合と異なり、積層用の薄板を刳り抜いて精密な寸法の開口部を形成するという、特に大容量の場合に困難な工程を必要とせず、単に2つの積層鉄心を並立するだけでよい。
即ち、構造が簡単で、特に大容量の場合の製造が容易になる。
また、積層平行型鉄心の場合よりも、制御コイル部の局部発熱集中度が低いので、放熱が容易になり、大容量化が可能になる。
(Function and effect)
Unlike conventional laminated parallel type iron cores, a thin plate for laminating is punched out to form an opening with a precise dimension, which does not require a difficult process, especially in the case of a large capacity. You only need to stand side by side.
That is, the structure is simple, and the manufacture is particularly easy when the capacity is large.
In addition, since the local heat generation concentration of the control coil portion is lower than in the case of the laminated parallel type iron core, heat dissipation is facilitated and the capacity can be increased.

第2の実施例に係る電圧調整変圧器を、第3図を参照して説明する。
第3図(A)は等価回路図、(B)は上面図、(C)は立面図である。簡単のため、図(B)(C)において、コイルと鉄心以外の回路部分は省略してある。
A voltage regulating transformer according to the second embodiment will be described with reference to FIG.
3A is an equivalent circuit diagram, FIG. 3B is a top view, and FIG. 3C is an elevation view. For simplicity, the circuit portions other than the coil and the iron core are omitted in FIGS.

(構造)
本実施例では、積層された閉磁路をなす第1、第2の鉄心21、22からなる主鉄心と、バイパス鉄心30と、これらすべてを囲むように巻かれた1次コイルN1と、第1、第2の鉄心21、22を囲むように巻かれた2次コイルN2と、第1、第2の鉄心21、22に、直列に、且つ互いに逆方向に同一巻数に巻かれた制御コイルNc1、Nc2とを含む。
即ち、実施例1の積層2分割鉄心型の電圧調整変圧器に対して、1次コイルN1だけに巻かれるバイパス鉄心30を追加したものである。
(Construction)
In the present embodiment, the main iron core composed of the first and second iron cores 21 and 22 forming the laminated closed magnetic circuit, the bypass iron core 30, the primary coil N1 wound so as to surround all of these, and the first The secondary coil N2 wound so as to surround the second iron cores 21, 22 and the control coil Nc1 wound in series with the first and second iron cores 21, 22 in the same number of turns in the opposite directions. , Nc2.
That is, a bypass iron core 30 wound only on the primary coil N1 is added to the laminated two-divided iron core type voltage regulating transformer of the first embodiment.

(作用)
最初に、無負荷(負荷Loadが開放状態)、制御コイル電流Icがゼロの状態とする。1次コイルN1に交流電圧v1を印加すると、鉄心21、22、30には磁束φ1、φ2、φ3が誘起され、2次コイルN2に2次電圧v2が誘起されるが、1次コイルに誘起された磁束のうち、バイパス鉄心30によってバイパスされた分φ3だけ、主磁束(φ1+φ2)が、従って1次・2次コイルの鎖交磁束が減少し、2次電圧もその比率で低下する。
(Function)
First, it is assumed that there is no load (the load Load is in an open state) and the control coil current Ic is zero. When the AC voltage v1 is applied to the primary coil N1, magnetic fluxes φ1, φ2, and φ3 are induced in the iron cores 21, 22, and 30, and the secondary voltage v2 is induced in the secondary coil N2, but is induced in the primary coil. Of the generated magnetic flux, the main magnetic flux (φ1 + φ2) is reduced by the amount φ3 bypassed by the bypass iron core 30, and accordingly the interlinkage magnetic flux of the primary and secondary coils is reduced, and the secondary voltage is also reduced at that ratio.

次に、上記無負荷状態で、ある有限の制御コイル電流Icを印加すると、主磁束を1/2ずつ分担していた2つの鉄心21、22がIcにより反対方向に直流励磁されるので、半サイクル毎に、1次電圧v1により誘起される交流磁束φ1、φ2の向きが、Icによる直流磁束と同方向又は逆方向になり、しかもそれは、2つの鉄心で逆位相になる。従って、鉄心21、22の一方が飽和に近づくと他方が飽和から遠ざかる関係にある。飽和領域に近づいた方の鉄心の透磁率が低下し、磁気抵抗は増加する。   Next, when a certain finite control coil current Ic is applied in the no-load state, the two iron cores 21 and 22 that share the main magnetic flux by half are DC-excited in opposite directions by Ic. In each cycle, the direction of the alternating magnetic fluxes φ1 and φ2 induced by the primary voltage v1 is in the same direction as or opposite to that of the direct-current magnetic flux due to Ic, and is in opposite phase between the two iron cores. Therefore, when one of the iron cores 21 and 22 approaches saturation, the other moves away from saturation. The permeability of the iron core approaching the saturation region decreases, and the magnetic resistance increases.

磁束は磁気抵抗の少ないところ、即ち、鉄心21、22のうち飽和から遠ざかっている方と、バイパス鉄心30を多く通るので、結局この3つの鉄心の並列バランスで各々の鉄心の分担磁束量φ1〜φ3が決まる。   Since the magnetic flux passes through the bypass core 30 where the magnetic resistance is small, that is, the iron cores 21 and 22 that are far from saturation and the bypass iron core 30 in the end, the amount of magnetic flux φ1˜ φ3 is determined.

このようにして、全体としての動作は、制御コイル電流Icを増加していくと、穏やかに鉄心飽和が進行し、2次コイルへの誘起電圧が徐々に低下していく。従って、鉄心飽和は局部的ではなく全体的であるので局部過熱が緩和され、又前記3つの鉄心の並列バランスで飽和が進むので、波形歪みが最小限に近い回路構成になっている。   As described above, as the overall operation, when the control coil current Ic is increased, the iron core saturation proceeds gently, and the induced voltage to the secondary coil gradually decreases. Therefore, since the iron core saturation is not local but global, local overheating is mitigated, and saturation progresses with the parallel balance of the three iron cores, resulting in a circuit configuration in which waveform distortion is close to the minimum.

負荷時の動作は、基本的に無負荷時と同じであるが、負荷電流が流れることによる1次コイルと2次コイル間の漏れ磁束が付加される。即ち、無負荷の場合は、直流磁化を制御して主鉄心の飽和度合いを変えることによりバイパス鉄心の漏れ磁束を変化させ、2次コイルへの鎖交磁束量を変化させたが、負荷時には、これに負荷電流の起磁力によって生ずる漏れ磁束が加わることになる。こうして制御コイル電流の増減によって磁束制御を行い、変圧器のインピーダンス電圧が変化しリニアな電圧調整が短時間応答でなされることになる。   The operation at the time of load is basically the same as that at the time of no load, but a leakage magnetic flux between the primary coil and the secondary coil due to the flow of the load current is added. That is, in the case of no load, the leakage flux of the bypass core is changed by controlling the DC magnetization to change the saturation degree of the main core, and the amount of flux linkage to the secondary coil is changed. The leakage magnetic flux generated by the magnetomotive force of the load current is added to this. Thus, the magnetic flux is controlled by increasing / decreasing the control coil current, the impedance voltage of the transformer is changed, and linear voltage adjustment is made in a short time response.

(効果)
バイパス鉄心により、意図的に所定量の漏れ磁束(2次コイルを通らない磁束)を作り吸収するので、実施例1の場合よりもさらに、実効電力の損失が少なく、鉄心飽和による波形歪みや局部過熱が最小限に抑えられ、かつバイパス鉄心のサイズを加減することにより、2次電圧を実施例1の場合よりも広い範囲にわたって所定の値に設定できる。
(effect)
Since the bypass iron core intentionally generates and absorbs a predetermined amount of leakage magnetic flux (magnetic flux that does not pass through the secondary coil), there is less loss of effective power than in the case of the first embodiment, and waveform distortion and locality due to iron core saturation. The secondary voltage can be set to a predetermined value over a wider range than in the first embodiment by suppressing overheating to a minimum and adjusting the size of the bypass core.

(構造)
前記第3図において、実施例2におけるバイパス鉄心30は、4辺30a〜30dからなる閉磁路を形成していたが、本実施例におけるバイパス鉄心30は、1次コイルN1に囲まれた辺30aを含むが、30b〜dの全部又は一部を欠く。
(Construction)
In FIG. 3, the bypass iron core 30 in the second embodiment forms a closed magnetic circuit having four sides 30a to 30d. However, the bypass iron core 30 in this embodiment has a side 30a surrounded by the primary coil N1. But lacks all or part of 30b-d.

(効果)
2次電圧の調整範囲の上限を、実施例2のようにバイパス鉄心が閉磁路の場合よりも、バイパス鉄心が無い場合の2次電圧に近い値に設定できる。
また、開磁路鉄心の方が閉磁路鉄心よりも製造が容易である。
(effect)
The upper limit of the adjustment range of the secondary voltage can be set to a value closer to the secondary voltage when there is no bypass iron core than when the bypass iron core is a closed magnetic circuit as in the second embodiment.
Also, the open magnetic circuit core is easier to manufacture than the closed magnetic circuit core.

第4の実施例に係る電圧調整変圧器を、第4図の等価回路図を参照して説明する。
(構造)
本実施例では、前記実施例2において、バイパス鉄心を2分割して積層2分割鉄心31、32とし、これらに直列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルNc3、Nc4を備える。
バイパス鉄心31、32は、本実施例では閉磁路であるが、実施例3のように開磁路であってもよい。
A voltage regulating transformer according to a fourth embodiment will be described with reference to the equivalent circuit diagram of FIG.
(Construction)
In the present embodiment, in the second embodiment, the bypass iron core is divided into two to form laminated two-core iron cores 31 and 32, which are provided with bypass iron core control coils Nc3 and Nc4 wound in series in opposite directions.
The bypass iron cores 31 and 32 are closed magnetic paths in this embodiment, but may be open magnetic paths as in the third embodiment.

(作用効果)
バイパス鉄心制御コイルに流す直流電流Ic2により、バイパス(漏れ)磁束量を加減できるので、その分だけ主鉄心の磁束、従って2次電圧を、第2、3の実施例の場合よりも広い範囲にわたって高速(例えば、5サイクル=100msec以内)かつ連続的に可変制御できる。
制御パラメータが2つ(主鉄心の制御電流Ic1とバイパス鉄心の制御電流Ic2)となり、調整し易くなる。例えば、一方のパラメータの調節感度が適切になるように、即ち、感度が低くなく、かつ過敏でないように、他方のパラメータを選ぶことができる。
(Function and effect)
Since the amount of bypass (leakage) magnetic flux can be adjusted by the direct current Ic2 flowing through the bypass iron core control coil, the magnetic flux of the main iron core, and hence the secondary voltage can be increased by a corresponding amount over a wider range than in the second and third embodiments. High speed (for example, 5 cycles = within 100 msec) and continuous variable control are possible.
There are two control parameters (the control current Ic1 of the main iron core and the control current Ic2 of the bypass iron core), and adjustment is easy. For example, the other parameter can be selected so that the adjustment sensitivity of one parameter is appropriate, i.e., the sensitivity is not low and not sensitive.

第5の実施例に係る電圧調整変圧器を、第5図の等価回路図を参照して説明する。
(構造)
本実施例では、主鉄心を脚部と上下のヨーク部からなる主鉄心のうち、上下のヨークの双方を2分割部とする。即ち、脚部27、28は第1、第2の鉄心に共通であるが、上部ヨーク部41と下部ヨーク部43、上部ヨーク部42と下部ヨーク部44は各々、第1、第2の鉄心に属し、上下ヨーク部は脚部に対し、バットジョイントされる。制御コイルNc11と21、12と22は、各々上部ヨークと下部ヨークに、直列に、且つ互いに逆方向に巻かれる。
重い1次コイル11、12、2次コイル21、22は、上部ヨーク41、42及びバイパス鉄心30の上部ヨークを装着する前に主鉄心の脚部27、28に装着され、軽い制御コイルNc11、21、12、22は、上下ヨーク部に装着される。
A voltage regulating transformer according to a fifth embodiment will be described with reference to an equivalent circuit diagram of FIG.
(Construction)
In the present embodiment, the main iron core is composed of a leg part and upper and lower yoke parts, and both the upper and lower yokes are divided into two parts. That is, the leg portions 27 and 28 are common to the first and second iron cores, but the upper yoke portion 41 and the lower yoke portion 43, and the upper yoke portion 42 and the lower yoke portion 44 are respectively the first and second iron cores. And the upper and lower yoke parts are butt-joined to the leg parts. The control coils Nc11 and 21, 12 and 22 are wound around the upper yoke and the lower yoke, respectively, in series and in opposite directions.
The heavy primary coils 11, 12 and the secondary coils 21, 22 are attached to the leg portions 27, 28 of the main iron core before attaching the upper yokes 41, 42 and the upper yoke of the bypass iron core 30, and the light control coils Nc 11, 21, 12, and 22 are attached to the upper and lower yoke portions.

(作用効果)
本実施例では、鉄心構造がさらに簡単で製造が容易になる。
積層鉄心の場合、少なくとも上部ヨークは、脚部にコイルを装着した後で装着しなければならず、特にラップジョイントの場合、薄板を1枚ずつ挿入装着するという困難な工程があったが、本実施例では特に上部ヨークをバットジョイントすることにより、この困難な工程を避けられる。
(Function and effect)
In this embodiment, the iron core structure is further simplified and the manufacture becomes easy.
In the case of a laminated iron core, at least the upper yoke must be attached after the coil is attached to the leg part. Especially in the case of a lap joint, there has been a difficult process of inserting and attaching thin plates one by one. In this embodiment, this difficult process can be avoided by butt jointing the upper yoke in particular.

本実施例の変形として、例えば、バイパス鉄心30を主鉄心と同じ方法でさらに2分割し、そのヨーク部にバイパス鉄心制御コイルを備えることができる。その場合でも、ヨーク部には軽い制御コイル(主鉄心、バイパス鉄心)、脚部には重い1、2次コイルが装着できるので、製造が容易である。   As a modification of the present embodiment, for example, the bypass iron core 30 can be further divided into two by the same method as the main iron core, and a bypass iron core control coil can be provided in the yoke portion. Even in such a case, light control coils (main iron core and bypass iron core) can be attached to the yoke portion, and heavy primary and secondary coils can be attached to the leg portion, so that manufacture is easy.

第6の実施例に係る電圧調整変圧器を、第6図を参照して説明する。
第6図(A)は上面図、(B)は立面図である。
(構造)
本実施例を実施例2と比較すると、主鉄心を構成する第1、第2の鉄心21、22が積層鉄心ではなく巻鉄心で形成される点が異なる。
なお、バイパス鉄心30は、本実施例では単一の棒状の開磁路積層鉄心であるが、例えば、第7図(A)上面図、(B)立面図に示すように、2分割閉磁路巻鉄心31、32にして、実施例4と同じくバイパス鉄心制御コイルNc3,Nc4を備えてもよい。
A voltage regulating transformer according to the sixth embodiment will be described with reference to FIG.
FIG. 6 (A) is a top view and FIG. 6 (B) is an elevation view.
(Construction)
Compared with the second embodiment, the present embodiment is different in that the first and second iron cores 21 and 22 constituting the main iron core are formed not by a laminated iron core but by a wound iron core.
The bypass iron core 30 is a single bar-shaped open magnetic path laminated iron core in this embodiment. For example, as shown in FIG. 7 (A) top view and FIG. As with the winding cores 31 and 32, bypass iron core control coils Nc3 and Nc4 may be provided as in the fourth embodiment.

(作用効果)
継ぎ目工作が不要で一括機械巻き工作が可能な巻鉄心を2個(第7図のように、バイパス鉄心を2つ加えると計4個)用意するだけでよいので、主鉄心及び/又はバイパス鉄心の2分割構造がさらに簡単で製造が容易になる。
(Function and effect)
It is only necessary to prepare two wound cores that do not require joint work and are capable of batch machine winding (four bypass cores are added as shown in Fig. 7), so the main core and / or the bypass core This two-part structure is simpler and easier to manufacture.

(構造)
前記の実施例2〜6において、制御コイルは1、2次コイルから最も離れて設けられる。
前記実施例において、1、2次コイルは、両コイル間の漏れ磁束量を最少にするなどの理由から、通常いずれも同心に設けられている。
従って、実施例1〜4、6においては、1、2次コイルの巻かれている辺(脚部)の対向辺(脚部)の中央に、実施例5においては、上下のヨーク部の中央に、制御コイルが巻かれる。
(Construction)
In Examples 2 to 6, the control coil is provided farthest from the primary and secondary coils.
In the above embodiment, the primary and secondary coils are usually provided concentrically for the purpose of minimizing the amount of leakage magnetic flux between the two coils.
Therefore, in Examples 1 to 4 and 6, in the center of the opposite side (leg part) of the side (leg part) around which the secondary coil is wound, in Example 5, the center of the upper and lower yoke parts. The control coil is wound on the top.

(作用効果)
制御コイルに対する1次、2次コイルのインピーダンスを上げて、波形歪み率を下げることができる。
(Function and effect)
The waveform distortion rate can be lowered by increasing the impedance of the primary and secondary coils with respect to the control coil.

前記第2〜7の実施例がいずれも単相用の電圧調整変圧器に係るものであるのに対して、以下の第8〜15の実施例はいずれも3相用の電圧調整変圧器に係るものである。
これらの実施例を説明する図はすべて上面図(A)と立面図(B)からなり、簡単のため、コイルと鉄心以外の回路部分を省略し、コイルと鉄心についても一部省略してある。
While the second to seventh embodiments are all related to a single-phase voltage regulating transformer, the following eighth to fifteenth embodiments are all three-phase voltage regulating transformers. It is concerned.
All the drawings for explaining these embodiments are composed of a top view (A) and an elevation view (B). For simplicity, circuit portions other than the coil and the iron core are omitted, and a part of the coil and the iron core are also omitted. is there.

最初に第8の実施例に係る3相電圧調整変圧器を、第8図を参照して説明する。   First, a three-phase voltage regulating transformer according to an eighth embodiment will be described with reference to FIG.

(構造)
本実施例では、3相電圧調整変圧器の第1相分は、第1、第2の閉磁路をなす鉄心21、22からなる主鉄心に1次、2次コイルN11、N21を同心に巻き、鉄心21,22の1次、2次コイルと反対側の位置に、制御コイルNc11、21を直列に、且つ互いに逆方向に巻き、さらに1次コイルは、第3の鉄心31をも巻くことで形成される。
同様にして第2、3相分が形成される。
その際、バイパス鉄心30は、前記各相の鉄心31、33、35を3脚として、これらに共通のヨーク51、53を上下に有する。
(Construction)
In the present embodiment, the first phase of the three-phase voltage regulating transformer is formed by concentrically winding a primary and secondary coil N11, N21 around a main iron core composed of iron cores 21, 22 forming first and second closed magnetic circuits. The control coils Nc11 and 21 are wound in series and in opposite directions at positions opposite to the primary and secondary coils of the iron cores 21 and 22, and the primary coil also winds the third iron core 31. Formed with.
Similarly, the second and third phases are formed.
At that time, the bypass iron core 30 has the iron cores 31, 33, 35 of the respective phases as three legs, and has yokes 51, 53 common to the upper and lower sides.

(作用効果)
動作の原理は、相当する単相電圧調整変圧器、例えば、実施例2に係るものと同様であるが、これを3組並列する場合と異なり、共通のヨーク51、53により、各相のバイパス鉄心の個別の帰路が省略できる結果、安価で小型化できる。
(Function and effect)
The principle of operation is the same as that of the corresponding single-phase voltage regulating transformer, for example, the one according to the second embodiment. However, unlike the case where three sets are paralleled, the common yokes 51 and 53 bypass each phase. As a result of being able to omit the individual return of the iron core, it is possible to reduce the cost and size.

第9の実施例に係る3相電圧調整変圧器を、第9図を参照して説明する。   A three-phase voltage regulating transformer according to the ninth embodiment will be described with reference to FIG.

(構造)
本実施例では、前記実施例8と比較すると、バイパス鉄心が2分割され、各々にバイパス鉄心制御コイルが巻かれている点で異なる。
即ち、例えば、第1相目のバイパス鉄心は31、32からなり、両鉄心にはバイパス鉄心制御コイルNc41、Nc42が直列に、且つ互いに逆方向に巻かれる。
本実施例では、全バイパス鉄心31〜36は共通の上下ヨーク51、53を有する。
(Construction)
The present embodiment is different from the eighth embodiment in that the bypass iron core is divided into two parts and a bypass iron core control coil is wound around each.
That is, for example, the first-phase bypass iron core is composed of 31 and 32, and the bypass iron core control coils Nc41 and Nc42 are wound in series in opposite directions to each other.
In the present embodiment, all bypass iron cores 31 to 36 have common upper and lower yokes 51 and 53.

(作用効果)
動作の原理は、相当する単相電圧調整変圧器、例えば、実施例4に係るものと同様であるが、これを3組並列する場合と異なり、共通の上下ヨーク51、53により、各相の2組のバイパス鉄心の個別の帰路が省略できる結果、安価で小型化できる。
なお本実施例では、バイパス鉄心の、3相の各相に対応する別々の脚部を各々2つにした構成について説明したが、共通ヨーク部(共通ヨーク部の上下双方とも、もしくは上下の一方)を2つのした場合、あるいは前記別々の脚部と前記共通ヨーク部(共通ヨーク部の上下双方とも、もしくは上下の一方)の双方を各々2つにした場合も相応する効果を奏することができる。
(Function and effect)
The principle of operation is the same as that of the corresponding single-phase voltage regulating transformer, for example, the one according to the fourth embodiment. As a result of being able to omit the separate return paths of the two sets of bypass iron cores, the cost can be reduced and the size can be reduced.
In this embodiment, the bypass iron core has been described as having two separate leg portions corresponding to each of the three phases, but the common yoke portion (both the upper and lower sides of the common yoke portion or one of the upper and lower sides) is described. ), Or when the separate leg portion and the common yoke portion (both the upper and lower sides of the common yoke portion, or one of the upper and lower sides) are both provided, the corresponding effects can be obtained. .

第10の実施例に係る3相電圧調整変圧器を、第10図を参照して説明する。   A three-phase voltage regulating transformer according to the tenth embodiment will be described with reference to FIG.

(構造)
本実施例では、主鉄心の積層鉄心からなる3脚、21、23、25が三角に配置され、各々に、2次コイルN21、N22、N23が、さらにその外側に1次コイルN11、N12、N13が巻かれる。(図では簡単のため、第1相分のコイルN11、N21だけを示す。)
(Construction)
In this embodiment, tripods 21, 23, and 25 made of a laminated core of the main iron core are arranged in a triangle, each of which has a secondary coil N 21, N 22, N 23 and a primary coil N 11, N 12, N13 is wound. (In the figure, for simplicity, only the coils N11 and N21 for the first phase are shown.)

主鉄心の3脚の上下には、3脚共通の環状のヨーク41、42、43、44が、41と42は上部に、43と44は下部に備えられ、各ヨークは巻線鉄心からなり、3脚にバットジョイントされる(締付スタットで圧接)。   At the top and bottom of the three legs of the main iron core, there are annular yokes 41, 42, 43, 44 common to the three legs, 41 and 42 are provided at the upper part, 43 and 44 are provided at the lower part, and each yoke consists of a wound iron core It is butt-jointed to a tripod (pressure contact with a tightening stat).

さらに、上部ヨーク41、42の3箇所に、制御コイルNc11とNc21、Nc12とNc22、Nc13とNc23がヨーク41、42に、直列に、且つ互いに逆方向に巻かれる。(図では簡単のため、第1組の制御コイルNc11、Nc21だけを示す。)   Further, control coils Nc11 and Nc21, Nc12 and Nc22, Nc13 and Nc23 are wound around the yokes 41 and 42 in series and in opposite directions at three locations of the upper yokes 41 and 42, respectively. (In the figure, only the first set of control coils Nc11 and Nc21 is shown for simplicity.)

下部ヨーク43、44の3箇所にも同様に制御コイルNc14とNc24、Nc15とNc25、Nc16とNc26が巻かれる。(図では簡単のため、下部ヨーク44と制御コイルNc24だけを示す。)   Similarly, control coils Nc14 and Nc24, Nc15 and Nc25, and Nc16 and Nc26 are wound around the lower yokes 43 and 44, respectively. (For the sake of simplicity, only the lower yoke 44 and the control coil Nc24 are shown in the figure.)

(作用効果)
動作の原理は、相当する単相電圧調整変圧器、例えば、前記実施例1に係るものと同様であるが、これを3組並列する場合と異なり、3相分合計で、主鉄心の脚部は3本、主鉄心のヨーク部は上下合せて4本を要するだけであるので、安価で小型化できる。
(Function and effect)
The principle of operation is the same as that of the corresponding single-phase voltage regulating transformer, for example, the one according to the first embodiment. Can be reduced in size at low cost since only three yoke parts of the main iron core are required.

第11の実施例に係る3相電圧調整変圧器を、第11図を参照して説明する。   A three-phase voltage regulating transformer according to the eleventh embodiment will be described with reference to FIG.

(構造)
本実施例では、前記実施例10と比較して、1次コイルN11,N12、N13だけが巻くように、バイパス鉄心31、33、35が追加される。
(作用効果)
動作の原理は、相当する単相電圧調整変圧器、例えば、前記実施例3に係るもの、特に実施例3において、バイパス鉄心が30aだけからなる場合と同様であるが、これを3組並列する場合と異なり、3相分合計で、主鉄心の脚部は3本、ヨーク部は上下合せて4本を要するだけであるので、やはり安価で小型化できる。
(Construction)
In the present embodiment, compared with the tenth embodiment, bypass iron cores 31, 33, and 35 are added so that only the primary coils N11, N12, and N13 are wound.
(Function and effect)
The principle of operation is the same as that of the corresponding single-phase voltage regulating transformer, for example, the one according to the third embodiment, particularly the third embodiment, in which the bypass iron core is composed of only 30a. Unlike the case, since the total of the three phases requires only three leg portions of the main iron core and four yoke portions in the vertical direction, it can be reduced in cost and size.

第12の実施例に係る3相電圧調整変圧器を、第12図を参照して説明する。   A three-phase voltage regulating transformer according to a twelfth embodiment will be described with reference to FIG.

(構造)
本実施例では、前記実施例11における積層バイパス鉄心31、33、35と比較して、その上下に、さらに巻線鉄心からなる環状の共通のヨーク51、53が装着(バットジョイント)される。
(Construction)
In the present embodiment, compared to the laminated bypass iron cores 31, 33, 35 in the eleventh embodiment, annular common yokes 51, 53 made of a wound iron core are mounted (butt joint) on the upper and lower sides thereof.

(作用効果)
動作の原理は、前記実施例8に係るものと同様であるが、実施例8(第8図)の場合よりも3相の配置の対称性がよく、バランスのとれた歪みの少ない特性を提供できる。
さらに、3相分合計で、主鉄心の脚部は3本、主鉄心のヨーク部は上下合せて4本を要するだけであるので、やはり安価で小型化できる。
(Function and effect)
The principle of operation is the same as that of the eighth embodiment, but the three-phase arrangement is better symmetric than that of the eighth embodiment (FIG. 8), providing balanced and low distortion characteristics. it can.
Furthermore, since the total of the three phases requires only three legs of the main iron core and four yoke parts of the main iron core, it is possible to reduce the cost and size.

第13の実施例に係る3相電圧調整変圧器を、第13図を参照して説明する。   A three-phase voltage regulating transformer according to a thirteenth embodiment will be described with reference to FIG.

(構造)
本実施例では、前記実施例10における積層バイパス鉄心31、33、35と比較して、その上下各々に、2本ずつの巻線鉄心からなる環状の共通のヨーク51、52、と53、54(54のみ図示せず)が装着(バットジョイント)される。
さらに、バイパス鉄心の上部ヨーク51、52の3箇所に、バイパス鉄心制御コイルNc41とNc42、Nc43とNc44、Nc45とNc46がヨーク51、52に、直列に、且つ互いに逆方向に巻かれる。
(Construction)
In the present embodiment, compared with the laminated bypass iron cores 31, 33, 35 in the tenth embodiment, the annular common yokes 51, 52, 53, 54 each including two winding iron cores on the upper and lower sides thereof. (Only 54 is not shown) is attached (butt joint).
Further, bypass iron core control coils Nc41 and Nc42, Nc43 and Nc44, and Nc45 and Nc46 are wound around the yokes 51 and 52 in series and in opposite directions at three locations of the upper yokes 51 and 52 of the bypass iron core.

簡単のため、バイパス鉄心制御コイルについては、Nc41とNc42だけを図示してある。
又、下部ヨーク53、54にも同様にバイパス鉄心制御コイルが巻かれる。
For simplicity, only Nc41 and Nc42 are shown for the bypass iron core control coil.
Similarly, a bypass iron core control coil is wound around the lower yokes 53 and 54.

(作用効果)
動作の原理は、前記実施例9に係るものと同様であるが、実施例9(第9図)の場合よりも3相の配置の対称性がよく、バランスのとれた歪みの少ない特性を提供できる。
さらに、3相分合計で、主鉄心の脚部は3本、主鉄心のヨーク部は上下合せて4本を要するだけであるので、やはり安価で小型化できる。
(Function and effect)
The principle of operation is the same as that of the ninth embodiment, but the symmetry of the arrangement of the three phases is better than that of the ninth embodiment (FIG. 9), and balanced characteristics with less distortion are provided. it can.
Furthermore, since the total of the three phases requires only three legs of the main iron core and four yoke parts of the main iron core, it is possible to reduce the cost and size.

第14の実施例に係る3相電圧調整変圧器を、第14図を参照して説明する。   A three-phase voltage regulating transformer according to the fourteenth embodiment will be described with reference to FIG.

(構造)
本実施例では、即ち、実施例6に係る単相電圧調整変圧器が3組、三角形状に配置されており、積層鉄心からなるバイパス鉄心31、33、35の上下に、巻線鉄心からなる環状のヨーク51、53がバットジョイントされる。
簡単のため図中には、主として第1相分の部材だけを示し、第2、第3相分については、上面図(A)だけに、第1主鉄心23、25とバイパス鉄心33、35を示した。
(Construction)
In the present embodiment, that is, three sets of single-phase voltage regulating transformers according to the sixth embodiment are arranged in a triangular shape, and are composed of winding cores above and below the bypass cores 31, 33, 35 made of laminated cores. The annular yokes 51 and 53 are butt jointed.
For the sake of simplicity, only the members for the first phase are shown in the figure, and for the second and third phases, the first main iron cores 23 and 25 and the bypass iron cores 33 and 35 are shown only in the top view (A). showed that.

ヨーク51、53の平面方向の輪郭は全体として環状であるが、長方形輪郭のバイパス鉄心に接する部分は平行直線を、バイパス鉄心の間の部分は円弧を描いているので、これを「おむすび」型とも称する。   Although the outlines of the yokes 51 and 53 in the plane direction are generally annular, the portion of the rectangular outline in contact with the bypass iron core is a parallel straight line, and the portion between the bypass iron cores is an arc. Also called.

(作用効果)
動作の原理は、相当する単相電圧調整変圧器、例えば、前記実施例6においてバイパス鉄心に帰路がある場合と同等であるが、これを3組並立する場合と異なり、バイパス鉄心の個別の帰路が省けるので、安価で小型化できる。
又、動作の原理は、前記実施例12に係るものと同様であるが、実施例12の場合と異なり、継ぎ目工作が不要で一括機械巻き工作が可能な巻鉄心を6個(バイパス鉄心の共通ヨークを2つ加えると計8個)とバイパス鉄心を3脚用意するだけでよいので、主鉄心の2分割構造がさらに簡単になり、製造が容易になる。
(Function and effect)
The principle of operation is equivalent to the case where there is a return path in a corresponding single-phase voltage regulating transformer, for example, the bypass core in Example 6 above, but unlike the case where three sets of the return cores are juxtaposed, the individual return paths of the bypass cores Can be saved, so it can be made cheaper and smaller.
The principle of operation is the same as that of the twelfth embodiment, but unlike the twelfth embodiment, there are six wound iron cores that do not require joint work and can be batch-machined (common to the bypass iron core). If two yokes are added, a total of 8) and three bypass iron cores need only be prepared, so that the two-part structure of the main iron core is further simplified and manufacturing is facilitated.

第15の実施例に係る3相電圧調整変圧器を、第15図を参照して説明する。   A three-phase voltage regulating transformer according to the fifteenth embodiment will be described with reference to FIG.

(構造)
前記実施例14における積層バイパス鉄心31、33、35に対して、その上下各々に、2本ずつ巻線鉄心からなる環状の共通のヨーク51、52、と53、54(図示せず)が装着(バットジョイント)される。さらに、バイパス鉄心の上部ヨーク51、52の3箇所に、バイパス鉄心制御コイルNc41とNc42、Nc43とNc44、Nc45とNc46(図示せず)がヨーク51、52に、直列に、且つ互いに逆方向に巻かれる。
(Construction)
Two annular common yokes 51, 52, 53, and 54 (not shown) each including two wound cores are attached to the laminated bypass iron cores 31, 33, and 35 in the fourteenth embodiment. (But joint). Furthermore, bypass iron core control coils Nc41 and Nc42, Nc43 and Nc44, Nc45 and Nc46 (not shown) are connected in series to the yokes 51 and 52 and in opposite directions to each other at three locations of the upper yokes 51 and 52 of the bypass iron core. It is rolled up.

簡単のため、バイパス鉄心制御コイルについては、Nc41とNc42だけを図示してある。
又、下部ヨーク53、54にも同様にバイパス鉄心制御コイルが巻かれる。
For simplicity, only Nc41 and Nc42 are shown for the bypass iron core control coil.
Similarly, a bypass iron core control coil is wound around the lower yokes 53 and 54.

(作用効果)
動作の原理は、相当する単相電圧調整変圧器、例えば、前記実施例7(第7図)と同等であるが、これを3組並立する場合と異なり、バイパス鉄心の個別の帰路が省けるので、安価で小型化できる。
又、動作の原理は、前記実施例13に係るものと同様であるが、実施例13の場合と異なり、継ぎ目工作が不要で一括機械巻き工作が可能な巻鉄心を6個(バイパス鉄心の共通ヨークを4つ加えると計10個)とバイパス鉄心を6脚用意するだけでよいので、主鉄心及びバイパス鉄心の2分割構造がさらに簡単になり、製造が容易になる。
(Function and effect)
The principle of operation is the same as that of a corresponding single-phase voltage regulating transformer, for example, Example 7 (FIG. 7). However, unlike the case where three sets are arranged side by side, the individual return path of the bypass iron core can be omitted. It is cheap and can be downsized.
The principle of operation is the same as that of the thirteenth embodiment, but unlike the thirteenth embodiment, there are six wound iron cores that do not require joint work and can be batch-machined (common to the bypass iron core). When four yokes are added, a total of 10) and six bypass iron cores only need to be prepared. Therefore, the two-part structure of the main iron core and the bypass iron core is further simplified, and manufacturing is facilitated.

上記の実施例10〜15において、主鉄心及び/又はバイパス鉄心には「環状」のヨークが備えられており、「環状」とは具体的には、各上面図に示したように、全て、脚部との接合部分では平行線形状であり、脚部間部分では同心の円形状からなるものとした。
しかしながら、「環状」のヨークは他の形状をとる場合を含み、例えばヨークの鉄心材料を節約するために、脚部間部分も略、平行線形状にして全体として「おむすび形」とすること、あるいは例えばヨークの加工を簡単にするために、ヨーク全体を同心の「円形」にすることもできる。
In the above-described Examples 10 to 15, the main iron core and / or the bypass iron core are provided with “annular” yokes. Specifically, the “annular” is, as shown in each top view, The joint portion with the leg portion has a parallel line shape, and the portion between the leg portions has a concentric circular shape.
However, the “annular” yoke includes other shapes, for example, in order to save the iron core material of the yoke, the portion between the legs is also substantially parallel to form a “muscle shape” as a whole. Alternatively, for example, the entire yoke can be concentric “circular” to simplify the processing of the yoke.

なお、以上の、本発明による電圧調整変圧器は、全て、バイパス鉄心を除去し2次コイルを除去するならば、可変リアクトルとして使うことができる。   The voltage regulating transformer according to the present invention can be used as a variable reactor if the bypass iron core is removed and the secondary coil is removed.

近年、風力発電や太陽光発電等の分散電源が増加し、それらの系統連携電力の変動がもたらす系統周波数や系統電圧の電力品質の悪化が懸念されている。このような電力品質の安定化方策の一つとして、電力変動を補償するために高速で連続的電圧制御が出来る、変圧器が必須である。この要求性能を大電力用で高信頼性を確保しつつ、しかも安価に供給することは、従来の機械式タップによるステップ電圧切換え方式や、半導体を使った静止型変圧器では困難であった。本発明による磁束制御型変圧器は実用的に初めてこの要求に応えるものである。   In recent years, distributed power sources such as wind power generation and solar power generation have increased, and there is a concern about deterioration in power quality of system frequency and system voltage caused by fluctuations in the system linkage power. As one of the measures for stabilizing the power quality, a transformer capable of continuous voltage control at high speed to compensate for power fluctuation is essential. It has been difficult to supply this required performance at a low cost while ensuring high reliability for a large electric power with a conventional step voltage switching system using a mechanical tap or a static transformer using a semiconductor. The magnetic flux control type transformer according to the present invention meets this requirement for the first time in practical use.

従来の技術による電圧調整変圧器を説明する等価回路図である。It is an equivalent circuit diagram explaining the voltage regulation transformer by a prior art. 本発明による第1の実施例に係る(単相の)電圧調整変圧器を説明する図であり、(A)は等価回路図、(B)は上面図、(C)は立面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the voltage adjustment transformer (single phase) based on 1st Example by this invention, (A) is an equivalent circuit schematic, (B) is a top view, (C) is an elevation view. . 本発明による第2、第3の実施例に係る(単相の)電圧調整変圧器を説明する図であり、(A)は回路図、(B)は上面図、(C)は立面図である。It is a figure explaining the voltage adjustment transformer (single phase) which concerns on the 2nd, 3rd Example by this invention, (A) is a circuit diagram, (B) is a top view, (C) is an elevation view It is. 本発明による第4の実施例に係る(単相の)電圧調整変圧器を説明する等価回路図である。FIG. 6 is an equivalent circuit diagram for explaining a (single-phase) voltage regulating transformer according to a fourth embodiment of the present invention. 本発明による第5の実施例に係る(単相の)電圧調整変圧器を説明する等価回路図である。FIG. 6 is an equivalent circuit diagram for explaining a (single-phase) voltage regulating transformer according to a fifth embodiment of the present invention. 本発明による第6の実施例に係る(単相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (single phase) concerning the 6th example by the present invention, (A) is a top view and (B) is an elevation. 本発明による第7の実施例に係る(単相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (single phase) concerning the 7th example by the present invention, (A) is a top view and (B) is an elevation. 本発明による第8の実施例に係る(3相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (3 phase) which concerns on the 8th Example by this invention, (A) is a top view, (B) is an elevation view. 本発明による第9の実施例に係る(3相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (3 phase) which concerns on the 9th Example by this invention, (A) is a top view, (B) is an elevation view. 本発明による第10の実施例に係る(3相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (3 phase) which concerns on 10th Example by this invention, (A) is a top view, (B) is an elevation. 本発明による第11の実施例に係る(3相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (3 phase) which concerns on the 11th Example by this invention, (A) is a top view, (B) is an elevation view. 本発明による第12の実施例に係る(3相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (3 phase) based on the 12th Example by this invention, (A) is a top view, (B) is an elevation. 本発明による第13の実施例に係る(3相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (three phases) based on the 13th Example by this invention, (A) is a top view, (B) is an elevation. 本発明による第14の実施例に係る(3相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (three phases) based on the 14th Example by this invention, (A) is a top view, (B) is an elevation. 本発明による第15の実施例に係る(3相の)電圧調整変圧器を説明する図であり、(A)は上面図、(B)は立面図である。It is a figure explaining the voltage regulation transformer (three phases) based on the 15th Example by this invention, (A) is a top view, (B) is an elevation view.

符号の説明Explanation of symbols

10 閉磁路をなす鉄心
11a 開口部
11b、11c 2脚の鉄心
21、23、25 第1の鉄心(主鉄心)
22、24、26 第2の鉄心(主鉄心)
30 第3の鉄心(バイパス鉄心)
30a、30b、30c、30d バイパス鉄心の4辺
31、32、33、34、35、36 バイパス鉄心
41、42 上部ヨーク
43、44 下部ヨーク
51、52 バイパス鉄心の上部ヨーク
53、54 バイパス鉄心の下部ヨーク
N1、N2 1次コイル、2次コイルの組
N11、N21;N12、N22;N13、N23 1次コイル、2次コイルの組
Nc1、Nc2 制御コイルの組
Nc11、Nc21;Nc12、Nc22;Nc13、Nc23 制御コイルの組
Nc14、Nc24;Nc15、Nc25;Nc16、Nc26 制御コイルの組
Nc3、Nc4 バイパス鉄心制御コイルの組
Nc41、Nc42;Nc43、Nc44;Nc45、Nc46 バイパス鉄心制御コイルの組
DESCRIPTION OF SYMBOLS 10 Iron core which makes a closed magnetic circuit 11a Opening part 11b, 11c Iron core of 2 legs 21, 23, 25 1st iron core (main iron core)
22, 24, 26 Second iron core (main iron core)
30 Third iron core (bypass iron core)
30a, 30b, 30c, 30d 4 sides of bypass core 31, 32, 33, 34, 35, 36 Bypass core 41, 42 Upper yoke 43, 44 Lower yoke 51, 52 Bypass core upper yoke 53, 54 Bypass core lower Yoke N1, N2 Primary coil, secondary coil set N11, N21; N12, N22; N13, N23 Primary coil, secondary coil set Nc1, Nc2 Control coil set Nc11, Nc21; Nc12, Nc22; Nc13, Nc23 Control coil set Nc14, Nc24; Nc15, Nc25; Nc16, Nc26 Control coil set Nc3, Nc4 Bypass iron core control coil set Nc41, Nc42; Nc43, Nc44; Nc45, Nc46 Bypass iron core control coil set

Claims (15)

閉磁路をなす第1、第2の鉄心と、前記第1、第2の鉄心を囲むように巻かれた1次コイルと、前記第1、第2の鉄心を囲むように巻かれた2次コイルと、前記第1、第2の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルと、を含むことを特徴とする電圧調整変圧器。   First and second iron cores forming a closed magnetic circuit, a primary coil wound so as to surround the first and second iron cores, and a secondary wound so as to surround the first and second iron cores A voltage regulating transformer comprising: a coil; and a control coil wound around the first and second iron cores in series or in parallel and in opposite directions. 閉磁路をなす第1、第2の鉄心と、第3の鉄心(以下、バイパス鉄心という)と、前記第1、第2の鉄心とバイパス鉄心とを囲むように巻かれた1次コイルと、前記第1、第2の鉄心を囲むように巻かれた2次コイルと、前記第1、第2の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルと、を含むことを特徴とする電圧調整変圧器。   First and second iron cores forming a closed magnetic path, a third iron core (hereinafter referred to as a bypass iron core), and a primary coil wound so as to surround the first and second iron cores and the bypass iron core, A secondary coil wound around the first and second iron cores, and a control coil wound around the first and second iron cores in series or in parallel and in opposite directions. Voltage regulation transformer characterized by. 前記バイパス鉄心が開磁路からなることを特徴とする請求項2に記載の電圧調整変圧器。   The voltage regulation transformer according to claim 2, wherein the bypass iron core includes an open magnetic circuit. 前記バイパス鉄心が、さらに2つの鉄心からなり、前記2つの鉄心に、直列又は並列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルを含むことを特徴とする請求項2または3に記載の電圧調整変圧器。   4. The bypass core control coil according to claim 2, wherein the bypass iron core further includes two iron cores, and includes a bypass iron core control coil wound around the two iron cores in series or in parallel and in opposite directions to each other. 5. Voltage regulation transformer. 前記第1、第2の鉄心が、共通の脚部と、上下のヨーク部のうち一方又は双方が分割されたヨーク部とからなり、前記制御コイルが前記第1、第2の鉄心の前記分割されたヨーク部に巻かれていることを特徴とする請求項1ないし4に記載の電圧調整変圧器。   The first and second iron cores include a common leg portion and a yoke portion obtained by dividing one or both of the upper and lower yoke portions, and the control coil is divided into the first and second iron cores. 5. The voltage regulating transformer according to claim 1, wherein the voltage regulating transformer is wound around a yoke portion. 前記第1、第2の鉄心が巻鉄心であることを特徴とする請求項1ないし4に記載の電圧調整変圧器。   5. The voltage regulating transformer according to claim 1, wherein the first and second iron cores are wound iron cores. 前記制御コイルが、前記1次、2次コイルから最も離隔した位置に巻かれていることを特徴とする請求項1ないし6に記載の電圧調整変圧器。   7. The voltage regulating transformer according to claim 1, wherein the control coil is wound at a position farthest from the primary and secondary coils. 3相交流電力の各相電圧に対応する3組の電圧調整変圧器からなり、各々の前記電圧調整変圧器は、閉磁路をなす第1、第2の鉄心と、第3の鉄心(以下、バイパス鉄心という)と、前記第1、第2の鉄心とバイパス鉄心とを囲むように巻かれた1次コイルと、前記第1、第2の鉄心を囲むように巻かれた2次コイルと、前記第1、第2の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルとを含み、前記バイパス鉄心が、3相の各相に対応する別々の脚部と、共通のヨーク部からなる帰路とを有することを特徴とする電圧調整変圧器。   It consists of three sets of voltage regulating transformers corresponding to each phase voltage of the three-phase AC power, and each of the voltage regulating transformers includes a first iron core, a second iron core, and a third iron core (hereinafter referred to as a closed magnetic circuit). A bypass iron core), a primary coil wound around the first and second iron cores and the bypass iron core, and a secondary coil wound around the first and second iron cores; The first and second iron cores include control coils wound in series or in parallel and in opposite directions, and the bypass iron core has a separate leg corresponding to each of three phases, A voltage regulating transformer having a return path composed of a yoke portion. 前記バイパス鉄心の、3相の各相に対応する別々の脚部又は共通ヨーク部の、一方もしくは双方が2つの鉄心からなり、前記2つの鉄心に、直列又は並列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルを含むことを特徴とする請求項8に記載の電圧調整変圧器。   One or both of the leg portions or the common yoke portion corresponding to each of the three phases of the bypass iron core are composed of two iron cores, and are wound around the two iron cores in series or in parallel and in opposite directions to each other. 9. The voltage regulating transformer according to claim 8, further comprising a bypass iron core control coil. 3相交流電力の各相電圧に対応して三角状に配置した3脚からなる主鉄心と、前記主鉄心を囲むように各々巻かれている1次コイル及び2次コイルと、前記主鉄心の上下の双方又は一方に設けられた、環状(以下、円形、又は「おむすび形」の場合を含む)の2つのヨーク部と、前記2つのヨーク部の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルとを含むことを特徴とする電圧調整変圧器。   A main iron core composed of three legs arranged in a triangular shape corresponding to each phase voltage of the three-phase AC power, a primary coil and a secondary coil respectively wound around the main iron core, and the main iron core Two or more yoke parts (including a case of a circle or a “diaper shape”) provided on both the upper and lower sides and the iron cores of the two yoke parts are connected in series or in parallel and opposite to each other. A voltage regulating transformer comprising a control coil wound in a direction. 3相交流電力の各相電圧に対応して三角状に配置した3脚からなる主鉄心と、前記主鉄心の上下の双方又は一方に設けられた、環状の2つのヨーク部と、前記2つのヨーク部の鉄心に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルと、前記3脚からなる主鉄心に各々並立する3脚からなるバイパス鉄心とを含み、前記主鉄心を囲むように2次コイルが、前記主鉄心と前記並立するバイパス鉄心とを囲むように1次コイルが、各々巻かれていることを特徴とする電圧調整変圧器。   A main core composed of three legs arranged in a triangular shape corresponding to each phase voltage of the three-phase AC power, two annular yoke portions provided on either or both sides of the main iron core, and the two The iron core of the yoke part includes a control coil wound in series or in parallel and in opposite directions, and a bypass iron core consisting of three legs juxtaposed on the main iron core consisting of the three legs, so as to surround the main iron core. Each of the secondary coils is wound with a primary coil so as to surround the main iron core and the parallel bypass iron core. 前記3脚からなるバイパス鉄心が、さらにその上下の双方又は一方に設けられた、環状の共通のヨーク部を有することを特徴とする請求項11に記載の電圧調整変圧器。   The voltage regulating transformer according to claim 11, wherein the bypass iron core composed of the three legs further has an annular common yoke portion provided on both or one of the upper and lower sides thereof. 前記バイパス鉄心の環状の共通のヨーク部がさらに2つの鉄心からなり、前記2つの鉄心に、直列又は並列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルを含むことを特徴とする請求項12に記載の電圧調整変圧器。   The annular common yoke portion of the bypass iron core further comprises two iron cores, and includes a bypass iron core control coil wound around the two iron cores in series or in parallel and in opposite directions. 12. The voltage regulating transformer according to 12. 3相交流電力の各相電圧に対応する3組の電圧調整変圧器からなり、各々の前記電圧調整変圧器は、2つの巻鉄心からなる主鉄心と、前記主鉄心の縦辺の一方に並立するバイパス鉄心と、前記2つの巻鉄心と前記バイパス鉄心に巻かれた1次コイルと、前記2つの巻鉄心に巻かれた2次コイルと、前記2つの巻鉄心の、1次、2次コイルからもっとも離隔した位置に、直列又は並列に、且つ互いに逆方向に巻かれた制御コイルとを含み、前記バイパス鉄心には、その上下の双方又は一方に設けられた環状の共通のヨーク部が設けられていることを特徴とする電圧調整変圧器。   It consists of three sets of voltage regulation transformers corresponding to each phase voltage of three-phase AC power, and each said voltage regulation transformer is juxtaposed on one of the main iron core consisting of two wound iron cores and the vertical side of the main iron core Bypass iron core, the two wound cores, the primary coil wound around the bypass core, the secondary coil wound around the two wound cores, and the primary and secondary coils of the two wound cores And a control coil wound in series or in parallel and in opposite directions to each other, and the bypass iron core is provided with a ring-shaped common yoke portion provided on both of the upper and lower sides or one of them. The voltage regulation transformer characterized by the above-mentioned. 前記バイパス鉄心の共通のヨーク部がさらに2つの鉄心からなり、前記2つの鉄心に、直列又は並列に、且つ互いに逆方向に巻かれたバイパス鉄心制御コイルを含むことを特徴とする請求項14に記載の電圧調整変圧器。
The common yoke portion of the bypass iron core further includes two iron cores, and includes a bypass iron core control coil wound around the two iron cores in series or in parallel and in opposite directions to each other. The voltage regulation transformer described.
JP2004063219A 2004-03-05 2004-03-05 Voltage regulation transformer Expired - Fee Related JP4411460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063219A JP4411460B2 (en) 2004-03-05 2004-03-05 Voltage regulation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063219A JP4411460B2 (en) 2004-03-05 2004-03-05 Voltage regulation transformer

Publications (2)

Publication Number Publication Date
JP2005252113A true JP2005252113A (en) 2005-09-15
JP4411460B2 JP4411460B2 (en) 2010-02-10

Family

ID=35032291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063219A Expired - Fee Related JP4411460B2 (en) 2004-03-05 2004-03-05 Voltage regulation transformer

Country Status (1)

Country Link
JP (1) JP4411460B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182905A (en) * 2009-02-06 2010-08-19 Tokuden Co Ltd Voltage controlled transformer
JP2010192813A (en) * 2009-02-20 2010-09-02 Tokuden Co Ltd Three-phase voltage-controlling transformer assembly
JP2010278273A (en) * 2009-05-29 2010-12-09 Hitachi Engineering & Services Co Ltd Variable voltage type transformer
JP2012010539A (en) * 2010-06-28 2012-01-12 Sumida Corporation Power supply device
JP2012138529A (en) * 2010-12-28 2012-07-19 Daifuku Co Ltd Secondary side power reception circuit of non-contact power supply facility, and saturable reactor used in secondary side power reception circuit
JP2013529393A (en) * 2010-06-10 2013-07-18 シャフナー・エーエムファウ・アクチェンゲゼルシャフト Integrated magnetic device for low-harmonic three-phase front-end equipment
JP2018092851A (en) * 2016-12-07 2018-06-14 日本▲まき▼線工業株式会社 Led drive power supply device
JP2019068033A (en) * 2017-09-28 2019-04-25 富士電機株式会社 Power distribution unit
CN111045469A (en) * 2019-12-30 2020-04-21 桂林理工大学 Electron beam grid voltage stabilizing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182905A (en) * 2009-02-06 2010-08-19 Tokuden Co Ltd Voltage controlled transformer
JP2010192813A (en) * 2009-02-20 2010-09-02 Tokuden Co Ltd Three-phase voltage-controlling transformer assembly
JP2010278273A (en) * 2009-05-29 2010-12-09 Hitachi Engineering & Services Co Ltd Variable voltage type transformer
JP2013529393A (en) * 2010-06-10 2013-07-18 シャフナー・エーエムファウ・アクチェンゲゼルシャフト Integrated magnetic device for low-harmonic three-phase front-end equipment
JP2012010539A (en) * 2010-06-28 2012-01-12 Sumida Corporation Power supply device
JP2012138529A (en) * 2010-12-28 2012-07-19 Daifuku Co Ltd Secondary side power reception circuit of non-contact power supply facility, and saturable reactor used in secondary side power reception circuit
JP2018092851A (en) * 2016-12-07 2018-06-14 日本▲まき▼線工業株式会社 Led drive power supply device
JP2019068033A (en) * 2017-09-28 2019-04-25 富士電機株式会社 Power distribution unit
JP7119517B2 (en) 2017-09-28 2022-08-17 富士電機株式会社 power distribution unit
CN111045469A (en) * 2019-12-30 2020-04-21 桂林理工大学 Electron beam grid voltage stabilizing device

Also Published As

Publication number Publication date
JP4411460B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4646327B2 (en) Three-phase electromagnetic equipment
US10014791B2 (en) Distribution transformer
JP4411460B2 (en) Voltage regulation transformer
KR101715296B1 (en) The winding circuit of the phase shifting transformer having the voltage regulating function
JP5459775B2 (en) AC-DC converter without rectifier element on the secondary side of the transformer
WO2017016249A1 (en) Multifunctional transformer with rapid response speed
JP5354730B2 (en) Three-phase voltage regulator
JP5520613B2 (en) Magnetic flux control type variable transformer
WO2016110013A1 (en) Magnetically-controlled isolated multifunctional transformer
JP2003229315A (en) Three-phase variable inductance device
Nakamura et al. Three-dimensional reluctance network analysis considering an iron loss characteristic for an EIE-core variable inductor
WO2016141614A1 (en) Saturable reactor having simple structure
Cui et al. A single-phase electromagnetic transformer with an adjustable output voltage
JP3789333B2 (en) Electromagnetic equipment
Wijesooriya et al. Linear AC voltage regulator: Implementation details of a multi-winding approach
CN105141140B (en) A kind of improved Multifunction transformer
CN104795202A (en) Saturable reactor shortening transient response time
Bolduc et al. IVACE: A self-regulating variable reactor
JP2003168612A (en) Three-phase electromagnetic apparatus
JP5918066B2 (en) Electromagnetic equipment
JP3028213B2 (en) Voltage regulator
JP7503783B2 (en) Flux-controlled variable transformer
CN219875102U (en) Dynamic reactive power compensation device and voltage regulating type magnetic control phase modulator
SU1781711A1 (en) Three-phase saturating reactor
JP2004187374A (en) Single phase three wire type voltage regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees