JP2005249711A - Measuring circuit for internal resistance of sensor - Google Patents

Measuring circuit for internal resistance of sensor Download PDF

Info

Publication number
JP2005249711A
JP2005249711A JP2004063788A JP2004063788A JP2005249711A JP 2005249711 A JP2005249711 A JP 2005249711A JP 2004063788 A JP2004063788 A JP 2004063788A JP 2004063788 A JP2004063788 A JP 2004063788A JP 2005249711 A JP2005249711 A JP 2005249711A
Authority
JP
Japan
Prior art keywords
sensor
measurement
internal resistance
measuring
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004063788A
Other languages
Japanese (ja)
Inventor
Toshihiko Watanabe
俊彦 渡辺
Masaaki Sekino
正明 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004063788A priority Critical patent/JP2005249711A/en
Publication of JP2005249711A publication Critical patent/JP2005249711A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring circuit for internal resistance of sensor which can measure with high precision, in addition to expand the measuring range of the internal resistance. <P>SOLUTION: The measuring circuit for internal resistance of sensor has a configuration, such that a measuring bias supply VCC impresses reverse bias to a sensor 10, and based on the output voltage of the sensor 10 measured with an amplifier AMP 1 and the voltage drop of measuring resistive group RV measured with an amplifier AMP 2, a microcomputer 11 implements variable control for the resistance of the measuring a resistive group RV so that it is equal to the resistance of the internal resistance RS of the sensor 10 to the resistance of the measuring resistive group RV, connected in series with the internal resistance RS of the sensor 10 resulting in the internal resistance RS of the sensor 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、センサの内部抵抗の測定範囲を改善したセンサ内部抵抗測定回路に関する。   The present invention relates to a sensor internal resistance measurement circuit that improves the measurement range of the internal resistance of a sensor.

従来、センサの内部抵抗を測定する技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献1参照)。この文献に記載されたセンサ内部抵抗測定回路を図2に示す。図2において、被測定対象のセンサ20は、内部抵抗RSとセンサ電圧VSを出力するセンサ出力電源VSとで構成されている。このセンサ20には、内部抵抗RSの測定時に、バイアス電源VGとセンサ20との間に直列に接続されたスイッチSWと直列抵抗RVを介して電圧VG(例えば5V程度)がセンサ出力電源VSに対して逆バイアスで印加される。センサ20の両端間の電圧VMは増幅器21に入力されて計測され、増幅器21の出力は、この出力に基づいて内部抵抗RSを求めるマイクロコンピュータ(μC)22のA/D変換ポートA/Dに与えられる。   Conventionally, as a technique for measuring the internal resistance of a sensor, for example, those described in the following documents are known (see Patent Document 1). The sensor internal resistance measuring circuit described in this document is shown in FIG. In FIG. 2, the sensor 20 to be measured includes an internal resistance RS and a sensor output power supply VS that outputs a sensor voltage VS. In this sensor 20, when the internal resistance RS is measured, a voltage VG (for example, about 5V) is supplied to the sensor output power supply VS via a switch SW and a series resistance RV connected in series between the bias power supply VG and the sensor 20. On the other hand, it is applied with a reverse bias. The voltage VM between both ends of the sensor 20 is input to the amplifier 21 and measured, and the output of the amplifier 21 is supplied to the A / D conversion port A / D of the microcomputer (μC) 22 for obtaining the internal resistance RS based on this output. Given.

このように構成されたセンサ内部抵抗測定回路において、スイッチSWがオンして電圧VGがセンサ20に印加されると、センサ20には電流Iが流れる。これにより、センサ20の端子間電圧VMは、(数1)で表される。   In the sensor internal resistance measurement circuit configured as described above, when the switch SW is turned on and the voltage VG is applied to the sensor 20, a current I flows through the sensor 20. Thereby, the voltage VM between the terminals of the sensor 20 is expressed by (Equation 1).

(数1)
VM=I×RS+VS
また、電圧VGは(数2)で表される。
(Equation 1)
VM = I × RS + VS
The voltage VG is expressed by (Equation 2).

(数2)
VG=I×RV+VM=I×RV+I×RS+VS
上記により、センサ20の内部抵抗RSは、(数3)で表される。
(Equation 2)
VG = I × RV + VM = I × RV + I × RS + VS
From the above, the internal resistance RS of the sensor 20 is expressed by (Equation 3).

(数3)
RS=RV(VM−VS)/(VG−VM)
ここで、RVならびにVGは予め設定されて既知の値であり、VMはスイッチSWがオンした際(内部抵抗測定時)に増幅器21で測定され、VSはスイッチSWがオフ時(センサ20の通常動作時)に増幅器21で測定される。したがって、これらの測定結果ならびに上記(数3)に基づいて、センサ20の内部抵抗RSが算出される。
(Equation 3)
RS = RV (VM-VS) / (VG-VM)
Here, RV and VG are preset and known values, VM is measured by the amplifier 21 when the switch SW is turned on (when measuring the internal resistance), and VS is measured when the switch SW is turned off (normality of the sensor 20). Measured by amplifier 21 during operation). Therefore, the internal resistance RS of the sensor 20 is calculated based on these measurement results and the above (Equation 3).

このようなセンサ内部抵抗測定回路において、センサの周囲条件や動作電流による自己加熱を考慮すると、センサ20の内部抵抗RSは10Ω程度〜1MΩ程度の測定範囲が好ましい。また、直列抵抗RVは内部抵抗RSの抵抗値と余り異なってはならない。したがって、上述した10Ω(センサ温度は約900℃)〜1MΩ(センサ温度は約250℃)の測定範囲をカバーしようとすると、直列抵抗RVとしては例えば68Ω程度,3.3kΩ程度ならびに150kΩ程度の3つの抵抗が必要となる。
特表平04−501170号公報
In such a sensor internal resistance measurement circuit, the internal resistance RS of the sensor 20 preferably has a measurement range of about 10Ω to about 1MΩ in consideration of the ambient conditions of the sensor and self-heating due to the operating current. Also, the series resistance RV should not be very different from the resistance value of the internal resistance RS. Therefore, if the measurement range of 10Ω (sensor temperature is about 900 ° C.) to 1 MΩ (sensor temperature is about 250 ° C.) described above is to be covered, the series resistance RV is, for example, about 68Ω, about 3.3 kΩ, and about 150 kΩ. Two resistors are required.
Japanese National Patent Publication No. 04-501170

以上説明したように、従来のセンサ内部抵抗測定回路においては、内部抵抗の測定範囲、すなわち、センサの温度範囲を所定の範囲に確保するために、それぞれ抵抗値の異なる3つの抵抗を用意し、測定範囲に応じて用意した何れかの抵抗を直列抵抗として用いることになる。   As described above, in the conventional sensor internal resistance measurement circuit, in order to ensure the measurement range of the internal resistance, that is, the temperature range of the sensor within a predetermined range, three resistors having different resistance values are prepared, Any resistance prepared according to the measurement range is used as the series resistance.

しかし、内部抵抗の測定範囲は用意する直列抵抗で制限され、測定範囲を広げることは難しかった。また、精度良く測定できる内部抵抗値が不連続となり、連続的に内部抵抗を測定することが困難であった。さらに、測定範囲を変更するためには、測定範囲に応じて直列抵抗を適宜変更しなければならず、多くの手間が必要になっていた。   However, the measurement range of the internal resistance is limited by the series resistance provided, and it is difficult to widen the measurement range. Further, the internal resistance value that can be measured with high accuracy becomes discontinuous, and it is difficult to continuously measure the internal resistance. Furthermore, in order to change the measurement range, the series resistance has to be changed as appropriate according to the measurement range, and much effort has been required.

そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、容易に内部抵抗の測定範囲を広げると共に、内部抵抗を高精度に測定できるセンサ内部抵抗測定回路を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide a sensor internal resistance measurement circuit capable of easily expanding the measurement range of the internal resistance and measuring the internal resistance with high accuracy. There is.

上記目的を達成するために、請求項1記載の発明は、センサに印加される測定電圧を出力する測定電圧源と、前記センサの内部抵抗を測定する測定動作時に、前記測定電圧源から出力された測定電圧を選択的に前記センサに与えるスイッチと、前記センサの出力電圧を計測する第1の計測手段とを備えたセンサ内部抵抗測定回路において、前記スイッチを介して前記測定電圧源から前記センサに供給される電流の流路に設けられ、抵抗値が可変される測定用抵抗と、前記センサの内部抵抗を測定する測定動作時に、前記測定用抵抗の降下電圧を計測する第2の計測手段と、前記測定用抵抗の抵抗値を可変制御し、前記第1ならびに第2の計測手段の計測結果、ならびに前記測定用抵抗の抵抗値に基づいて、前記センサの内部抵抗を求める測定制御手段とを有することを特徴とする。   In order to achieve the above object, the invention described in claim 1 is a measurement voltage source that outputs a measurement voltage applied to a sensor, and is output from the measurement voltage source during a measurement operation that measures the internal resistance of the sensor. In a sensor internal resistance measuring circuit, comprising: a switch for selectively supplying the measured voltage to the sensor; and a first measuring means for measuring an output voltage of the sensor, from the measured voltage source to the sensor. And a second measuring means for measuring a drop voltage of the measuring resistance during a measuring operation for measuring the internal resistance of the sensor. And variably controlling the resistance value of the measuring resistor, and measuring the internal resistance of the sensor based on the measurement results of the first and second measuring means and the resistance value of the measuring resistor And having a control means.

上記特徴の請求項1の発明によれば、測定精度を低下させることなく、センサの内部抵抗の測定範囲を従来に比べて広範囲に拡大することができる。   According to the first aspect of the present invention, the measurement range of the internal resistance of the sensor can be expanded over a wide range without reducing the measurement accuracy.

請求項2記載の発明は、前記請求項1記載のセンサ内部抵抗測定回路において、前記測定制御手段は、前記第1の計測手段ならびに前記第2の計測手段の計測結果に基づいて前記測定用抵抗の抵抗値を可変制御することを特徴とする。   According to a second aspect of the present invention, in the sensor internal resistance measuring circuit according to the first aspect, the measurement control means is configured to measure the resistance for measurement based on the measurement results of the first measuring means and the second measuring means. The resistance value is variably controlled.

上記特徴の請求項2記載の発明によれば、測定用抵抗の抵抗値をリニアに可変制御することが可能となり、内部抵抗を精度良く測定することができる。   According to the second aspect of the present invention, the resistance value of the measuring resistor can be variably controlled linearly, and the internal resistance can be measured with high accuracy.

請求項3記載の発明は、前記請求項1又は2記載のセンサ内部抵抗測定回路において、前記測定用抵抗は、格子状に配置された複数の抵抗と、前記複数の抵抗を接続/非接続するスイッチ素子とで構成されていることを特徴とする。   According to a third aspect of the present invention, in the sensor internal resistance measuring circuit according to the first or second aspect, the measuring resistor connects / disconnects the plurality of resistors arranged in a lattice shape and the plurality of resistors. It is characterized by comprising a switch element.

上記特徴の請求項3記載の発明によれば、測定用抵抗を簡単な構成で容易に構築することが可能となり、測定用抵抗の抵抗値を容易に可変制御することが可能となり、内部抵抗を精度良く測定することができる。   According to the third aspect of the present invention, the measurement resistor can be easily constructed with a simple configuration, the resistance value of the measurement resistor can be easily variably controlled, and the internal resistance can be reduced. It can measure with high accuracy.

以下、図面を用いて本発明を実施するための最良の実施例を説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best embodiment for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係るセンサ内部抵抗測定回路の構成を示す図である。図1に示す実施例1のセンサ内部抵抗測定回路は、図2に示す従来例と同様に、温度により抵抗値が変化する内部抵抗RSとセンサ出力電源VSとで構成されたセンサ10の内部抵抗RSの抵抗値を測定する回路である。内部抵抗RSが測定されるセンサ10は、例えば排気ガス中の酸素濃度を検出する酸素センサであり、この酸素センサは、例えば車両等の排気管の途中に配置され、排気管から排出される排気ガス中に含まれる酸素濃度を検出する。車両は、検出された酸素濃度に基づいて燃料と空気との混合比率である空燃比A/Fを所定の理論空燃比(A/F=14.7)とするように吸引空気量をフィードバック制御している。   FIG. 1 is a diagram showing a configuration of a sensor internal resistance measurement circuit according to Embodiment 1 of the present invention. The sensor internal resistance measuring circuit according to the first embodiment shown in FIG. 1 is similar to the conventional example shown in FIG. 2 in that the internal resistance of the sensor 10 is composed of an internal resistance RS whose resistance value changes with temperature and a sensor output power supply VS. This is a circuit for measuring the resistance value of RS. The sensor 10 for measuring the internal resistance RS is, for example, an oxygen sensor that detects an oxygen concentration in exhaust gas. This oxygen sensor is disposed in the middle of an exhaust pipe of, for example, a vehicle and is exhausted from the exhaust pipe. The oxygen concentration contained in the gas is detected. The vehicle feedback-controls the amount of intake air so that the air-fuel ratio A / F, which is the mixing ratio of fuel and air, becomes a predetermined theoretical air-fuel ratio (A / F = 14.7) based on the detected oxygen concentration. doing.

図1において、センサ10は、そのセンサ出力電源VSの負極側がグランド(GND)に接続され、正極側が内部抵抗RSの一端に接続され、内部抵抗RSの他端は測定用抵抗群RVの一端に接続されている。   In FIG. 1, the sensor 10 has a sensor output power supply VS connected to the ground (GND) at the negative electrode side, connected to one end of the internal resistor RS, and the other end of the internal resistor RS connected to one end of the measurement resistor group RV. It is connected.

測定用抵抗群RVは、先の図2に示す直列抵抗RVに相当するものである。測定用抵抗群RVは、多数の抵抗Rがラダー状又は格子状に配置され、それぞれの抵抗Rの接続状態は、スイッチ機能を有するスイッチ素子Sで接続/非接続されて接続制御される、スイッチ素子Sは、例えば測定用抵抗群RVをIC化した際に容易に構成可能な一例として、例えばFET等で構成される。したがって、測定用抵抗群RVは、スイッチ素子Sの接続制御により、測定用抵抗群RV全体としての抵抗値が可変される。また、測定用抵抗群RVは、測定用抵抗群RVを構成する抵抗の個数ならびに接続状態に応じて、測定用抵抗群RVが可変できる抵抗値の可変範囲や可変幅を任意に設定することができる。すなわち、測定用抵抗群RVの抵抗値を略連続的(リニア)に可変することが可能となるように、測定用抵抗群RVを構成することが可能である。   The resistance group for measurement RV corresponds to the series resistance RV shown in FIG. The resistance group for measurement RV is a switch in which a number of resistors R are arranged in a ladder shape or a lattice shape, and the connection state of each resistor R is connected / disconnected by a switch element S having a switch function. The element S is configured by, for example, an FET as an example that can be easily configured when the measurement resistance group RV is integrated into an IC. Therefore, the resistance value of the measuring resistor group RV is varied by the connection control of the switch element S. In addition, the resistance group for measurement RV can arbitrarily set a variable range and a variable width of the resistance value that can be varied by the measurement resistance group RV according to the number of resistors constituting the measurement resistance group RV and the connection state. it can. That is, the measurement resistance group RV can be configured so that the resistance value of the measurement resistance group RV can be varied substantially continuously (linearly).

測定用抵抗群RVは、その他端がスイッチSWを介して測定用バイアス電源VCCの正極側に接続され、測定用バイアス電源VCCの負極側はグランド(GND)に接続されている。したがって、測定用バイアス電源VCCはセンサ10に対して電圧VCC(例えば5V程度)の逆バイアスを印加するように機能する。なお、グランド(GND)は、例えば測定用バイアス電源VCCの1/2の電位(VCC/2)の仮想グランドであっても構わない。   The other end of the measurement resistor group RV is connected to the positive electrode side of the measurement bias power supply VCC via the switch SW, and the negative electrode side of the measurement bias power supply VCC is connected to the ground (GND). Therefore, the measurement bias power supply VCC functions to apply a reverse bias of the voltage VCC (for example, about 5 V) to the sensor 10. The ground (GND) may be a virtual ground having a potential (VCC / 2) that is ½ of the measurement bias power supply VCC, for example.

センサ10は、内部抵抗RSの他端が増幅器AMP1の一方の入力端子に接続され、増幅器AMP1の他方の入力端子はグランドに接続され、増幅器AMP1の出力端子は、マイクロコンピュータ(μC)11のA/D変換ポートA/D1に接続されている。したがって、増幅器AMP1は、内部抵抗RSの他端と測定用抵抗群RVの一端との接続点の電圧、すなわちセンサ10の出力電圧を計測し、計測した電圧VMをマイクロコンピュータ11のA/D変換ポートA/D1に与える。   In the sensor 10, the other end of the internal resistor RS is connected to one input terminal of the amplifier AMP1, the other input terminal of the amplifier AMP1 is connected to the ground, and the output terminal of the amplifier AMP1 is connected to the A of the microcomputer (μC) 11. / D conversion port A / D1. Therefore, the amplifier AMP1 measures the voltage at the connection point between the other end of the internal resistor RS and one end of the measurement resistor group RV, that is, the output voltage of the sensor 10, and converts the measured voltage VM into A / D conversion of the microcomputer 11. Apply to port A / D1.

測定用抵抗群RVは、センサ10の内部抵抗RSとの接続点が増幅器AMP2の一方の入力端子に接続され、増幅器AMP2の他方の入力端子は測定用バイアス電源VCCの正極側ならびにこの正極側に接続されたスイッチSWの一端に接続され、増幅器AMP2の出力端子は、マイクロコンピュータ11のA/D変換ポートA/D2に接続されている。したがって、増幅器AMP2は、測定用バイアス電源VCCとスイッチSWの接続点と測定用抵抗群RVとセンサ10の内部抵抗RSの接続点との両接続点間の電圧VRを計測し、計測した電圧VRをマイクロコンピュータ11のA/D変換ポートA/D2に与える。   In the measurement resistor group RV, a connection point with the internal resistor RS of the sensor 10 is connected to one input terminal of the amplifier AMP2, and the other input terminal of the amplifier AMP2 is connected to the positive side of the measurement bias power supply VCC and the positive side thereof. Connected to one end of the connected switch SW, the output terminal of the amplifier AMP2 is connected to the A / D conversion port A / D2 of the microcomputer 11. Therefore, the amplifier AMP2 measures the voltage VR between the connection points of the connection point of the measurement bias power supply VCC and the switch SW, the connection point of the measurement resistance group RV, and the internal resistance RS of the sensor 10, and measures the measured voltage VR. Is supplied to the A / D conversion port A / D2 of the microcomputer 11.

マイクロコンピュータ11は、センサ10の内部抵抗の測定、ならびに測定用抵抗群RVの抵抗値可変制御の制御中枢として機能し、内部に記憶された制御ロジックのプログラムに基づいて、上記内部抵抗RSの測定制御ならびに抵抗値可変制御を実行する。マイクロコンピュータ11は、センサ10の通常動作時ならびにセンサ10の内部抵抗RSの測定時に応じて、スイッチSWの接続/非接続を選択的に制御する。すなわち、マイクロコンピュータ11は、センサ10の通常動作モードではスイッチSWをオフ状態とする一方、センサ10の内部抵抗測定モードではスイッチSWをオン状態として、スイッチSWを介して測定用バイアス電源VCCからセンサ10にバイアス電圧を印加する。   The microcomputer 11 functions as a control center for the measurement of the internal resistance of the sensor 10 and the resistance value variable control of the measurement resistance group RV, and measures the internal resistance RS based on a control logic program stored therein. Control and resistance value variable control are executed. The microcomputer 11 selectively controls connection / disconnection of the switch SW according to the normal operation of the sensor 10 and the measurement of the internal resistance RS of the sensor 10. That is, the microcomputer 11 turns off the switch SW in the normal operation mode of the sensor 10, while turning on the switch SW in the internal resistance measurement mode of the sensor 10, and detects the sensor from the measurement bias power supply VCC via the switch SW. 10 is applied with a bias voltage.

マイクロコンピュータ11は、信号を時分割でシリアルに出力するシリアル通信機能(SPI通信)を備えており、この機能を用いてシリアル通信ポートSPIを介してスイッチ素子Sをオン/オフ制御する複数ビットのスイッチング信号をシリアルに出力する。なお、スイッチング信号のビット数は、測定用抵抗群RVを構成するスイッチ素子Sの個数、すなわち測定用抵抗群RVを構成する抵抗Rの個数によって適宜設定される。マイクロコンピュータ11は、測定用抵抗群RVにおいて設定しようとする所望の抵抗値に応じて、スイッチング信号を生成する。したがって、マイクロコンピュータ11は、このスイッチング信号の内容により測定用抵抗群RVの抵抗値を認識することができる。   The microcomputer 11 has a serial communication function (SPI communication) for serially outputting signals in a time-sharing manner, and a multi-bit control unit that controls on / off of the switch element S via the serial communication port SPI using this function. The switching signal is output serially. The number of bits of the switching signal is appropriately set according to the number of switch elements S constituting the measurement resistance group RV, that is, the number of resistors R constituting the measurement resistance group RV. The microcomputer 11 generates a switching signal according to a desired resistance value to be set in the measurement resistor group RV. Therefore, the microcomputer 11 can recognize the resistance value of the measurement resistor group RV based on the content of the switching signal.

マイクロコンピュータ11は、増幅器AMP1ならびに増幅器AMP2によって計測されて各A/D変換ポートA/D1,2に与えられた計測電圧VR、VMならびに測定用抵抗群RVの抵抗値に基づいて、センサ10の内部抵抗RSを求める。   The microcomputer 11 determines the sensor 10 based on the measurement voltages VR and VM measured by the amplifier AMP1 and the amplifier AMP2 and applied to the A / D conversion ports A / D1 and 2, and the resistance value of the measurement resistance group RV. The internal resistance RS is obtained.

なお、図1に示す構成において、センサ10、マイクロコンピュータ11を除いた測定回路の各構成要素、すなわち測定用抵抗群RV、スイッチSW、増幅器AMP1,AMP2はIC化されている。   In the configuration shown in FIG. 1, the components of the measurement circuit excluding the sensor 10 and the microcomputer 11, that is, the measurement resistor group RV, the switch SW, and the amplifiers AMP1 and AMP2 are integrated into an IC.

このような構成において、センサ10の通常動作モードでは、スイッチSWはオフ状態となり、測定用バイアス電源VCCからバイアス電圧VCCがセンサ10に印加されず、センサ10から出力されるセンサ電圧VSは増幅器AMP1で計測され、増幅器AMP1の出力がセンサ10のセンサ電圧VSとなる。   In such a configuration, in the normal operation mode of the sensor 10, the switch SW is turned off, the bias voltage VCC is not applied to the sensor 10 from the measurement bias power supply VCC, and the sensor voltage VS output from the sensor 10 is the amplifier AMP1. And the output of the amplifier AMP1 becomes the sensor voltage VS of the sensor 10.

一方、センサ10の内部抵抗RSを測定する、センサ10の測定動作モードでは、先ず上述した通常動作モードにおいてセンサ10から出力されるセンサ電圧VSが増幅器AMP1で計測され、計測結果はマイクロコンピュータ11に与えられて内部のメモリに記憶される。   On the other hand, in the measurement operation mode of the sensor 10 for measuring the internal resistance RS of the sensor 10, first, the sensor voltage VS output from the sensor 10 in the normal operation mode described above is measured by the amplifier AMP1, and the measurement result is sent to the microcomputer 11. Given and stored in internal memory.

その後、センサ10の内部抵抗RSにおいて検出しようとする抵抗値に相当する抵抗値となるように、マイクロコンピュータ11はスイッチ素子Sのスイッチング信号を生成し、生成したスイッチング信号をシリアル通信ポートSPIを介して出力する。これにより、各スイッチ素子Sはオン/オフ制御され、検出しようとする抵抗値となるように測定用抵抗群RVを構成する抵抗Rの接続状態が設定される。   Thereafter, the microcomputer 11 generates a switching signal of the switch element S so that the resistance value corresponds to the resistance value to be detected in the internal resistance RS of the sensor 10, and the generated switching signal is transmitted via the serial communication port SPI. Output. As a result, each switch element S is controlled to be turned on / off, and the connection state of the resistors R constituting the measuring resistor group RV is set so that the resistance value to be detected is obtained.

このような状態において、スイッチSWをオン状態にする。これにより、測定用バイアス電源VCCからセンサ10に電圧VCCの逆バイアスが印加され、測定用バイアス電源VCCから測定用抵抗群RVを介してセンサ10に電流Iが流れる。この時に、センサ10の出力電圧は、増幅器AMP1で計測され、その計測電圧をVMとする。また、直列接続された測定用抵抗群RVとスイッチSWの電圧は、増幅器AMP2で計測され、その計測電圧をVRとする。それぞれ計測された電圧VM,VRは、マイクロコンピュータ11に与えられる。   In such a state, the switch SW is turned on. As a result, a reverse bias of the voltage VCC is applied from the measurement bias power supply VCC to the sensor 10, and a current I flows from the measurement bias power supply VCC to the sensor 10 via the measurement resistance group RV. At this time, the output voltage of the sensor 10 is measured by the amplifier AMP1, and the measured voltage is VM. Further, the voltage of the resistance group for measurement RV and the switch SW connected in series is measured by the amplifier AMP2, and the measured voltage is set to VR. The measured voltages VM and VR are given to the microcomputer 11.

マイクロコンピュータ11は、計測された電圧VM,VRとセンサ10のセンサ出力電源VSのセンサ電圧VSとの関係が、(VR=VM−VS)となるように、測定用抵抗群RVの抵抗値を調整する動作をフィードバック制御により実行する。このような、測定用抵抗群RVの抵抗値の調整作業が行われ、(VR=VM−VS)の関係が成立すると、電流IによるスイッチSWを含めた測定用抵抗群RVの電圧降下とセンサ10の内部抵抗RSの電圧降下が等しくなる。これにより、内部抵抗RSは、マイクロコンピュータ11から出力されるスイッチング信号に基づいて認識される測定用抵抗群RVの抵抗値として求められる。   The microcomputer 11 determines the resistance value of the measurement resistor group RV so that the relationship between the measured voltages VM and VR and the sensor voltage VS of the sensor output power source VS of the sensor 10 is (VR = VM−VS). The operation to be adjusted is executed by feedback control. When the adjustment of the resistance value of the measurement resistor group RV is performed and the relationship of (VR = VM-VS) is established, the voltage drop of the measurement resistor group RV including the switch SW due to the current I and the sensor The voltage drop of 10 internal resistances RS becomes equal. Thus, the internal resistance RS is obtained as the resistance value of the measurement resistance group RV recognized based on the switching signal output from the microcomputer 11.

内部抵抗RSの測定が終了すると、スイッチSWをオフ状態とし、測定用抵抗群RVのスイッチ素子Sをすべてオフ状態とし、センサ10を通常動作モードにする。   When the measurement of the internal resistance RS is completed, the switch SW is turned off, all the switch elements S of the measurement resistance group RV are turned off, and the sensor 10 is set in the normal operation mode.

このように、この実施例1のセンサ内部抵抗測定回路においては、測定用抵抗群RVの抵抗値の可変範囲に応じて、センサ10の内部抵抗RSの測定範囲を設定できるので、測定精度を低下させることなく、内部抵抗の測定範囲を従来に比べて広範囲に拡大することが可能となる。これにより、内部抵抗特性の異なるセンサ、すなわちセンサの温度範囲が異なる様々な特性のセンサに対応することが可能となり、汎用性に優れた測定回路を提供することができる。   As described above, in the sensor internal resistance measurement circuit according to the first embodiment, the measurement range of the internal resistance RS of the sensor 10 can be set according to the variable range of the resistance value of the measurement resistor group RV. Without making it possible, the measurement range of the internal resistance can be expanded over a wider range than before. Accordingly, it is possible to deal with sensors having different internal resistance characteristics, that is, sensors having various characteristics having different temperature ranges of the sensors, and it is possible to provide a measurement circuit having excellent versatility.

さらに、測定用抵抗群RVの抵抗値をリニアに可変することで、内部抵抗RSをリニアに測定することが可能となる。これにより、内部抵抗RSを高精度に測定することができる。   Furthermore, the internal resistance RS can be measured linearly by linearly varying the resistance value of the measurement resistor group RV. Thereby, the internal resistance RS can be measured with high accuracy.

なお、測定用抵抗群RVに代えて、電流を可変することでセンサ10の内部抵抗の測定において測定用抵抗群RVと同等の機能を有する可変電流源を採用するようにしてもよい。   Instead of the measurement resistance group RV, a variable current source having a function equivalent to that of the measurement resistance group RV may be employed in measuring the internal resistance of the sensor 10 by varying the current.

本発明の実施例1に係るセンサ内部抵抗測定回路の構成を示す図である。It is a figure which shows the structure of the sensor internal resistance measuring circuit which concerns on Example 1 of this invention. 従来のセンサ内部抵抗測定回路の構成を示す図である。It is a figure which shows the structure of the conventional sensor internal resistance measurement circuit.

符号の説明Explanation of symbols

10,20…センサ
11,22…マイクロコンピュータ
21,AMP1,AMP2…増幅器
A/D,A/D1,A/D2…変換ポート
R…抵抗
RS…内部抵抗
RV…測定用抵抗群
S…スイッチ素子
SPI…シリアル通信ポート
SW…スイッチ
VCC…測定用バイアス電源
VG…バイアス電源
VS…センサ出力電源
DESCRIPTION OF SYMBOLS 10, 20 ... Sensor 11, 22 ... Microcomputer 21, AMP1, AMP2 ... Amplifier A / D, A / D1, A / D2 ... Conversion port R ... Resistance RS ... Internal resistance RV ... Resistance group for measurement S ... Switch element SPI ... Serial communication port SW ... Switch VCC ... Bias power supply for measurement VG ... Bias power supply VS ... Sensor output power supply

Claims (3)

センサに印加される測定電圧を出力する測定電圧源と、
前記センサの内部抵抗を測定する測定動作時に、前記測定電圧源から出力された測定電圧を選択的に前記センサに与えるスイッチと、
前記センサの出力電圧を計測する第1の計測手段と
を備えたセンサ内部抵抗測定回路において、
前記スイッチを介して前記測定電圧源から前記センサに供給される電流の流路に設けられ、抵抗値が可変される測定用抵抗と、
前記センサの内部抵抗を測定する測定動作時に、前記測定用抵抗の降下電圧を計測する第2の計測手段と、
前記測定用抵抗の抵抗値を可変制御し、前記第1ならびに第2の計測手段の計測結果、ならびに前記測定用抵抗の抵抗値に基づいて、前記センサの内部抵抗を求める測定制御手段と
を有することを特徴とするセンサ内部抵抗測定回路。
A measurement voltage source for outputting a measurement voltage applied to the sensor;
A switch that selectively provides the sensor with a measurement voltage output from the measurement voltage source during a measurement operation of measuring the internal resistance of the sensor;
In the sensor internal resistance measurement circuit comprising a first measuring means for measuring the output voltage of the sensor,
A resistance for measurement provided in a flow path of a current supplied from the measurement voltage source to the sensor via the switch, the resistance value being variable;
A second measuring means for measuring a drop voltage of the measuring resistor during a measuring operation for measuring the internal resistance of the sensor;
Measurement control means for variably controlling the resistance value of the measurement resistor and obtaining the internal resistance of the sensor based on the measurement results of the first and second measurement means and the resistance value of the measurement resistance. A sensor internal resistance measuring circuit.
前記測定制御手段は、前記第1の計測手段ならびに前記第2の計測手段の計測結果に基づいて前記測定用抵抗の抵抗値を可変制御する
ことを特徴とする請求項1記載のセンサ内部抵抗測定回路。
2. The sensor internal resistance measurement according to claim 1, wherein the measurement control unit variably controls a resistance value of the measurement resistor based on measurement results of the first measurement unit and the second measurement unit. circuit.
前記測定用抵抗は、格子状に配置された複数の抵抗と、前記複数の抵抗を接続/非接続するスイッチ素子とで構成されている
ことを特徴とする請求項1又は2記載のセンサ内部抵抗測定回路。
3. The sensor internal resistance according to claim 1, wherein the measurement resistor includes a plurality of resistors arranged in a grid pattern and a switch element that connects / disconnects the plurality of resistors. 4. Measuring circuit.
JP2004063788A 2004-03-08 2004-03-08 Measuring circuit for internal resistance of sensor Pending JP2005249711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063788A JP2005249711A (en) 2004-03-08 2004-03-08 Measuring circuit for internal resistance of sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063788A JP2005249711A (en) 2004-03-08 2004-03-08 Measuring circuit for internal resistance of sensor

Publications (1)

Publication Number Publication Date
JP2005249711A true JP2005249711A (en) 2005-09-15

Family

ID=35030304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063788A Pending JP2005249711A (en) 2004-03-08 2004-03-08 Measuring circuit for internal resistance of sensor

Country Status (1)

Country Link
JP (1) JP2005249711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994363B1 (en) * 2018-07-17 2019-06-28 울산과학기술원 Measurement apparatus for gas sensing
KR102297426B1 (en) * 2020-06-24 2021-09-03 김인옥 Controller internal resistance measuring apparatus and controller internal resistance measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994363B1 (en) * 2018-07-17 2019-06-28 울산과학기술원 Measurement apparatus for gas sensing
KR102297426B1 (en) * 2020-06-24 2021-09-03 김인옥 Controller internal resistance measuring apparatus and controller internal resistance measuring method

Similar Documents

Publication Publication Date Title
JP4760806B2 (en) Gas sensor degradation simulator
JP2674876B2 (en) Adjusting branch power supply
JP5008058B2 (en) Output impedance adjustment circuit, semiconductor device, and output impedance adjustment method
TWI465733B (en) Electrical apparatus capable of measuring electrical resistance, method of controlling output current in an electronic apparatus capable of measuring electrical resistance, and appartus for measuring resistance
JP2015212678A (en) Controller for air-fuel ratio sensor
JP5563734B2 (en) Electronic load device and battery internal resistance measuring device
JP2005249711A (en) Measuring circuit for internal resistance of sensor
KR20040022411A (en) Determining the temperature of an exhaust gas sensor by means of calibrated internal resistance measurement
JP2004347590A (en) Measuring element for flow sensors
JP5091055B2 (en) Gas concentration detection device, gas concentration detection system
JP2003042870A (en) Temperature characteristics correcting circuit apparatus for sensor and sensor temperature characteristics correcting method
JP6989336B2 (en) Sensor control device and sensor unit
JP2006500572A (en) Circuit device for operating a linear exhaust gas sensor
JP6852523B2 (en) Air-fuel ratio sensor control device
JP6265094B2 (en) Control device and manufacturing method thereof
US20030052016A1 (en) Method and system for controlling the temperature of an oxygen sensor
JP4765824B2 (en) A / D converter and programmable controller system
JPH11201935A (en) Element-impedance detecting device for oxygen concentration sensor and detecting apparatus for oxygen concentration
JP2008309641A (en) Gas concentration detector
JP2005249713A (en) Circuit for measuring internal resistance of sensor
JP4250984B2 (en) Current detection circuit
JP3516244B2 (en) Gas concentration detector
JP2002039875A (en) Detector
KR20110035992A (en) Switching apparatus using the principle of temperature sensing
JP2005147872A (en) Controller for oxygen concentration sensor